
Diploma Thesis

Automatic Verification of Conditions for
Absence of Interrupts

Pavel Emeliyanenko
asm@wjpserver.cs.uni-sb.de

Advisors:
Tom In der Rieden
Anne Proetzsch

Prof. Dr. W. J. Paul
Prof. Dr. B. Finkbeiner

Saarland University, Computer Science Department

Institute for Computer Architecture and Parallel Computing

Reactive Systems Group

September 2005

Abstract

In order to the have possibility of verifying assembler programs written for the

VAMP (Verified Architecture Microprocessor1) using the abstract software machine

we need to relate the VAMP formal specification with the abstract software machine

specification.

The software machine does not support interrupt handling and therefore programs

to be executed on this machine should not produce any interrupts. In the previous

work [11] the conditions for absence of interrupts were identified and their validity was

proved using the PVS verification system. Besides that, a theorem was established

which states that under certain conditions (including the conditions for absence of

interrupts) the execution of a program on the software machine is equivalent to the

execution of this program on the VAMP.

Consequently, if some property of a program has been proved using the software

machine and the conditions stated in the theorem hold, then the same property holds

during the execution of this program on the VAMP. The goal of this work is to develop

software with help of which the required conditions for absence of interrupts can be

proved automatically for most assembler programs.

1http://www-wjp.cs.uni-sb.de/forschung/projekte/VAMP

2

Contents

1 Overview of the VAMP . 6

1.1 The VAMP Processor . 6

1.2 Instruction set architecture . 7

1.3 Interrupts . 12

2 VAMP and Assembler Machine . 14

2.1 Differences between the VAMP and the Assembler Machine . . . 14

2.2 The Assembler Machine Specification 15

2.3 The VAMP specification . 17

2.4 Conditions for absence of interrupts 18

2.5 Simulation theorem . 22

3 Program verification . 24

3.1 Transition systems . 24

3.2 Verification diagrams . 26

4 Control flow graphs . 28

4.1 Overview . 28

4.2 CFG construction . 28

4.3 The syntax of CFG files . 36

4.4 Example control flow graph . 39

5 Proving the absence of interrupts . 41

5.1 DLX assembler directives . 41

5.2 Association of CFG nodes with nodes of the verification diagram 42

5.3 The conditions for the absence of interrupts 44

5.4 Verification diagrams generation 45

5.5 Handling unsupported instructions 50

6 Conclusion . 52

A Appendix A . 55

A.1 Example Proof . 55

3

Introduction

Nowadays a great part of jobs is done by computers. Computers have found a good use

not only in the field of science. Most of the modern technological processes are fully

automated, i.e. they are operated by microprocessors. It brings us a lot of advantages,

since a huge amount of errors is happened through human’s fault, and application of the

computer systems in industry makes possible to avoid most of them. Undoubtedly, it

is extremely important to verify that a computer system works correctly in all possible

cases, especially when talking about real-time systems where each discovered bug may

result in a huge material or human loss.

Previously exploited techniques of verification such as simulation or testing are

not really trustworthy. Quite effective in the very early stages of debugging they become

absolutely inapplicable for the entire designs since the state space of modern systems

is huge and tests never attain full coverage.

Another advantageous alternative to simulation and testing is the approach of

formal verification. Using the formal verification technique all possible behaviours of

system can be thoroughly explored and the correctness of the whole system can be

proved.

At Saarland University the correctness of the complete processor called the VAMP

has been formally proved (see [2]). It features a Tomasulo-scheduled five-stage pipeline,

precise interrupts, delayed branch, cache memory, and a fully IEEE-compliant dual-

precision floating point unit that handles denormals and exceptions entirely in hard-

ware.

An important task now is to develop verified software for the VAMP processor.

The verification of the assembler programs is the task of Assembler Verification Project.

Solely for this purposes a formal assembler machine specification has been developed

which implements a subset of the VAMP instruction set. Several design decisions have

been made to keep the assembler verification with this machine feasible and simple.

However, to argue about the correctness of programs using the abstract software

machine we need to state that under certain conditions the executions of an assembler

program on the abstract software machine and on the VAMP produce the same results.

These conditions include the equivalence of the memory regions of both machines and

the absence of interrupts. The last property states that a program should not produce

any interrupts, when running on the VAMP. The validity of these conditions has been

formally proved in [11] using the PVS theorem proving system.

The goal of this thesis is to develop software which will help us to prove auto-

4

matically that a certain assembler program satisfies the property for the absence of

interrupts. The idea behind this automated method is to translate a given assembler

program into control flow graph representation and to formulate the required conditions

in the form of verification diagrams.

In the control flow representation a program is subdivided into basic blocks. Basic

blocks are sequences of instructions which are always executed sequentially by the

processor. This means, that branches or jumps are only allowed at (or near) the end

of basic blocks. Basic blocks are connected with each other by edges representing the

flow of a control in a program.

Afterwards, the nodes (basic blocks) of a control flow graph are identified with the

nodes of a verification diagram which for most cases can be constructed automatically

based on the program source code. Verification diagrams [8] are directed graphs whose

nodes are labeled by propositional formulas (assertions), representing sets of system

states, and whose edges represent possible system transitions. Verification diagrams

correspond to a completed, direct proof, and offer a compact representation of the

necessary verification conditions. Later on the refinement tool1 extracts the verification

conditions based on a given control flow graph and a verification diagram and proves

the validity of the required properties.

To show the effectiveness of this approach we present a proof for the absence of

interrupts for a simple assembler program.

1https://react.cs.uni-sb.de/software/tv-tool

5

1 Overview of the VAMP

In the VAMP [1] (Verified Architecture Microprocessor) project, the correctness of a

complete microprocessor called VAMP has been formally proved. The features of this

processor are:

� the full DLX instruction set;

� delayed branches;

� Tomasulo scheduler;

� maskable nested precise interrupts;

� pipelined fully IEEE 754 compatible dual precision floating point unit with vari-

able latency;

� separate instruction and data caches;

The processor has been designed, functionally verified, and synthesized. Specifica-

tion and verification has been performed using the interactive theorem proving system

PVS [10]. All formal specifications and proofs can be found on the project web site1.

The hardware description of the processor has been automatically extracted from

PVS and translated into Verilog HDL by a tool called pvs2hdl. The tool unrolls

recursive definitions and then performs fairly straightforward translation.

The Verilog representation of the processor (including caches and floating point

unit) has been synthesized, implemented, and tested on a Xilinx FPGA hosted on a

PCI board. Some additional unverified hardware for controlling the VAMP processor

and for accessing its memory from the host PC is also present on this FPGA. The

VAMP processor occupies about 18000 slices of a Xilinx Virtex FPGA. This accounts

for a gate count of 1.5 million gates as reported by the Xilinx tools. The design contains

9100 bits of registers (not counting memory and caches) and runs at 10 MHz.

In this chapter we make a short overview of the VAMP processor, we describe the

DLX instruction set architecture, and give a short description of the VAMP interrupts.

1.1 The VAMP Processor

The VAMP processor is a variant of the DLX processor described in [6]. It supports

full DLX fixed point instruction set as well as floating point extension given in [9].

1http://www-wjp.cs.uni-sb.de/forschung/projekte/VAMP

6

The VAMP processor is a RISC architecture. The VAMP instruction set archi-

tecture uses general-purpose registers with a load/store architecture, supports register,

immediate and displacement addressing modes and uses fixed instruction encoding. It

uses distinct register files, namely a general purpose register file GPR, a special pur-

pose register file SPR and a floating point register file FPR. The first two register

files are described below in detail.

Instructions are stored in the memory (each instruction is 32-bit wide) and fetched

using a 32-bit register called program counter and denoted PC which represents an

address of the fetched instruction in the memory.

The VAMP processor uses the so called delayed PC architecture with one delay

slot instruction described in [9]. In such a delayed PC architecture, instruction updates

to the PC do not affect the next instruction, only the instruction after the next one.

Hence, the instruction after a jump instruction is always executed before the actual

jump takes place and we have two PCs in the programmer’s model, PC ′ and DPC. In

an execution step, the instruction pointed to by DPC is executed, but the PC update

of the instruction only affects PC ′. Simultaneously, the old value of PC ′ is written into

DPC which creates the delay slot. Note that, according to the delayed PC semantics,

branch or jump instructions cannot occupy the delay slots.

The VAMP also has two separate caches (for data and instructions), connected

to a single main memory. The VAMP uses a write back policy for the data cache, i.e.,

on a write access of the CPU, the data cache is updated and the corresponding data

is marked as dirty. Thus, a slow access to the main memory is not necessary. If dirty

data has to be thrown out from the cache, it is written back to the main memory in

order to ensure data consistency.

1.2 Instruction set architecture

The VAMP ISA uses the general purpose register file GPR and can access the special

purpose register file SPR. The fixed point instruction set includes loads and stores for

double words, words, half words, and bytes, various shift operations, and two jump-

and-link operations. Loads of bytes and half words can be unsigned or signed.

The general purpose register file GPR contains 32 registers, named R0, R1, . . . ,

R31. Each register is 32 bit wide. They can be used by fixed point instructions but

there are also instructions which can transfer data between GPR and other register

files. The value of R0 is always 0. This register can be used to synthesize different

useful operations from the simple instruction set.

7

Number Register Usage

0 SR Status register. Contains interrupt mask bits.

1 ESR Exception status register. Saves SR in case of an interrupt.

2 ECA Exception cause register. Saves exception cause in case of an
interrupt.

3 EPC Exception PC. Saves PC ′ in case of an interrupt.

4 EDPC Exception DPC. Saves DPC in case of an interrupt.

5 EData Exception data. Saves additional exception data in case of an
interrupt.

6 RM Rounding mode. Encodes currently used rounding mode for all
floating point operations.

7 IEEEf IEEE flags register. Required by the IEEE standard to accumu-
late floating point interrupts.

8 FCC Floating point condition code. Used to store result of floating
point comparisons.

9 PTO Page table origin register

10 PTL Page table length register

16 MODE Mode register. Holds the current mode of the VAMP (0 - system
mode, 1 - user mode)

11 EMODE Exception mode register. Stores the old MODE value during
the execution of the ISR

Table 1.1: Special purpose register of the VAMP fixed point core

Special purpose registers (SPRs) are used to serve specific tasks, they are listed

in table 1.1. The remaining registers from the SPR file are unused and always return

zero.

As mentioned above all instructions in the VAMP are encoded with 32-bit values.

The VAMP processor has five different instruction formats (three of them are used to

describe fixed point instructions the rest is used to encode floating-point instructions),

they are depicted in figure 1.1.

Here we describe only fixed point instruction formats:

� I-type format specifies two registers and a 16-bit constant. This is the standard

layout for instructions with an immediate operand (an immediate operand is

always sign-extended).

� J-type format is used for control-transfer instructions. Here a larger 26-bit im-

mediate operand is used.

� R-type format defines two source and one destination register operand. Also it

provides a 5-bit constant which is used to specify a shift amount (for a shift

instruction) or to address a special purpose register.

8

Opcode RS1 RS2 RD SA Function
6 5 6555

R-type

Opcode RS1 RD Immediate
6 5 165

I-type

Opcode PC offset
6 26

J-type

Opcode FS1 FS2 RD 00 Fmt Function
6 5 6355

FR-type

Opcode RS1 FD Immediate
6 5 165

FI-type

Figure 1.1: The VAMP instruction formats

Except for shifts, immediate constants are always sign-extended.

In the tables below the following notation is used:

X sext(imm) is a sign-extended version of the immediate constant imm.

X GPR and SPR denote general purpose and special purpose register files.

X M denotes the main memory.

X (c?a : b) denotes the selection operator (i.e. if c then a else b).

X R[a : b] - the bits with indices from a to b of the register R.

X RD is the destination register (abbreviation for GPR[RD]), in the same way
RS1 and RS2 stand for the first and the second source operand respectively.

X SA denotes a shift amount for immediate shift operations (5-bit constant) or

index of a special purpose register.

Unless it is stated explicitly, each instruction increments the value of PC by four. I-type

(Immediate), R-type (Register) and J-type (Jump) instructions are listed in tables 1.2,

1.3 and 1.4 respectively.

9

Mnemonic d Syntax Operation

Load/store operations ea = RS1 + sxt(imm)
lb 1 lb RD, RS1(imm) RD � sext(M [ea + d− 1 : ea])
lh 2 lh RD, RS1(imm) RD � sext(M [ea + d− 1 : ea])
lw 4 lw RD, RS1(imm) RD � M [ea + d− 1 : ea]
lbu 1 lbu RD, RS1(imm) RD � 024M [ea + d− 1 : ea]
lhu 2 lhu RD, RS1(imm) RD � 016M [ea + d− 1 : ea]
sb 1 sb RS1(imm), RD M [ea + d− 1 : ea] � RD[7:0]

sh 2 sh RS1(imm), RD M [ea + d− 1 : ea] � RD[15:0]

sw 4 sw RS1(imm), RD M [ea + d− 1 : ea] � RD

Arithmetic/logical operations

addi addi RD,RS1,imm RD � RS1 + sext(imm) (no overflow)

addio addio RD,RS1,imm RD � RS1 + sext(imm)

subi subi RD,RS1,imm RD � RS1 − sext(imm) (no overflow)

subio subio RD,RS1,imm RD � RS1 − sext(imm)

andi andi RD,RS1,imm RD � RS1 ∧ sext(imm)

ori subi RD,RS1,imm RD � RS1 ∨ sext(imm)

xori subi RD,RS1,imm RD � RS1 ⊕ sext(imm)

lhgi lhgi RD,imm RD � imm � 16

Test & set operations

clri clri RD RD � (false ? 1 : 0)

sgri sgri RD,RS1,imm RD � (RS1 > sext(imm) ? 1 : 0)

seqi seqi RD,RS1,imm RD � (RS1 = sext(imm) ? 1 : 0)

sgei sgei RD,RS1,imm RD � (RS1 ≥ sext(imm) ? 1 : 0)

slsi slsi RD,RS1,imm RD � (RS1 < sext(imm) ? 1 : 0)

snei snei RD,RS1,imm RD � (RS1 6= sext(imm) ? 1 : 0)

slei slei RD,RS1,imm RD � (RS1 ≤ sext(imm) ? 1 : 0)

seti seti RD RD � (true ? 1 : 0)

Control operations

beqz beqz RS1,imm PC � PC + 4 + (RS1 = 0 ? imm : 0)

bnez bnez RS1,imm PC � PC + 4 + (RS1 6= 0 ? imm : 0)

jr jr RS1 PC � RS1

jalr jalr RS1 R31 � PC + 8; PC � RS1

Table 1.2: I-type instruction layout

10

Mnemonic Syntax Operation

Shift operations

slli slli RD,RS1,SA RD � RS1 � SA

slai slai RD,RS1,SA RD � RS1 � SA (arithmetic)

srli srli RD,RS1,SA RD � RS1 � SA

srai srai RD,RS1,SA RD � RS1 � SA (arithmetic)

sll sll RD,RS1,RS2 RD � RS1 � RS2[4:0]

sla sla RD,RS1,RS2 RD � RS1 � RS2[4:0] (arithmetic)

srl srl RD,RS1,RS2 RD � RS1 � RS2[4:0]

sra sra RD,RS1,RS2 RD � RS1 � RS2[4:0] (arithmetic)

Data transfer operations

movs2i movs2i RD,SPR[SA] RD � SPR[SA]

movi2s movi2s SPR[SA],RS1 SPR[SA] � RS1

Arithmetic/Logical Operation operations

add add RD,RS1,RS2 RD � RS1 + RS2 (no overflow)

addo addo RD,RS1,RS2 RD � RS1 + RS2

sub sub RD,RS1,RS2 RD � RS1 − RS2 (no overflow)

subo subo RD,RS1,RS2 RD � RS1 − RS2

and and RD,RS1,RS2 RD � RS1 ∧ RS2

or sub RD,RS1,RS2 RD � RS1 ∨ RS2

xor sub RD,RS1,RS2 RD � RS1 ⊕ RS2

lhg lhg RD,RS1 RD � RS1[15:0]016

Test & Set Operations

clr clr RD RD � (false ? 1 : 0)

sgr sgr RD,RS1,RS2 RD � (RS1 > RS2 ? 1 : 0)

seq seq RD,RS1,RS2 RD � (RS1 = RS2 ? 1 : 0)

sge sge RD,RS1,RS2 RD � (RS1 ≥ RS2 ? 1 : 0)

sls sls RD,RS1,RS2 RD � (RS1 < RS2 ? 1 : 0)

sne sne RD,RS1,RS2 RD � (RS1 6= RS2 ? 1 : 0)

sle sle RD,RS1,RS2 RD � (RS1 ≤ RS2 ? 1 : 0)

set set RD RD � (true ? 1 : 0)

Table 1.3: R-type instruction layout

Mnemonic Syntax Operation

Control operations

j j imm PC � PC + 4 + imm

jal jal imm R31 � PC + 8; PC � PC + 4 + imm

trap trap imm trap � 1; EDATA � imm

rfe rfe SR � ESR; PC’ � EPC; DPC � EDPC

Table 1.4: J-type instruction layout

11

1.3 Interrupts

The VAMP supports nested interrupts. Interrupts are maskable and precise. Floating-

point interrupts are accumulated in the lower five bits of the special purpose register

IEEEf (IEEE flag) as specified by the IEEE standard.

Table 1.5 shows the supported interrupts as described in [2]. The internal in-

terrupts are generated by the CPU or the memory system, the external interrupts are

generated by external I/O devices. An interrupt is called maskable if it can be ignored

under software control, otherwise non maskable. The interrupted program execution

can be resumed in three different ways: repeat an interrupted instruction (in this case

the corresponding interrupt is of type repeat), continue with the instruction which

would follow an interrupted one in the uninterrupted program execution (continue

interrupt), abort the program execution (abort interrupt).

The special purpose registers for the interrupt mechanism are the status register

SR, the exception PC register EPC, the exception DPC register EDPC, the exception

cause register ECA, the exception status register ESR, and the exception data register

EData.

The interrupts are triggered by the activation of event signals, denoted by ev[j],

j = 0, 1, In the implementation, there is a nonvisible register CA called cause

register, which catches these event signals. The interrupt masks are stored in the

status register SR. For a maskable interrupt j, bit SR[j] stores the mask of interrupt

j. Masking means that interrupt j is disabled (masked) if SR[j] = 0, and it is unmasked

otherwise. Masked interrupt signals are stored into the masked cause register MCA

(nonvisible).

If at least one bit of MCA is set, the signal JISR (jump to interrupt service rou-

tine) is caused. Activation of the signal JISR causes the jump to the interrupt service

routine. In this case, the values of the registers PC ′, DPC, CA and SR are stored in

the corresponding registers. The register EData then stores the immediate constant

given in the instruction in case of a trap instruction, and an address of a memory access

if a pagefault occurred. The return from an interrupt is performed by rfe instruction

(return from exception), all saved parameters are restored (see table 1.4).

Since proving the absence of interrupts for assembler programs is the goal of this

thesis we consider them in detail in the next chapters.

12

Index Name Type Description Maskable External

0 reset abort reset no yes

1 ill abort illegal instruction no no

2 mal abort misaligned memory access no no

3 pff repeat page fault during fetch no no

4 pfls repeat page fault during load/store no no

5 trap continue trap instruction no no

6 ovf continue fixed point overflow yes no

7 OV F continue floating point (FP) overflow yes no

8 UNF continue floating point (FP) underflow yes no

9 INX continue floating point inexact result yes no

10 DIV Z continue floating point division by zero yes no

11 INV continue floating point invalid operation yes no

12 UNIMP conitnue floating point unimplemented no no

j > 12 eev[j] continue external I/O yes yes

Table 1.5: The VAMP interrupts

13

VAMP Assembler Machine

Interrupts yes no

Address Translation yes no

Data Type bitvectors integers

Instruction memory unified separated

Instruction set full reduced

Table 2.6: Differences between the VAMP and the assembler machine

2 VAMP and Assembler Machine

In this chapter we consider the differences between the VAMP and the abstract software

machine, and give the formal specifications for both machines. At the end, we give a

detailed overview of the VAMP interrupts and formulate the conditions under which

the execution of a program on the VAMP is equivalent to execution of this program

on the abstract software machine.

2.1 Differences between the VAMP and the Assembler Ma-
chine

The interrupts supported by the VAMP processor were discussed in the previous chap-

ter. The full list of these interrupts is given in table 1.5. The assembler machine

specification does not support interrupts. Thus, the use of the assembler machine

for the verification of assembler programs is only possible if we prove the absence of

interrupts during the execution of a given program.

The VAMP processor contains a memory management unit to support virtual

memory. Instructions and data are stored in one unified memory and can be allocated

in the main memory as well as in the swap memory (e.g. on the hard disk). The

memory management unit can cause exceptions. In particular, if a page accessed by a

user program is not in the main memory, it produces a page fault exception. Then, the

page fault handler which is part of the operating system software loads this page into

the main memory and the execution of the interrupted instruction is repeated. In the

assembler machine we have no address translation, i.e., all instructions and all data are

allocated in the uniform virtual memory and there is no paging.

Moreover, in the assembler machine specification we distinguish two separate

memories: instruction memory and data memory. The part of the main memory which

contains the program instructions is supposed to be read-only and corresponds to the

instruction memory of the assembler machine. The remaining memory space which is

used for program data corresponds to the data memory of the assembler machine.

14

For the VAMP specification all registers and memory are specified by bitvectors,

i.e. the content of register GPR[i] is a bit string GPR[i] = GPR[i]31 . . . GPR[i]0. But

this is not so convenient for software verification which is mostly concerned with the

numerical values stored in a register file or a memory cell. Therefore, the assembler

machine operates on integers.

To keep the correspondence between the assembler machine and the VAMP, in-

teger values in the assembler machine are strictly bounded. So, a 32-bit string in the

VAMP specification can take 232 different unsigned values with numerical representa-

tion in {0, 1, . . . , 232 − 1}.
The main differences between the VAMP and the assembler machine are sum-

marised in table 2.6.

2.2 The Assembler Machine Specification

2.2.1 Instruction set

The full instruction set of the VAMP processor is given in tables 1.2, 1.3 and 1.4.

In the assembler machine only a subset of these instructions is realized. The current

instruction set of the assembler machine is shown in table 2.7. In the assembler machine

specification all computations are done modulo 232. The effective address is computed

as ea = b(RS1 + imm mod 232)/4c and the addressed memory cell is mem = DM [ea],

where DM denotes the data memory. Note that, the assembler specification supports

the delayed PC mechanism described in [9]. Thus, we have two program counters: PC ′

and DPC. Instructions are fetched from the instruction memory address pointed to by

DPC. Unless this is stated explicitly, each instruction increments the value of DPC

by four.

2.2.2 Configuration

A mathematical machine is a triple M = (C, c0, δ) which consists of the following

components:

� C is the set of all possible configurations of M . An element of c ∈ C is called

configuration or state of the machine;

� c0 ∈ C is the initial configuration of M ;

� δ : C → C is the transition (step) function of M . It maps a configuration cT to

its successor cT+1.

15

Mnemonic Syntax Operation

mem = DM [b(RS1 + imm mod 232)/4c]
lw lw RD,RS1,imm RD � mem

sw sw RD,RS1,imm mem � RD

movs2i movs2i RD,SPR[SA] RD � SPR[SA]

movi2s movi2s SPR[SA],RS1 SPR[SA] � RS1

add add RD,RS1,RS2 RD � RS1 + RS2

sub sub RD,RS1,RS2 RD � RS1 − RS2

slli slli RD,RS1,SA RD � RS1 � SA

srli srli RD,RS1,SA RD � RS1 � SA

addi addi RD,RS1,imm RD � RS1 + imm

lhgi lhgi RD,imm RD � imm � 16

andi andi RD,RS1,imm RD � RS1 ∧ imm

ori ori RD,RS1,imm RD � RS1 ∨ imm

xori xori RD,RS1,imm RD � RS1 ⊕ imm

sne sne RD,RS1,RS2 RD � (RS1 6= RS2 ? 1 : 0)

sgt sgt RD,RS1,RS2 RD � (RS1 > RS2 ? 1 : 0)

sge sge RD,RS1,RS2 RD � (RS1 = RS2 ? 1 : 0)

beqz beqz RS1,imm PC � PC + 4 + (RS1 = 0 ? imm : 0)

bnez bnez RS1,imm PC � PC + 4 + (RS1 6= 0 ? imm : 0)

jal jal imm R31 � PC + 8; PC � PC + 4 + imm

jr jr RS1 PC � RS1

nop nop

Table 2.7: Instruction set of the assembler machine

A sequence (c0, c1, . . . , cn) of configurations is called a computation of M iff cT+1 =

δ(cT) holds for all 0 ≤ T < n.

A configuration of the assembler machine is a pair including the processor con-

figuration together with the data memory: (proc, dm). We denote all possible config-

urations of the software machine by Conf .

The processor configuration is defined as a tuple: proc = (gpr, spr, dpc, pc′) where

dpc denotes the value of DPC register and pc′ denotes the value of PC ′ register.

We define the general purpose register file GPR and the special purpose register

file SPR as a function mapping the set of register numbers {0, 1, . . . , 31} into the set

{0, 1, . . . , 232 − 1} of feasible register contents:

gpr : {0, 1, . . . , 31} → {0, 1, . . . , 232 − 1}

spr : {0, 1, . . . , 31} → {0, 1, . . . , 232 − 1}

We consider two separate memories, the data memory and the instruction memory.

The data memory maps the data memory address space into the values representable

by machine words and the instruction memory maps the instruction memory address

16

space into an assembler instruction (of type Asm) from table 2.7. The address space

of both memories is {0, 1, . . . , 230 − 1}, i.e., the data and the instruction memory may

store up to 230 words (that is 232 bytes) or instructions. Thus, the formal definition of

these memories has the following form:

dm : {0, 1, . . . , 230 − 1} → {0, 1, . . . , 232 − 1}

im : {0, 1, . . . , 230 − 1} → Asm

The instruction memory im is considered fixed and therefore is not included in the con-

figuration C of the assembler machine. We denote the set of all possible configurations

by Conf .

The transition function of the assembler machine takes an instruction memory

and a machine configuration C ∈ Conf and returns the configuration of the machine

after execution of the current instruction C ′ ∈ Conf from a given instruction memory:

step : im× Conf → Conf

To execute a sequence of n instructions the function comp rec : im×Conf×N → Conf

is used which applies the step function n times:

comp rec(im, C, 0) = C

comp rec(im,C, n) = step(im, comp rec(im,C, n− 1))

2.3 The VAMP specification

The configuration of the VAMP is a 5-tuple (GPR, SPR,DPC, PC ′,mem), which

contains the following components (we do not consider the floating point registers

here):

� GPR : {0, 1}5 → {0, 1}32 represents the contents of the general purpose register

file;

� SPR : {0, 1}5 → {0, 1}32 represents the contents of the special purpose register

file (the registers are indexed as described in table 1.1);

� DPC ∈ {0, 1}32 is the value of the delayed PC;

� PC ′ ∈ {0, 1}32 is the value of the PC ′;

17

� mem : {0, 1}29 → {0, 1}64 represents the contents of the main memory. The

VAMP has a 64-bit wide memory with 29-bit wide addressing.

The initial configuration is the configuration with DPC = 0, PC ′ = 4, and

ECA = 1. The values of the other special purpose registers are equal to zero, and

the values of the general purpose registers and of the main memory are undefined. We

abbreviate all possible configurations of the VAMP by dlx conft.

The transition function of the VAMP takes the current configuration of the ma-

chine and returns the configuration of the machine after executing the current instruc-

tion (i.e. instruction which is stored in the main memory at the address pointed to by

DPC):

dlx step : dlx conft → dlx conft

To compute the configuration of the machine after n steps the function dlx conf :

dlx conft× N → dlx conft is used:

dlx conf(C, 0) = C

dlx conf(C, n) = dlx step(dlx conf(C, n− 1))

2.4 Conditions for absence of interrupts

In this section we formulate the conditions for absence of each type of interrupt [11]

separately. Using them, we can show the absence of the interrupt for one step of the

execution, separately for each type.

In this section the following notation will be used:

� R(Conf) denotes the component R of the configuration Conf ;

� c vamp ∈ dlx conft denotes a configuration of the hardware machine;

� c asm ∈ Conf denotes a configuration of the software machine;

� asm ∈ Asm denotes an arbitrary assembler instruction;

� for a bitvector a = an−1 . . . a0 ∈ {0, 1}n we denote by

〈a〉 =
n−1∑
i=0

ai · 2i

the natural number with binary representation a.

18

All conditions for the absence of interrupts are formulated in the following way: we

assume that in the current step the configurations of both machines are equivalent and

an interrupt e does not occur, then we can conclude that interrupt e does not occur

during the execution of the current step. Besides that, we assume, that the hardware

machine is always in the system mode, i.e. MODE(c vamp) = 0. In the system mode

the address translation is not performed (i.e. the machine operates always with the

physical addresses) and the programs can access the special purpose register file, which

is not allowed in the user mode.

We need to specify the equivalence of configurations of two machines (c vamp ≡
c asm). Configurations of the hardware and the software machine are equivalent, iff:

� The register contents of the both machines are equivalent, namely: RA = 〈RV 〉
for all R ∈ {GPR(0), . . . , GPR(31), SPR(0), . . . , SPR(31), PC ′, DPC}, here

RA denotes a register of the software machine and 〈RV 〉 denotes a register of the

VAMP.

� The contents of the instruction memories for both machines are equivalent, this

can be expressed by the following predicate, it takes a configuration of the VAMP

and an instruction memory of the assembler machine and returns true if the code

regions of both machines are equivalent:

code region equiv(c vamp, im) = ∀r ∈ {0, 1}29 :

code reg start ≤ r ≤ code reg end ⇒

decode((mem(c vamp)(r))[31 : 0]) = im(2 · 〈r〉)∧

decode((mem(c vamp)(r))[63 : 32]) = im(2 · 〈r〉+ 1)

Function decode maps a bitvector into an assembler instruction,

code reg start and code reg end specify the boundaries for the code region of the

assembler machine.

� The contents of the data memories for both machines are equivalent:

∀r ∈ {0, 1}29 : data reg start ≤ r ≤ data reg end ⇒

(〈mem(c vamp)(r))[31 : 0]〉) = dm(c asm)(2 · 〈r〉)∧

(〈mem(c vamp)(r))[63 : 32]〉) = dm(c asm)(2 · 〈r〉+ 1)

Here data reg start and data reg end denote the boundaries of the data memory

of the software machine.

19

2.4.1 reset interrupt

For the absence of this interrupt we do not need any additional conditions, since it

is tied to zero in the VAMP formal specification (we assume, that no hardware reset

occurs during the program computation):

CA(c vamp)(0) = 0

2.4.2 ill interrupt

Since we assume that the hardware machine is always in the system mode, thus the ill

interrupt occurs only if the VAMP fetches an illegal instruction.

decode(iw) = asm ⇒ ¬I illegal(iw)

where the function decode is defined above and I illegal is the predicate over bitvectors,

which is true iff the instruction word does not represent a valid VAMP instruction, and

iw is current instruction word.

2.4.3 imal interrupt

This interrupt occurs during the instruction fetch if the content of the DPC register

is not aligned on word boundary, i.e. we can define the aligned predicate for x ∈ Z:

aligned(x) ⇔ x mod 4 = 0

For the absence of this interrupt in the next step of computation it is enough that

contents of PC ′ register is aligned in the current configuration:

c asm ≡ c vamp ∧ aligned(PC ′(c asm)) ⇒ ¬imal(dlx step(c vamp))

The content of the PC ′ register in the current step is computed depending on the

instruction executed in the previous step:

PC ′
k =


immk−1 if Ik−1 is j or jal
GPRk−1[RS1k−1] if Ik−1 is jr
PC ′

k−1 + immk−1 if Ik−1 is a taken branch
PC ′

k−1 + 4 otherwise

The conditions below state that if the PC ′ is aligned in the current step then it

will be aligned in the next step. Here asm = im(DPC(c asm)) denotes an assembler

instruction pointed to by DPC in the current configuration c asm. The predicate

20

instr?(asm) for asm ∈ Asm is used to recognise the instruction type. For the execution

of a sequential instruction:

¬(beqz?(asm) ∨ bnez?(asm) ∨ jal?(asm) ∨ jr(asm))∧

aligned(PC ′(c asm)) ⇒ aligned(PC ′(step(im, c asm)))

For beqz, bnez or jal instructions:

(beqz?(asm) ∨ bnez?(asm) ∨ jal?(asm))∧

aligned(PC ′(c asm) + imm(asm)) ⇒ aligned(PC ′(step(im, c asm)))

For jr instruction:

jr?(asm) ∧ aligned(GPR[RS1(asm)]) ⇒ aligned(PC ′(step(im, c asm)))

2.4.4 dmal interrupt

This interrupt occurs on load or store operations, if the effective address of a memory

access is not aligned. The effective address of the read/write access is computed as:

ea = GPR[RS1] + imm. Now we can formulate the absence of this interrupt for one

step of the computation.

For lw or sw instructions:

c asm ≡ c vamp ∧ (lw?(asm) ∨ sw?(asm))∧

aligned(GPR[RS1(asm)] + imm(asm)) ⇒ ¬dmal(c vamp)

For all other instructions (they never cause dmal interrupt):

c asm ≡ c vamp ∧ ¬(lw?(asm) ∨ sw?(asm)) ⇒ ¬dmal(c vamp)

2.4.5 pff and pfls interrupts

The event signals for these interrupts are named ipf and dpf respectively. These

interrupts can occur only in user mode, but the machine always is in the system mode,

so the absence of them is trivial:

ipf(c vamp) = 0

dpf(c vamp) = 0

2.4.6 trap interrupt

This interrupt occurs during the execution of a trap instruction. Since this instruction

is not present in the instruction set of the software machine, this interrupt cannot

occur:

trap(c vamp) = 0

21

2.4.7 ovf interrupt

This interrupt is generated by integer additions and subtractions which signal overflows

(see tables 1.2 and 1.3). Since these are not present in the instruction set of the software

machine, this interrupt cannot occur:

ovf(c vamp) = 0

2.4.8 Floating point and external interrupts

Since the instruction set of the software machine does not include floating point in-

structions, and there are no external devices for the VAMP at the moment hence the

absence of these interrupts follows immediately:

∀7 ≤ i ≤ 31 : CA(c vamp)(i) = 0

2.5 Simulation theorem

Now we can introduce the simulation theorem. Let c v ∈ dlx conft and c a ∈ Conf be

initial configurations for the VAMP and the assembler machine respectively, c vamp(i) =

dlx conf(c v, i), c asm(i) = comp rec(im, c a, i), and init be an initialization condition

over the configurations of the assembler machine, which contains initial values for the

PC and DPC and any other conditions, which the program needs to be run correctly.

Thus we have:

∀k ∈ N :(∀j < k : ¬JISR(c vamp(j)))∧

c v ≡ c a ∧ code region equiv(c v, im) ∧ init(code)(c a) ⇒

∀i ≤ k : c vamp(i) ≡ c asm(i) ∧ code region equiv(c vamp(i), im)

The theorem has the following meaning: for any number of steps k, if the computation

of a program starts with equivalent configurations and code regions, and if there were

no interrupts in all of the steps {0, . . . , k−1}, then the configurations and code regions

of both machines in all of the steps {0, . . . , k} will also be equivalent.

The absence of interrupts in step k can be shown separately for each interrupt.

Each of the following lemmas for some interrupt e assumes the absence of all interrupts

in the steps before k (exactly the assumption of the simulation theorem) and conditions

for the absence of this interrupt and states that this interrupt e does not occur in step k

under these assumptions. Let asm = im(DPC(c asm(k))/4) be the current assembler

instruction of the configuration of the software machine in step k.

reset interrupt:

22

∀k ∈ N : (∀j < k : ¬JISR(c vamp(j))) ⇒ ¬CA(c vamp(k))(0)

ill interrupt:

∀k ∈ N : (∀j < k : ¬JISR(c vamp(j))) ⇒ ¬illegal(c vamp(k))

pff and pfls interrupts:

∀k ∈ N : (∀j < k : ¬JISR(c vamp(j))) ⇒ ¬ipf(c vamp(k))

∀k ∈ N : (∀j < k : ¬JISR(c vamp(j))) ⇒ ¬dpf(c vamp(k))

ovf interrupt:

∀k ∈ N : (∀j < k : ¬JISR(c vamp(j))) ⇒ ¬ovf(c vamp(k))

Floating point and external interrupts:

∀k ∈ N : (∀j < k : ¬JISR(c vamp(j))) ⇒ ∀7 ≤ e ≤ 31 : ¬CA(c vamp(k))(e)

imal interrupt:

∀k ∈ N :(∀j < k : ¬JISR(c vamp(j)))∧

aligned(PC ′(c a)) ∧ aligned(DPC(c a))∧

((beqz?(asm) ∨ bnez?(asm) ∨ jal?(asm)) ⇒ aligned(imm(asm)))∧

(jr?(asm) ⇒ aligned(GPR(c asm(k)[RS1(asm)]))) ⇒ ¬imal(c vamp(k))

dmal interrupt:

∀k ∈ N :(∀j < k : ¬JISR(c vamp(j))) ∧ [(lw?(asm) ∨ sw?(asm)) ⇒

aligned(GPR(c asm(k)[RS1(asm)]) + imm(asm))] ⇒ ¬dmal(c vamp(k))

Besides that, we need to specify two additional conditions, namely: there is no branch

or jump instruction with destination outside the code region and there is no memory

access with address outside the data region. We denote (code reg start;code reg end)

and (data reg start;data reg end) as the boundaries of the code and data regions of the

assembler machine.

No jump or branch instruction with destination outside the code region:

∀k ∈ N :{[(beqz?(asm) ∨ bnez?(asm) ∨ jal?(asm)) ⇒

code reg start ≤ imm(asm) ≤ code reg end]∧

[jr?(asm) ⇒ code reg start ≤ GPR(c asm(k)[RS1(asm)]) ≤ code reg end]}

No memory access with address outside the data region:

∀k ∈ N :[(lw?(asm) ∨ sw?(asm)) ⇒

data reg start ≤ (GPR(c asm(k)[RS1(asm)]) + imm(asm)) ≤ data reg end]

23

3 Program verification

1In this chapter we shortly describe the concept of the verification diagrams. Programs

verification is used to prove that a design or product under consideration possesses

certain properties. The properties to be verified can be quiet elementary, e.g. a system

will never reach a situation in which no further progress can be made. These properties

are obtained from the system’s specification. The specification defines what the system

has to do and what not. The system is called ”correct” if it satisfies all the required

properties from its specification.

There are two different formal methods concerning program verification. Their

aim is to establish system correctness with mathematical rigour. The first is a model-

based technique. Model-based techniques are based on models describing the possible

system behaviour in a mathematical precise and unambiguous manner. The system

models are accompanied by algorithms that systematically explore all states of the sys-

tem model. This provides the basis for a whole range of verification techniques ranging

from an exhaustive exploration (model checking) to experiments with a restrictive set

of scenarios in the model (simulation), or in reality (testing).

With deductive methods, the correctness of systems is determined by precisely

formulated mathematical properties, i.e. the correctness of a system is established

with respect to a certain formal specification or property, using formal methods. The

properties are proved using tools such as theorem provers and proof checkers. In this

work the deductive verification technique is used in order to prove the properties for

absence of interrupts.

3.1 Transition systems

Let V be a set of typed variables of a program (data variables and labels). A state is an

interpretation over V . Let Σ be the set of all states. Every program can be described as

a set of states with the transitions between them, Transitions express relations between

the variables in different states. Such a representation is called a transition system [3].

A transition system is a tuple Φ = 〈V,Θ, T 〉, where:

� V is an finite set of variables (all variables that are used in program including

data variables and labels).

� Θ is the initial assertion (an assertion that states the initial conditions of the

system). It identifies initial states of the system.

1for convenience see [8]

24

� T is a (finite) set of transitions. A transition τ ∈ T is a function τ : Σ 7−→ 2Σ,

i.e. each transition is a function from states to set of states.

Let s ∈ Σ be a some state. Each state in τ(s) is called a τ -successor of s. A

transition τ is called enabled on s if τ(s) 6= {}, a transition is called disabled on s

if τ(s) = {}. Each transition τ is represented by a transition relation ρτ (s, s
′) - an

assertion that expresses the relation between the values of V in s and the values of

V ′ in any τ -successor s′. Here, x′ denotes the value of a variable x ∈ V in the next

state (i.e. after taking a transition that is enabled in the current state). Predicate

pres(P), where P ⊆ V , denotes that the values of all variables in P are preserved by

a transition. We implicitly assume that there is an idling transition τI which is always

enabled (an idling transition does nothing and it is used in case if there is no other

transition enabled in the current state to prevent a program from being stuck).

Example:

local x: integer where x ≥ 0
l0: while x < 5
l1: x := x+ 1
l2:

Φ = 〈V,Θ, T 〉, where:

V = {l0, l1, l2} ∪ {x}, Θ = l0 ∧ x ≥ 0, T = {τ0, τ1, τI},
ρτ0 = l0 ∧ ¬l′0 ∧ ((x < 5 ∧ l′1 ∧ l′2 = l2) ∨ (x ≥ 5 ∧ l′2 ∧ l′1 = l1)) ∧ pres({x})
ρτ1 = l1 ∧ ¬l′1 ∧ l′0 ∧ x′ = x+ 1 ∧ pres(V − {l0, l1})
ρτI

= pres(V) (idling transition)

A computation of a transition system Φ is an infinite sequence of states s.t. the

first state satisfies Θ and any two consecutive states satisfy a ρτ for some τ ∈ T . We

will use linear-time temporal logic (LTL) as specification language (for details see [7]).

The syntax of temporal formulas is described below.

An assertion (atomic formula) over the set of variables V is a predicate which

represents the relations between program variables (i.e. x+1 > y). A temporal formula

is constructed as follows:

φ ::= p (atomic formula) | ¬φ | φ ∨ φ | Xφ | φUφ

A temporal formula Xφ (next operator) is valid in the current state if φ holds in

the next state. φUψ (until operator) is valid in the current state of a computation P if

ψ holds in a some state s further in this computation and φ holds in all states between

the current state and s.

25

A temporal formula φ is valid for a computation P if it holds in the first state

of P . A transition system Φ satisfies a temporal formula φ if all of its computations

satisfy φ. We call such a formula φ P-valid for a program P .

A temporal formula φ is said to be P-valid for a program P if it holds in the first

position of every computation of P .

To formulate verification conditions we use the following notation:

{φ}τ{ψ} stands for ρτ ∧ φ→ ψ′

A property q is called an invariant for system P (P |= 2q) iff

P |= Θ → q
{q}τ{q} for all τ ∈ T

3.2 Verification diagrams

Verification diagrams [8] are a succinct and intuitive way of representing proofs that

programs satisfy a given temporal property. The method of proof by verification dia-

gram, called diagram verification, is based on the representation of programs by tran-

sition systems and on the representation of the specification by a temporal formula.

For a given program P and a temporal formula φ, diagram verification is ac-

complished by constructing a verification diagram Ψ and showing that Ψ faithfully

represents all computations of the corresponding transition system Φ, means that it

satisfies φ.

There are different types of diagrams depending on the types of properties we

want to prove. Since the conditions for absence of interrupts are safety properties, we

describe here only invariance diagrams which are used to establish the correctness of

safety properties.

A verification diagram is a directed labeled graph constructed as follows:

� nodes in the graph are labeled by assertions (φj)

� edges in the graph represent transitions between assertions. Each edge departs

from one assertion, connects to another and is labeled by the name of a transition

An invariance verification diagram does not have terminal nodes. The assertions la-

belling nodes in a diagram are intended to represent the intermediate assertions (φj)

appearing in a proof of a given safety property. A τ -labeled edge connecting node φi

to node φj implies that it is possible for a φi-state to have a τ -successor satisfying φj.

For a node φj and transition τ connecting φi to φj we say that φj is a τ -successor

of φi. If a node labeled φ has τ -successors φ1, ...φk than we associate with φ and τ the

26

verification condition:

{φ}τ{φ ∨ φ1 ∨ ... ∨ φk}

The case that a transition τ does not label any edges departing from φ is covered by

k = 0. That is, we associate {φ}τ{φ} with such a transition.

An invariance diagram is said to be valid over a program P (P-valid) if all the

verification conditions associated with nodes of the diagram are P-state valid (i.e. hold

in all states which are accessible by a program).

A P-valid invariance diagram establishes that

m∨
j=1

φj → 2(
m∨

j=1

φj)

is P-valid. If in addition
m∨

j=1

φj → q and Θ →
m∨

j=1

φj

are P-valid then assertion q is an invariance for a program P (i.e. P |= 2q).

The properties formulated in chapter 2 are supposed to be invariants for an

assembler program, thus to prove them we build a corresponding invariance diagram,

but at first we need to construct an appropriate Control Flow Graph for a program (a

transition system), which is discussed in the next chapter.

27

4 Control flow graphs

4.1 Overview

A control flow graph (CFG) is a universal data structure to represent sequential pro-

gram code where the code is subdivided into basic blocks (nodes of the graph) connected

with edges representing the flow of a control in program. Basic blocks are maximal-

length sequences of straight-line code of a program and hence they can only have one

control-transfer instruction at the end.

A CFG is a very useful abstraction since it abstracts away from sequential code, it

enables graph-based transformations and allows them to be expressed without reference

to a linear code layout. Besides that, it facilitates checking the validity of the given

properties, since the basic blocks of a CFG can be associated with the nodes of the

verification diagrams, as explained in section 3. This approach is used in this work in

order to prove the absence of interrupts for a given assembler program.

First we introduce the CFG construction algorithm as well as parsing some special

instructions, afterwards we describe the syntax of the CFG files produced by the DLX

assembler parser and at the end we present a control flow graph for a simple assembler

program.

4.2 CFG construction

Aforementioned, a CFG can be viewed as an abstract representation of a program’s

code written in any given programming language. The major difference between the

constructing a CFG for a program written in a high-level programming language and

in assembler, is that in most cases, the CFG for a high-level program can be built by

analyzing solely the static structure of the program (we assume that program doesn’t

contain in-line assembly code). So, only in rare cases, the resulting graph depends on

a certain program execution.

However, assembler code is hardware dependent and we have to take into account

the specifics of the hardware, that is reflected in assembler instructions’ semantics.

Therefore, we come to main two features that complicate CFG construction:

� branch-to-register instructions which hold a target address in a register (as op-

posed to an explicit or immediate constant) introduce a level of uncertainty that

can add spurious edges to the CFG. For most cases, one is able to predict the

value being loaded to the register when the branch instruction is encountered,

28

i.e. frequently branch-to-register instructions realize jumps relative to the jump-

table or they serve as return-from-procedure instructions. Nevertheless, in some

cases, it is unable to determine the branch targets without executing the program

(when the destination register is computed according to a nontrivial algorithm).

If this happens, the compiler must add an edge from the block containing the

branch to every reachable block. Naively, this set contains all blocks.

� branch delay slots complicate finding the first and the last operation in each block.

Moreover, it is not prohibited to have instructions pointing to delay slot of another

branch instruction, which necessitates duplication of delay slot instructions in

basic blocks, and makes the resulting CFG more complicated.

Below, we introduce an algorithm that solves both problems. The algorithm

consists of the following steps:

1. Build the CFG taking into account the presence of delay slots after branch-

or-jump instructions. In the first step, only branch-or-jump instructions with

destinations given by immediate operands are handled. For each procedure call,

store the set of addresses from which it can be called, i.e. for each jal instruction

store the destination and the return address in a special list.

2. For each branch-to-register instruction, determine whether it performs a jump

relative to the jump-table.

3. Check whether a branch-to-register instruction represents a return-from-procedure

instruction using the list obtained in the first step.

4. The remaining indirect branches– the ones that did not obtain the proper desti-

nations in the previous steps– are treated during the program execution.

4.2.1 The first step of the algorithm

The basic CFG construction algorithm (the first step) is sketched in figure 4.2. Here,

split denotes splitting the node of CFG depending on the type of the control-transfer

instruction.

Splitting nodes of a CFG is depicted in figure 4.3. Here, delay denotes a delay

slot instruction of a branch-or-jump instruction, while tail stands for the rest part of

the CFG node. There are for different cases of splitting. Below we describe all of them

in detail.

29

Q: queue of CfgNode;
// the resulting CFG is stored as a list of its nodes
CFG : list of CfgNode;
// for each procedure call stores the starting node of procedure
// and the node after the procedure call we need to return to
CallList: list of CfgNode * CfgNode;
// collects all CFG nodes with indirect branch instructions at the end
Unresolved : list of CfgNode;
cfgnode: CfgNode;
let L be a list of instructions obtained from the parser;
cfgnode.list = L; // initially all instructions are held in a single block
CFG.add(cfgnode); // add the first node to CFG
Q.push back(cfgnode);
while not Q.empty() do

cfgnode = Q.pop front(); // get the topmost node from the queue
let i be the first control-transfer instruction occurring

in the instruction list associated with cfgnode
split cfgnode at instruction i+1
let cfgnode’ be the remainder of cfgnode

// if cfgnode has not already been split at instruction i+1 then we add its remainder to the queue
if successfully split then

Q.push back(cfgnode’);
CFG.push back(cfgnode’);

endif
// add the node containing jump-to-register instruction to the special list
if i.type() == jump to register then

Unresolved.add(cfgnode); continue;
endif
let target be a node instruction i refers to

// split the target node according to destination address of the instruction i
split target at i.target instruction
let target’ be the remainder of target
// add the starting node of the procedure and the return address to CallList
if i.type() == call then CallList.add(target’,cfgnode’);

// add a node to the queue only in case it has not been split before
if successfully split then

Q.push back(target’);
CFG.push back(target’);

endif
add an edge from cfgnode to target’

// in case of a branch instruction
if i.conditional jump() then // add an edge corresponding to the untaken branch

add an edge from cfgnode to cfgnode’
endif

enddo

Figure 4.2: First step of the CFG construction algorithm

30

node

jr / jalr
delay
tail

node

jr / jalr
delay

delay

tail

AnySucc

node

j / jal
delay
tail

node

j / jal
delay

delay

tail

target

node

beqz / bnez
delay
tail

node

delay

tail target

delay
false true

node

rfe / trap
tail

tail
null

node

rfe / trap

beqz / bnez

Figure 4.3: Splitting CFG nodes depending on the type of the control-transfer instruction

1. j and jal. In this case we split a node containing a jump instruction after the

delay slot and add an edge to the location pointed to by the immediate operand.

2. beqz and bnez. Here, the original node is split twice: just before and after the

jump instruction. This is necessary, since according to the syntax of CFG files

(see section 4.3) these instructions should be placed into isolated nodes.

3. jr and jalr. For these instructions we don’t know the proper successors in ad-

vance. Therefore, during the parsing phase, they are set to be pointing to the

temporary node AnySucc.

4. concerning rfe and trap instructions, the block containing one of them is supposed

to have no successors (null in figure 4.3). The behaviour of these instructions

strongly depends on the concrete realization of the interrupt mechanism, and it

is not feasible to determine the proper destination address knowing the program

text only.

Note that, in figure 4.3, a delay slot for branch instructions is duplicated for

both branches. This is required, because branch instructions that branch to delay

slots of another branch or jump instructions are not prohibited. If that’s the case,

the corresponding delay slot instruction (the one we jump to) should be placed to the

31

untaken branch, such that the preceding branch instruction – whose delay slot we jump

to – cannot influence the program execution. But for the taken branch the delay slot

instruction should be executed as well. This is the reason for duplicating the delay slot

instruction for both branches.

For the remaining control-transfer instructions (j, jal, jr and jalr) the delay

slot should also be duplicated due to the same reason. However, in this case the CFG

syntax does not require to put the jump instructions into isolated nodes, that is why

a jump instruction with its corresponding delay slot instruction reside in the same

block. In figure 4.3, one can see that after splitting a block with a jump instruction,

an isolated node containing the delay slot instruction is inserted, which points to the

remaining part of the CFG (tail in figure). If some control-transfer instruction points

to the delay slot of a jump instruction, we add an edge to this isolated node. In this

case, the preceding jump instruction cannot influence the program execution.

4.2.2 The second step of the algorithm

After performing the first step of the algorithm we have a set of nodes, where each

node represents the maximal length sequence of a straight-line code.

The next step concerns with the recognition of the jump-tables. Each jump-table

includes a starting address and a set of entries to which the jump-table refers. Jump-

tables are recognised during the parsing phase; typically a jump-table is a label in

the data region which points to a set of program locations. The actual jump relative

to a jump-table is performed as follows: first, an entry from a jump-table is loaded

into the destination register and then jump to a location addressed by this register is

performed.

To determine, whether a branch-to-register instruction is a jump-table jump we

do the following: once an instruction that loads some entry from a jump-table is

encountered, the corresponding register is marked to be pointing to an entry of the

jump-table. Afterwards, if there is a jr or jalr instruction with this register as a desti-

nation and the value of this register has not been changed between these instructions,

we add edges from the node containing jr or jalr instruction to all locations comprised

in this jump-table. Note that, we add edges exactly to all locations contained in the

jump-table, since at that moment we only know that a branch-to-register instruction

refers to the jump-table. The exact destination will be known on the execution phase

only. That is why, it is possible to jump to any location stored in the jump-table.

Normally, load-from-memory instruction and branch-to-register instruction are

32

located closely to each other in the program. That is why, we look for the corre-

sponding load-from-memory instruction only in the node containing branch-to-register

instruction. If this is not the case, the destination of such a branch-to-register in-

struction is determined during the program execution, i.e. in the fourth step of the

algorithm.

4.2.3 The third step of the algorithm

In the third step of the algorithm, we determine whether a jump-to-register instruction

serves as a return-from-procedure instruction. In DLX assembler the procedure calls

are realized with jal or jalr instructions, and the return address is saved into register

r31. Recall that, in the first step of the algorithm we stored the destination and the

return address for each jal instruction in the special list.

The algorithm is realized as follows: for each procedure found in a program -

for each entry of the list mentioned above - we traverse the corresponding part of

CFG keeping track of the register r31. Finally, if a jump-to-register instruction has

been encountered and its destination register holds the value that has been loaded into

register r31 at the start of the procedure, then we add edges from the block containing

that jump-to-register instruction to all locations this procedure is called from. Note

that, one procedure may have more than one return instruction. Therefore, we need to

explore all branches from the start of the procedure to a jump-to-register instruction

or until we reach a node with no successors. In the latter case the corresponding

procedure does not have a return instruction.

4.2.4 The fourth step of the algorithm

The fourth step of the algorithm concerns with the program execution. This means,

that we traverse the resulting CFG with all the registers and memory cells being ini-

tialized according to the configuration file (a configuration file is passed as a command

line parameter to the Parser program). The traversal starts in the initial node of the

CFG, and proceeds until a node with no successors is encountered. During this exe-

cution phase of the algorithm, all blocks containing yet unresolved branch-to-register

instructions obtain the proper successors. These successors are determined according

to the current values of the target registers. After performing the fourth step of the

algorithm, we ensure that the CFG does not contain any basic blocks with unknown

successors, i.e. pointing to the AnySucc temporary node.

33

4.2.5 Construction of an example CFG

The following example shows the transformation applied to a CFG in each step of

the algorithm. In the first step, only immediate jump and branch instructions are

processed (Figure 4.4). At first, all instructions are contained in a single CFG node,

then we subdivide the CFG after instructions in marked lines.

First, we subdivide the CFG node after the delay slot instruction add r3,r0,r31

and add an edge to the target instruction addi r1,r0,0. The delay slot instruction is

duplicated and set to be pointing to the remaining part of the CFG – to the instruction

jr r3. The created isolated node, having no predecessors, is redundant for CFG struc-

ture. But, as mentioned before, if some instructions points to the delay slot of a jump

instruction, we add an edge leading to this node, such that the preceding instruction

j loc2 does not take affect on the program execution.

Then, the CFG node is subdivided after instruction add r6,r1,r1, but, in this case

the target instruction is unknown. The delay slot instruction is also duplicated, and the

created CFG node, containing this instruction, is set to be pointing to the sequentially

next instruction addi r1,r0,0. All further subdivisions proceed analogously, only the

branch instruction beqz r0,. branches to itself. The list of unresolved jump-to-register

instructions will contain all CFG nodes with jump-to-register instructions. Namely,

Unresolved list contains three CFG nodes with jr r3, jalr r2 and jr r31 instructions.

In the second step, for scan each CFG node in Unresolved list, looking for refer-

ences to jump-tables. In our case, the register r2 in line 8 refers to the jump table.

That is why, we insert a selection statement, which leads from the delay slot instruction

addi r3,r3,4 either to location loc1, loc2, or loc3 depending on the value loaded to the

register r2 (see Figure 4.5). Notice that, the labels loc1 and loc3 points to the delay

slots.

Instruction jalr r2 performs jump to a subroutine. Thus, we add information

about the procedure calls to the CallList, and remove this instruction from the Unre-

solved list. In particular, this list contains tuples consisting of the starting and the

return address for each procedure: CallList = {(3,11),(6,11),(12,11)}. Here, the list

contains line numbers of the program except real addresses.

In the third step of the algorithm we traverse the corresponding parts of the CFG

starting from lines 3, 6 and 11 respectively. Instructions in lines 4 and 14 are the return

statements, we add edges from lines 5 and 15 to line number 11 (the return address).

Instructions jr r3 and jr r31 are removed from the Unresolved list and the algorithm

terminates.

34

1 .text 0 j loc2
add r3,r0,r31

add r3,r0,r31

jr r3
add r6,r1,r1

add r6,r1,r1

addi r1,r0,0
slli r1,r1,1

lw r2,jtbl(r1)
jalr r2

addi r3,r3,4

addi r3,r3,4

beqz r0,.

set r4

set r4

sub r4,r0,r4
jr r31
clr r3

clr r3

false

true

AnySucc

AnySucc

AnySucc

2 j loc2
3 loc1: add r3,r0,r31
4 jr r3
5 add r6,r1,r1
6 loc2: addi r1,r0,0
7 slli r1,r1,1
8 lw r2,jtbl(r1)
9 jalr r2
10 addi r3,r3,4
11 beqz r0,.
12 loc3: set r4
13 sub r4,r0,r4
14 jr r31
15 clr r3
16 .data .
17 jtbl:
18 .word loc1
19 .word loc2
20 .word loc3

Figure 4.4: The first step of the CFG construction algorithm

35

j loc2
add r3,r0,r31

add r3,r0,r31

jr r3
add r6,r1,r1

add r6,r1,r1

addi r1,r0,0
slli r1,r1,1

lw r2,jtbl(r1)
jalr r2

addi r3,r3,4

addi r3,r3,4

beqz r0,.

set r4

set r4

sub r4,r0,r4
jr r31
clr r3

clr r3

r2=loc1

r2=loc2

r2=loc3 false

true

AnySucc

AnySucc

j loc2
add r3,r0,r31

add r3,r0,r31

jr r3
add r6,r1,r1

add r6,r1,r1

addi r1,r0,0
slli r1,r1,1

lw r2,jtbl(r1)
jalr r2

addi r3,r3,4

addi r3,r3,4

beqz r0,.

set r4

set r4

sub r4,r0,r4
jr r31
clr r3

clr r3

r2=loc1

r2=loc2

r2=loc3 false

true

Figure 4.5: The second and the third steps of the CFG construction algorithm

4.3 The syntax of CFG files

In this section we describe the general syntax of CFG files generated by the Parser

program and accepted by the refinement tool1 performing the formal proof of the

required properties. The CFG files are used both for describing control flow graphs and

verification diagrams. Some syntactic constructs are used only for CFGs or verification

diagrams respectively. Unless it is stated explicitly, the syntactic construct is common

both for CFGs and verification diagrams.

The CFG files have several sections each of which have the same general form

(all syntactic components given in square brackets are optional):

((<section name>) (<property 1>) (<property 2>) ... (<property N>))

The sections, in the order they should be declared, are as follows:

1https://react.cs.uni-sb.de/software/tv-tool

36

1. Declaration of global variables:

This section contains the declarations of all global variables occurring in the CFG

for a given program. The form of this section is as follows:

((<decl 1>) (<decl 2>) ... (<decl N>))

<decl i>: <type> <variable name> [<array size>]

Each declaration gives the type and name of a global variable. The declaration

of array types, using C syntax is also allowed. The array size can be specified

either as an immediate constant, as a variable or as an expression. In the latter

case, the expression should be enclosed in parentheses.

Example: ((int r0) (int r1) (int M[(data reg end-data reg start+4)]))

2. Initial conditions for global variables (only for CFGs):

This section describes initial conditions applied to global variables, the syntax

is: (init(<pred>)), where <pred> is a predicate expression, its syntax is described

below.

3. Declaration of functions:

The global variables section is followed by one or more function declarations.

Each declaration has the following general form:

(<local vars> [(<initialnodes decl>)] (<BB 1>) (<BB 2>) ... (<BB N>))

Below we describe the purpose of each section as well as it specific semantics and

syntax:

<local vars> : declares the function name and its return type as well as the types and

the names of the variables that are declared within this function’s scope (used

only to describe CFGs). The syntax of this component is:

(<func name> <ret type>) [<decl 1> ... <decl N>]

<decl i> declares a local variable. The syntax is the same both for local variables

declarations as well as for global ones.

<initialnodes decl> : declares the set of initial nodes of the verification diagram. This

parameter is only used to describe the verification diagrams, and its syntax is:

initialnodes <nodes>, where <nodes> is a space-separated list of initial nodes.

<BB i> : these sections define the basic blocks in a function. The syntax of a basic

block definition is: <block id> [init] (<successors> [<invariant>] <statements>)

The syntax and semantics of the components in a BB section are as follows:

37

<block id> : an integer that allows to enumerate the basic blocks. The <block id>

component should be unique for each basic block.

init : this optional declaration denotes that this basic block is the initial node

of the function (only for CFGs).

<successors> : this declaration defines the successors of this basic block in the

control flow graph. The syntax for this component is: succ <succ 1> <succ 2>

... <succ N>

Here, <succ i>’s are the id’s of the block’s successors.

<invariant> : this declaration defines a predicate expression in the node of a

verification diagram. The syntax is: inv(<pred>), where pred is a predicate

expression.

<statements> : the declaration of the statements has the following syntactic form

(CFGs only):

(<statement 1>) (<statement 2>) ... (<statement N>). Each statement is ei-

ther a predicate expression for a branching statement or an assignment over

the set of local or global variables.

Note that, a CFG node is allowed to have 0, 1 or 2 successors. For the verification

diagram the number of successor nodes is not limited. If a node has 0 or 1

successors then it must contain an ordinary statement, whereas a node with two

successors represents a branching statement. The body of such a node contains

a predicate expression. The first branch — the first successor of a node —

is taken if the corresponding predicate evaluates to true, otherwise the second

branch is taken.

Predicates and expressions are declared with the following syntax:

<expr> ::= <expr> + <expr> | <expr> - <expr> | <expr> * <expr> | <expr> / <expr>

| <expr> % <expr> | <variable> | numeric constant

<pred> ::= <expr> > <expr> | <expr> < <expr> | <expr> >= <expr> | <expr> <= <expr> | <expr>

== <expr> | <expr> != <expr> | <pred> && <pred> | <pred> || <pred> | <pred> & <pred> | <pred>

| <pred> | <pred> => <pred> | !<pred>

The semantics of these operations is the same as in C-language, except one,

namely “=>” denotes the logical implication.

38

4.4 Example control flow graph

Now we present the control flow graph for the program above (see figure 4.4) generated

by the Parser program. First, we need to describe a common structure for the control

flow graphs generated by the Parser program:

� All the registers and the memory region are declared as global variables, namely:

– r0, r1, ..., r31 represent general purpose registers;

– sr, esr, ... represent special purpose registers (see page 8);

– the array M[] denotes the data memory region;

– code reg start, code reg end and data reg start, data reg end denote the bound-

aries of the code and data regions respectively (for details see chapter 2);

� In the init section we assign the initial values to all registers used in a program.

The whole memory region is filled with zeros unless explicitly otherwise specified

for certain memory cells.

� The node number 1 denotes an error state, its purpose is described in chapter 5.

The control flow graph is depicted in Figure 4.6.

39

((int r0) (int r1)
(int r2) (int r3)
(int r4) (int r5)
(int r6) (int r31)
(int M[260])
(int code reg start)
(int code reg end)
(int data reg start)
(int data reg end))

(init
((r0==0)&(r1==42)&
(r2==0)&(r3==0)&(r4==0)&
(r5==0)&(r6==0)&
(r31==0)&(M[72]==4)&
(M[76]==16)&(M[80]==48)&
(FORALL(i) (((64<=i)&
(i<260)&(i!=72)&(i!=76)&
(i!=80))=>(M[i]==0)))&
(code reg start==0)&
(code reg end==64)&
(data reg start==64)&
(data reg end==260)&
(pc0==0)))

((main int)
(0 init (succ 4)
(r3 = (r0 + r31)))

(2 (succ 3)
(r3 = (r0 + r31)))

(3 (succ 16)
(r6 = (r1 + r1)))

(16 (succ 7 16)
(r3 == 44))

(5 (succ 4)
(r6 = (r1 + r1)))

(4 (succ 17)
(r1 = (r0 + 0))
(r1 = (r1 * 1))
(r2 = M[(r1 + 72)]))

(12 (succ 2 13)
(r2 == 4))

(13 (succ 4 14)
(r2 == 16))

(14 (succ 8 14)
(r2 == 48))

(17 (succ 12)
(r5 = (r0 + r31))
(r4 = (r4 % 2))
(r31 = 44)
(r3 = (r3 + 4)))

(6 (succ 7)
(r3 = (r3 + 4)))

(7 (succ 10 8)
(r0 == 0))

(10 (succ 7)
(r4 = 1))

(8 (succ 9)
(r4 = 1))

(15 (succ 7 15)
(r31 == 44))

(9 (succ 15)
(r4 = (r0 - r4))
(r3 = 0))

(11 (succ)
(r3 = 0))

(1 (succ 1))

(18 (succ)))

Figure 4.6: A sample control flow graph generated by the Parser program

40

5 Proving the absence of interrupts

Using the concepts described in the previous chapters, we know present the automatic

method used in proving the absence of interrupts for DLX assembler programs.

For convenience, the developed software is presented in the form of two indepen-

dent programs. The first program, the Parser, takes a DLX assembler file as input and

outputs the corresponding CFG in the formerly described syntax of the CFG files. The

second program, the VD generator, generates the required verification diagrams based

on a given control flow graph. Later on, the refinement tool reads in the CFG together

with the verification diagrams and establishes the verification conditions. The validity

of these conditions is proved by the automatic theorem-prover Simplify1.

At first, we present additional syntax to declare the assembler directives for DLX

assembler files. Then, we discuss how the verification diagram nodes are associated

with the nodes of CFGs and which conditions have to be proved to establish the

validity of the verification diagram. Afterwards we formulate the conditions for the

absence of interrupts in the form they are represented in the verification diagrams.

Finally, we explain the approach to the automatic generation of verification diagrams

and describe how the assembler instructions unsupported by the refinement tool are

handled. In appendix we give the proof for the absence of interrupts for a simple

assembler program.

5.1 DLX assembler directives

DLX assembler provides the following set of directives (a directive definition starts

with a dot):

� .word expr - defines a word in the memory with the value given by evaluating

an expression expr. Expressions are given in the C-syntax and may use both

program labels (treated as variables) and constants.

� .ascii str - defines a string str in the memory.

� .space expr - allocates an empty space in the memory. In case of a code region

this space is filled with nop instructions.

� .set ID,expr - defines a constant with a name ID and assigns to it the value of an

expression expr.

1http://research.compaq.com/SRC/esc/Simplify.html

41

� .data expr - starts a data region from the address given by expr parameter. There

are additional requirements for the data regions. Namely, the starting address

must be word aligned and the regions must not overlap with each other or with

the code region. All data regions must lie within the boundaries specified by the

external parameters data reg start and data reg end.

� .text expr - indicates that the code region starts from the address given by expr

parameter; only one consistent code region is allowed. The code region must

start from the word boundary, it must not overlap with data regions. It must

also lie within the boundaries specified by the external parameters code reg start

and code reg end.

� .align expr - aligns the current PC address to the boundary given by parameter

expr, expr specifies the value in words.

Note that all external parameters such as code reg start, code reg end, data reg start,

data reg end and the initial values for all registers are specified in the .ini file which is

passed as the command line parameter to the Parser program.

5.2 Association of CFG nodes with nodes of the verification
diagram

To prove that a some property holds in a CFG node we have to associate this node

with a verification diagram node. The required property is defined in a VD node in

the form of a predicate expression.

Recall that, a CFG node with one successor represents a basic block of an as-

sembler program (for definition of the basic blocks see section 4) containing no branch

instructions – branch instructions are represented by decision nodes. In particular, a

CFG node with one successor contains a set of statements, where each statement is

an assignment of an expression over local or global variables. Formally, this set repre-

sents a transition relation ρτ (s, s
′) (for details see section 3), where s is the currently

considered node and s′ is its successor, i.e. in the CFG file we have: (s (succ s’) ...).

Now suppose that the node s is identified with a VD node containing a property φ,

and consequently the node s′ is associated with a VD node containing a property ψ. In

this case, the established verification condition is: φ ∧ ρτ (s, s
′) → ψ. The verification

condition is only generated in case that the VD node ψ is a direct successor of the

VD node φ in the verification diagram. As mentioned in section 4.3, the verification

diagrams are defined with the same syntax as the CFGs.

42

For instance, consider the following part of the CFG:

(3 (succ 4)
(r2 = (r1 + 2))
(r2 = (r2 * 2))
(r3 = M[r2]))
(4 (succ ...) ...)

Suppose that the node 3 is associated with a property: φ = (r1 mod 4 = 0) and the

node 4 is associated with a property ψ = (r2 mod 4 = 0). Then, the established

verification condition has the following form:

(r1 mod 4 = 0) ∧ (r′2 = r1 + 2) ∧ (r′′2 = r′2 · 2) ∧ (r′3 = M [r′′2]) ⇒ (r′′2 mod 4 = 0)

Note that it is not necessary to associate each node of the CFG with a node of the

verification diagram. In this case the generation of the verification conditions proceeds

as follows: assume that a node s0 is associated with a property φ, there is a simple

path from s0 to sn. A simple path in the CFG is a sequence of nodes s0, s1, . . . , sn

where si+1 is a successor of si for all 0 ≤ i < n, and all the nodes are different. If

the node sn is associated with a property ψ, the corresponding verification condition

is formulated as follows:

φ ∧ (
∧

0≤i<n

ρτ (si, si+1)) ⇒ ψ

It means that all statements on the path from s0 to sn are combined by logical con-

junction, this is called a compressed transition relation.

Note that for all decision nodes – the nodes with two successors – the correspond-

ing predicate expression is inserted to the left-hand side of the implication. Since a

decision node has two successors, this implies that for the first successor node (the

true branch) the predicate expression is inserted without any changes, whereas for the

second successor node the predicate expression is negated.

This is illustrated with the following equations. Assume that s is associated with

a property φ, and s1, s2 are associated with the properties ψ1 and ψ2 respectively:

(s (succ s1 s2)
(pred))

The verification conditions in this case are generated as follows:

φ ∧ pred⇒ ψ1 and φ ∧ ¬pred⇒ ψ2

In addition, there are no restrictions in associating the CFG nodes with the VD nodes.

By giving a set of the CFG nodes associated with the VD nodes, the refinement tool

43

generates the verification conditions for all possible simple shortest paths found between

the CFG nodes within this set.

The associations of the CFG nodes with the verification diagram nodes are de-

scribed in the .abs files. An .abs file is passed as a parameter to the refinement tool.

Each entry in this file has the following form:

(<CFG ID>) => (<VD ID 1> <VD ID 2> ...<VD ID N>)

it denotes that a CFG node <CFG ID> is associated with a set of VD nodes <VD ID 1>

<VD ID 2> ...<VD ID N>. If a CFG node is associated with a set of VD nodes, the verifi-

cation conditions are generated for each VD node from this set separately.

5.3 The conditions for the absence of interrupts

Recall that, in chapter 2 we describe the conditions required to state that an assembler

program doesn’t generate any interrupts during the execution on the VAMP. Now we

need to represent these conditions in the suitable form for the diagram verification.

In this work only the absence of the following interrupts is formally proved:

ill, imal, dmal. Bear in mind, that all the remaining conditions are formulated in the

form: CA(c vamp)(i) = 0 (see chapter 2), i.e. they do not depend on the assembler

source code and hence their validity is not required to be proved with the verification

diagrams.

Now we consider the proof of the absence for these three types of interrupts in

detail.

5.3.1 ill interrupt

An illegal interrupt is triggered if there is an unimplemented instruction encountered

in the assembler source code. The crucial point is that the presence of an illegal

instruction is revealed during the parsing phase. The absence of this type of interrupt

is proved as follows: if during the program parsing an illegal instruction is encountered

then we add an edge from a basic block containing this instruction to a special basic

block with ID 1. This block formally represents an error state. The property to be

satisfied is that we never reach the error state during the program execution. In the

next section we explain how the corresponding verification diagram is generated.

5.3.2 imal interrupt

According to the properties given in section 2.4, the imal interrupt does not occur

if the initial address of PC ′ is word aligned and for each branch or jump instruction

44

the destination address is also word aligned. Additionally, the destination address of

each branch or jump instruction must lie within the code region. The presence of

this type of interrupt is determined during the control flow graph construction. The

main problem is that we cannot build a correct control flow graph if a branch or

jump instruction has a misaligned destination address, because in this case this is not

possible to determine a proper successor of a basic block containing such a branch or

jump instruction. Consider the following piece of code; the numbers to the left are the

current PC addresses:

0: add r1,r2,r3
4: beqz r1, .+ 4 + 3
8: nop
12: sub r1,r1,r2

Here, we cannot determine whether to jump to nop or to sub instruction, since the

destination address of beqz instruction is misaligned. So, this piece of code cannot be

subdivided into basic blocks correctly. That is why, if a branch or jump instruction

with a misaligned operand is detected or this instruction points to outside the code

region, then we add an edge from the basic block containing this instruction to the

basic block representing the error state (the one with ID 1). As before, the verification

diagram states that we never reach the error state during the program execution.

All control-transfer instructions with immediate operands are examined on the

first step of the CFG construction algorithm (see page 30). For the remaining jump-

to-register instructions we perform the required computations on the fourth step of the

CFG algorithm.

5.3.3 dmal interrupt

For the absence of the dmal interrupt we have to prove that the effective address is

aligned for each load or store instruction. To prove this we associate each node of

the CFG containing a load or store instruction with a VD node having the following

property:

(ea mod 4 = 0) ∧ (data reg start ≤ ea ≤ data reg end)

where ea denotes the effective address of the memory access, ea = GPR[RS1] + imm.

In the next section we show how the corresponding diagram is generated.

5.4 Verification diagrams generation

In the previous section we formulated the conditions that should be placed into a

verification diagram. Strictly speaking, there are two different types of diagrams to

45

be generated. As mentioned before, the verification diagrams are generated by the

Diagram generator, which takes a control flow graph constructed by the Parser program

and outputs two verification diagrams. One of them is for the absence of ill and imal

interrupts; the other one for the absence of the dmal interrupt.

In particular, each verification diagram is described by two files. The abs file

stores information about which CFG node corresponds to which VD node. The vd file

defines the verification diagram itself. For the syntax of the abs files see section 5.2,

for the vd files – see section 4.3.

At first, we consider construction of the VDs for ill and imal interrupts. This is a

trivial case, since the presence of these interrupts is reflected in the control flow graph

structure. Formally, we need to show that the program execution will never reach the

error state. For these purposes, it is assumed that each CFG contains an implicitly

defined variable pc0.

During the verification conditions’ generation this variable holds the ID of the

currently processed CFG node. This is illustrated with the following example:

(4 (succ 5))
(5 (succ ...) ...)

Let both of these CFG nodes be associated with the following property: pc0 ≥ 4. As

a result, the refinement tool generates the following conditions:

(pc0 = 4) ∧ (pc0 ≥ 4) ⇒ (pc′0 = 5) ∧ (pc′0 ≥ 4)

Now it is clear, that we have to prove that pc0 6= 1 is an invariant for our transition

system (CFG) in order to be able to show the absence of these interrupts. The property

is called invariant for a system if it holds in each of its states. The corresponding

verification diagram expressed in the syntax of the CFG files is:

(0 (succ 0)
inv(pc != 1))

This verification diagram has a self-loop, which states that if a given property holds in

the current state then it should also hold in the next state, i.e. it is an invariant for

the system. During the traversal of the CFG we associate all the nodes found on the

path with the diagram above. So, the required property holds, if there is no node on

the path with a successor node 1.

Note that the CFG traversal means that we execute the program represented by

the CFG with the initial values of all registers and memory cells defined in the init

block of the CFG. The remaining memory region, i.e. except the memory cells defined

explicitly, is supposed to be filled with zero values. Traversal is done until a node with

46

no successors is reached or an infinite loop is encountered. A loop is treated as infinite

if the number of iterations spent in it exceeds the given limit (this limit is specified in

the configuration file which is passed as a parameter to the Parser). This precaution

has been specially made in order to prevent the program suspension. By treating loops

as infinite after certain number of iterations exceeds, we sacrifice completeness of our

proof. But, it is only feasible solution, since the termination is a response property,

and it can only be proved with the help of chain verification diagrams [3], which is not

part of this work.

With regard to the dmal interrupt, we need to construct the verification diagram

corresponding to the CFG, since its presence is not reflected in the CFG structure.

Recall that, the required property must be established for each memory access instruc-

tion. But this is not enough to identify each CFG node containing a memory access

instruction with the corresponding VD node. In that case, it is possible to some in-

struction, which resides in the same CFG node after the memory access instruction to

overwrite the register required for the effective address computation. Thus, the gen-

erated verification conditions may be violated. In order to prevent this, we subdivide

each basic block containing a memory access instruction into 2 blocks. The memory

access instruction with its preceding instructions will be comprised in the first block,

while the subsequent instructions will belong to the latter block. After that, each CFG

node will have at most one memory access instruction.

The verification diagram generation then proceeds as follows: we traverse the

CFG and identify a successor for each CFG node containing a memory access instruc-

tion with a VD node which specifies the following property, here ea stands for the

effective address of a memory access:

(ea mod 4 = 0) ∧ (data reg start ≤ ea ≤ data reg end)

It is impossible to prove the given property without knowing the information about

all variables (registers) occurring in it. That is why, we extend our property with

assertions regarding all registers and memory cells known in the current step. This is

illustrated in the following example:

(4 (succ 5)
(r1 = (r1 + 3))
(r2 = (r1 * 4))
(r3 = M[(r2 + 8)]))
(5 (succ ...) ...)

Let the values of the registers and memory cells before the execution of the 4th CFG

node be: r1 = 4, r2 = 1, r3 = 0,M [36] = 15, then the property to be identified with the

5th node is:

47

inv((r1 == 7)&(r2 == 28)&(r3 == 15)&(M[36] == 15)&((r2+8)% 4 == 0)&
(data reg start <= (r2+8))&((r2+8) <= data reg end))

Here, the values of registers r1, r2 and r3 are changed, whereas the value of the

memory cell M [36] stays the same. Although, the values of r1, r3 and M [36] are not

required to prove the absence of the dmal interrupt in the current step, they are still

presented in the VD node. Since, they possibly be required at a later time.

The VD generator associates only the nodes containing memory access instruc-

tions with the VD nodes. The remaining work of finding the shortest paths between

associated CFG nodes and generating the verification conditions is left to the refine-

ment tool.

The main problem with the generation of such conditions is concerned with loops.

If a program has a loop, the corresponding VD must contain the invariance property

which holds at each iteration of this loop. Let’s say, we want to prove, that if the

property φ holds at the beginning of the next loop:

while cond do body end

then the property ψ must hold after execution of this loop. To do that we have to

establish an invariant I, such that:

φ→ I

I ∧ cond ∧ (
∧

τ∈body ρτ) → I

I ∧ ¬cond→ ψ

where
∧

τ∈body ρτ represents a joint transition relation for the loop’s body. The auto-

matic generation of such invariants (especially for nested loops) is quite a tough task

to accomplish [5].

So, in this work the loops are straightforwardly unrolled and the required condi-

tions are generated immediately for each iteration of a loop. Remark that, for loops

containing memory access instructions we specify the required condition for every mem-

ory access instruction found in the loop on each iteration. Whereas, for loops without

memory access instructions, an arbitrary node within the loop’s body is selected as a

pivot point, and is identified with a VD node on each loop iteration. This is necessary

to correctly propagate the values of all registers and memory cells after execution of

this loop. Let’s consider an example in Figure 5.7.

Let the values of the registers before execution be: r1 = 100, r4 = 0. The first

loop in example (nodes 1 and 2) does not contain memory access instructions. Then,

48

CFG Verification Diagram
(1 (succ 2)
(r4 = (r4 + 7))
(r1 = (r1 - 1)))
(2 (succ 1 3)
(r1 != 0))
(3 (succ 4)
(r1 = (r1 + 4))
(r4 = (r4 - 1))
(M[r1] = r4))
(4 (succ 3 5)
(r4 != 0))
(5 (succ ...) ...)

(1 (succ 2)
inv((r1 == 100)&(r4 == 0)))

(2 (succ 3)
inv((r1 == 99)&(r4 == 7)))
...
(100 (succ 101)
inv((r1 == 0)&(r4 == 700)))

Figure 5.7: Loop unrolling

the 1st CFG node is associated with the VD nodes on each iteration (the diagram is

depicted in Figure 5.7 to the right).

The next loop (nodes 3 and 4) contains a memory access instruction. That is

why, the 4th CFG node – the successor of a node with the memory access instruction –

is associated with a VD node on each loop iteration:

(101 (succ 102)
inv((r1 == 4)&(r4 == 699)&((r1 % 4) == 0)&(data reg start <= r1)&

(r1 <= data reg end)))

(102 (succ 103)
inv((r1 == 8)&(r4 == 698)&((r1 % 4) == 0)&(data reg start <= r1)&

(r1 <= data reg end)))
...

The drawbacks of this approach are that the generated diagrams may become very

large depending on the number of loop iterations. If this is the case, the work dealing

with the construction of the loop invariants and with adjustment of the verification

diagrams is left to the end-user. Nevertheless, the advantage of this method is that

it is fully automated and requires no further manual work. Moreover, it is feasible to

unroll loops having several tens of thousands of iterations and generate the verification

conditions in satisfiable amount of time. In most cases it fulfills the needs of assembler

program verification.

The method presented here is applicable for most assembler programs. It is only

restricted in the way, that the resulting verification diagram may be very large if a loop

has a big number of iterations and contains a lot of memory access instructions, or if

a program contains too deep nested loops. In the former case too many CFG nodes

require to be associated with the VD nodes, in the latter case the diagram size grows

exponentially with the nesting level. This can make a verification diagram huge and

complicated for understanding.

49

5.5 Handling unsupported instructions

In this section we consider dealing with the assembler instructions unsupported by the

refinement tool. Unfortunately, there are several DLX assembler instructions whose

semantics cannot be correctly expressed in the CFGs. In this case, the refinement tool

fails to generate the verification conditions. Strictly speaking, these conditions can be

represented in CFG but the Simplify [4] reports a counterexample while trying to prove

them. The difficulty relates to the fact that the refinement tool operates on integers,

whereas the VAMP ISA uses the bitvectors. This forces to emulate bitwise operations

with integer arithmetic, but this strategy works not in all cases.

Below we present the list of unsupported DLX instructions:

1. All shift instructions with a shift amount specified in a register (sll, srl, sra).

These operations require multiplication or division of two variables (registers).

The Simplify tool supports only multiplication when one of the operands is given

by an immediate constant. Division is supported as inverse to multiplication

operation, and, hence, is restricted in the same way.

2. All bitwise logical operations (and(i), or(i), xor(i)), except for the trivial cases,

where the second operand is one of the immediate constants 0 or 1. In this case,

at first, the operands should be converted to the bitvectors, which again requires

multiplication and division of the variables.

Hopefully, the future development of the Parser program and the refinement tool

will cover these operations. By now, the refinement tool supports a specific assignment

operation, which allows to partially verify the programs containing such operations.

The uninterpreted instructions are processed as follows: once such an instruction

has been encountered in a program, the Parser inserts the special ’?’ assignment

(r = ?) to the appropriate place in the CFG, where r is a destination register of an

unsupported operation. This assignment denotes that the value of the corresponding

register is unknown in the current moment. Later on, the VD generator keeps track of

all expressions where the unknown registers occur. Evidently, a register, to which the

result of evaluating such an expression is assigned, also becomes unknown. If during

the execution an unknown register is encountered in a predicate expression of a decision

node, the execution goes to the error state. The execution stops, since the value of

the predicate expression is unknown, and, hence, we cannot decide which successor to

take.

50

Afterwards, during the generation of the verification diagrams, all assertions re-

garding the values of currently unknown registers are omitted. This is illustrated with

the following example:

(1 (succ 2)
(r1 = ?)
(r2 = (r1 * 2))
(r3 = (r0 + 5))
(M[(r2 + 8)] = r3))
(2 (succ ...) ...)

Let r3 = 10 before the execution of the 1st node, then the property associated

with the 2nd CFG node is:

inv((r3 == 5)&((r2+8)% 4 == 0)&(data reg start <= (r2+8))&
((r2+8) <= data reg end))

This means that no assumptions are made about the values of registers r1 and

r2, whereas the value of the register r3 is known. The refinement tool omits all as-

sumptions about currently unknown registers on the left-hand side of the implication

while generating the verification conditions, and, thus, any assertions about them will

be invalid.

In this chapter we considered the automatic generation of verification diagrams.

Only the absence of ill, imal and dmal interrupts requires the construction of verifi-

cation diagrams. Proof for absence of ill and imal interrupts turned out to be trivial,

while in proving the absence of the dmal interrupt we encountered difficulties regarding

to necessity of loop invariants generation. The problem is solved by loop unrolling. We

do not pretend to find elegant and universal solution, however it works in most cases

and does not require any user interaction.

51

6 Conclusion

This work presents a tool for automatic proofs of the conditions for absence of inter-

rupts. The validity of these conditions was proved before using the PVS verification

system in [11].

The tool is realized in the form of two independent programs: the Parser which

constructs a control flow graph from the DLX assembler source code, and the VD

generator which automatically generates the verification diagrams corresponding to the

required conditions. The refinement tool generates the verification conditions based on

a control flow graph and a corresponding verification diagram. The validity of the

verification conditions is checked using the Simplify theorem prover.

The results of this work can be used in the VAMP software verification. It allows

to verify assembler programs independently on the hardware. Once we have proved

that an assembler program satisfies the conditions for the absence of interrupts, this

program can be then correctly simulated on the assembler machine.

The future work in this field might be oriented in the direction of the automatic

generation of loop invariants which would allow us to build more compact and read-

able verification diagrams, and extending the set of supported assembler instructions

to cover all instructions from the DLX ISA. Moreover, the range of properties auto-

matically proved can be extended such that other types of properties can be handled.

These can, among others, include, for example, program termination, which requires

an introduction of another type of verification diagrams. This would hopefully simplify

and speedup the verification of assembler programs.

52

Bibliography

[1] S. Beyer, C. Jacobi, D. Kröning, D. Leinenbach, and W. J. Paul. Instantiating

uninterpreted functional units and memory system: functional verification of the

VAMP processor. Accepted to 12th Advanced Research Working Conference on

Correct Hardware Design and Verification Methods (CHARME), 2003.

[2] Sven Beyer. Putting It All Together: Formal Verification of the VAMP. PhD

thesis, Saarland University, Computer Science Department, 2004.

[3] I. A. Browne, Z. Manna, and H. D. Sipma. Generalized temporal verification

diagrams. Technical report, Computer Science Department, Stanford University,

Stanford, 1995.

[4] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for program

checking. Journal of the ACM, 52, 2005.

[5] M. Ernst. Dynamically Detecting Likely Program Invariants. PhD thesis, Univer-

sity of Washington, Department of Computer Science and Engineering, August

2000.

[6] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative

Approach. Morgan Kaufmann Publishers, Los Altos, CA 94022, USA, second

edition, 1996.

[7] Joost-Pieter Katoen. Principles of model checking. Formal Methods and Tools

Groups. University of Twente. Lecture notes in Computer Science, 2002.

[8] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems. Safety.

Springer-Verlag, 1995.

[9] S. M. Müller and W. J. Paul. Computer Architecture: Complexity and Correctness.

Springer-Verlag, 2000.

53

[10] S. Owre, Shankar N., and Rushby J. M. A prototype verification system. Springer-

Verlag, 1992.

[11] O. Parshin. Formal simulation of machine instructions with interrupts by assem-

bler instructions. Master’s thesis, Saarland University, Computer Science Depart-

ment, 2004.

54

A Appendix A

A.1 Example Proof

As an example we consider the program which calculates the square root of an integer.

Since the DLX ISA does not support multiplication, we need to emulate it using the

school multiplication method. The program operates according to the following simple

algorithm:

N = 0; X ≥ 0; while N2 ≤ X do N = N + 1; end; N = N − 1;

The result of this program satisfies: N2 ≤ X < (N +1)2 where X ≥ 0, i.e. N = b
√
Xc

is an integer square root of X. In order to show the abilities of the developed software

we supply the program with the additional features, namely:

� the multiplication algorithm is realized as a single subroutine;

� the multiplication procedure is called from the main program using the jump-

table, the result is returned in a memory cell;

� the intermediate results of the program (namely N2) are stored in the designated

memory region;

� the resulting integer square root is stored in a memory cell.

This program uses two nested loops, which would make loop invariants generation quite

complicated, moreover the invariant for the outer loop is supposed to be non-linear,

since the termination condition N2 ≤ X is non-linear. The proof for the absence of

interrupts for this program proceeds fully automatically and requires no additional

work.

At first we present the original source code of the example program. The initial

values for all registers and external parser parameters (such as the boundaries of the

memory regions) are given in the configuration file (Figure A.8) which is passed as a

command line parameter along with the assembler source code file (Table A.8) to the

Parser program.

55

(code reg start==500) ; the code region start-end addresses
(code reg end==676)
(data reg start==676) ; the data region start-end addresses
(data reg end==4788)
; the initial values for all registers
(r0==0) (r1==0) (r2==0) (r3==0)
(r4==0) (r5==0) (r6==0) (r7==0)
(r8==0) (r9==0) (r10==0) (r11==0)
(r12==0) (r13==0) (r14==0) (r15==0) (r16==0)
(r17==0) (r18==0) (r19==0) (r20==0) (r21==0)
(r22==0) (r23==0) (r24==0) (r25==0) (r26==0)
(r27==0) (r28==0) (r29==0) (r30==0) (r31==0)
(sr==0) (esr==0) (eca==0) (epc==0) (edpc==0)
(edata==0) (rm==0) (ieeef==0) (fcc==0) (pto==0)
(ptl==0) (emode==0) (mode==0)

Figure A.8: The configuration file

.text 500 ; start of the code region
main:

clr r4 ; initialize the loop counter (N)
square:
; pass the parameters to the multiplication subroutine

add r24,r4,r0
lw r3,jtable(r0)
jalr r3 ; calculates res = r24 * r25
add r25,r4,r0
lw r26,res(r0) ; obtain the result of imul

; the number of which we want compute the square root
lw r3,X(r0)
sle r1,r26,r3 ; terminate if N^2 > X

; store the intermediate result into the memory region
slli r2,r4,2
sw memfill(r2),r26
beqz r1,end
nop
j square
addi r4,r4,1

imul: ; integer multiplication procedure
; calculates r26 = r25 * r24

beqz r25, imul exit ; exit if one operand = 0
clr r26
sls r1, r25, r0 ; test whether the first operand is negative
beqz r1, test2
clr r2
set r2
sub r25, r0, r25

test2: ; r2 will hold the sign of the result
sls r1, r24, r0 ; test whether the second operand is negative
beqz r1, mul
nop
sub r2, r1, r2

Table A.8:The program source code

56

sub r24, r0, r24
mul: ; the multiplication loop

beqz r24, sign
; check the current bit of the factor

andi r1, r24, 1
beqz r1, skip
srai r24, r24, 1
add r26, r26, r25

skip:
j mul
slli r25, r25, 1

sign: ; adjust the sign of the result
beqz r2, imul exit
nop
sub r26, r0, r26

imul exit:
lhgi r24,(res&0x8000?~(res>>16):res>>16)
xori r24,r24,res&0xFFFF

; return from the procedure, save the result into memory
jr r31
sw 0(r24),r26

end: ; store the resulting square root in a memory cell
lhgi r25,(sqr&0x8000?~(sqr>>16):sqr>>16)
xori r25,r25,sqr&0xFFFF
subi r4,r4,1
sw 0(r25),r4

.data . ; the beginning of the data region
memfill: ; an array to store intermediate results

.space 4096
X: ; a number of which we want to compute the square root

.word 453
res: ; a memory cell to store the result of the imul subroutine

.space 4
sqr: ; a memory cell to store the resulting square root

.space 4
jtable: ; jump-table for the imul subroutine

.word imul

Table A.8:The program source code

This program is passed as a command line parameter to the Parser program, the

generated CFG is presented in Figures A.9 and A.10.

Then, the resulting CFG is passed to the VD Generator program. The VD Gen-

erator builds two verification diagrams: one for the absence of ill and imal interrupts

and one for the absence of the dmal interrupt. As mentioned above (see Section 5.3),

the absence of ill and imal interrupts are determined during the parsing phase, thus

the corresponding verification diagram is trivial. The abs file and the verification dia-

gram are depicted in figure A.11. Here all the nodes visited during the CFG traversal

57

(program execution) are identified with a node of the verification diagram.

For dmal interrupt the corresponding verification diagram is bit large since it

requires unrolling all program loops containing the memory access instructions. Thus

we present here only the beginning and the end of the diagram. The abs file is also de-

scribed partially. Note that the FORALL statement on the diagram (figures A.12 and A.13)

states that all memory cells, except explicitly defined ones, are initialized with zero val-

ues. From the verification diagram one can see that all the intermediate results (namely

N2) are stored into the memory region staring from the address 680, i.e. M [680] = 1,

M [684] = 4, M [688] = 9, The number whose square root we want to compute is

stored into the memory cell M [4772] = 453, the resulting integer square root is stored

to the address 4780, i.e. M [4780] = 21, since b
√

453c = 21.

The CFG nodes 42, 40, 41, 47, 4 are identified with the VD nodes, since their

predecessors contain the memory access instructions (namely 11 is a successor of the

node 42, 14 is a successor of the node 40, 3 - successor of 41, 41 - successor of 47,

and 48 is a successor of 4). For instance, the CFG node 11 contains the instruction

r3 = M[(r0 + 4784)], the CFG node 42 is identified with the VD node 1, this VD node

contains the following condition:

((r0 + 4784) % 4 == 0)&(676 <= (r0 + 4784))&((r0 + 4784) < 4788)

i.e. it states that the address of a memory access should be word-aligned and it should

lie within the boundaries given by data reg start and data reg end parameters.

The CFG nodes 42, 40, 41, 47, 4 lie in the loop. Since the loops containing

memory access instructions are unrolled, these nodes are identified with different VD

nodes (see the abs file definition in figures A.12 and A.13), i.e. we prove the absence

of dmal interrupt on each loop iteration separately.

58

((int r0) (int r1) (int r2)
(int r3) (int r4) (int r24)
(int r25) (int r26) (int r31)
(int M[4788]) (int code reg start)
(int code reg end)
(int data reg start)
(int data reg end))

(init
((r0 == 0)&(r1 == 42)&(r2 == 0)&
(r3 == 0)&(r4 == 0)&(r24 == 0)&
(r25 == 0)&(r26 == 0)&(r31 == 0)&
(M[4772] == 453)&(M[4784] == 556)&
(FORALL (i) (((676 <= i)&
(i < 4788)&(i != 4772)&
(i != 4784)) => (M[i] == 0)))&
(code reg start == 500)&
(code reg end == 676)&
(data reg start == 676)&
(data reg end == 4788)&(pc0 == 0))
)

((main int)
(0 init (succ 11)
(r4 = 0))

(11 (succ 42)
(r24 = (r4 + r0))
(r3 = M[(r0 + 4784)]))

(42 (succ 39)
(r31 = 520)
(r25 = (r4 + r0)))

(39 (succ 10 39)
(r3 == 556))

(2 (succ 3)
(r25 = (r4 + r0)))

(3 (succ 41)
(r26 = M[(r0 + 4776)]))

(41 (succ 47)
(r3 = M[(r0 + 4772)]))

(47 (succ 50)
(r1 = 0))

(50 (succ 49 48)
(r26 <= r3))

(49 (succ 48)
(r1 = 1))

(48 (succ 4)
(r2 = (r4 * 4))
(M[(r2 + 676)] = r26))

(4 (succ 8 5)
(r1 == 0))

(5 (succ 6))

(6 (succ 11)
(r4 = (r4 + 1)))

(9 (succ 10)
(r4 = (r4 + 1)))

(10 (succ 15 12)
(r25 == 0))

(12 (succ 13)
(r26 = 0))

(13 (succ 44)
(r1 = 0))

(44 (succ 43 16)
(r25 < r0))

(43 (succ 16)
(r1 = 1))

(16 (succ 20 17)
(r1 == 0))

(17 (succ 18)
(r2 = 0))

Figure A.9: The CFG for the integer square root program (1st part)

59

(18 (succ 19)
(r2 = 1)
(r25 = (r0 - r25)))

(20 (succ 19)
(r2 = 0))

(19 (succ 46)
(r1 = 0))

(46 (succ 45 22)
(r24 < r0))

(45 (succ 22)
(r1 = 1))

(22 (succ 26 23)
(r1 == 0))

(23 (succ 24))

(24 (succ 25)
(r2 = (r1 - r2))
(r24 = (r0 - r24)))

(26 (succ 25))

(25 (succ 30 27)
(r24 == 0))

(27 (succ 28)
(r1 = (r24 % 2)))

(28 (succ 34 31)
(r1 == 0))

(31 (succ 32)
(r24 = (r24 / 2)))

(32 (succ 33)
(r26 = (r26 + r25)))

(34 (succ 33)
(r24 = (r24 / 2)))

(33 (succ 25)
(r25 = (r25 * 2)))

(38 (succ 29)
(r25 = (r25 * 2)))

(30 (succ 29)
(r1 = (r24 % 2)))

(29 (succ 37 35)
(r2 == 0))

(35 (succ 36))

(36 (succ 14)
(r26 = (r0 - r26)))

(37 (succ 14))

(15 (succ 14)
(r26 = 0))

(14 (succ 40)
(r24 = (r0 + 4776))
(M[(r24 + 0)] = r26))

(40 (succ 3 40)
(r31 == 520))

(21 (succ 7)
(M[(r24 + 0)] = r26))

(8 (succ 7))

(7 (succ 51)
(r25 = (r0 + 4780))
(r4 = (r4 - 1))
(M[(r25 + 0)] = r4))

(51 (succ))

(1 (succ 1)))

Figure A.10: The CFG for the integer square root program (2nd part)

60

Verification diagram ABS file
(check
(initialnodes 0)
(0 (succ 0)
inv(pc0!=1)))

(0) => (0)
(11) => (0)
(42) => (0)
(39) => (0)
(10) => (0)
(15) => (0)
(14) => (0)
(40) => (0)
(3) => (0)
(41) => (0)
(47) => (0)
(50) => (0)
(49) => (0)
(48) => (0)
(4) => (0)
(5) => (0)
(6) => (0)
(11) => (0)
(13) => (0)
(44) => (0)
(16) => (0)
(20) => (0)
(19) => (0)
(46) => (0)
(22) => (0)
(26) => (0)
(25) => (0)
(27) => (0)
(28) => (0)
(31) => (0)
(32) => (0)
(33) => (0)
(25) => (0)
(29) => (0)
(37) => (0)
(14) => (0)
(33) => (0)
(7) => (0)
(51) => (0)
(1) => (0)

Figure A.11: The verification diagram for the absence of ill and imal interrupts

61

Verification diagram ABS file
(mem
(initialnodes 0)

(0 (succ 1)
inv((r0 == 0)&(M[4772] == 453)&(M[4784] == 556)&
(FORALL (i) (((676 <= i)&(i < 4788)&(i != 4772)&
(i != 4784)) => (M[i] == 0)))))

(1 (succ 2)
inv((r0 == 0)&(r24 == 0)&(r3 == 556)&(r4 == 0)&
(M[4772] == 453)&(M[4784] == 556)&
(FORALL (i) (((676 <= i)&(i < 4788)&(i != 4772)&
(i != 4784)) => (M[i] == 0)))&((r0 + 4784) % 4 == 0)&
(676 <= (r0 + 4784))&((r0 + 4784) < 4788)))

(2 (succ 3)
inv((r0 == 0)&(r24 == 4776)&(r25 == 0)&(r26 == 0)&
(r3 == 556)&(r31 == 520)&(r4 == 0)&(M[4772] == 453)&
(M[4784]==556)&(FORALL (i) (((676 <= i)&(i < 4788)&
(i != 4772)&(i != 4784)) => (M[i] == 0)))&
((r24 + 0) % 4==0)&(676 <= (r24 + 0))&
((r24 + 0) < 4788)))

(3 (succ 4)
inv((r0 == 0)&(r24 == 4776)&(r25 == 0)&(r26 == 0)&
(r3 == 556)&(r31 == 520)&(r4 == 0)&(M[4772] == 453)&
(M[4784] == 556)&(FORALL (i) (((676 <= i)&(i < 4788)&
(i != 4772)&(i != 4784)) => (M[i] == 0)))&
((r0 + 4776) % 4 == 0)&(676 <= (r0 + 4776))&
((r0 + 4776) < 4788)))

..

(114 (succ 115)
inv((r0 == 0)&(r1 == 0)&(r2 == 0)&(r24 == 4776)&
(r25 == 704)&(r26 == 484)&(r3 == 453)&(r31 == 520)&
(r4 == 22)&(M[680] == 1)&(M[684] == 4)&(M[688] == 9)&
... &(M[4776]==484)&(M[4784]==556)&
(FORALL (i) (((676 <= i)&(i < 4788)&(i!=680)& ... &
(i != 4784)) => (M[i] == 0)))&((r0 + 4772) % 4 == 0)&
(676 <= (r0 + 4772))&((r0 + 4772) < 4788)))

(0) => (0)
(42) => (1)
(40) => (2)
(41) => (3)
(47) => (4)
(4) => (5)
(42) => (6)
(40) => (7)
(41) => (8)
(47) => (9)
(4) => (10)
(42)=>(11)
(40)=>(12)
(41)=>(13)
(47)=>(14)
(4) =>(15)
..........

Figure A.12: The verification diagram for the absence of dmal interrupt (1st part)

62

Verification diagram ABS file
(115 (succ 116)
inv((r0 == 0)&(r1 == 0)&(r2 == 88)&(r24 == 4776)&
(r25 == 704)&(r26 == 484)&(r3 == 453)&(r31 == 520)&
(r4 == 22)&(M[680] == 1)&(M[684] == 4)&(M[688] == 9)&
... &(M[4776]==484)&(M[4784]==556)&
(FORALL (i) (((676 <= i)&(i < 4788)&(i != 680)& ... &
(i != 4784)) => (M[i] == 0)))&((r2 + 676) % 4 == 0)&
(676 <= (r2 + 676))&((r2 + 676) < 4788)))

(116 (succ 117)
inv((r0 == 0)&(r1 == 0)&(r2 == 88)&(r24 == 4776)&
(r25 == 4780)&(r26 == 484)&(r3 == 453)&(r31 == 520)&
(r4 == 21)&(M[680] == 1)&(M[684] == 4)&(M[688] == 9)&
... &(M[4776] == 484)&(M[4780] == 21)&(M[4784] == 556)&
(FORALL (i) (((676 <= i)&(i < 4788)&(i != 680)& ... &
(i != 4780)&(i != 4784)) => (M[i] == 0)))&
((r25 + 0) % 4 == 0)&(676 < =(r25 + 0))&
((r25 + 0) < 4788)))

(117 (succ)
inv(TRUE)))

..........
(4)=>(105)
(42)=>(106)
(40)=>(107)
(41)=>(108)
(47)=>(109)
(4)=>(110)
(42)=>(111)
(40)=>(112)
(41)=>(113)
(47)=>(114)
(4)=>(115)
(51)=>(116)

Figure A.13: The verification diagram for the absence of dmal interrupt (2nd part)

63

	Overview of the VAMP
	The VAMP Processor
	Instruction set architecture
	Interrupts

	VAMP and Assembler Machine
	Differences between the VAMP and the Assembler Machine
	The Assembler Machine Specification
	The VAMP specification
	Conditions for absence of interrupts
	Simulation theorem

	Program verification
	Transition systems
	Verification diagrams

	Control flow graphs
	Overview
	CFG construction
	The syntax of CFG files
	Example control flow graph

	Proving the absence of interrupts
	DLX assembler directives
	Association of CFG nodes with nodes of the verification diagram
	The conditions for the absence of interrupts
	Verification diagrams generation
	Handling unsupported instructions

	Conclusion
	Appendix A
	Example Proof

