
Clock Matrix Diagrams

U
N

IV
E R S IT A

S

S
A

R A V I E N S
I S

Bachelor’s Thesis

Daniel Fass

daniel@react.cs.uni-sb.de

Reactive Systems Group
Department of Computer Science

Universität des Saarlandes
Saarbrücken, Juni 2009

Supervisor
Prof. Dr. Bernd Finkbeiner

Advisor
Dipl. Inf. Hans-Jörg Peter

Reviewers
Prof. Dr. Bernd Finkbeiner
Prof. Dr. Reinhard Wilhelm

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have
not used any other media or materials than the ones referred to in this thesis.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible
to the public by having them added to the library of the Computer Science
Department.

Saarbrücken, June 2009

i

ii

Abstract

The success of the timed model checker Uppaal heavily relies on the use
of Difference Bound Matrices (DBM) as the main data structure for storing
reachability information symbolically. However, since DBM are only capable
of representing convex sets, they are inappropriate for applications such as
game solving where non-convex sets may arise.

There are currently two independent approaches to tackle this problem:
Clock Federations and Clock Difference Diagrams. While Clock Federations
are based on linear lists of DBM, Clock Difference Diagrams are BDD-
like tree structures where each node refers to a single difference constraint.
Despite the space-efficiency of difference diagrams, concerning running time
they are often outperformed by federations which in turn benefit from the
convex efficiency of DBM.

In this thesis, we will present Clock Matrix Diagrams, a novel data struc-
ture that combines the space-efficiency of decision diagrams with the convex
efficiency of DBM. We show that our data structure is a generalisation of
DBM, Clock Federations, and Clock Difference Diagrams, which makes it
universally usable.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Related work and contribution 2

2 Timed Automata 5
2.1 Symbolic State Space Representation 6

3 Clock zones and Federations 9
3.1 Clock zones . 9
3.2 Difference Bound Matrices . 9
3.3 Convex Operations . 10

3.3.1 Implementation . 11
3.4 Clock Federations . 12

3.4.1 Non-convex operations 12
3.5 Discussion . 13

4 Clock Difference Diagrams 15
4.1 Syntax . 15
4.2 Denotational Semantics . 17
4.3 Operational Semantics . 18

4.3.1 Complement . 18
4.3.2 Union and Intersection 18
4.3.3 Set inclusion . 18

4.4 Discussion . 19

5 Clock Matrix Diagrams 21
5.1 Syntax . 21
5.2 Denotational Semantics . 22
5.3 Operational Semantics . 23

5.3.1 Intersection . 23
5.3.2 Union . 24
5.3.3 Clock Reset . 25
5.3.4 Time Elapse . 26
5.3.5 Determize . 27

iii

5.3.6 Expand . 32

6 Experimental Results 37
6.1 Prototype implementation . 37

6.1.1 The class Cmd . 37
6.1.2 The class CmdNode 37
6.1.3 The class Expand . 39

6.2 Benchmarks . 39
6.2.1 Results . 41

7 Conclusion and Outlook 43
7.1 Conclusion . 43
7.2 Outlook . 44

iv

List of Figures

2.1 Example Timed Automaton 6

4.1 BDD representing the Boolean formula: Y ∨ (¬X ∧ ¬Y ∧ ¬Z) 16
4.2 CDD example . 17

5.1 CMD denotational semantics illustrated 23
5.2 Expand . 34
5.3 Determize . 35

6.1 classdiagram . 38
6.2 CMD used for all tests. 40
6.3 Benchmark results . 41

v

vi

Chapter 1

Introduction

1.1 Motivation

Today, the complexity of the design of modern systems have increased dras-
tically. They consist of distributed components which communicate with
each other. The control structures of the models grow exponentially with
their size. The timing components of the models are defined in the dense
time domain.

A promising approach for automatically establishing the correctness of
real-time systems is Model Checking [2], where during an exhaustive state
space exploration the satisfaction of a given specification is ensured. The
dense time domain (hence the term real-time) in conjunction with a dis-
tributed system description implies an inherent state-space explosion which
in turn calls for efficient symbolic data structures. In this context, a desirable
data structure should be both time- and space-efficient. Popular applica-
tions for model checkers are, e.g., the verification of embedded controllers
and network protocols.

In this thesis, we present a novel data structure for a symbolic real-time
state space representation that combines the strengths of the already es-
tablished data structures, Clock Difference Diagrams and Difference Bound
Matrices.

The rest of the thesis is structured as follows. Chapter 2 describes Timed
Automata and a first approach for a symbolic representation of the infinite
state space. Then in Chapter 3 Difference Bound Matrices, a data structure
for representing clock zones, are described. Then we present our novel data
structure Clock Matrix Diagrams. In the end, we show experimental results
that show the efficiency of our data structure and give an outlook.

1

1.2 Related work and contribution

Various ways of adding time constraints to system models have been pro-
posed, e.g., Timed Petri Nets [15], Timed Transition Systems [13, 9], timed
I/O automata [12], and Modecharts [10]. But the most successful model that
adds timing constraints is the model of Timed Automata [3] proposed by
Alur and Dill in 1994. In contrast to the other models, in Timed Automata
the time that is needed to traverse a whole path through an automaton can
be expressed while in the other models, only the time between the succes-
sive transitions can be expressed. Timed Automata are used for modeling
real-time systems in the state of the art model checker Uppaal [4].

The efficiency of a timed model checker strongly depends on the way
how the timing parameters are stored. An early approach was to create a
region graph [3] from the timing constraints of the model. This is a finite
representation of the infinite state space of timed automata by creating suit-
able equivalence relations that satisfy the same clock valuations. The state
space is infinite because timed automata operate on real valued clocks. Still
the finite representation in region graphs is too fine-grained for a practical
application.

Another symbolic representation of clock evaluations are clock zones [1],
which are convex sets of clock regions. A very common and efficient data
structure for representing clock zones are Difference Bound Matrices (DBM)
[1]. They are described in detail in Chapter 3.

In the analysis of Timed Automata, one constructs so called (finite) zone
graphs that represent the reachable states symbolically. Here, each node of
the graph consists of a location, and a clock zone. Real-time model checkers
such as Uppaal [4] represent the zone graph as a mapping from locations to
Clock Federations which are lists of DBMs.

But Clock federations suffer from considerable drawbacks. Checking if a
certain clock valuation is contained in a Clock Federation takes linear time in
the number of contained DBMs. Furthermore Clock Federations suffer from
fragmentation. This means that an actual convex set might be distributed
in many DBMs of the Federation.

A data structure called Clock Difference Diagrams (CDD) [8] tries to
address these issues. CDDs are a BDD-like [5] structure that stores clock
valuations as a rooted, directed, and acyclic graph. Their advantage over
Clock Federations is their space-efficiency. They are described in detail in
Chapter 4.

CDDs can’t exploit the advantage of convex sets. Diagrams carrying
large parts of convex clock valuations become unnecessarily large. So, on
the one hand we have Clock Federations which are suitable for mostly con-
vex sets but inefficient for non convex sets and CDDs whose structure will
become unnecessarily large if the set is mostly convex. None of those struc-
tures seems to be suitable for both kinds of sets.

2

In this thesis, we will present a novel approach for storing arbitrary sets of
clock evaluations efficiently, no matter if most parts are convex or not. This
data structure is called Clock Matrix Diagrams (CMD). CMDs are similar
to CDDs, but in the nodes of the graph, not only single clock differences are
stored, but a set of clock evaluations, represented by DBMs, and thus they
combine the space-efficiency of CDDs with the convex efficiency of DBMs.
CMDs are described in Chapter 5.

3

4

Chapter 2

Timed Automata

For modeling real time systems1 the transition systems used for pure discrete
model checking are not sufficient because there is no way to model timing
behaviour.

Timed Automata [3, 1] are finite-state machines extended with a finite
set of real-valued clocks. Locations can be labelled with invariants. Transi-
tions are labelled with guards, a synchronous action and a set of clocks to
be reset. Invariants and guards are described by clock constraints. Time
elapses uniformly for all clocks. At the start of the execution, all clocks have
the value zero. The automaton can stay in a location as long as its invariant
is fulfilled, transitions can only be taken if the guards of the transitions are
fulfilled and new locations can only be entered if their invariants are sat-
isfied. When taking a transition, then the values of the clocks, which are
in the set of clocks to be reset, are set to zero, all other clocks keep their
values. A state of a Timed Automaton is a tuple of a location and clock
evaluations. An action is either a switching of locations or the elapsing of
time while staying in a location.

Definition 1. [1] A Timed Automaton is a tuple 〈L,L0,Σ, X, I, E〉 where

• L is a finite set of locations

• L0 ⊆ L is a set of initial locations

• Σ is a finite set of labels

• X is the set of clocks, with Φ(X) denoting constraints of the clocks in
X

• I is a mapping that labels each location s with some clock constraints
Φ(X)

• E ⊆ L× Σ× 2X × Φ(X)× L is a set of switches
1(i.e., under the assumption of a dense time domain)

5

s1
x < 1

s2
x < 1

s0start s3
a, x := 0 b, y := 0 c

d, y > 2

c

Figure 2.1: Example Timed Automaton

The switches are edges from one location to another on a symbol. A
switch < s, a, ϕ, λ, s′ > is an edge from s to s′ with the clock constraint
ϕ and a set of clocks λ that are reset when taking the switch. The clock
variables in X have real-time values. However the clock constraints can only
compare to integers. Clock constraints have the form∧

(n ≺ x ≺ m),

where n,m ∈ Z, x ∈ X and ≺∈ {<,≤}. Guards and invariants are conjunc-
tion of clock constraints.

Example. An example of a Timed Automaton is shown in Figure 2.1.
The automaton starts at the location s0 with both clocks x and y set to
zero, and it can stay an arbitrary amount of time in s0. There is only one
transition out of s0, namely to s1. When action a is triggered this transition
is taken and the value of clock x is reset to zero. Then the automaton can
stay in location s1 only as long as the value of clock x is less than one time
unit. Action b triggers the transition from s1 to s2 as long as the value of x
is less than one time unit and then clock y is reset. s2 has to be left before
the value clock x exceeds 1 time unit. The transition from s3 to s4 can only
be taken when enough time has passed so that the value of clock y is greater
than two time units.

2.1 Symbolic State Space Representation

Due to the fact that the clock variables are defined over the real numbers,
the semantics of Timed Automata imply an infinite state space1.

A first approach for a finite representation of the the infinite state space
are clock regions and the region graph. We define an equivalence on states,
where each equivalence class is called a clock region. Two states of the
infinite transition system of a Timed Automata are equivalent, if they agree

1to be precise, one obtains uncountable many states

6

on the integral parts and on the ordering of the fractional parts of all clock
values and if they have the same location.

Definition 2. [1] For any δ ∈ R,fr(δ) denotes the fractional part of δ, and
bδc denotes the integral part of δ. δ = bδc + fr(δ). For each clock x ∈ X,
let cx be the largest integer c such that x is compared with c in some clock
constraint appearing in an invariant or a guard. The equivalence relation
∼=, called the region graph, is defined over the set of all clock interpretations
for X. For two clock interpretations v and v′, v ∼= v′ iff all of the following
conditions hold:

• For all x ∈ X, either bv(x)c and bv′(x)c are the same, or both v(x)
and v′(x) exceed cx.

• For all x, y with v(x) ≤ cx and v(y) ≤ cy, fr(v(x)) ≤ fr(v(y)) iff
fr(v′(x)) ≤ fr(v′(y)).

• For all x ∈ X with v(x) ≤ cx, fr(v(x)) = 0 iff fr(v′(x)) = 0.

Region graph. If we apply definition 2 to Timed Automata, we get a
finite graph representing the state space. Let s and s′ be locations and v
and v′ be clock valuations, then

(s, v) ∼= (s′, v′) iff s = s′ and v ∼= v′.

The quotient [TA]∼= of a Timed Automaton is called the region graph.

While clock regions are used for proving decidability, they are inappro-
priate for practical applications. When building the region graph of a Timed
Automaton, the graph grows exponentially with the number of clocks and
with the number of constants. A more coarse symbolic representation are
clock zones which are a convex subsumption of regions. In the following,
we only consider clock zones as the basic symbolic representation of clock
evaluations.

7

8

Chapter 3

Clock zones and Federations

The first structure we will look at for storing clock evaluations are Difference
Bound Matrices (DBM) which are well suited for storing clock zones. Every
clock zone can be represented by a DBM and every DBM represents a clock
zone.

3.1 Clock zones

Definition 3. A clock zone is a conjunction of inequalities that compare
either a clock value to an integer or the difference between two clock values
to an integer.

A clock zone consisting of k clocks is a convex set in the k-dimensional
Euclidean space. Inequalities of the following types are allowed in a clock
zone:

x ≺ c, c ≺ x and x− y ≺ c,

where ≺∈ {<,≤}, c ∈ N0 and x and y are clocks. We introduce a special
clock called x0 whose value is always 0. This leads to a more uniform
notation for clock constraints. With the help of x0, we only need one form
of clock constraints. The general form of a clock zone is:

x0 = 0 ∧
∧

0≤i 6=j≤n
xi − xj ≺ ci,j

Operations on clock zones are described in 3.3.

3.2 Difference Bound Matrices

Every clock zone can be represented by a Difference Bound Matrix (DBM)
[1, 6].

9

Definition 4. A DBM is a matrix Di,j with the dimensions |X|×|X|, where
X is the set of clocks including a special clock called x0 whose value is always
0. An entry is described by di,j = (c,≺) where c ∈ N and ≺∈ {<,≤}. Each
entry denotes an inequality of the form xi − xj < c or xi − xj ≤ c where
xi − xj denotes a difference between two clocks, where xi and xj are clocks
and c ∈ N0.

We can express constraints of the form xi−xj � c by transforming them
to xj − xi ≺ −c. With the help of the clock x0 we can express constraints
of the form xi < c as xi − x0 < c.

Example. Consider the following clock zone:

x1 − x2 < 2 ∧ 0 < x2 ≤ 2 ∧ 1 ≤ x1

The corresponding DBM is given as:

0 1 2
0 (0,≤) (−1,≤) (0, <)
1 (∞, <) (0,≤) (2, <)
2 (2,≤) (∞, <) (0,≤)

3.3 Convex Operations

The following operations are closed, e.g., the results of these operations are
convex and can thus be stored again as a DBM.

Intersection. The intersection of two DBMs is computed entry-wise.
Given two DBMs D1 and D2, and D′ = D1 ∧D2, then

d′i,j = min{d1
i,j , d

2
i,j},

where (c,<) is smaller than (c,≤).

Containment check. Since each clock zone is a set of clock constraints,
we can easily check if one clock zone is a subset of another. Let Z1 and Z2

be DBMs. If we want to check if Z1 ⊆ Z2, we test if:

Z1 ∧ Z2 = Z1

Time Elapse. Elapsing time means that the upper bounds of the clocks
are set to infinity, i.e., after that operation ∀x ∈ X : x− x0 <∞ holds. Let
D′ = D⇑, then:

d′i,j =

{
(∞, <) for any i 6= 0 and j = 0
di,j if i = 0 or j 6= 0

10

Reset. With the reset operation, the values of clocks can be set to zero.
Let λ be the set of clocks that should be reset. [λ := 0] denotes that all
clocks in λ are set to zero. ∀c ∈ λ : c − c0 ≤ 0, where the value of c0 is
always 0. Let D′ = D[λ := 0] and λ ⊆ X, then:

d′x,y =

(0,≤) if xi ∈ λ, xj ∈ λ
d0,j if xi ∈ λ, xj /∈ λ
di,0 if xi /∈ λ, xj ∈ λ
di,j if xi /∈ λ, xj /∈ λ

3.3.1 Implementation

An often used operation on the entries of DBMs is the compare operation
which is needed,e.g., for intersection. So it would be desirable to compare
the entries of DBMs with a single fast operation. To achieve that we must
find a way to represent a DBM entry (n,≺) with n ∈ Z and ≺ ∈ {<,≤} with
a well comparable structure. The most basic and fast comparable structure
we could think of is an integer.

To profit from the easy comparability of integers we have to transform the
DBM entries. How this can be done is shown in the following table. The first
line shows the original DBM entries and the second line the corresponding
integer representations.

... (-
4,<)

(-4,≤) (-3,<) (-3,≤) (-2,<) (-2,≤) (-1,<) (-1,≤) (0,<)

... -9 -8 -7 -6 -5 -4 -3 -2 -1

(0,≤) (1,<) (1,≤) (2,<) (2,≤) (3,<) (3,≤) (4,<) (4,≤) ...
0 1 2 3 4 5 6 7 8 ...

The clock variables in X have real time values. However the clock con-
straints can only compare to integers. Clock constraints have the form
(n ≺ x ∈ X ≺ m), where n,m ∈ Z and ≺∈ {<,≤}.

More formally we transform an entry (n,≺) in the following way:

(n,≺)⇒

{
2n− 1 if ≺ is <

2n if ≺ is ≤

To get the corresponding tuple out of the integer x we use the following
computation:

11

x⇒

{
(x2 ,≤) if x mod 2 = 0
(x+1

2 , <) otherwise

The comparison of the integer representations gives the same result as
comparing the original tuples.

The DBM itself can then be efficiently implemented as an array of inte-
gers.

3.4 Clock Federations

Operations on DBMs might result in a non convex set which is not repre-
sentable by a DBM. The simplest way of dealing with such sets is to store
the several convex parts of the result in a linear list of DBMs. We call those
lists Clock Federations.

We now define the operations on DBMs that result in non convex sets.

3.4.1 Non-convex operations

These operations do not lead necessarily to a convex polyhedron. So they
can’t be represented as DBMs. Structures that can handle non-convex sets
are discussed later in detail.

Negation. We only define a negation operator for a constraint and not
for the whole DBM. The negation of a constraint is computed by switching
the relational operator as follows:

(n,<) is switched to (n,≥) and (n,≤) to (n,>).

Union. To unify DBMs we just add them to the list of the Clock Feder-
ation.

Zone subtraction. We can describe the subtraction of two clock zones
with the help of the intersection and the negation:

Z1 − Z2 = Z1 ∩ Z2

We haven’t defined a negation operator for DBMs yet. A DBM is defined
by the conjunction of its constraints C1...Cn, so it holds that:

Z =
n⋂
i=1

Ci

So we can thus express the negation of Z as:

12

n⋂
i=1

Ci =
n⋃
i=1

Ci

So Z1 − Z2 can be expressed as:

Z1 ∩
n⋃
i=1

Ci =
n⋃
i=1

Z1 ∩ Ci

Algorithm 3.4.1 exploits this transformation and computes the difference of
two zones [11]. For this algorithm, we require clock zones to be reduced.

Definition 5. Given a DBM D, then D is reduced if it has the minimal
number of bounded elements.

Algorithm 1 Zone subtraction
Zintersection ← Z1 ∩ Z2

Reduce(Zintersection)
Zremain ← Z1

for all bound Zintersect(i, j), i 6= j do
Ztmp ← Zremain ∩ Zintersect(i, j);
if (Ztmp 6= ∅) then
Z ← Z ∪ {Ztmp}
Zremain ← Zremain ∩ Zintersect(i, j)

end if
end for
return Z

Zone merging. For Algorithm 3.4.1 only the first execution guarantees
a minimal set of clock zones. This is not ensured for consecutive executions,
i.e., subtracting several zones from a Clock Federation.

But it is preferable to keep the number of zones in a Federation minimal.
For this reason there are algorithms for merging a set of clock zones to the
minimal number of Zones possible. A merging algorithm is presented in [11].
More algorithms which are implemented in the Uppaal model checker are
presented in [7].

3.5 Discussion

DBMs are an efficient data structure as long as the set of clock evalua-
tions is convex. But even simple set-theoretic operations such as union or
subtraction result in non-convex sets.

Although the linear lists profit from the DBM structure for convex sets,
this advantage gets less important the longer the list grows. Inserting new

13

zones is easy, a new DBM just has to be added to the list. But the time for
checking if a certain time point is part of the set depends on the length of
the list and it might take undesired long time for very large lists.

Another problem is the fragmentation of the set. This means that a
large part of the set is actually convex but it is distributed over many several
DBMs. Recognizing convex subsets is not a trivial problem. This leads to
the problem, that sets represented by Clock Federations usually consume
too much space.

14

Chapter 4

Clock Difference Diagrams

So far we have seen one way to deal with non convex sets: the representa-
tion of clock federations by linear lists. In this Chapter, we describe Clock
Difference Diagrams (CDD), a BDD-like structure.

Binary Difference Diagrams (BDDs). A BDD [5] represents a Boolean
formula as a rooted directed acyclic graph. The inner nodes of the graph
represent the variables of the formula. There are exactly two terminal nodes:
The true node and the false node. All paths through the graph end in ei-
ther one of those nodes. There are two kinds of edges, one (the solid lines)
representing that the variable of the node where the edge starts is evaluated
to true and another one (the dashed lines) representing that the variable
evaluates to false. An example of a BDD is shown is Figure 4.1.

Interval Decision Diagrams (IDDs). IDDs [16] are an extension to
BDDs. While BDDs only allow two kinds of edges, IDDs not only operate
on the two truth values true and false but on intervals of real numbers.

The idea of IDDs are further extended to CDDs. Instead of intervals, edges
in CDDs are labeled with differences of variables. With this structure CDDs
exactly represent the union of clock zones.

4.1 Syntax

A CDD is a rooted directed acyclic graph. It consists of nodes N and edges
E. The nodes are labeled with clock constraints xi − xj and the edges are
labeled with intervals. A CDD has exactly two terminal nodes, namely True
and False. All other nodes are inner nodes. They have a certain type t ∈ T
and a finite set of successors where:

• T = {(xi, xj) | xi, xj ∈ X, i 6= j} ∪ {xi, 0) | xi ∈ X} ∪ {True,False}.

15

x

y

z

y

0 1

Figure 4.1: BDD representing the Boolean formula: Y ∨ (¬X ∧ ¬Y ∧ ¬Z)

The types of inner nodes denote clock differences and X is the set of
clocks.

• succ(n) = {(I1, n1), ...(Ik, nk)}, where (Ii, ni) ∈ I × V. I is the set of
all intervals and V is the set of nodes.

For example if a node of a CDD has the type (2, 1) and the interval on the
edge to its successor would be I = (3, 5), then this would describe the clock
constraint 3 < x2−x1 < 5. Figure 4.2 shows an example of a CDD. The top
node has the type X−0, where 0 is a special clock that always has the value
0. The interval on the edge from X to Y means that the clock constraint
of the top node lies in that interval for the convex sub-part following this
path.

We will now define important properties for the diagram. n
I−→ m is a

shortcut for (I,m) ∈ succ(n). For each inner node n, the following properties
must hold:

• The successors are disjoint: for (I,m), (I ′,m′) ∈ succ(n), I ∩ I ′ = ∅
for I 6= I ′.

• The successor set is an R-cover:
⋃
{I | ∃m.n I−→ m} = R. The Intervals

that are not explicitly shown in the diagram point implicitly to the
False node.

• The nodes are ordered according to their types. For n I−→ m holds that
type(m) v type(n).

We define a CDD (V, type, succ) by its source node. Every sub-graph of a
CDD is again a CDD.

Reduced Form. To decide equality and set inclusion we require a kind
of normal form. There exists a reduced form that is easier to compute as a
normal form and that is sufficient for this purpose. However this reduced

16

X

Y Y Y

TRUE

[1, 2]
(2, 3)

[3, 4]

[1, 3]
[1, 4]

[2, 4]

Figure 4.2: CDD example

form is not unique. Computing the reduced form is faster as computing the
normal form. A CDD is in normal form if the following three properties are
satisfied:

• It has maximal sharing. This means that there are no equivalent sub-
graphs.

• There are no trivial edges: If n I−→ m then I 6= R.

• All intervals are maximal: Whenever n I1−→ m,n
I2−→ m,then I1 = I2 or

I1 ∪ I2 /∈ I.

4.2 Denotational Semantics

Let V denote the set of clock evaluations. We define the semantics of a CDD
recursively:

• [[False]] = ∅, [[True]] = V

• [[n]] := {v ∈ V | n I−→ m, v ∈ [[m]] and v(xi)− v(xj) ∈ I,
where type(n) = (xi, xj)}

If we traverse a path n0
I1−→ ...

Ik−→ nk through a CDD, we find the
representation of the conjunction of clock constraints described by that path.
The conjunction of these constraints is a clock zone.

17

4.3 Operational Semantics

A CDD stores a set of possible clock evaluations. We can apply all the
standard set-theoretic operations on CDDs.

4.3.1 Complement

CDDs are in contrast to DBMs closed under the complement. It is built by
swapping the True and the False node. All the implicit paths that have led
to False before the operation, point to True afterwards.

4.3.2 Union and Intersection

For CDDs we can define every binary set-theoretic operation recursively,
e.g., Union and Intersection. The procedure is described in Algorithm 1.
We apply the algorithm on two nodes, each node defining a whole CDD.
At first, we have to define the base case for the desired operation. In the
algorithm, this is called baseOp. This operation is only executed, if each
of both nodes is either True or False. For all other cases, the algorithm
operates recursively as shown in Algorithm 1 [8].

Algorithm 2 op(n1, n2, baseOp)
if n1 and n2 are terminal nodes then

return node equal to n1 baseOp n2.
end if
if type(n1) v type(n2) ∧ type(n1) 6= type(n2) then

return the node (type(n1), {(I1, op(n′1, n2, baseOp)) | n1
I1−→ n′1}

end if
if type(n2) v type(n1) ∧ type(n1) 6= type(n2) then

return the node (type(n2), {(I2, op(n1, n
′
2, baseOp)) | n2

I2−→ n′2}
end if
if type(n1) = type(n2) then

return the node (type(n1), {(I1 ∩ I ′2, op(n′1, n′2, baseOp)) | n1
I1−→

n′1, n2
I2−→ n′2, I1 ∩ I2 6= ∅}

end if

4.3.3 Set inclusion

CDD ⊆ CDD. If we want to check if a CDD is completely part of another
CDD, we can use the following set-theoretic equivalence:

A ⊆ B ⇔ A ∩ ¬B = ∅

18

For checking emptiness we would need a canonical form, but we have
only defined a reduced form which is not unique. We can decide emptiness
anyway by looking at the satisfiability of all paths leading to True. If there
is at least one path ending in True the CDD can’t be empty. A more formal
description is given by Algorithm 2 [8].

Algorithm 3 Test for emptiness of a CDD
let P be the set of paths starting in n leading to True
while P 6= ∅ do

extract and remove a path p from P
test p for satisfiability
if there is a valuation that satisfies p then

return false
end if

end while
return true

Zone ⊆ CDD. Deciding if a zone lies completely in a CDD is a special
case of the CDD ⊆ CDD case. Every CDD representing one convex clock
zone has only one path without any branches. Algorithm 3 describes a
function to test, if a clock zone, represented by a CDD, lies completely in
an arbitrary CDD [8].

Algorithm 4 zone ⊆ CDD
subset(D,n)
if D = False or n = True then

return True
else if n = False then

return False
else

return
∧
n
I−→m

subset(D ∧ I(type(n)),m)
end if

4.4 Discussion

We have seen that CDDs are able to store non-convex sets of clock evalua-
tions efficiently regarding the space-consumption, because every clock con-
straint is only stored once. Also all basic set-theoretic operations can be
performed on CDDs time-efficiently.

The main problem of CDDs is that they can’t exploit the convex effi-
ciency of DBMs. Large parts of the diagram may be convex, but we still need
one node per clock constraint which affects the runtime of all algorithms.

19

20

Chapter 5

Clock Matrix Diagrams

In the previous Chapters two data structures for handling non-convex sets of
difference-constraints have been described. We have seen that both of them
have their individual strengths but they both suffer from certain disadvan-
tages. None of these structures is superior to the other one in general. It
strongly depends on the field of application which is the best choice between
these two data structures. Due to the structure of the application, a non-
convex set might change over time, a supposed good choice for a convenient
data structure at the beginning might turn out as a bad decision afterwards.
In this Chapter a novel data structure called Clock Matrix Diagrams which
generalises the concepts of Clock Federations and Clock Difference Diagrams
is presented. The new data structure will exploit the advantages of both of
those structures by recognizing convex sub-parts of a set and storing them
as DBMs.

5.1 Syntax

A Clock Matrix Diagram (CMD) is a rooted directed acyclic graph. It
consists of a special root node and inner nodes. Inner nodes of a CMD are
defined by a difference bound matrix and a set of successor nodes. The
graph is rooted with a special node that carries an unrestricted clock zone
and that has no predecessor nodes. There are only two leave nodes, the
True node (>) which has an unrestricted clock zone and the False node (⊥)
whose zone is the empty zone. All paths through the graph end either at
the True node or at the False node. All implicit paths that are not shown
in the graph evaluate to false.

For all direct successors of a node we require that the clock zones of these
nodes are disjoint.

21

Definition 6. A CMD is a tuple C = 〈Q, q0, X, δ, Z〉, where

• Q is the set of nodes with {>,⊥} ⊆ Q,

• q0 ∈ Q is the root node,

• X is the set of clocks,

• δ is the transition relation, δ ⊆ Q×Q,

• Z is a labeling function which assigns clock zones to
nodes: Z : Q → Z, where Z is the set of all clock
zones.

Nodes n ∈ Q are tuples (m, s) where m is a difference bound
matrix and s is the set of successor nodes.

5.2 Denotational Semantics

If we take a path from the root node to a leaf node, the resulting zone is the
intersection of the clock zones of all nodes that lie on that path. The zones
that are described by the several branches are unified.

Let X be the set of clocks and V the set of all possible clock evaluations,
V = RX

≥0. Any convex polyhedron of clock differences that is described by
a clock zone is a subset of V. Each node in the CMD stores a clock zone.

The semantics of a CMD C is given as

[[C]] := [[q0]], where for any q ∈ Q :

[[q]]C :=

V if q = >
∅ if q = ⊥
[[Z(q)]] ∩ (

⋃
(q,q′)∈δ[[q

′]]) for any q ∈ Q

Definition 7. Determinism criterion: We call a CMD deterministic if and
only if the zones of all direct successors of a node to be disjoint from each
other.

∀(q, q′), q 6= q′ ∧ (p, q) ∈ δ ∧ (p, q′) ∈ δ. Z(q)] Z(q′)

Example. An example for the denotational semantics is shown in Figure
5.1. The valid time points of C are calculated according to the semantics:

[[C]] := r ∩ ((a ∩ (c ∪ d)) ∪ (b ∩ (e ∪ f)))

22

r

a

c d

b

e f

>

Figure 5.1: CMD denotational semantics illustrated

5.3 Operational Semantics

5.3.1 Intersection

Intersection of a CMD with a clock zone depicted by the operation op∩ is
computed by the node wise intersection of the clock zone that is to be added
and the clock zone of the existing node. The intersection operation does not
destroy the disjointness criterion.

Let C = 〈Q, q0, X, δ, Z〉 be a CMD and z a clock zone.

If C ′ = C op∩ z, then C ′ = 〈Q′, q′0, X ′, δ′, Z ′〉, where :

• Q′ = Q

• q′0 = q0

• X ′ = X

• δ′ = δ

• 〈Z, ∅〉 op∩ z = 〈Z, ∅〉

• 〈Z ′, ∅〉 = 〈Z, {q0}〉 op∩ z, where

• 〈Z, q̂〉 op∩ z =
〈
Z[q 7→ Z(q) ∧ z | q ∈ q̂], {q′ ∈ Q \ {>,⊥} | ∃q ∈

q̂.(q, q′) ∈ δ} op∩ z
〉

Lemma 1.

Let C = 〈Q, q0, X, δ, Z〉, C ′ = 〈Q′, q′0, X ′, δ′, Z ′〉 and C ′ = C op∩ z, then

[[C ′]] = [[C]] ∩ [[z]]

23

Proof. In the following, we use this abbreviation:

[[q →]]C stands for
⋃

(q,q′)∈δ

[[q′]]C

This denotes the union of the evaluation of all successor nodes of the node
q of the CMD C.

We prove the lemma by showing [[q]]C′ = [[q]]C ∩ [[z]] by induction over δ.

(i) if q = ⊥ : [[⊥]]C′ = [[⊥]]C
(ii) if q = > : [[>]]C′ = [[>]]C

(iii) if q is an inner node:

[[q]]C′
Def [[q]]

= [[Z ′(q)]]C′ ∩ [[q →]]C′
Def op∩= [[Z(q) ∧ z]]C ∩ [[q →]](C op∩ z)

Def ∧,[[z]]
= [[Z(q)]]C ∩ [[q →]](C op∩ z)

I.H.= [[Z(q)]]C ∩ [[z]] ∩ [[q →]]C ∩ [[z]])
distrib.∩=

(
[[Z(q)]]C ∩ [[q →]]C

)
∩ [[z]]

Def [[q]]
= [[q]]C ∩ [[z]]

5.3.2 Union

The union operation adds a new branch to the diagram. This might destroy
the consistency criterion that the zones of the direct successor nodes have to
be disjoint from each other. We require Q1 ∩Q2 = ∅ and Z1(q10) ≡ Z2(q20).
Another operation is required to restore this invariant. This operation is
called determize and will be described in Section 5.3.5. If we unify a CMD
C1 with a CMD C2 we throw away the root node of C2 and add all children
of C2 as new children of C1.

Let C1 = 〈Q1, q
1
0, X1, δ1, Z1〉 and C2 = 〈Q2, q

2
0, X2, δ2, Z2〉be two CMDs.

If C ′ = C1 op∪ C2, then C ′ = 〈Q′, q′0, X ′, δ′, Z ′〉, where :

• Q′ = Q1 ∪ (Q2 \ q20)

• q′0 = q10

24

• X ′ = X

• δ′ = δ1 ∪ {(q, q′) ∈ δ2 | q 6= q20} ∪ {(q10, q′) | (q20, q′) ∈ δ2}

• For all q ∈ Q′, Z ′(q) =

{
Z1(q) , if q ∈ Q1

Z2(q) , if q ∈ Q2

Lemma 2. Let C1 = 〈Q1, q
1
0, X1, δ1, Z1〉, C2 = 〈Q2, q

2
0, X2, δ2, Z2〉,

C ′ = 〈Q′, q′0, X ′, δ′, Z ′〉 and C ′ = C1 op∪ C2, then

[[C ′]] = [[C1]] ∪ [[C2]].

Proof.

[[C1]] ∪ [[C2]]
Def [[C]]

= [[q10]] ∪ [[q20]]
Def [[q]]

=
(
[[Z1(q10)]]C1 ∩ [[q10 →]]C1

)
∪
(
[[Z2(q20)]]C2 ∩ [[q20 →]]C2

)
Def δ′=

(
[[Z ′(q10)]]C′ ∩ [[q10 →]]C′

)
∪
(
[[Z ′(q20)]]C′ ∩ [[q20 →]]C′

)
Def Z′=

(
[[Z ′(q′0)]]C′ ∩ [[q10 →]]C′

)
∪
(
[[Z ′(q′0)]]C′ ∩ [[q20 →]]C′

)
= [[Z ′(q′0)]]C′ ∩

(
[[q10 →]]C′ ∪ [[q20 →]]C′

)
Def δ′= [[Z ′(q′0)]]C′ ∩ [[q10 →]]C′
Def [[q]]

= [[q′0]]C′
Def [[C]]

= [[C ′]]

5.3.3 Clock Reset

Let C = 〈Q, q0, X, δ, Z〉 be a CMD.

If C ′ = op[λ:=0], then C ′ = 〈Q′, q′0, X ′, δ′, Z ′〉, where:

• Q′ = Q

• q′0 = q0

• X ′ = X

• δ′ = δ

• op[λ:=0]

(
〈Z, ∅〉

)
= 〈Z, ∅〉

• 〈Z ′, ∅〉 = op[λ:=0]

(
〈Z, {q0}〉

)
, where

25

• op[λ:=0]

(
〈Z, q̂〉

)
=
〈
Z[q 7→ Z(q)[λ := 0] | q ∈ q̂], op[λ:=0]

(
{q′ ∈ Q \

{>,⊥} | ∃q ∈ q̂.(q, q′) ∈ δ}
)〉

Lemma 3.

Let C = 〈Q, q0, X, δ, Z〉, C ′ = 〈Q′, q′0, X ′, δ′, Z ′〉 and C ′ = op[λ:=0](C), then

[[C ′]] = [[C]][λ := 0]

Proof. We prove the lemma by showing [[q]]C′ = [[q]]C [λ := 0] by induction
over δ.

(i) if q = ⊥ : [[⊥]]C′ = [[⊥]]C
(ii) if q = > : [[>]]C′ = [[>]]C

(iii) if q is an inner node:

[[q]]C′
Def [[q]]

= [[Z ′(q)]]C′ ∩ [[q →]]C′
Def op[λ:=0]

= [[Z(q)[λ := 0]]]C ∩ [[q →]](op[λ:=0](C))

= [[Z(q)]]C [λ := 0] ∩ [[q →]](op[λ:=0](C))

I.H.= [[Z(q)]]C [λ := 0] ∩ [[q →]]C [λ := 0]
distrib.[λ:=0]

=
(
[[Z(q)]]C ∩ [[q →]]C

)
[λ := 0]

Def [[q]]
= [[q]]C [λ := 0]

5.3.4 Time Elapse

Let C = 〈Q, q0, X, δ, Z〉 be a CMD.

If C ′ = op⇑, then C ′ = 〈Q′, q′0, X ′, δ′, Z ′〉, where :

• Q′ = Q

• q′0 = q0

• X ′ = X

• δ′ = δ

• op⇑
(
〈Z, ∅〉

)
= 〈Z, ∅〉

26

• 〈Z ′, ∅〉 = op⇑
(
〈Z, {q0}〉

)
, where

• op⇑
(
〈Z, q̂〉

)
=
〈
Z[q 7→ Z(q)⇑ | q ∈ q̂], op⇑

(
{q′ ∈ Q \ {>,⊥} | ∃q ∈

q̂.(q, q′) ∈ δ}
)〉

Lemma 4.

Let C = 〈Q, q0, X, δ, Z〉, C ′ = 〈Q′, q′0, X ′, δ′, Z ′〉 and C ′ = op⇑(C), then

[[C ′]] = [[C]] ⇑

Proof. We prove the lemma by showing [[q]]C′ = [[q]]C ⇑ by induction over δ.

(i) if q = ⊥ : [[⊥]]C′ = [[⊥]]C
(ii) if q = > : [[>]]C′ = [[>]]C

(iii) if q is an inner node:

[[q]]C′
Def [[q]]

= [[Z ′(q)]]C′ ∩ [[q →]]C′
Def op⇑

= [[Z(q) ⇑]]C ∩ [[q →]](op⇑(C))

= [[Z(q)]]C ⇑ ∩[[q →]](op⇑(C))

I.H.= [[Z(q)]]C ⇑ ∩[[q →]]C ⇑
distrib.⇑

=
(
[[Z(q)]]C ∩ [[q →]]C

)
⇑

Def [[q]]
= [[q]]C ⇑

5.3.5 Determize

As we have seen, some operations might lead to inconsistency of the struc-
ture. So we need to restore it with a special operation called determize. With
~q we denote the set of successor nodes of q. The abbreviation [[q \ q′ →]]
stands for

⋃
q1∈~q\{q′}[[q1]], meaning the union of the evaluations of all succes-

sor nodes of q except of q′. The operation of determize is shown in Figure 5.3.

27

det(q0) = det
(
[[Z(q0)]] ∩

(
[[q′]]q′∈~q0 ∪ [[q \ q′ →]]

))
= [[Z(q0)]] ∩ det

(
[[q′]]q′∈~q0 , [[q \ q

′ →]]
)

Z(q0) ∩ det
(
[[q′]], [[q \ q′ →]]

)
= [[Z(q0)]] ∩

(
(
[[Z(q′)]] \

⋃
q1∈~q\{q′}

[[Z(q1)]]
)
∩ det

(
[[q′ →]]

)
∪ det

((⋃
q1∈~q\{q′}

[[Z(q1)]]
)
\ [[Z(q′)]]

)
∩ det(

⋃
q1∈~q\{q′}

[[q1 →]]
)

∪[[Z(q′)]] ∩
⋃

q1∈~q\{q′}

[[Z(q1)]] ∩ det
(
[[q′ →]],

⋃
q1∈~q\{q′}

[[q1 →]]
))

Lemma 5. Let C = 〈Q, q0, X, δ, Z〉, C ′ = 〈Q′, q′0, X ′, δ′, Z ′〉
and det(C) = C ′, then [[C]] = [[C ′]].

28

Proof.

[[Z(q)]] ∩ det
(
[[q′]], [[q \ q′ →]]

)
Def [[q]]

= [[Z(q)]] ∩ det
(
[[Z(q′)]] ∩ [[q′ →]],

(⋃
q1∈~q\{q′}

[[Z(q1)]]
)
∩ [[q1 →]]

)
Def det= [[Z(q)]] ∩

(
(
[[Z(q′)]] \

⋃
q1∈~q\{q′}

[[Z(q1)]]
)
∩ det

(
[[q′ →]]

)
∪ det

((⋃
q1∈~q\{q′}

[[Z(q1)]]
)
\ [[Z(q′)]]

)
∩ det

(⋃
q1∈~q\{q′}

[[q1 →]]
)

∪[[Z(q′)]] ∩
(⋃
q1∈~q\{q′}

[[Z(q1)]]
)
∩ det

(
[[q′ →]] ∪

⋃
q1∈~q\{q′}

[[q1 →]]
))

= [[Z(q)]] ∩
(

(
[[Z(q′)]] ∩

⋃
q1∈~q\{q′}

[[Z(q1)]]
)
∩ det

(
[[q′ →]]

)
∪ det

((⋃
q1∈~q\{q′}

[[Z(q1)]]
)
∩ [[Z(q′)]]

)
∩ det

(⋃
q1∈~q\{q′}

[[q1 →]]
)

∪[[Z(q′)]] ∩
(⋃
q1∈~q\{q′}

[[Z(q1)]]
)
∩ det

(
[[q′ →]] ∪

⋃
q1∈~q\{q′}

[[q1 →]]
))

I.H.= [[Z(q)]] ∩
(

(
[[Z(q′)]] ∩

⋃
q1∈~q\{q′}

[[Z(q1)]]
)
∩ ([[q′ →]]

∪
((⋃

q1∈~q\{q′}

[[Z(q1)]]
)
∩ [[Z(q′)]]

)
∩

⋃
q1∈~q\{q′}

[[q1 →]]

∪[[Z(q′)]] ∩
(⋃
q1∈~q\{q′}

[[Z(q1)]]
)
∩ [[q′ →]] ∪

⋃
q1∈~q\{q′}

[[q1 →]]
)

= [[Z(q)]] ∩
(

(
[[q′]] ∩

⋃
q1∈~q\{q′}

[[Z(q1)]]
)

∪
((

[[q \ q′ →]]
)
∩ [[Z(q′)]]

)
∪[[Z(q′)]] ∩

(⋃
q1∈~q\{q′}

[[Z(q1)]]
)
∩ [[q′ →]] ∪

⋃
q1∈~q\{q′}

[[q1 →]]
)

29

= [[Z(q)]] ∩
(

(
[[q′]] ∩

⋃
q1∈~q\{q′}

[[Z(q1)]]
)

∪
((

[[q \ q′ →]]
)
∩ [[Z(q′)]]

)
∪
(
[[Z(q′)]] ∩ [[q′ →]]

)
∪
(
[[Z(q′)]] ∩

(⋃
q1∈~q\{q′}

[[q1 →]]
))
∩

⋃
q1∈~q\{q′}

[[Z(q1)]]
)

= [[Z(q)]] ∩
(

(
[[q′]] ∩

⋃
q1∈~q\{q′}

[[Z(q1)]]
)

∪
((

[[q \ q′ →]]
)
∩ [[Z(q′)]]

)
∪
(
[[q′]]
)

∪
(
[[Z(q′)]] ∩

(⋃
q1∈~q\{q′}

[[q1 →]]
))
∩

⋃
q1∈~q\{q′}

[[Z(q1)]]
)

= [[Z(q)]] ∩
(

(
[[q′]] ∩

⋃
q1∈~q\{q′}

[[Z(q1)]]
)

∪
((

[[q \ q′ →]]
)
∩ [[Z(q′)]]

)
∪
(
[[q′]] ∩

⋃
q1∈~q\{q′}

[[Z(q1)]]
)

∪
(⋃
q1∈~q\{q′}

[[q1 →]]
)
∩
(⋃
q1∈~q\{q′}

[[Z(q1)]]
)
∩ [[Z(q′)]]

)
= [[Z(q)]] ∩

(
(
[[q′]] ∩

⋃
q1∈~q\{q′}

[[Z(q1)]]
)

∪
((

[[q \ q′ →]]
)
∩ [[Z(q′)]]

)
∪
(
[[q′]] ∩

⋃
q1∈~q\{q′}

[[Z(q1)]]
)

∪
(
[[q \ q′ →]] ∩ [[Z(q′)]]

))

30

= [[Z(q)]] ∩
(

(
[[q′]] ∩

(⋃
q1∈~q\{q′}

[[Z(q1)]] ∪
⋃

q1∈~q\{q′}

[[Z(q1)]]
)

∪
(
[[q \ q′ →]]

)
∩
(
[[Z(q′)]] ∪ [[Z(q′)]]

)
= [[Z(q)]] ∩

(
[[q′]] ∪ [[q \ q′ →]]

))
Def[[q]]

= [[q]]

Lemma 6. Let C = 〈Q, q0, X, δ, Z〉, C ′ = 〈Q′, q′0, X ′, δ′, Z ′〉 and det(C) =
C ′, then C ′ is deterministic according to Definition 7.

Proof. The claim follows immediately from the correctness of the following
set theoretic formula. Let:

A = [[Z(q0)]]

B =
⋃

q1∈~q\{q′}

[[Z(q1)]]

Then it holds that,

A \B]B \A]A ∩B.

Special case for usage with the Union operation. When we unify
two CMD, we have the assumption that both CMDs are already determinis-
tic and that after the union operation, only the first level of the CMD might
not be deterministic, but deeper levels are. This enables us to modify the
definition of determize for that special case. For the modified definition, we
only have to call det recursively for the intersected branch.

Lemma 7. When only the first level of a CMD is not deterministic, we can
use a modified version of the definition of determize as follows:

31

Z(q0) ∩ det
(
[[q′]], [[q \ q′ →]]

)
= [[Z(q0)]] ∩

(
(
[[Z(q′)]] \

⋃
q1∈~q\{q′}

[[Z(q1)]]
)
∩ [[q′ →]]

∪
((⋃

q1∈~q\{q′}

[[Z(q1)]]
)
\ [[Z(q′)]]

)
∩

⋃
q1∈~q\{q′}

(
[[q1 →]]

)
∪[[Z(q′)]] ∩

(⋃
q1∈~q\{q′}

[[Z(q1)]]
)
∩ det

(
[[q′ →]],

⋃
q1∈~q\{q′}

[[q1 →]]
))

Proof. [[q′ →]] and
⋃
q1∈~q\{q′}[[q1 →]] are already deterministic by assump-

tion, so they don’t need to be determized again.

5.3.6 Expand

The structure of the diagram can be changed by heuristics. The efficiency is
gained by the choice of a “good” heuristic. The operation expand examines
all the zones of the direct child nodes with the help of a replaceable heuristic.
The nodes are split into two partitions. Figure 5.2 shows how that splitting is
done. The node containing the first partition replaces the original node and
the node with the second partition is the only child of the node mentioned
before having the children of the original node. It holds that:

Z = Zx ∧ Zx

Definition 8. An expand heuristic is a function H : 2X → 2X that parti-
tions a given set of clocks into two disjoint subsets.

The determinism criterion might be destroyed after the expansion. For that
reason the expand operation is always followed by a determize operation.
On the other hand expand is always executed before the determize operation
because only this will lead to a meaningful result of determize.

Let C = 〈Q, q0, X, δ, Z〉 a CMD.

If C ′ = expand(C,H), then C ′ = 〈Q′, q′0, X ′, δ′, Z ′〉, where :

• H is an arbitrary heuristic that splits two clock zones so that
Z(A) = Z(Ax) ∧ Z(Ax) holds.
Ax and Ax have to be minimal, i.e., there are no constraints in Ax or
in Ax which are not in A.
split1(A) := Ax and split2(A) := Ax

32

• Q′ is an arbitrary set s.t.
(i) Q ⊆ Q′
(ii) |Q′| = |Q|+ |{(q0, q) ∈ δ}|

• q′0 = q0

• X ′ = X

• δ′ = δ \ {(q′0, q) ∈ δ} ∪ {(q0, q′) | q′ ∈ Q′ ∧ q′ 6∈ Q} ∪ {(q′, q) | q′ ∈
Q′ ∧ q′ 6∈ Q ∧ (q0, q) ∈ δ}

• Z ′(q ∈ Q′) =

split1(Z(q)) , if ∃(q0, q) ∈ δ′

split2(Z(q)) , if ∃(q0, q′) ∈ δ, ∃(q′, q) ∈ δ′

Z(q) , else

Lemma 8. Let C = 〈Q, q0, X, δ, Z〉, C ′ = 〈Q′, q′0, X ′, δ′, Z ′〉 and expand(C) =
C ′, then [[C]] = [[C ′]].

Proof. Be q a node in a CMD. Because after the expand operation each clock
constraint of q is either in qx or in qx according to the definition, q = qx∩qx.
qx is the only child node of qx, so [[qx]] = Z(qx) ∩ Z(qx) ∩ [[q →]]

33

ROOT

A B

bla bla

ROOT

Ax Bx

Ax Bx

bla bla

Figure 5.2: Expand

34

ROOT

Ax Bx

Ax Bx

ROOT

Ax ∩BxAx \Bx Bx \Ax

Ax Ax ∪Bx Bx

Figure 5.3: Determize

35

36

Chapter 6

Experimental Results

In this Chapter, we give information about implementation details of a pro-
totype program that demonstrates the benefits of CMDs. We present ex-
perimental results of benchmarks which were performed with the help of the
prototype by comparing the performance of several containment checks of
CMDs and Clock Federations. The results are shown in 6.2.

6.1 Prototype implementation

The prototype is implemented in C++ and it it uses the clock zone library of
the Uppaal model checker [14] which provides a very efficient implementation
for clock zones with all necessary operations.

The prototype provides a class for dealing with CMDs and applying the
standard operations as described in Chapter 5. In the following the main
classes of the prototype are described. The connection of the classes are
described in Figure 6.1.

6.1.1 The class Cmd

An instance of this class stores a single CMD, which consists of the root
node, the top node (>), the bottom node (⊥) and all inner nodes. Each
node is an instance of the class CmdNode.

6.1.2 The class CmdNode

A CmdNode instance stores all relevant information of a CMD node: A
clock zone, its minimal representation, a list of its child nodes and a pointer
to the associated CMD (to access the top node and bottom node). Some
important operations will be described in the following.

Union. This operation unifies the CMD with another CMD or a clock
zone. For that purpose all the child nodes of the root node of the second

37

Figure 6.1: Class diagram of the prototype

CMD are added as children of the root node of the first CMD. The result
might be an indeterministic CMD. For that purpose the determize function
should be called after a union. The function unify det automatically calls
the determize function after union.

Algorithm 5 determize
for all childOld from oldDiagram do

rest = child.zone;
for all childNew from newDiagram do

newDiagram.add(childNew.zone \ rest);
newDiagram.add(childNew.zone ∩ rest).unify(childOld);
rest = rest \ childNew.zone;

end for
newDiagram.add(rest);

end for
return newDiagram;

Determize. The determize function is executed after operations that
lead to a non-deterministic CMD, e.g. the unify operation. At first, an op-
eration called split is called to optimize the result of the determizefunction.
The split function is described below. The operation of the determize func-
tion is described in Algorithm 4. In that algorithm we exploit the special
case of determize as described in Section 5.3.5. With Algorithm 4, CMD
is determized by sequently rebuilding a new CMD which is deterministic in
every step.

Split. The split operation splits a clock zone into two new clock zone
such that the intersection of the two new zones results in the original zone.
Which constrains are put in which of the two new zones is determined by a
heuristic, which is a parameter of the split function.

38

6.1.3 The class Expand

Expand is an abstract superclass for expand heuristics used by the split func-
tion. Concrete expand heuristics are derived from this class. The prototype
implements the following heuristics.

Expand equal values. This heuristic searches for exact equal constraints
i.e., the constraint xi − xj ≺ n, for clocks xi, xj ∈ X and n ∈ N0, with
the same operator for ≺ and an identical n must be part of most clock
zones. “Most” means that the constraints with the compliance in the largest
number of clock zones are selected.

Expand equal clocks. With this heuristic, constraints are selected if
they describe the same clock difference but are not exactly identical, e.g.,
all constraints of the type xi − xj ≺ n, for clocks xi, xj ∈ X and n ∈ N0,
would be selected for any ≺∈ {<,≤} and arbitrary n but constant i and j.

Hybrid. For the benchmark results of the next section, a combina-
tion of the two previously mentioned heuristics is used. If the heuristic
Expand equal values cannot find any common constraints, the heuristic
Expand equal clocks is used.

6.2 Benchmarks

The prototype implementation introduced in 6.1 was used to obtain ex-
perimental results about the performance of CMDs regarding the time for
containment checks, i.e., testing if clock zones are contained in CMDs. All
tests were measured on an AMD Opteron processor with 2.6 GHz.

In the following, the various test scenarios are described in detail and
then a table with the results of the tests are presented. In every test, a
large number of clock zones are unified with a CMD, which is empty at the
beginning. At the same time, those clock zones are unified with a Clock
Federation, which is also empty at the beginning. Then it is tested, if a
certain clock zone is contained in the unified set. This is done for both, the
CMD and the Clock Federation and the time for both containment checks
is measured.

In all tests, every single clock zone, which is unified with the CMD and
the Clock Federation, contains an identical clock constraint ϕ beyond other
constraints.

Test scenario 1. For splitting the nodes of the CMD in the determize
function, the heuristic Hybrid from 6.1.3 is used. Then it is tested, whether
ϕ is contained in the unified set. Due to the functionality of the heuristic

39

r

1

...

...

... 2

Figure 6.2: CMD used for all tests.

Hybrid, ϕ will be set in the most upper node, the only child node of the
root node. The resulting CMD can be seen in Figure 6.2. Node 1 contains
ϕ.

Test scenario 2. This test uses exactly the same setting as test 1, but the
containment check differs. The tested clock constraint is not contained in the
CMD. Because the checked constraint describes the same clock difference as
node 1 but is disjoint to the constraint in this node, the containment check
for the CMD can stop immediately at node 1.

Test scenario 3. This test is similar to test scenario 1. The only difference
is that instead of the heuristic Hybrid the heuristic Expand equal clocks
is used for building the CMD.

Test scenario 4. This test scenario is similar to test 2. Again, the
zone we check is not contained in the unified set. But this time we use the
heuristic Expand equal clocks instead of Hybrid.

Test scenario 5. Test 5 checks if a clock zone which is identical to the
Zone of node 2 of the diagram is contained in the unified set. This is done
using the heuristic Hybrid.

Test scenario 6. This test checks if a clock zone which is orthogonal to
the zone of node 2 in the CMD is contained. In contrast to test 2, it should
traverse the whole CMD before realizing that the zone is not contained.

40

900 zones 1800 zones
CMD FED CMD FED

Test 1 1.23 17.36 1.22 41.44
Test 2 1.63 18.02 1.63 42.96
Test 3 8.33 17.37 15.69 41.62
Test 4 20.09 17.94 41.14 43.01
Test 5 356.07 0.5 1661.04 0.51
Test 6 356.76 46.63 1659.82 102.33

Figure 6.3: Benchmark results

6.2.1 Results

The values of the benchmarks from table 6.3 are relative time units. They
were obtained by executing one million iterations of each test.

The first four tests demonstrate the potential of CMDs. Whenever a
containment check can be decided on an upper level of a CMD, Federations
are highly outperformed because they have to be traversed from the begin-
ning to the end in the case that the tested zone is not contained in the
Federation. These four tests also show the importance of an efficient heuris-
tic. The test scenarios where the heuristic Expand equal clocks is used
perfom much worse compared to the heuristic Hybrid. With the heuristic
Expand equal clocks the CMD still performs better than the Federation.

In the test scenarios five and six, the CMD is clearly outperformed. This
bad result comes from the fact that the benchmarks were made with an early
prototype implementation. With a better heuristic and a faster implemen-
tation, a CMD should not take any more time for a complete traversal than
a Federation because CMDs usually don’t traverse whole paths but they
can exclude paths if the tested zone is not contained in any node of the
path. The Federation in these tests perform so well because new DBMs are
inserted at the beginning of the Federation, so the containment check in test
scenario 5 gets its result when testing the first DBM in the list because node
2 was the last inserted node.

41

42

Chapter 7

Conclusion and Outlook

In this chapter we summarize the several ways of representing the timing
aspect of the infinite state-space of Timed Automata with the help of sym-
bolic representations. Finally we give some ideas for future research in this
area.

7.1 Conclusion

The modeling of parallel systems lead to an explosion of the state space.
When adding timing properties in the dense time domain, the state space
even gets infinite. Thus we need a symbolic representation of the state space.

We have seen several data structures which can represent the timing
aspect of the state space of Timed Automata. Starting with clock regions
which are not appropriate for a practical application, because the region
graph grows exponentially with the number of clocks and with the number
of constants. Then we described Difference Bound Matrices, which are a
data structure representing clock zones. Clock zones are convex sets of clock
constraints. We illustrated the main operations on DBMs and presented how
they can be implemented efficiently. However, there are applications where
a data structure for non-convex clock constraints is needed (e.g. timed game
solving). But also in the standard reachability analysis that is used for model
checking, a data structure for non-convex sets can be advantageous since it
provides a more compact state space representation. The first approach
for representing convex sets we discussed are Clock Federations which are
linear lists of DBMs. They are only appropriate for very small lists, but
they suffer from certain drawbacks, namely fragmentation and the fact that
containment checks need linear time. Then we reviewed Clock Difference
Diagrams, another approach for storing non-convex sets of clock constraints.
They constitute a more space-efficient representation, but they can’t exploit
the convex efficiency of DBMs. To take advantage of both, the convex-
efficiency of DBMs and space-efficiency of CDDs, we introduced CMDs, a

43

novel data structure where DBMs are represented as nodes in a decision
diagram. They are a generalisation of DBMs, Clock Federations and CDDs
and combine the efficiency of all those structures. Our benchmark results
show that CMDs outperform Clock Federations regarding the time.

7.2 Outlook

Our first benchmarks show the potential of CMDs. A more efficient imple-
mentation could unfold the power of CMDs even more. Several optimiza-
tions can be applied on the implementation of the union and the determize
operation. Dependent on the application, an on-the-fly re-ordering of the
nodes of the CMD might increase its performance in some cases. We could
also reduce the number of nodes by identifying sibling nodes whose union
represent a convex set, so that we can unify those nodes to a single node.

For a true generalization of Clock Federations and CDDs, we could al-
low additional properties for sub-graphs of CMDs, namely that sub-graphs
would not have to fulfill the deterministic criterion and the enforcement of
an order of the nodes to represent the according property of CDDs.

The development of a fully symbolic data structure for Timed Automata
state spaces is an active field of research. We believe that CMDs, as pre-
sented in this thesis, are a good basis for such a data structure. In future
work, we will investigate how to extend CMDs such that also the discrete
part of the location-based control structure can be incorporated.

Our main objective is to develop a data structure for a full symbolic
representation of the state space of Timed Automata. With CMDs we have
a good structure for the timing part. For future work we are searching for
a structure which can also represent the discrete part of the state space,
namely the locations of Timed Automata which uses CMDs for the timing
properties.

44

Bibliography

[1] Rajeev Alur. Timed automata. Theoretical Computer Science, 126:183–
235, 1999.

[2] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking in
dense real-time. Information and Computation, 104:2–34, 1993.

[3] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126:183–235, 1994.

[4] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial
on uppaal. In Marco Bernardo and Flavio Corradini, editors, Formal
Methods for the Design of Real-Time Systems: 4th International School
on Formal Methods for the Design of Computer, Communication, and
Software Systems, SFM-RT 2004, number 3185 in LNCS, pages 200–
236. Springer–Verlag, September 2004.

[5] Randal E. Bryant. Graph-based algorithms for boolean function ma-
nipulation. IEEE Transactions on Computers, 35:677–691, 1986.

[6] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Check-
ing. The MIT Press, 2000.

[7] Alexandre David. Merging DBMs efficiently. In 17th Nordic Workshop
on Programming Theory, pages 54–56. DIKU, University of Copen-
hagen, October 2005.

[8] Clock Difference Diagrams, Kim G. Larsen, Justin Pearson, Carsten
Weise, and Wang Yi. Nordic journal of computing, 1999.

[9] Tom Henzinger, Zohar Manna, and Amir Pnueli. Temporal proof
methodologies for real-time systems. In POPL ’91: Proceedings of the
18th ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pages 353–366, New York, NY, USA, 1991. ACM.

[10] F. Jahanian and A. K.-L. Mok. A graph-theoretic approach for timing
analysis and its implementation. IEEE Trans. Comput., 36(8):961–975,
1987.

45

[11] Shang-Wei Lin, Pao-Ann Hsiung, Chun-Hsian Huang, and Yean-Ru
Chen. Model checking prioritized timed automata. In ATVA, pages
370–384, 2005.

[12] Nancy Lynch and Hagit Attiya. Using mappings to prove timing prop-
erties. In PODC ’90: Proceedings of the ninth annual ACM symposium
on Principles of distributed computing, pages 265–280, New York, NY,
USA, 1990. ACM.

[13] J. Ostro. Temporal logic of real-time systems. Research Studies Press,
1990.

[14] Paul Pettersson. Modelling and verification of real-time systems using
timed automata: theory and practice. PhD thesis, Uppsala University,
1999.

[15] C. Ramchandani. Analysis of asynchronous concurrent systems by
timed petri nets. Technical report, Cambridge, MA, USA, 1974.

[16] Karsten Strehl and Lothar Thiele. Symbolic model checking using in-
terval diagram techniques, 1998.

46

