
Monitoring Temporal Information Flow

Rayna Dimitrova, Bernd Finkbeiner, and Markus N. Rabe

Universität des Saarlandes, Germany

Abstract. We present a framework for monitoring information flow in
security-critical reactive systems, such as communication protocols, cell
phone apps, document servers and web browsers. The secrecy require-
ments in such systems typically vary over time in response to the in-
teraction with the environment. Standard notions of secrecy, like non-
interference, must therefore be extended by specifying precisely when

and under what conditions a particular event needs to remain secret.
Our framework is based on the temporal logic SecLTL, which combines
the standard temporal operators of linear-time temporal logic with the
modal Hide operator for the specification of information flow proper-
ties. We present a first monitoring algorithm for SecLTL specifications,
based on a translation of SecLTL formulas to alternating automata, and
identify open research questions and directions for future work.

1 Introduction

Runtime monitoring and enforcement of security properties has been an active
area of research in the last four decades [1], and its importance continues to
grow as security-critical systems such as communication protocols, cell phone
apps, document servers and web browsers become more and more ubiquitous.
The canonical property of interest in such systems is noninterference [2], which
requires that the public output of the system does not depend on secret input.
In this paper we address the problem of monitoring information flow in reactive
systems. We argue that in the realm of reactive systems, considering classical
noninterference is of limited interest: the secrecy requirements of a reactive sys-
tem typically vary over time in response to the interaction with the environment.

Consider, for example, the flow of information in a system for managing clin-
ical data. Ethical guidelines, such as those by the Caldicott Committee [3], state
that patient information is confidential and should not be disclosed without the
patient’s consent unless justified for a lawful purpose. For example, a release of
information without the patient’s consent may be allowed (and even required) in
certain cases of food poisoning and other notifiable diseases. On the other hand,
many secondary uses of the information, for example for research purposes, are
only allowed while the patient has given and not (yet) revoked explicit consent.

Due to the nature of information flow, monitoring mechanisms for noninter-
ference and related properties must not only consider the monitored trace, but
also additional traces that were not observed. For example, if the result of a
medical test is to be kept secret, and the test result turns out to be positive in

the monitored trace, then we must not only track the computation path corre-
sponding to the positive result, but also the computation path corresponding to
the negative result in order to check that both traces are observably equivalent.
To reduce the runtime overhead resulting from having to analyze parts of the
actual system, hybrid approaches that combine dynamic and static analysis tech-
niques have been developed [4, 5]. There exist, however, no means of imposing
restrictions on which parts the system should be considered while still perform-
ing a semantically justified security analysis. This can be achieved by specifying
precisely when and under what conditions noninterference has to hold.

In runtime verification, the usual specification language to describe such tem-
poral contexts is temporal logic. In this paper, we therefore propose an approach
for runtime monitoring of information flow in reactive systems that integrates
the dynamic analysis of information flow into the monitoring of temporal prop-
erties. Our approach is based on the temporal logic SecLTL, which we recently
introduced as a specification language for model checking [6]. SecLTL extends
linear-time temporal logic (LTL) with the Hide operator H for the specification
of information flow properties. The SecLTL formula HH,I,O ϕ specifies that a
certain secret, expressed as the current valuation of the variables in H , will not
become observable before the endcondition ϕ evaluates to true. The observer
from whom we wish to hide the secret is characterized by the subsets I and O
of the input and output variables that are visible to the observer. Applications
of the Hide operator can be embedded into a temporal context, for example in
the formula � (¬c → H{t},I,O false), which specifies that whenever the patent
does not give consent c to release the information, then the test result t must be
kept confidential forever with respect to the variables in I and O, representing
the interface to potential secondary users of the information.

The challenge in using SecLTL as a specification language for runtime moni-
tors is to integrate the monitoring of noninterference into the runtime verification
of the temporal formula. In the paper, we show that a seamless integration is in-
deed possible by using alternating automata as an intermediate data structure.
Alternating automata combine the disjunctive branching of nondeterministic
automata with the conjunctive branching of universal automata. As a result,
alternating automata are exponentially more succinct than nondeterministic or
universal automata. LTL specifications can be translated in linear time into
equivalent alternating automata that closely match the structure of the formula:
the states of the automaton correspond to subformulas of the specification [7].
In monitoring, this conciseness can be exploited by an efficient on-the-fly con-
struction, which delays the unfolding of the alternating automaton until new
positions of the trace become available [8].

The universal branching available in alternating automata can also be used
to concisely express the noninterference requirements in SecLTL specifications.
Overall, the automaton for a SecLTL formula has the same structure as the
automaton for an LTL formula. If the Hide operator occurs as a subformula, we
need to check that all alternative traces (corresponding to different values of the
secrets) in the system result in the same observation. To verify this condition, the

2

automaton branches universally into a separate check for each alternative trace,
where the subautomaton for each alternative trace keeps track of both the state
of the system for the main trace and the state of the system for the alternative
trace, and ensures that the observations are the same until the endcondition
becomes true on the main trace.

The embedding of the noninterference check into the alternating automaton
leads to an efficient monitoring algorithm. Using the standard on-the-fly unfold-
ing technique [8], we only consider that part of the automaton that corresponds
to the monitored trace. In particular, the decision which alternative traces to
track is delayed until the moment when the temporal context has already been
evaluated with respect to the currently available prefix of the monitored trace.

In the following sections, we present the ingredients of our monitoring ap-
proach in more detail. In Section 2, we formalize our system model and review
the syntax and semantics of SecLTL. In Section 3 we describe the translation
of SecLTL specifications to alternating automata. Based on this foundation, we
then present our monitoring algorithm for SecLTL specifications. We conclude
with a discussion of open research questions and future directions in Section 4.

2 The Specification Language SecLTL

2.1 System Model

Definition 1. A transition system S = (S, s0,VI ,VO, Σ, δ) consists of:

– a finite set of states S with an initial state s0,
– finite sets VI and VO of boolean input and output variables respectively, with

VI ∩ VO = ∅, and alphabet Σ defined as Σ = 2(VI∪VO),
– a transition function δ : S ×Σ → S, which is a partial function.

We consider input-enabled systems, that is, we require for every s ∈ S and
a ∈ 2VI that there exists an o ∈ 2VO such that δ(s, a ∪ o) is defined. We define
the size of the transition system S as |S| = |S|+ |Σ|.

For a set A, A∗ is the set of all finite sequences of elements of A and Aω is the
set of all infinite sequences of elements of A. For a finite or infinite sequence π
of elements of A and i ∈ N, π[i] is the (i+1)-th element of π, π[0, i) is the prefix
of π of up to (excluding) position i, π[0, i] is the prefix of π up to (including)
position i and, if π is infinite, π[i,∞) is its infinite suffix starting at position i.
We denote the length of a sequence π with |π| (where |π| = ∞ for π ∈ Aω).

Definition 2 (Trace). A trace in a transition system S = (S, s0,VI ,VO, Σ, δ)
is a finite or infinite sequence π of elements of Σ: π ∈ Σ∗ ∪Σω.

Definition 3 (Execution). Given a state s ∈ S and a finite or infinite trace
π, there exists at most one (finite or infinite, respectively) sequence of states
s0, s1, . . . such that s0 = s and si = δ(si−1, π[i− 1]) for all 0 < i < |π|.

We call this sequence of states (whenever it exists) an execution of S from
s on π and denote it with ExecS(s, π). Given a state s, we denote the set of

3

infinite (finite) traces in S for which an execution of S from s exists (i.e., for
which ExecS is defined for the state s) by TracesS,s (respectively TracesFinS.s).

Example 1. We use a simple application for managing clinical data as our run-
ning example. The application processes medical test results for a patient and
reports the results in accumulated form, here simply stating whether or not
some test has been positive, to an external agency. The application takes into
account whether the patient agrees to the release of information. Figures 1(a)
and 1(b) show two transition systems modeling variations of such an application.
In both SA and SB , the set of input variables is VI = {c, t} and the set of output
variables is VO = {p, d}. Thus, the alphabet of edge labels is Σ = 2{t,c,p,d}.

The variable t indicates the positive or negative outcome of the current test,
the variable p indicates whether the system reports that some test was positive,
the variable c indicates the patient’s current consent status, and the variable d
indicates whether the patient is included in an ongoing drug study. For clarity, we
use the valuations of the boolean variables in VI ∪VO to represent the elements
of Σ, for example the edge label ctpd stands for {c, p, d}.

If the patient consents to the release of information, p is truthfully set to
true if some test result has been positive. If there is no consent, p is always set
to false. The behaviors of the two systems differ with respect to test results that
occurred while the patient did not consent to the release of information. In SA,
once an execution reaches state s2 or state s4 (when some test result is positive),
it stays in the set of states {s2, s4} forever. The test results are therefore recorded
accurately, even if there is no consent to release the information. System SB , on
the other hand, goes to state s3 whenever the patient changes the consent status

s1

s2

s3

s4

ctpd,ctpd

ctpd,ctpd

ctpd

ctpd, ctpd

ctpd

ctpd

ctpd

ctpd

ctpd, ctpd

ctpd, ctpd

ct
pd

ctpd

(a) Transition system SA

s1

s2

s3

s4

ctpd, ctpd

ctpd,ctpd

ctpd

ctpd, ctpd

ctpd

ctpd

ctpd

ctpd

ctpd

ctpd, ctpd

ct
pd ct

pd

ctpd

(b) Transition system SB

Fig. 1. Transition systems with input variables c, t and output variables p, d. They
model two simple systems for managing clinical data, which report on the accumu-
lated result of a series of medical tests administered to a patient. The input variable t

indicates the positive or negative outcome of the current test, the output variable p

indicates whether the system reports that some test in the past has been positive, the
output variable d indicates whether the patient is included in a drug study, the input
variable c indicates whether the patient currently consents to the release of information.

4

from false to true (i.e., c becomes true) and the current test result is negative,
thus discarding the information about any positive test results up to that point.
In addition to that, in this case, the patient’s participation in the drug study is
suspended until possibly a positive test result comes in the future.

The patient can be included in the drug study (i.e, the variable d can be set
to true) only if some test result was positive. As long as the patient does not
consent to the release of information he may or may not be included in the drug
study. In the latter case, positive test results are not recorded.

A possible finite trace of SA is π = ctpd, ctpd, ctpd, ctpd. The corresponding
execution of SA from the initial state s1 is ExecSA

(s1, π) = s1, s3, s1, s2, s4.
This trace is not possible in the system SB (i.e., there exists no corresponding
execution), because there is no transition for ctpd from state s2 in SB.

2.2 SecLTL: Syntax and Semantics

The logic SecLTL, introduced in [6], extends LTL with the Hide operator H .

Formally, the SecLTL formulas over a set of input variables VI and a set
of output variables VO are defined according to the grammar below. Here, p ∈
VI ∪ VO, ϕ and ψ are SecLTL formulas, H ⊆ VI and I ⊆ VI are sets of input
variables with H ⊆ I, and O ⊆ VO is a set of output variables:

ϕ ::= p | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | © ϕ | ϕ U ψ | ϕRψ |
HH,I,Oϕ | LH,I,Oϕ.

The Leak operator L is the dual ofH. Additionally, we introduce the common
abbreviations true = v ∨ ¬v, false = ¬true, ♦ϕ = true Uϕ and �ϕ = ¬♦¬ϕ.

Intuitively, HH,I,Oϕ requires that the observable behavior of the system does
not depend on the initial values of the secret variables H in the desired time-
frame, that is, before the formula ϕ is satisfied. The operator specifies the power
of the observer associated with it, by providing two sets of variables that are
visible to this observer : a set I of input variables and a set O of output variables.

The Hide operator thus specifies what is to be considered the secret, what
we consider to be observable, and when the secret may be released.

Example 2. We illustrate the use of SecLTL by providing examples of formal
requirements for the clinical data management system from our running example.

The Hide operator allows us to specify precisely at which points some input
variable is considered to be secret. If, for example, we are only interested in
the first test result, then we can use the SecLTL formula H{t},{t,c},{p}false to
express the requirement that the first test result has to remain secret forever.
The observer in this scenario is specified to see the patient’s consent status and
the output variable p, which represents whether the system reports that some
test in the past has been positive. He cannot observe the output variable d.

We can also restrict the traces on which a variable has to be kept secret, i.e,
the traces on which a H formula needs to hold. The formula (1) below specifies

5

the property that only if the user never gives consent during the execution of
the system, the first test result must never be revealed.

(�¬c) → H{t},{t,c},{p}false. (1)

By nesting LTL operators and H , we can place H in an appropriate temporal
context and thus also refer to secrets introduced in multiple points of interest
during the execution of the system. The following formula represents the prop-
erty that every test result produced at a moment when the patient currently
does not consent to the release of information must remain secret forever.

�
(

¬c → H{t},{t,c},{p}false
)

. (2)

A different policy for dealing with patient data might require that a test
result is treated as confidential until (at some future point) the patient gives
consent and that, at that future point in time, information about all test results
from the past may be revealed in the system’s public output p:

�
(

H{t},{t,c},{p}c
)

. (3)

The formulas (1), (2) and (3) above show that SecLTL allows formalizing
different security policies, in particular ones that involve temporal requirements.
In formula (2), the values of the input variable t that are considered confidential
depend on the temporal context. The temporal aspect of (3) is in the condition
c, which determines from what point on declassification of the secret is allowed.

Since SecLTL is an extension of LTL, secrecy requirements can be combined
with classical requirements on the system’s behavior. For example, in addition
to the first requirement above one can require that if the current test result is
positive and the patient eventually consents in the future, then the existence of
a positive test result is eventually reflected in the system’s output. Formally:

�
(

t ∧ ♦c → ♦p
)

∧�
(

¬c→ H{t},{t,c},{p}false
)

. (4)

⊓⊔

Although SecLTL specifications are linear-time properties, their semantics,
more precisely the semantics of the Hide operator, is defined using a set of
alternative traces and involves comparison of each of these traces to the main
trace, i.e., the trace over which the SecLTL formula is interpreted.

Definition 4 (Equivalences). Given a set of variables V ⊆ VI∪VO, we define
two elements a and a′ of Σ, to be observationally equivalent w.r.t. V , noted
a ∼V a′, iff a ∩ V = a′ ∩ V . Observational equivalence w.r.t. V is extended to
traces by pointwise comparison.

Definition 5 (Alternative traces). The set of alternative traces for an infi-
nite trace π ∈ Σω in S and a state s ∈ S with respect to a set of secret variables
H ⊆ VI and a set of input variables I ⊆ VI with H ⊆ I, is the set of traces

6

starting with a possibly different valuation of the variables H in the first position,
but otherwise adhering to the same values for the observable input variables I.

AltS(s, π,H, I) = { π′ ∈ TracesS,s | π[0] ∼I\H π′[0] and π[1,∞) ∼I π
′[1,∞) }.

Definition 6 (Semantics of SecLTL). Let S = (S, s0,VI ,VO, Σ, δ) be a
transition system and s ∈ S be a state in S. We say that the infinite trace
π ∈ TracesS,s and the state s satisfy a given SecLTL formula ϕ, denoted
S, s, π |= ϕ when the following conditions are satisfied:

– For an atomic proposition, i.e, a variable p ∈ VI ∪ VO:

S, s, π |= p iff p ∈ π[0].

– For the boolean connectives:

S, s, π |= ¬ψ iff S, s, π 6|= ψ,
S, s, π |= ϕ1 ∨ ϕ2 iff S, s, π |= ϕ1 or S, s, π |= ϕ2,
S, s, π |= ϕ1 ∧ ϕ2 iff S, s, π |= ϕ1 and S, s, π |= ϕ2.

– For classical temporal operators, where σ = ExecS(s, π):

S, s, π |= ©ψ iff S, σ[1], π[1,∞) |= ψ,
S, s, π |= ϕ1Uϕ2 iff for some i ≥ 0, we have S, σ[i], π[i,∞) |= ϕ2

and for all 0 ≤ j < i we have S, σ[j], π[j,∞) |= ϕ1,
S, s, π |= ϕ1Rϕ2 iff for all i ≥ 0, we have S, σ[i], π[i,∞) |= ϕ2, or

for some i ≥ 0, S, σ[i], π[i,∞) |= ϕ1 and
for all 0 ≤ j ≤ i we have S, σ[j], π[j,∞) |= ϕ2.

– For the modal operators H and L , where σ = ExecS(s, π):

S, s, π |= HH,I,Oψ iff for every π′ ∈ AltS(s, π,H, I) we have π ∼O π′,
or for some i ≥ 0 we have S, σ[i], π[i,∞) |= ψ

and π[0, i) ∼O π′[0, i) for every π′ ∈ AltS(s, π,H, I),
S, s, π |= LH,I,Oψ iff for some π′ ∈ AltS(s, π,H, I) and i ≥ 0,π[i] 6∼O π′[i]

and for all 0 ≤ j ≤ i, S, σ[j], π[j,∞) |= ψ.

Remark 1. Note that the secret specified by each (semantic) occurrence of the
Hide operator in a SecLTL formula consists of the individual valuation of the
variables in the set H at the current point of the trace. Thus, for example, the
formula H{h},{h},{o}false ∧©H{h},{h},{o}false specifies that the first value of h
must be secret forever and the second value of h must be secret forever. Thus, on
a trace that satisfies this formula each of the inputs is kept secret individually,
but some correlation between them might never the less be revealed.

Example 3. Let us consider again the SecLTL formulas (1), (2), (3) and (4) and
the transition systems from Figures 1(a) and 1(b). The formula (1) is satisfied
on every trace allowed by SA, because on all traces where the variable c never
becomes true, the value of p is also always false . Since the alternative traces

7

defined by H{t},{t,c},{p} agree with the main trace on the values of c, the same
holds for them, and, hence, they agree with the main trace on the value of p.

To see that formula (2) does not hold for some trace allowed by SA, consider
the infinite trace π1 = ctpd, ctpd, ctpd, ctpd, (ctpd)ω, whose corresponding execu-
tion from the initial state s1 in SA is ExecSA

(s1, π1) = s1, s3, s1, s2, s4, s
ω
4 . The

formula (¬c → H{t},{t,c},{p}) is violated at position 2, since π1[2,∞) |= ¬c
and π1[2,∞) 6|= H{t},{t,c},{p}, since there exists an alternative trace, π′

1 ∈
AltS(s1, π1[2,∞), {t}, {t, c}) on which the system’s output is different. Such a
trace is π′

1 = ctpd, ctpd, with corresponding execution ExecSA
(s1, π

′
1) = s1, s1, s3.

The formula (3) is clearly satisfied on each possible trace allowed by SA,
because for each position where p is satisfied, the variable c is true as well.

Since the formula (2) is one of the conjuncts in formula (4), formula (4)
is also not satisfied by the trace π1. Note, however that the other conjunct,
i.e., �

(

t ∧ ♦c → ♦p
)

is satisfied by every trace in TracesSA,s1 , because for all
executions on which the left hand side of the implication is true visit state s4
(and hence p is eventually true on the corresponding trace).

Using the same arguments as above, one can see that the formulas (1) and
(3) are satisfied by each trace in TracesSB ,s1 as well.

In the system SB, the trace π1 is not possible, i.e., π1 6∈ TracesSB ,s1 , as we
saw earlier (looking at a finite prefix of π1). While formula (2) is satisfied by
each trace in TracesSB ,s1 , for (4) there exists a counterexample trace, because
all information about the existence of a positive test in the past is lost when the
edge from state s2 to state s3 is taken.

2.3 Finite-trace Semantics

For runtime monitoring we must interpret temporal formulas on finite traces.

In the case of SecLTL, we first have to adapt the definition of alternative
traces. For a finite trace π ∈ Σ∗, state s ∈ S, and sets of variables H, I ⊆ VI

with H ⊆ I, we define the set of finite alternative traces as follows:

AltFinS(s, π,H, I) = { π′ ∈ TracesFinS,s | |π
′| = |π|, π[0] ∼I\H π′[0] and

π[1, |π|) ∼I π
′[1, |π′|) }.

We can again define inductively S, s, π |= ϕ for a finite trace π, state s and
a SecLTL formula ϕ. The interpretation of propositional variables and boolean
operators remains unchanged. The interpretation of the classical LTL operators
coincides with the standard finite-trace interpretation1. For the H operator, the
finite-trace semantics is similar to that of the LTL weak until (W) operator.

– For classical temporal operators, where |π| = n and σ = ExecS(s, π):

1 We use a simple two-valued finite-trace semantics, as described for example in [8].
For an overview on other finite-trace semantics used in runtime verification, we refer
the reader to [9].

8

S, s, π |= ©ψ iff n > 1 and S, σ[1], π[1, n) |= ψ,
S, s, π |= ϕ1Uϕ2 iff for some 0 ≤ i < n, we have S, σ[i], π[i, n) |= ϕ2

and for all 0 ≤ j < i we have S, σ[j], π[j, n) |= ϕ1,
S, s, π |= ϕ1Rϕ2 iff for all 0 ≤ i < n, we have S, σ[i], π[i, n) |= ϕ2, or

for some 0 ≤ i < n, S, σ[i], π[i, n) |= ϕ1 and
for all 0 ≤ j ≤ i we have S, σ[j], π[j, n) |= ϕ2.

– For the modal operators H and L , where |π| = n and σ = ExecS(s, π):

S, s, π |= HH,I,Oψ iff π ∼O π′ for every π′ ∈ AltFinS(s, π,H, I), or
for some 0 ≤ i < n, S, σ[i], π[i, n) |= ψ and for all
π′ ∈ AltFinS(s, π,H, I), π[0, i) ∼O π′[0, i),

S, s, π |= LH,I,Oψ iff for some π′ ∈ AltFinS(s, π,H, I) and 0 ≤ i < n,
π[i] 6∼O π′[i] and for all 0 ≤ j ≤ i, S, σ[j], π[j, n) |= ψ.

Example 4. According to the finite trace semantics, formulas (1) and (3) are
satisfied by all traces in TracesFinSA,s1 and TracesFinSB ,s1 . The argument for (3)
from before directly applies, because the only temporal operators that occur in
it are � and H . For (1), the argument is that the formula H{t},{t,c},{p}false is
satisfied on every finite trace on which the formula ♦c does not hold (according
to our finite trace semantics, if we have not seen a c yet, ♦c is not satisfied).

For formula (2), a trace in TracesFinSA,s1 for which the formula does not hold
is obtained by taking the finite prefix π1[0, 3] of the infinite counterexample trace
π1 considered earlier. Again, (2) is satisfied by each trace in TracesFinSB ,s1 .

3 Monitoring SecLTL

Our monitoring algorithm is based on a translation of the SecLTL specifica-
tion and the transition system into an alternating automaton, which we call the
monitoring automaton. The monitoring automaton keeps track of the temporal
specification and ensures the observational equivalence of the alternative traces.
In the following two subsections, we first describe the construction of the automa-
ton and then define the monitoring algorithm, which constructs the possible run
trees of the monitoring automaton on-the-fly while reading the trace.

3.1 From SecLTL Formulas to Automata

We now describe a translation from SecLTL formulas and transition systems to
alternating automata, applying the finite-trace semantics defined in Section 2.3.
A similar construction for the infinite-trace semantics is given in [6].

Definition 7 (Alternating automaton). An alternating automaton is a tu-
ple A = (Q, q0, Σ, ρ, F), where

– Q is a finite set of states and q0 ∈ Q is the initial state,
– Σ is the finite alphabet of the automaton,

9

– ρ : Q × Σ → B+(Q) is a transition function that maps a state in Q and a
letter from Σ to a positive boolean combination of states, i.e., formulas built
from the formulas true, false and the elements of Q using ∧ and ∨,

– F ⊆ Q is the set of accepting states.

The run of an alternating automaton A is in general a tree. A finite Q-labeled
tree (T, r) for a finite set Q consists of a finite tree T and a labelling function
r : T → Q which labels every node of T with an element of Q. The tree T can be
represented as a finite subset of N∗

>0, where each node τ in the tree is a sequence
of positive integers and for every τ ∈ N

∗
>0 and n ∈ N>0, if τ · n ∈ T then:

– τ ∈ T (i.e., T is prefix-closed) and there is an edge from τ to τ · n, and
– for every m ∈ N

∗
>0 with m < n it holds that τ ·m ∈ T .

The root of T is the empty sequence ǫ and for a node τ ∈ T , |τ | is the distance
of the node τ from the root of the tree.

Definition 8 (Run). A run of an alternating automaton A = (Q, q0, Σ, ρ, F)
on a finite word π ∈ Σ∗ is a finite Q-labeled tree (T, r) such that:

– r(ǫ) = q0, that is, the root of the tree is labeled with the initial state, and
– for every node τ in T with children τ1, . . . , τk it holds that k ≤ |Q| and if
q = r(τ) is the label of τ and i = |τ | is its distance from the root, then the
set of labels of its children {r(τ1), . . . , r(τk)} satisfies the formula ρ(q, π[i]).

Definition 9 (Language). A run of A on a finite word π is accepting if every
path through the tree ends in an accepting state. A finite word π is accepted by
A if there exists an accepting run of π in A. We denote the language of A, that
is, the set of finite sequences accepted by A, by L∗(A).

Let S = (S, s0,VI ,VO, Σ, δ) be a transition system and ϕ be a SecLTL
formula over the set of input variables VI and the set of output variables VO.
We can assume that all negations in the formula have been pushed to the level
of the atomic propositions. For propositional and classical LTL operators this
can be achieved using standard rewrite rules and for the H operator using L [6].

The alternating automatonAS(ϕ) = (Q, q0, Σ, ρ, F) for the transition system
S and the SecLTL formula ϕ is defined as follows.

The set of states Q consists of states corresponding to the subformulas of ϕ
together with special states corresponding to the H and L subformulas of ϕ:

Q = { (ψ, s) | ψ is a subformula of ϕ and s ∈ S } ∪ { accept }
∪ { ((s̃, I, O,H, ψ), s) | s̃, s ∈ S and ∃H. HH,I,Oψ is subformula of ϕ }
∪ { ((s̃, I, O,L, ψ), s) | s̃, s ∈ S and ∃H. LH,I,Oψ is subformula of ϕ }.

The initial state of AS(ϕ) is q0 = (ϕ, s0), where s0 is the initial state of S.
The set F of accepting states, that contains the state accept , is defined as

F = { accept } ∪ { (ϕ1Rϕ2, s) ∈ Q } ∪
{ (HH,I,Oψ, s) ∈ Q} ∪ { ((s̃, I, O,H, ψ), s) ∈ Q }.

10

The transition function ρ of the automaton is defined recursively as follows.
For s ∈ S and a ∈ Σ such that δ(s, a) is undefined, we define ρ((ψ, s), a) =

false, ρ(((s̃, I, O,H, ψ), s), a) = false, ρ(((s̃, I, O,L, ψ), s), a) = false.
Below we consider only the cases when δ(s, a) is defined.

For an atomic proposition p ∈ VI ∪ VO:

ρ((p, s), a) = accept if p ∈ a and ρ((p, s), a) = false otherwise,
ρ((¬p, s), a) = accept if p 6∈ a and ρ((¬p, s), a) = false otherwise.

For SecLTL formulas ϕ1, ϕ2 and ψ:

ρ((ϕ1 ∧ ϕ2, s), a) = ρ((ϕ1, s), a) ∧ ρ((ϕ2, s), a),
ρ((ϕ1 ∨ ϕ2, s), a) = ρ((ϕ1, s), a) ∨ ρ((ϕ2, s), a),
ρ((©ψ, s), a) = (ψ, δ(s, a)),
ρ((ϕ1Uϕ2, s), a) = ρ((ϕ2, s), a) ∨

(

ρ((ϕ1, s), a) ∧ (ϕ1Uϕ2, δ(s, a))
)

,

ρ((ϕ1Rϕ2, s), a) = ρ((ϕ2, s), a) ∧
(

ρ((ϕ1, s), a) ∨ (ϕ1Rϕ2, δ(s, a))
)

.

For SecLTL formula ψ and sets H, I ⊆ VI and O ⊆ VO:

ρ((HH,I,Oψ, s), a) = ρ((ψ, s), a) ∨
(

check(O, a,AltΣ(s, a,H, I))∧
∧

ã∈AltΣ(s,a,H,I)((δ(s, ã), I, O,H , ψ), δ(s, a))
)

,

ρ((LH,I,Oψ, s), a) = ρ((ψ, s), a) ∧
(

¬check(O, a,AltΣ(s, a,H, I))∨
∨

ã∈AltΣ(s,a,H,I)((δ(s, ã), I, O,L , ψ), δ(s, a))
)

,

where for s ∈ S, a ∈ Σ, and H, I ⊆ VI and O ⊆ VO we define:

AltΣ(s, a,H, I) = {ã ∈ Σ | ã ∼I\H a and ∃s′ ∈ S.s′ = δ(s, ã)},

check(O, a,A) = (∀ã ∈ A : ã ∼O a).

For ((s̃, I, O,H, ψ), s) ∈ Q and ((s̃, I, O,L , ψ), s) ∈ Q we define:

ρ(((s̃, I, O,H, ψ), s), a) = ρ((ψ, s), a) ∨
(

check(O, a,AltΣ(s̃, a, ∅, I))∧
∧

ã∈AltΣ(s̃,a,∅,I)((δ(s̃, ã), I, O,H , ψ), δ(s, a))
)

,

ρ(((s̃, I, O,L, ψ), s), a) = ρ((ψ, s), a) ∧
(

¬check(O, a,AltΣ(s̃, a, ∅, I))∨
∨

ã∈AltΣ(s̃,a,∅,I)((δ(s̃, ã), I, O,L , ψ), δ(s, a))
)

.

Finally, we define ρ(accept , a) = accept .

Definition 10 (Monitor automaton). Given a transition system S =
(S, s0,VI ,VO, Σ, δ) and a SecLTL formula ϕ, the monitor automaton for ϕ is
the automaton AS(ϕ) defined above.

The monitor automaton AS(ϕ) has the property that for every finite trace
π ∈ Σ∗, it holds that π ∈ L∗(AS(ϕ)) iff π ∈ TracesFinS,s0 and S, s0, π |= ϕ.

Example 5. We now give the alternating automaton ASA
(ϕ) for the SecLTL

property ϕ = (�¬c) → H{t},{t,c},{p}false and the transition system SA. The set
of states and the transition relation of ASA

(ϕ) are given in Figure 2.

11

label state label state

q0 ((�¬c)→H{t},{t,c},{p}false, s1) accept accept

q1 (♦c, s1) q2 (♦c, s2)

q3 ((s1, {t, c}, {p},H , false), s1) q4 ((s2, {t, c}, {p},H , false), s1)

q5 ((s1, {t, c}, {p},H , false), s2) q6 ((s2, {t, c}, {p},H , false), s2)

q7 ((s3, {t, c}, {p},H , false), s3) q8 ((s4, {t, c}, {p},H , false), s4)

q0

acceptq1 q2

q3 q4 q5 q6

q7 q8

cpd
c

ctp
d

cpd ctpd

c
c

c
c

true

ctpd

ctpd

ctpd

ctpd

ctpd

ctpd

cpd

ctpd

ctp
d

ctpd

ctpd

cp
d

cpd

ctpd
ctpd

ctpd

ctpd

cpd

cp
d

Fig. 2. The alternating automaton ASA
(ϕ) for the transition system SA from Fig-

ure 1(a) and the SecLTL formula ϕ = (�¬c) → H{t},{t,c},{p}false. Branchings with
arcs represent conjunctions, branchings without arcs are to be interpreted disjunc-
tively. The states drawn with double line are the accepting states of ASA

(ϕ).

In the initial state the automaton can either decide to refute the left side of
the implication (by waiting for a c in state t1 or state t2) or it has to validate
the hide operator in which case it has to check whether the corresponding pairs
of main and alternative traces in SA are observationally equivalent w.r.t. the
output variable p. The equivalence check is integrated in the transition relation.

3.2 The Monitoring Algorithm

Trace checking algorithms for alternating automata attempt to construct an ac-
cepting run tree. Different traversal strategies, such as depth-first, breadth-first,
or bottom-up, result in trace checking algorithms with different performance
characteristics [8]. For monitoring, where the trace becomes available incremen-
tally, a good strategy is to construct the run tree in a breadth-first manner.
Conceptually, the monitoring algorithm maintains a set of candidate trees and
adds a new layer at the leaves whenever a new position in the trace becomes
available. However, since neither the construction of the next layer nor the ver-
ification of acceptance condition refer to any non-leaf nodes of the tree, it in
fact suffices to keep track of the states on the leaves. The state of the monitor is

12

Monitor-SecLTL(S , ϕ, π)

(Q, q0, Σ, ρ, F)← AS(ϕ)
D ← {{q0}}
for n = 0 to |π| − 1 do

D′ ← ∅
for each C ∈ D do

D′ ← D′ ∪
successors(C, π[n])

end for

D ← D′

end for

return Accept(D,F)

Accept(D,F)

D′ ← ∅
for each C ∈ D do

if accepting(C,F) then
D′ ← D′ ∪ {C}

end if

end for

return (D′ 6= ∅)

Fig. 3. Monitoring algorithm for a transition system S , a SecLTL formula ϕ, and a
finite trace π ∈ TracesFinS,s0 . The algorithm returns true iff S , s0, π |= ϕ.

therefore represented by a set D of sets C of states, where each set C corresponds
to the states on the leaves of some partially constructed run tree. For a more
detailed explanation of the breadth-first strategy, we refer the reader to [8].

The monitoring algorithm shown in Figure 3 applies the breadth-first strat-
egy to the monitoring automaton defined in the previous section. Initially, there
is only one candidate tree, consisting of a single node labeled with the initial
state q0 of AS(ϕ). Variable D is therefore initialized with a singleton set con-
taining the singleton set which consists of q0. For each position of the trace,
the successor sets of the elements C ∈ D are computed by the successors func-
tion, where successors(C, a) =

⊗

q∈C next(ρ(q, a)), ⊗ denotes the crossproduct
{C1, . . . , Cn} ⊗ {C′

1, . . . , C
′
m} = {Ci ∪ C

′
j | i = 1 . . . n, j = 1 . . .m}, and func-

tion next computes the set of sets of successors defined by the positive Boolean
combination in the transition function as follows:

next(q) = {{q}} for q ∈ Q,

next(θ1 ∧ θ2) = next(θ1) ⊗ next(θ2),
next(θ1 ∨ θ2) = next(θ1) ∪ next(θ2).

At any point, we can check if there exists a run tree for the trace seen so far,
by searching for an element C of D that consists entirely of accepting states. In
the algorithm shown in Figure 3, it is assumed that we are only interested in
the result at the end of the trace, after |π| steps. Function accepting checks if
all states are accepting, and the algorithm keeps only those elements of D that
satisfy this check. If the resulting set D′ is non-empty, we know that there exists
a run tree, and the algorithm returns true.

Example 6. We monitor the SecLTL formula (�¬c) → H{t},{t,c},{p}false and the
transition system SA from Figure 1(a) on prefixes of the trace π shown below
using the monitoring automaton depicted in Figure 2. The row marked “result”
indicates in the ith column the monitoring result obtained after monitoring the
prefix π[0, i) of π consisting of the first i positions.

13

step 1 2 3 4
π : ctpd ctpd ctpd ctpd

D {{q1}, {q3, q4}, {{q1}, {{accept}, {{accept},
{q2}, {q5, q6}} {q2}, {q5, q6}} {accept}} {accept}}

result true true true true

3.3 Towards Stronger Security Guarantees

Previous approaches to monitoring information flow [1, 4, 5] only consider se-
quential programs that read all their inputs at the beginning of the execution,
and thus the secrets are only introduced at the initial state. For this case, mon-
itoring the SecLTL property HH,I,Ofalse using the algorithm from Section 3.2
provides the same security guarantees as these approaches.

However, SecLTL allows for specifying more complex information flow prop-
erties for reactive programs - in particular ones that refer to multiple secrets,
which may be introduced at different points of time. A prominent example is
noninterference [2] for reactive systems. A reactive system is noninterferent, if for
any two executions that have indistinguishable sequences of inputs the observer
cannot distinguish the sequences of outputs. We can characterize noninterference
by the SecLTL formula ϕni = �HH,I,Ofalse , where H is the input that must be
hidden from the observer and I and O are the input and output revealed to him.
A system satisfies noninterference if and only if ϕni holds on all traces of the
system. Thus, when monitoring noninterference we must verify ϕni along more
than a single trace in order to be sure to detect every violation.

The SecLTL semantics guarantees that after successfully monitoring a single
trace, none of the secrets specified in the formula is revealed. However, this does
not exclude disclosure of correlations between different secrets.

Consider the program shown in Figure 4(a), which reads, in each iteration
of the loop, a binary input and it outputs whether the sum over the input bits
seen so far exceeds 1. The transition system generated by the program, which
is shown in Figure 4(b), does not satisfy noninterference, because an observer

int x=0;
while true do

x = x + input();
output(x> 1);

end while

(a) (b)

Fig. 4. (a) Program that reads, in each iteration of its loop, a binary input and outputs
whether the sum over the input bits seen so far exceeds 1. (b) The corresponding
transition system branches to the left on input 0 and to the right on input 1. The
dashed arrows indicate output 0, the solid arrows output 1. The black nodes identify
the execution corresponding to the monitored trace, with constant input 0. The gray
nodes identify the paths corresponding to the alternative traces.

14

cannot draw a distinction between the two streams of inputs corresponding to,
for example, the left-most and the right-most trace, but the same observer can
certainly draw a distinction between the streams of outputs. However, if we
monitor ϕni only on the left-most trace with constant input 0 (shown with black
nodes in Figure 4(b)), we will not detect this violation, because the alternative
traces (depicted with gray nodes) produce the same sequence of outputs. In order
to detect the violation, we must monitor at least one additional trace.

A possible solution would be to monitor, in addition to the given trace, the set
of traces that have the same history of observable inputs. Clearly, the efficiency
of such an algorithm depends on the representation of the resulting monitor
state, and there is room for optimizations and heuristics. We discuss some ideas
for future work in this direction in the following section.

4 Outlook and Conclusions

SecLTL is an attractive specification language for security-critical reactive sys-
tems, because it allows us to state precisely when and under what conditions an
event must remain secret. For large systems, where SecLTL model checking [6]
might be too expensive, the monitoring approach presented in this paper pro-
vides a much more practical alternative. Monitoring is dramatically cheaper than
model checking, because the on-the-fly construction only explores that part of
the system that corresponds to the observed trace and its alternatives as defined
by the SecLTL specification. In general, however, the monitor may also need to
traverse a substantial part of the system’s state space. In this case, the explicit
state representation of our monitoring algorithm is a limitation, and an impor-
tant direction for future work is to integrate symbolic state representations and
abstraction techniques from software model checking and abstract interpretation
into the monitoring algorithm.

Another research direction concerns the extension of the monitoring algo-
rithm towards more general security guarantees as discussed in Section 3.3.
Monitoring sets of traces, as suggested there, may turn out to be too expen-
sive if variations in the secrets force the monitor to explore a significant portion
of the system state space in parallel. In practice, it may be possible to trade some
loss of precision for a substantial gain in efficiency. In a probabilistic setting, for
example, it might be possible to select a small set of traces that guarantee a
reasonable limit on the loss of entropy from the observer’s point of view.

Acknowledgements. This work was partially supported by the German Research
Foundation (DFG) under the project SpAGAT (grant no. FI 936/2-1) in the
priority program “Reliably Secure Software Systems – RS3”.

References

1. Sabelfeld, A., Russo, A.: From dynamic to static and back: riding the roller coaster
of information-flow control research. In: Proceedings of the 7th international An-

15

drei Ershov Memorial conference on Perspectives of Systems Informatics. PSI’09,
Springer-Verlag (2010) 352–365

2. Goguen, J.A., Meseguer, J.: Security policies and security models. In: Proceedings
of S&P. (1982) 11–20

3. Department of Health, The Caldicott Committee, Caldicott, F.: Report on the
review of patient-identifiable information. Department of Health, London (1997)

4. Russo, A., Sabelfeld, A.: Dynamic vs. static flow-sensitive security analysis. In:
Proc. CSF’10, IEEE Computer Society (2010) 186–199

5. Guernic, G.L., Banerjee, A., Jensen, T., Schmidt, D.A.: Automata-based confiden-
tiality monitoring. In: ASIAN06: 11th Asian Computing Science Conference on
Secure Software. (2006)

6. Dimitrova, R., Finkbeiner, B., Kovács, M., Rabe, M.N., Seidl, H.: Model checking
information flow in reactive systems. In: Proceedings of VMCAI. (2012) 169–185

7. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In Moller,
F., Birtwistle, G., eds.: Logics for Concurrency. Structure versus Automata. Volume
1043 of Lecture Notes in Computer Science., Springer-Verlag (1996) 238–266

8. Finkbeiner, B., Sipma, H.: Checking finite traces using alternating automata. Form.
Methods Syst. Des. 24 (2004) 101–127

9. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime
verification. Journal of Logic and Computation 20 (2010) 651–674

16

