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Abstract

The task of verifying a compiler formally becomes harder and harder due to
the size of the compiler, its ongoing evolution and modifications. Whereas
generic compiler verification has to be adapted after each compiler modifi-
cation, translation validation is a novel approach that is fully independent
of the compiler. Instead of verifying the compiler itself, the source program
and the target program are compared after each translation. If the target
program is proven to be a correct translation of the source program, the
compiler was proven to be correct for this special input. In order to define
a correct translation, refinement mappings are introduced which map states
and variables of the target program to states and variables, respectively, of
the source program.

While compiling a program, an optimizing compiler might apply several
program transformations which affect the structure of the original program.
Thus, establishing the refinement mapping is often not obvious. This thesis
work shows how it can be proven automatically that the target program
is a correct translation of the source program without instrumenting the
optimizing compiler. Thereby, the focus of this thesis is set on structure-
modifying transformations.

The algorithm for finding a refinement mapping searches for a transfor-
mation chain that transforms the source system into the target system. If
such a transformation chain can be found, the trivial refinement mapping
between the target system and the transformed source system can be es-
tablished. The transformation chain together with the refinement mapping
are a proof that the target program is a correct translation of the source
program.

This algorithm is based on an exhaustive search using Breadth First
Search (BFS), i.e. all possible transformation chains are computed and it
is checked whether the target system refines one of the resulting systems.
This algorithm is shown to be correct and terminating for a given (restricted)
set of transformations. Furthermore, we show which properties a compiler
transformation has to fulfill such that the algorithm can be extended with
this transformation without loosing termination or correctness.

To reduce the search space, some optimizations for the algorithm are in-
troduced that remove duplicated subtrees and infinite transformation chains.
Also we show how metrics can be used to extend the class of transformations
such that the algorithm still is terminating and correct.
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Chapter 1

Introduction

1.1 Motivation

The task of verifying a compiler formally becomes harder and harder due to
the size of the compiler, its ongoing evolution and modifications. Whereas
generic compiler verification has to be adapted after each compiler modifi-
cation, translation validation is a novel approach that is fully independent
of the compiler. Instead of verifying the compiler itself, the input program
of the compiler (the source program) and its translated version (the target
program) are compared and it is checked whether they fulfill the same prop-
erties. If the target program is proven to be a correct translation of the
source program, the compilation process was proven to be correct for this
special input. The advantages of translation validation over generic compiler
verification are that the verification process is independent of the compiler
version and it is fully automatic.

Figure 1.1 illustrates the concept of translation validation. To determine

O.K.

Not O.K.

Source

Target

Compiler
Translation

validation
Tool

correct
translation

fail

Proof
checker

Counter
example

Fault Indication

Figure 1.1: The concept of translation validation.

whether the target program is a correct translation of the source program,
the translation validation tool has to find a simulation relation (refinement
mapping) between the source program and the target program, i.e. a con-
trol mapping between the states of the source and the target control flow
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Chapter 1 Introduction

graph and a data mapping between variables of source and target program.
Afterwards, proof conditions are derived that can be checked by a generic
theorem prover. If all proof conditions are proven to be valid the target
program is a correct translation of the source program.

While translating the source program the compiler can apply optimiza-
tion methods, like loop unrolling or loop fusion. It is differentiated between
structure preserving and structure modifying optimizations. Structure pre-
serving optimizations do not change the structure of the source program
and therefore can be handled easier by the translation validation tool than
structure modifying optimizations that reorder the instructions in the source
program or insert and delete loops. Hence, establishing a refinement map-
ping is complicated.

The major problem in finding a refinement mapping for a source program
and a target program is that it is not known which compiler optimizations
were applied and in which order. In general, the source program and the
target program have nothing in common so that it is impossible to establish
a control mapping directly. Moreover, it cannot be seen which program
part of the source program was transformed into which program part of the
target program.

This thesis considers reactive systems as source programs of the optimiz-
ing compiler, i.e. systems that interact with an environment. We observe
the level of the optimizing compiler where code optimizing transformations
are applied, i.e. we do not care about code translation and generation.
Thus, the compiler output is also a reactive system and the task is to find
a refinement mapping between the input system and the output system if
there exists one. To solve this task the most common compiler transforma-
tions like for example sequential transition refinement, loop unrolling, loop
fusion, and loop distribution, are analyzed and formalized. These consid-
erations will be based on the notion of transition systems. Afterwards, an
algorithm is presented that determines whether the output system is a cor-
rect translation of the input system, i.e. how a refinement mapping between
these two reactive systems, where the described compiler optimizations have
been applied arbitrarily, can be found. This algorithm works by searching a
transformation chain that transforms the source transition system into the
target transition system. If such a transformation chain can be found, the
trivial refinement mapping can be established, i.e. the states and variables
can be mapped one-to-one. The algorithm is based on an exhaustive search
and uses breadth first search (BFS). It terminates if the target transition
system is found or if it can be excluded that there exists a refinement map-
ping. This algorithm is shown to be correct and terminating. To reduce
the search space, some optimizations for the algorithm are introduced that
delete infinite paths in the BFS tree or subtrees that occur twice.

The rest of this thesis is organized as follows. In Chapter 2 an overview of
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Chapter 1 Introduction

the basics and the theory behind translation validation is given. Chapter 3
deals with the various compiler optimizations like reordering of statements,
loop unrolling, loop fusion, loop interchange, etc.. These transformations
are formalized and classified such that the search space of the algorithm can
be restricted, and thus, the algorithm can be optimized. Chapter 4 presents
the main result of this thesis - the algorithm for finding a refinement map-
ping between two systems, where one is the translated version of the other.
The algorithm is proven to be correct and terminating. Furthermore, it is
defined which properties a transformation has to fulfill such that the algo-
rithm can be extended with this transformation without loosing correctness
or termination. An overview of the implementation of this algorithm and
an example compiler can be found in Chapter 5. Chapter 6 gives some
examples and experiments for executing and testing the algorithm.

1.2 Related Work

Translation validation was first introduced by Pnueli, Siegel, and Singer-
man in [PSS98b]. They use the result of [AL91] which shows the existence
of refinement mappings. However, their tool critically depends on some sim-
plifying assumptions that restrict the source and target to programs with a
single external loop. Furthermore, only a very limited set of optimizations
is supported. The solution for the translation validation task for optimizing
compilers presented by [GZB05] and [Fan05] extends [PSS98b]. The reorder-
ing of the statements and loops during the compilation process is analyzed.
Each transformation has its own characteristic reordering function by which
the source program can be mapped to the target program. However, this
approach uses some simplifying assumptions and needs to instrument the
compiler.

Necula shows in [Nec00] his approach in translation validation for the
GNU C compiler. Arbitrary loop nests are supported and no compiler in-
strumentation is required. Although Necula presents various heuristics to
recover and identify the the optimizations the compiler has applied, some
optimizations such as loop invariant code motion can not be handled.

The basics of temporal verification of reactive systems, i.e. finding in-
variants and proof conditions, etc. is presented in [MP95] by Pnueli and
Manna. The whole verification process is based on this work.

For the compiler related tasks such as compiler construction, compiler
transformations, etc., [AK02], [ASU86], [WM], and [GE99] were used.

3





Chapter 2

Translation Validation in

Theory

2.1 Transition Systems

In this thesis reactive systems are considered. A reactive system is a system
that maintains an ongoing interaction with an environment. The formal
semantics of a reactive system is represented by the means of transition sys-
tems [MP95]. A and C denote the transition system of the source program
and the transition system of the target program, respectively.

Definition 2.1. A transition system T is a state machine defined by a 4
tuple T = (V,O,Θ, ρ) with

• V : The set of state variables V = D ∪ {l} consists of the finite set of
data variables D and a distinguished variable l ∈ V \ D called control
variable.

• O: The set of observable variables with O ⊆ D.

• Θ: The initial condition that describes the initial states of the transi-
tion system.

• ρ: A boolean expression that relates a state to its possible successors.

All state variables x ∈ V are typed. By dom(x) we denote the domain
of state variable x ∈ V . The domain of the control variable l is finite. The
set of data variables D is the set of variables that are manipulated during
execution of a program, i.e. they can be read, and values of their domain
can be assigned to them.

The states of a transition system have to be type-consistent interpreta-
tions over V . The value of variable x ∈ V in state s can be referred to with
s[x].

5



Chapter 2 Translation Validation in Theory

States are related by the transition relation ρ which is a boolean
expression over the set of variables V ′, with V ′ = V ∪ {x′ | x ∈ V }. Note
that dom(x) = dom(x′). We say that s′ is a successor state of s, denoted by
(s, s′) ∈ ρ, iff ρ evaluates to true for the variable interpretations of s and
s′. For example if ρ = (l = l0 ∧ l′ = l1 ∧ x′ = x + 1), where l is the control
variable and x′ and l′ refer to the values of x and l in the successor state, then
(s, s′) ∈ ρ iff s[l] = l0 and s′[l] = l1 and s′[x] = s[x] + 1. The transformation
of the value of data variable x is called data transformation of x, i.e. the
data transformation describes the update of the variables in each transition.
Data transformations are induced by statements, e.g. data transformation
x′ = x + 1 is induced by statement x = x + 1.

ρ has always the form
ρ =

∨

li,lj
ρlilj

where ρlilj = (l = li∧l′ = lj∧g∧a). By a, the data transformation is denoted
which refers to the primed and unprimed version of the data variables. g is
called the guard that is defined as:

g ::= true | false | x ≤ c | x < c | x ≥ c | x > c | g ∨ g | g ∧ g

where c is a constant and x ∈ D. Note, if g = false in ρs[l]s′[l] = (l =
s[l] ∧ l′ = s′[l] ∧ g ∧ a) then (s, s′) 6∈ ρ.

If a state s fulfills the initial condition Θ, denoted by s |= Θ, s is called
an initial state. The observable variables form the external behavior
of a reactive system, i.e. they describe the behavior of the program in an
environment. Namely, the observables are the input and output variables of
a program. Note that the control variable l is never an observable variable,
i.e. l 6∈ O.

2.2 Representation of Transition Systems

For a finite representation of transition systems the following notations are
introduced. Since states are type consistent interpretations over the set of
variables V = D ∪ {l}, the number of states could be infinite. However,
the domain of the control variable dom(l) is finite. Thus, in order to obtain
a finite representation, all states with the same value in l are combined
to a so-called (control) location loc. By loc[l] we denote the value of the
control variable l in location loc and with locli we denote the location where
loc[l] = li, i.e. locli [l] = li.

For a better readability we annotate the data transformations induced
by ρ on the transitions in the graph. There is a transition from location loci

to location locj labeled with guard g and data transformation a, denoted by
loci →g:a locj , if ρ = . . . ∨ ρli,lj ∨ . . . with ρli,lj = (l = li ∧ l′ = lj ∧ g ∧ a) =
true.

6



Chapter 2 Translation Validation in Theory

Example 2.1. Consider the following transition system with control vari-
able l:

• V = {l} ∪ D with D = {x}, and O = ∅

• Θ = (l = l0 ∧ x = 0)

• ρ = ρl0l1 ∨ ρl1l2 ∨ ρl2l1 ∨ ρl1l3 with:
ρl0l1 = (l = l0 ∧ l′ = l1 ∧ x′ = x)
ρl1l2 = (l = l1 ∧ l′ = l2 ∧ x ≥ 0 ∧ x′ = x + 1)
ρl2l1 = (l = l2 ∧ l′ = l1 ∧ x′ = x)
ρl1l3 = (l = l1 ∧ l′ = l3 ∧ x < 0 ∧ x′ = 3)

The respective infinite transition system is depicted in Figure 2.1 a) and the
finite representation of the transition system as described in this section is
depicted in Figure 2.1 b).

l = l0

l = l1l = l1

l = l1

l = l1l = l1

l = l2

l = l2

l = l2l = l2
l = l3

x = 0

x = 0

x = 1 x = 1

x = 2

x = 2

x = 3

x = 3

x = 3x = 4x = 4

l0

l1

l2 l3

true:

true:

x < 0 :

x′ = x

x′ = x

x′ = 3

x ≥ 0 :
x′ = x + 1

(a) (b)

Figure 2.1: a) Example transition system, b) transition system in finite
representation

2.3 Refinement Mappings

In translation validation the main task is to compare two transition systems,
namely the target transition system and the source transition system. If
the target transition system can be proven to be a correct translation of
the source program, the compiler was proven to be correct for this special
input. This section presents a definition of “correct translation” based on
the notion of refinement ([PSS98a], [AL91]).
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Definition 2.2. A path fragment in a transition system is a finite se-
quence of states s1, s2, . . . , sn such that every two consecutive states are re-
lated by the transition relation ρ, i.e. (si, si+1) ∈ ρ.

Definition 2.3. A path of a transition system is an infinite sequence of
states s0, s1, . . ., such that every two consecutive states si and si+1 are related
by the transition relation ρ, i.e. (si, si+1) ∈ ρ. A path s0, s1, . . . is initial if
s0 satisfies the initial condition Θ, i.e. s0 |= Θ.

From now on we consider transition systems with only infinite paths, i.e.
every state has a successor (and thus every location in the finite represen-
tation). Also we assume that exactly one transition can be always taken.
That means, all guards of the outgoing transitions of a location are disjoint
and always one guard evaluates to true.

Definition 2.4. A computation s0, s1, s2, . . . of a transition system is an
initial path.

Each state can be split into its observable part si[O] and its non-observable
part si[V \ O], i.e. a state can also be written as si = 〈si[O], si[V \ O]〉.

Definition 2.5. Let σ : s0, s1, s2, . . . be a computation. Then the observ-
able computation of σ consists of only these states of σ that have a dif-
ferent observable part as their predecessor state.

In other words, the observable computation describes the external be-
havior of a computation. As an example consider the computation
〈s0[O], s0[V \ O]〉,
〈s1[O] = s0[O], s1[V \ O]〉,
〈s2[O] 6= s1[O], s2[V \ O]〉,
〈s3[O] 6= s2[O], s3[V \ O]〉,
〈s4[O] = s3[O], s4[V \ O]〉,
〈s5[O] = s3[O], s5[V \ O]〉,
〈s6[O] 6= s5[O], s6[V \ O]〉, . . ..
Then the observable computation is s0, s2, s3, s6, . . ..

Definition 2.6. The traces of a transition system T (V,O,Θ, ρ) are defined
as:
traces(T ) = {s0[O]s1[O] . . . | s0, s1, . . . is an observable computation of T }

Definition 2.7. Let A = (V a, Oa,Θa, ρa) and C = (V c, Oc,Θc, ρc) be two
transition systems with Oa = Oc.
C refines A, denoted C ref A, if for all observable computations τ : t0, t1, ...
of C there exists a observable computation σ : s0, s1, ... of A such that

∀x ∈ Oa.∀si ∈ σ.si[x] = ti[x]

8
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This definition implies that C refines A if all traces of C can also be
found in A.

Lemma 2.1. A transition system C = (V c, Oc,Θc, ρc) is a correct trans-
lation of a transition system A = (V a, Oa,Θa, ρa) iff C ref A.

Hence, in order to check whether the compiler has translated the source
program correctly, one has to check whether C ref A.

In order to establish this notion of refinement, for each observable com-
putation of C the corresponding observable computation of A that fulfills
the requirements from definition 2.7 has to be constructed. This is usually
done by means of a refinement mapping.

A refinement mapping f from C to A maps states and variables of C
to states and variables, respectively, of A. It has to fulfill the following
properties:

1. Initiation: s |= Θc implies f(s) |= Θa, forall states s ∈ C

2. Propagation: (s, s′) ∈ ρc implies (f(s), f(s′)) ∈ ρa, forall states s,
s′ ∈ C

3. Preservation of Observables: ∀x ∈ Oa.∀s ∈ C.f(s)[x] = s[y] with
f(y) = x

Since the set of states is infinite, this notion would yield an infinite map-
ping. In order to avoid this, control mappings are introduced. A control
mapping maps locations from C to A while respecting the above properties
“Initiation” and “Propagation”. To preserve the third property “Preser-
vation of Observables” a so-called data mapping is established that maps
variables, i.e. the observable variables, from C to A.

2.4 Invariants and Proof Conditions

After establishing the refinement mapping between the target transition sys-
tem and the source transition system the actual verification task is started.
The task is to establish a simulation relation induced by the refinement
mapping. In order to prove the correctness of the simulation relation, proof
conditions which are quantifier-free first-order formulae, are derived. These
proof conditions can be proven by a generic theorem prover. If all proof
conditions are valid, the target system is a correct translation of the source
system. In the following it is shown, how these proof conditions are derived
([MP95]).

Theorem 2.1. (Simulation Theorem)
Let A = (V a, Oa,Θa, ρa) and C = (V c, Oc,Θc, ρc) be transition systems and
let ∼ be a relation that relates states of the source system and states of the
target system. ∼ is a simulation relation if

9



Chapter 2 Translation Validation in Theory

∀(s, s′) ∈ ρc.∀t, s ∼ t.∃t′, (t, t′) ∈ ρa.s′ ∼ t′

Intuitively this means that each step C can perform can also be per-
formed by A.

The refinement mapping is provided by means of a labeling of the loca-
tions of the source transition system.

Definition 2.8. Let T = (V,O,Θ, ρ) be a transition system with control
variable l. A state formula φ is an invariant if it holds in all states.
φ is called inductive, if:

(i) Θ → φ and

(ii) forall transitions τ ∈ {(loc[l1], loc[l2])|l1, l2 ∈ dom(l)} it holds:

ρτ ∧ φ → φ′

where φ′ is obtained by replacing each free occurrence of a variable
y ∈ V by y′.

Note that an inductive state formula is always an invariant but the con-
verse is not always true. The established simulation relation has to be
inductive. Note that the control mapping is inductive by nature.

The data mapping as well as the control mapping are written as invari-
ants into the locations of the source transition system. The control mapping
describes which location of the target transition system is related to which
location of the source transition system. The data mapping describes in
which correlation the variables of the source transition system are with the
variables of the target transition system. Hence, the invariants are state for-
mulas over the union of the set of variables of the source transition system
and the set of variables of the target transition system. To distinguish the
variables of the target system they are labeled with an “:”, e.g. variable
x of the target transition system is denoted by :x in the invariant. Since
the purpose of this thesis is to establish the trivial refinement mapping, and
thus V c = V a, the invariant of location loca has the form:

inv(loca) = pc@locc ∧ (
∧

x∈V a x = :x)

where pc@locc denotes that transition system C is in location locc. Note
that pc@locc describes the refinement mapping, i.e. if f is the established
refinement mapping then f(locc) = loca.

After annotating each location of the source transition system with its
invariant the proof conditions can be derived. Recall definition 2.8 and the
simulation theorem.

First, the initial verification condition is established.

(∀s, s |= Θc.pc@s) =⇒
∨

∀t.t|=Θa inv(t)

10



Chapter 2 Translation Validation in Theory

The initial verification condition guarantees that if the target system is in
an initial state, then there has to be a initial state in the source system such
that its invariant holds.

Afterwards, the inductive verification conditions are derived.

∀(s, s′) ∈ ρc.
∀ta.∃(t, t′), t = ta ∧ (t, t′) ∈ ρa.

pc@s ∧ pc@’s′ ∧ ρc
s[lc],s′[lc]

∧ inv(t)

=⇒ (ρa
t[la],t′[la] =⇒ inv′(t′))

where la and lc are the control variables of the source system and the target
system, respectively. ta is a state of the source system and with pc@’s′ we
denote that after taking transition ρc

s[lc],s′[lc]
transition system C is in state

s′. These proof conditions say that if the target system is in state s and can
take a transition that leads to s′ and the invariant of t holds, i.e. state s is
mapped by the refinement mapping to t, then there has to be a transition
in the source system that can be taken. This transition ends up in state
t′ of the source system and the invariant of t′ has to hold. Note that the
form of these proof conditions are analog to the definition of the simulation
relation.

These conditions can be proven by a generic theorem prover. If they are
valid, we have a proof that the established refinement mapping is correct,
and thus it was proven that C is a correct translation of A.

11





Chapter 3

Compiler Transformations

When a compiler translates a source program, it can apply several transfor-
mations to obtain an optimized target program. These transformations can
change the whole program structure and therefore, also the execution order
of the statements in the program. Thus, it has to be defined under which
circumstances a transformation is valid.

One can distinguish between structure-modifying and structure-preserving
transformations. The focus of this thesis is set on the structure-modifying
transformations. This chapter describes the considered compiler transfor-
mations by means of transition systems and under which preconditions they
can be applied.

After presenting the compiler transformations, they are classified, i.e.
the transformations are analyzed by their effect on a transition system and
their effect on each other.

3.1 Preliminaries

In preparation for the presentation of the various compiler transformations,
we introduce some preliminary notion.

3.1.1 Loops - Definitions and Notation

In general, n nested loops in a transition system have the form depicted in
Figure 3.1. S(i1, i2, . . . , in) is the loop body that is dependent on the index
variables of the loops (i1, . . . , in). S(i1, i2, . . . , in) is an abbreviation for a
block of data transformations a1(i1, i2, . . . , in) to am(i1, i2, . . . , in) that are
performed during execution of the loop body and may be also dependent
on the index variables. The guards g1, . . . , gn are dependent on i1, . . . , in,
respectively. They have the form

g(i,H) ::= true | false | i ≤ H | g ∨ g | g ∧ g

13
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i′1 = L1

i′2 = L2

i′3 = L3

i′n = Ln

¬(g1(i1, H1))

g1(i1, H1):¬(g2(i2, H2)):

g2(i2, H2)):¬(g3(i3, H3)):

g3(i3, H3):
¬(gn(in, Hn))

gn(in, Hn):

S(i1, . . . , in);

i′1 = i1++;

i′2 = i2++;

i′n = in++

Figure 3.1: transition system with n nested loops

where H is a constant and i is the index variable of the loop.

The vector ~i = (i1, . . . , in) of index variables changes in the different
iterations of the loops in the domain I = {(L1, . . . , Ln), . . . , (H1, . . . ,Hn)},
where H1, . . . ,Hn are the constants of the guards and L1, . . . , Ln are the
initial values of the index variables. If the loop guard always evaluates to
true, set I is infinite. On set I we define a total ordering ≺I .

Definition 3.1. ≺I is a total ordering over all ~i ∈ I, i.e. ~io ≺I
~i1 ≺I . . ..

On this order the functions ++ : I 7→ I and −− : I 7→ I are defined in
postfix notation as:

~i′ =~i + + iff ~i ≺I
~i′∧ 6 ∃~i′′ ∈ I.~i ≺I

~i′′ ≺I
~i′.

~i′ =~i −− iff ~i′ ≺I
~i∧ 6 ∃~i′′ ∈ I.~i′ ≺I

~i′′ ≺I
~i.

For n nested loops ≺I is an ascending, lexicographic total ordering, i.e.
≺I=<lex.

This description of n nested loops can be combined to a definition for a
general loop:

14
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Definition 3.2. A general loop L(I,≺I , S(~i)) in a transition system
T (V,O,Θ, ρ) that starts in state s0 is defined as follows.
Let l0 be the value of control variable l in state s0, i.e. s0[l] = l0. It holds
the following:

1. s0 |=~i =~i0

2. ∃s1, . . . , sn, sn+1.s0, s1, . . . , sn is a path fragment in T with sn[l] = l0
and

(i) locl0 →
g1:a1(~i) locs1[l] ∧

(ii) locsn−1[l] →gn:an(~i);~i′=~i++ locl0 ∧

(iii) locl0 ,→¬g1:an+1
locsn+1[l]

with ~i0 ≺I
~i1 ≺I . . . ≺I

~iN and g1 :=~i �I
~iN

Location locl0 is also called the starting location of the loop.
Statement ~i =~i0 is called initialization statement.
The dimension of ~i (= dim(~i)) denotes the number of nested loops in L.

The first item says that the index vector has to be initialized right before
the loop is entered, i.e. that state s0 satisfies ~i =~i0. Item 2 guarantees that
there is a circle starting in locl0 and that there have to be two transitions
leaving locl0 where the guard and the negated guard (the abort condition of
the loop) are checked. Item 2 also states that the index vector is incremented
at the end of each loop cycle. Note that if the guard always evaluates to
true the transition that is labeled with the negated guard (which is false)
can just be omitted. The structure of a general loop is depicted in Figure
3.2.

Definition 3.3. The execution of loop L with L = (I,≺I , S(~i)) is:

π(L) : S(~i0), S(~i1), . . . , S(~iN )

For observing the execution of a loop, the loop body is instantiated with
each ~i ∈ I. Hence, a loop can be serialized by observing its execution.

Definition 3.4. A loop L1 with starting location loclp is directly followed
by a loop L2 with starting location loclq if there exist the following transitions
in the transition system:

loclk →g:i′=i0 loclp →¬gn:j′=j0 loclq

where gn is the abort condition, i.e. the loop guard of L1, and g is an
arbitrary guard.

From the definition of general loops follows the general definition for
compiler loop transformations.

15
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L:

¬(~i �I
~iN): an+1 ~i′ =~i++

gn : an(~i);

g0 : a0;

(~i �I
~iN): a1(~i)

~i′ =~i0

locl0

locs1[l]

locsn−1[l]

locsn+1[l]

Figure 3.2: A general loop as defined in Definition 3.2.

Definition 3.5. In general, a compiler loop transformation has the
form:

L(I,≺I , S(~i)) =⇒T LT (J ,≺J , S′(~j))

where S′(~j) is the transformed loop body that depends on loop index ~j.

After applying a loop transformation, one can obtain the following changes:

1. Change of π(L): After applying the transformation, the statements
are executed in a different order. This is caused by

• Change of total ordering ≺I

• Change of set I

• Change of loop body S(~i)

2. Change of index vector ~i = (i1, . . . , in). This is caused by:

• Change of loop order, i.e. if nested loops are switched

• Loop insertion/removal

3.1.2 Dependences between Statements

The statements of a transition system can be pairwise related. For example,
there is a relation between a statement a1 that writes to a variable x and a
statement a2 that later reads x, i.e. a2 is dependent on a1. The possibilities
for dependences between statements a1 and a2 are the following (confer
[AK02]):

16
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• Data dependence: There is a data dependence from a2 to a1 iff both
statements access the same variable and at least one of them writes to
it and if there is a path fragment in the transition system that connects
a1 and a2. The following data dependences can be distinguished:

– a2 is truely dependent on a1: a1 writes to a variable x and a2

reads afterwards the value of x.

– a2 is antidependent on a1: a1 reads the value of a variable x before
a2 writes to x.

– a2 is output dependent on a1: First a1 writes to a variable x and
afterwards a2 writes to x.

– a2 is input dependent on a1: First a1 reads the value of a variable
x and afterwards a2 reads x. This is not a true dependence.

– a1 is observable dependent on a2: a1 and a2 both write to an
observable variable.

• Control dependence: These are all dependences that arise because of
the control flow of the program. a2 is control dependent on a1 if the
execution of a2 depends on the result of a1, i.e. a2 is conditionally
guarded by a1. Confer example 3.1.

For loops we can distinguish the following two dependences:

• a2 has a loop-carried dependence on a1: There is a data dependence
between statement a2 of the loop body in iteration i and statement
a1 of the loop body in iteration i-1. That is a2(~i) is dependent on
a1(~i −−). A loop-carried dependence can be

– forward dependent: a2 appears after a1 in the loop body.

– backward dependent: a2 appears before a1 in the loop body or a1

and a2 are the same statement. Confer example 3.2.

• loop-independent dependence: Data dependences between statements
of the loop body that are not carried by the loop.

Example 3.1. Figure 3.3 shows the control dependence of statement a2 :=
(r′ = r/x) and statement a1 := ¬(x == 0). a2 is control dependent on a1

because if x is equal to 0 statement a2 would not be executed.

Example 3.2. Figure 3.4 shows a loop-carried backward dependence of
statement a1 := (b(i + 1) = b(i) + e) and itself since b(i + 1) in iteration i
depends on the result of iteration i − 1 (where b(i) was computed).
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¬(x == 0):

x == 0:

r′ = r/x

x′ = x;r′ = r

Figure 3.3: Control dependence between a2 and a1.

i′ = i0
i ≤ iN :

¬(i ≤ iN)

i′ = i++
b(i + 1) = b(i) + e;

Figure 3.4: Loop-carried backward dependence between a1 and itself.

Applying a transformation on a transition system can change the order
of the execution of the statements. That means, before applying a transfor-
mation, the dependences between all pairs of statements have to be checked
and it has to be taken care that these dependences are preserved by the
transformation. Otherwise, the observable behavior of the transition sys-
tem is changed. This is stated in the following theorem, a slightly changed
version of the theorem in [AK02].

Theorem 3.1. Any transformation T that reorders statements while pre-
serving every dependence in a transition system T , preserves the traces of
that transition system.

Proof of Theorem 3.1. This proof is based on transition systems with a lin-
ear structure. Since transition systems can contain loops, we have to con-
sider the execution of each loop, i.e. the loop body is instantiated with each
~i ∈ I. This yields a linear sequence of statements.
Proof by contradiction: After applying a transformation that reorders state-
ments, all dependences between statements are preserved but the traces have
changed.
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Let a1; a2; ... be a sequence of statements in the order in which they are
executed in the transition system. This sequence induces the observable
computation s0, s1, s2, ... in the transition system with its respective trace
s0[O]s1[O]s2[O].... After applying a transformation that reorders statements
we obtain a new sequence of statements b1; b2; . . . which is a permutation
of a1; a2; . . . and induces the observable computation t0, t1, ... with trace
t0[O]t1[O]t2[O] . . .. Since by assumption the trace has changed, there is a
smallest k such that tk[O] and sk[O] are different. Let am be the statement
that results in the observable variable assignment of sk[O], and let bl be the
statement that results in the observable variable assignment of tk[O]. Since
sk and tk are states in the observable computation, am and bl write both to
an observable variable. There are the following possibilities why tk[O] and
sk[O] can be different:

• bl was originally executed after am but was inserted by the trans-
formation before am: That means bl and am were switched by the
transformation. But this is a contradiction to the assumption that the
dependences are preserved, since bl and am both write to an observable
and thus are observable dependent.

• bl was originally executed before am but was moved by the trans-
formation behind am: That means bl and am were switched by the
transformation. But this is a contradiction to the assumption that the
dependences are preserved, since bl and am both contain an observable
and thus are observable dependent.

If am and bl are the same statement, nevertheless, tk[O] and sk[O] can be
different:

• A statement bi that originally writes to a non-observable variable y
before bl reads it, now writes to y after bl reads it. But this is a
contradiction to the assumption that the dependences are preserved,
since true dependence between bi and bl is not preserved.

• A statement bi that originally writes to a non-observable variable y
after bl reads it, now writes to y before bl reads it. But this is a
contradiction to the assumption that the dependences are preserved,
since antidependence between bl and bi is not preserved.

• bl and am read a non-observable variable y that has different values
when read by bl and am, respectively. That bl reads a “wrong” value
of y can happen because:

– Two statements bi and bj that both write to y before bl reads
it, were switched by the transformation. But this is a contradic-
tion to the assumption that the dependences are preserved, since
output dependence between bi and bj is not preserved.
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– A statement bi that writes to y before bl reads it, reads originally
a non-observable variable x before a statement bj writes to x.
If bi and bj are switched, bi reads x after bj writes to it, which
produces a different result for y. But this is a contradiction to
the assumption that the dependences are preserved, since anti
dependence between bi and bj is not preserved.

– A statement bi that writes to y before bl reads it, reads originally
a non-observable variable x after statement bj writes to x. If
bi and bj are switched, bi reads x before bj writes to it, which
produces a different result for y. But this is a contradiction to
the assumption that the dependences are preserved, since true
dependence between bi and bj is not preserved.

Note, that a “wrong” result after switching two dependent statements
bi and bj can also be propagated until it is read by bl, i.e. bl has not to
read directly the wrong result produced by bi and bj . But these cases
are analog to the last three cases.

These cases exhaust the way the traces can differ. Since all cases lead to a
contradiction the theorem was proven.

Definition 3.6. A transformation is called valid for a transition system T
if it preserves all dependences of T .

We use theorem 3.1 to show under which conditions two statements are
permutable.

Definition 3.7. Two statements a1 and a2 are permutable, denoted
a1; a2 ∼ a2; a1, if a1 is executed before a2 results in the same traces as exe-
cuting them vice versa.
R is the set of permutable statements, i.e.

(a1, a2) ∈ R ⇔ a1; a2 ∼ a2; a1

This definition can also expanded for a block of statements.

Definition 3.8. Let S1(~i1), S2(~i2) be two loop bodies, i.e. two blocks of
statements.

(S1(~i1), S2(~i2)) ∈ R ⇔ ∀a1 ∈ S1, a2 ∈ S2 : (a1, a2) ∈ R

Theorem 3.2. Two statements a1 and a2 are permutable if

(i) they are neither antidependent, true dependent nor output dependent
on each other

(ii) they contain no observables, i.e. they are not observable dependent on
each other.

Proof of Theorem 3.2. This follows directly from theorem 3.1.
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3.2 The considered Compiler Transformations

In this section the considered compiler transformations are presented and
formally defined. It is distinguished between structure-preserving and struc-
ture-modifying transformations. Since structure-modifying transformations
are of more interest for solving the task of finding a refinement mapping
than structure-preserving transformations, the focus of this thesis is set on
the former.

3.2.1 Structure-Preserving Transformations

The following compiler transformations do not change the linear structure
of the transition system, i.e. they do not change the branching structure or
loop structure. Thus, they are called structure-preserving transformations.

Sequential Transition Refinement The transformation Tstr splits a
transition into several new transitions.

Definition 3.9. Let a be a statement. Thus, there is the following transition
in the transition system: locli →g1:a loclj , and the data transformation of
a can be also computed by execution of several other statements a1 . . . an.
After applying Tstr we obtain the following transitions:
locli →g1:a1

locl′i
→true:a2

locl′′i
. . . →true:ak

︸ ︷︷ ︸

→g1:a1

loclj .

Confer Figure 3.5 for an example.

locli

loclj

g1 : x′ = x + 3;

locli

loclj

locl′i

g1 : x′ = x + 1;

true: x′ = x + 2;

(a) (b)

Figure 3.5: Application of transformation Tstr to statement x′ = x + 3.
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Reordering of Statements The transformation TreordS changes the or-
der of statements in the transition system without inserting or deleting any
transition.

Definition 3.10. Let a1 and a2 be two statements that lie next to each
other. Thus, there are the following transitions in the transition system:
locli →g1:a1

loclj →true:a2
loclk , where loclj and loclk must not be a starting

location of a loop. After applying TreordS we obtain the following transitions:
locli →g1:a2

loclk →true:a1
loclj .

From this definition follows that not only the transitions itself are changed,
but also its target locations. Confer Figure 3.6 for an example of TreordS.

locli

loclj

loclk

g1 : a1;

true: a2;

locli

loclj

loclk

g2 : a2;

true: a1;

(a) (b)

Figure 3.6: Application of transformation TreordS to a1 and a2.

Since the dependences between the statements that are switched have
to be preserved, the statements must not have a dependence, except input
dependence. This is stated in the following lemma.

Lemma 3.1. For two statements a1 and a2 TreordS is a valid transformation
if

(a1, a2) ∈ R

Note that the basic condition - TreordS can be applied if a1 and a2 lie
next to each other - has to be fulfilled in addition to this lemma.

3.2.2 Structure-Modifying Transformations

The transformations presented so far are structure preserving transforma-
tions. In the following the various compiler transformations for loops, which
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locli

loclj

~i′ =~i0

~i ≤~iN :

~i >~iN :

~i′ =~i++;

~j′ = ~j0

~j ≤ ~jN :

~j > ~jN

~j′ = ~j++;

S(~i);

T (~j);

L1

L2
locli

loclj

~i′ =~i0

~i ≤~iN :

~i >~iN

~i′ =~i++;

~j′ = ~j0
~j ≤ ~jN :

~j > ~jN :

~j′ = ~j++;

S(~i);

T (~j);

L1

L2

(a) (b)

Figure 3.7: Application of transformation Treordl to L1 and L2.

are structure-modifying transformations, are explained. The illustrations of
the transition systems in this section show the change of the loop structure
and statement structure, respectively.

Loop reordering The transformation TreordL on loops is analog to trans-
formation TreordS for statements. But instead of switching two statements,
TreordL switches two loops.

Definition 3.11. Let L1(I,≺I , S(~i)) and L2(J ,≺J , T (~j)) be two loops with
starting locations locli and loclj , respectively, and L1 is directly followed by
L2. After applying transformation TreordL, loops L1 and L2 are switched
such that now L2 is directly followed by L1.

Note that the starting locations of the loops are also switched. Confer
Figure 3.7 for an illustration.

Since after application of TreordL the loop body of L2 is executed before
the loop body of L1, there has to be a check for dependences between all
statements in the loop body of L1 with all statements in the loop body of
L2. This is stated in the following lemma.

Lemma 3.2. For two loops L1(I,≺I , S(~i)) and L2(J ,≺J , S2(~j)) Treordl is
a valid transformation if

(i) the basic condition holds, i.e. L1 is directly followed by L2,

(ii) ∀il ∈ I : (a, S(il)) ∈ R, where a is the initialization statement of L2,
i.e. a := j′ = j0, and
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(iii) ∀~il ∈ I, jm ∈ J : (S(~il), T (~jm)) ∈ R.

Note that loop-carried dependences are preserved by this transformation
since the execution of both loops is not influenced by this transformation.

Loop Fusion The transformation Tfus is the converse of transformation
Tdst. Two loops that range over the same index domain are combined to
one loop. Figure 3.8 shows the transformation loop fusion.

~i′ =~i0

~i′ =~i0

¬(~i ≤~iN)

¬(~i ≤~iN):

~i ≤~iN :

~i ≤~iN :

S1(~i);

S2(~i);

~i′ =~i++

~i′ =~i++

~i′ =~i0

¬(~i ≤~iN)

~i ≤~iN :

S1(~i);

S2(~i);
~i′ =~i++

(a) (b)

Figure 3.8: Loop fusion: a) source transition system, b) target transition
system,
Loop Distribution: a) target transition system, b) source transition system

Definition 3.12. Let L1(I1,≺I1
, S1(~i)) and L2(I2,≺I2

, S2(~i
′)) be two loops

with I1 = I2 = {~i0, . . . ,~iN} and index ~i ∈ I1 and ~i′ ∈ I2. The total
orderings are defined as ≺I1

=≺I2
with ~i0 ≺I1

~i1 ≺I1
. . . ≺I1

~iN . After
applying Tfus we obtain Lfus(J , ≺J , S(~j)) with index ~j ∈ J := I1, a

total ordering ≺J :=≺I1
with ~j0 ≺J

~j1 ≺J . . . ≺J
~jN , and the loop body

S(~j) := S1(~j);S2(~j).

In order to apply Tfus, L1 has to be directly followed by L2 and the
index range and the total ordering of L1 and L2 have to be the same (basic
condition). After applying Tfus, the index range J with the ordering ≺J

of Lfus is: J = I1 = I2 and ≺J =≺I1
=≺I2

. The loop body of Lfus is
the concatenation of the loop body of L1 and the loop body of L2, i.e.
S(~j) = S1(~j);S2(~j).

If L1 is directly followed by L2 we obtain the following execution: i′ =
i0, S1(~i0), . . ., S1(~iN ), i′ = i0, S2(~i0), . . ., S2(~iN ). After applying Tfus we ob-

tain π(Lfus) : S1(~i0), S2(~i0), . . . , S1(~iN ), S2(~iN ). Since the statement blocks
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are reordered, the dependences have to be checked. In order to apply Tfus

the following lemma has to hold.

Lemma 3.3. For two loops L1(I,≺I , S1(~i)) and L2(I,≺I , S2(~i)) Tfus is a
valid transformation if L1 is directly followed by L2 and

∀~il,~im ∈ I : ~i0 �I
~il ≺I

~im ≺I
~iN =⇒ (S1(~im), S2(~il)) ∈ R

This lemma states that we only have to check for dependences between
statements of block S1(~im) with statements of block S2(~il) where ~il ≺I

~im.
All other pairs of statement blocks preserve their dependences, e.g. loop-
carried dependences are preserved. This is shown in Figure 3.9, where S1(~i)
is the loop body of L1 and S2(~i) is the loop body of L2 with~i ∈ I = {0, 1, 2}.
If two lines intersect, the statement pairs have to be permutable.

π(L1, L2) π(Lfus)

S(0)
T(0)
S(1)
T(1)
S(2)
T(2)

S(0)
S(1)
S(2)
T(0)
T(1)
T(2)

Figure 3.9: Reordering of statement blocks for Tfus.

Proof of Lemma 3.3. In order to verify lemma 3.3, one can distinguish be-
tween four cases:

Case 1 Dependences between S1(~im) and S1(~il) ∀im, il ∈ I are preserved
(the red lines do not intersect with each other): Since the total
ordering ≺I has not changed after applying Tfus, S1(~im) and S1(~il)
are not swapped in the execution. Hence, the dependences don’t
have to be checked.

Case 2 Dependences between S2(~im) and S2(~il) ∀im, il ∈ I are preserved
(the blue lines do not intersect with each other): This case is analog
to case 1.

Case 3 Dependences between S1(~im) and S2(~il) ∀im, il ∈ I with im �I il
are preserved: In the original loops (L1 and L2), S is executed for
all ~i ∈ I before S2 is executed, i.e. this holds for S1(im) and S2(il).
Obviously, in Lfus S1(im) is also executed before S2(il) ∀im �I il.

Case 4 Dependences between S1(~im) and S2(~il) ∀im, il ∈ I with il ≺I im
are not preserved (the intersecting lines): In the original loops (L1

and L2), S is executed for all ~i ∈ I before S2 is executed, i.e. this
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holds for S1(im) and S2(il). However, in Lfus S1(im) is executed af-
ter S2(il). Hence, S1(im) and S2(il) are reordered and dependences
have to be checked.

Loop Distribution The transformation Tdst is the converse of transfor-
mation Tfus. Tdst splits the loop body into two parts and introduces two
new loops, one for each loop body part, with the same index range. This
is depicted in Figure 3.8, where b) is the source transition system and a) is
the target transition system.

Definition 3.13. Let L(I,≺I , S(~i)) be a loop with index~i ∈ I = {~i0, . . . ,~iN},
a total ordering ≺I with ~i0 ≺I

~i1 ≺I . . . ≺I
~iN , and the loop body S(~i) =

S1(~i);S2(~i). After applying Tdst we obtain two loops Ldst,1(J1, ≺J1
, S1(~j))

and Ldst,2(J2, ≺J2
, S2(~j

′)) with index ~j,~j′ ∈ J1 = J2 = I = {~j0, . . . ,~jN}.
The total orderings are defined as ≺J1

=≺J2
=≺I with ~j0 ≺J1

~j1 ≺J1
. . . ≺J1

~jN .

The basic condition that has to hold in order to apply Tdst is that the
loop body S can be split in two parts, i.e. in S1 and S2. Since Tdst is the
same transformation as Tfus only in the reverse direction, lemma 3.3 has
also to hold for Tdst with the same explanations as above.

Lemma 3.4. For a loop L(I,≺I , S(~i) := S1(~i);S2(~i)) Tdst is a valid trans-
formation if

∀~il,~im ∈ I : ~i0 �I
~il ≺I

~im ≺I
~iN =⇒ (S1(~im), S2(~il)) ∈ R

From this lemma follows that if there is no loop-carried backward de-
pendence of S1 on S2 the transformation can be applied safely.

Loop Unrolling The transformation Tunr(k) reduces the number of loop
iterations by replicating the loop body. The parameter k is a natural number
that denotes how often the loop body is replicated. Since the loop body is
replicated, the number of iterations gets less. Figure 3.10 shows source
transition system and target transition system where loop unrolling with
parameter k has been applied.

Definition 3.14. Let L(I,≺I , S(~i)) be a loop with index ~i ∈ I, a total
ordering ≺I, and the loop body S(~i). Let k be a natural number. After
applying Tunr(k) we obtain Lunr(J , ≺J , S′(~j)) with index ~j ∈ J = I, a
total ordering ≺J :=≺I , and the loop body
S′(~j) := S(~j);S(~j++); . . . ;S(((~j ++) . . .)++

︸ ︷︷ ︸

k−times

); ((~j ++) . . .)++
︸ ︷︷ ︸

k−times

.
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replacemen ~i′ =~i0

~i ≤~iN :

S(~i);

~i′ =~i++

¬(~i ≤~iN): a

...

~i′ =~i0
~i ≤~iN :

S(~i);

S(~i++);

S((~i++)++);

~i′ = ~((i++)...++)
¬(~i ≤~iN): a

k − times

k − times

(a) (b)

Figure 3.10: Loop Unrolling: a) source transition system, b) target transition
system

Hence, loop Lunr has k times less iterations than loop L since the loop
body is executed in each iteration of Lunr exactly k times. If k is chosen
as 1, Lunr is the same loop as the original loop L. Note that if k does not
fulfill |I| mod k = 0, the loop body is executed too often and a backtrack
has to be done, i.e. the last execution of the loop body is revoked and the
loop body S(~j) is executed one by one until ~j reaches ~jN .

When applying Tunr(k), the order of the execution of the statements in
Lunr and L is the same, i.e. π(Lunr) = π(L). Therefore, all dependences
are preserved by this transformation and Tunr(k) can always be applied.

Loop Reversal The transformation Trev reverses the range of the index
variable while not changing the loop body. Transformation Trev is depicted
in Figure 3.11.

~i′ =~i0

S(~i);
~i′ =~i++

¬(~i ≤~iN): a

~i ≤~iN :

~i′ =~iN

S(~i);
~i′ =~i −−

~i ≥~i0:

¬(~i ≥~i0): a

(a) (b)

Figure 3.11: Loop Reversal: a) source transition system, b) target transition
system
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Definition 3.15. Let L(I,≺I , S(~i)) be a loop with index~i ∈ I = {~i0, . . . ,~iN},
a total ordering ≺I with ~i0 ≺I

~i1 ≺I . . . ≺I
~iN , and the loop body S(~i).

After applying Trev we obtain Lrev(J , ≺J , S(~j)) with index ~j ∈ J =
{~j0, . . . ,~jN} = I, a total ordering ≺J :=≺−1

I with ~jN ≺J
~jN−1 ≺J . . . ≺J

~j0, and the loop body S(~j).

It can be seen easily that for loop reversal the index domain does not
change. Since the index is reversed, the new total ordering ≺J has to be
reversed also. Hence, ≺J :=≺−1

I . In L the statements are executed in the or-

der S(~i1), . . . , S(~iN ) whereas in Lrev the order is reversed: S(~jN ), . . . , S(~j1).
Hence, if S(~il) is executed before S(~im) in L then S(~im) is executed be-
fore S(~il) in Lrev and the dependences between S(~im) and S(~il) need to
be preserved under reordering. Loop-independent dependences are always
preserved under Trev. Hence, in order to apply Trev the following lemma has
to hold.

Lemma 3.5. For a loop L(I,≺I , S(~i)) Trev is a valid transformation if

∀~il,~im ∈ I : ~il ≺I
~im =⇒ (S(~il), S(~im)) ∈ R

This lemma states that Trev is a valid transformation if there are no
loop-carried dependences.

Loop Interchange The transformation Ticg changes the nesting order of
multiple loops. Transformation Ticg is depicted in Figure 3.12.

Definition 3.16. Let L(I,≺I , S(~i)) be a loop with index ~i = (~i1,~i2) ∈
I1 × I2 =: I. Forall k ∈ {1, 2}, let Ik = {~ik,0, . . . ,~ik,N} and ≺Ik

a total

ordering on Ik with ~ik,0 ≺Ik
~ik,1 ≺Ik

. . . ≺Ik
~ik,N . The total ordering ≺I is

then defined as (~i1,~i2) ≺I (~i′1,~i
′
2) iff ~i1 ≺I1

~i′1 ∨ (~i1 =I
~i′1 ∧~i2 ≺I2

~i′2). The
loop body is S(~i) = S(~i1,~i2).

After applying Ticg we obtain Licg(J , ≺J , S(~j2,~j1)) with loop index
~j = (~j1,~j2) ∈ I2 × I1 := J , total ordering ≺J with (~j1,~j2) ≺J (~j′1,

~j′2) iff
(~j2,~j1) ≺I (~j′2,

~j′1), and loop body S(~j2,~j1).

The index vector ~i is split into two parts (~i1,~i2). The total ordering ≺I

orders these index pairs lexicographically with ≺I1
is a total ordering on

the first component of the pair and ≺I2
is a total ordering on the second

component. Hence, L can be regarded as two nested loops L1 and L2 with
L1(I1,≺I1

, L2) and L2(I2,≺I2
, S(~i1,~i2)). We obtain the following execution:

S(~i1,0,~i2,0), . . ., S(~i1,0,~i2,N ), S(~i1,1,~i2,0), . . ., S(~i1,1,~i2,N ), . . ., S(~i1,N ,~i2,0),
. . ., S(~i1,N ,~i2,N ).

Ticg interchanges the nesting order of L1 and L2, i.e. L2 is now the outer
loop and L1 is the inner loop. Since the loop body remains the same we ob-
tain the execution: S(~i1,0,~i2,0), . . ., S(~i1,N ,~i2,0), S(~i1,0,~i2,1), . . ., S(~i1,N ,~i2,1),
. . ., S(~i1,0,~i2,N ), . . ., S(~i1,N ,~i2,N ).
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(~i′1,~i
′
2) = (~i1,0,~i2,0)

~i1 ≤~i1,N :

~i2 ≤~i2,N :

~i′2 =~i2,0

S(~i1,~i2);
~i′1 =~i1++

~i′2 =~i2++

¬(~i1 ≤~i1,N)

¬(~i2 ≤~i2,N):

(~i′1,~i
′
2) = (~i1,0,~i2,0)

~i1 ≤~i1,N :

~i2 ≤~i2,N :

~i′1 =~i1,0

S(~i1,~i2);

~i′1 =~i1++

~i′2 =~i2++

¬(~i2 ≤~i2,N)

¬(~i1 ≤~i1,N):

(a) (b)

Figure 3.12: The transformation loop interchange: a) source transition sys-
tem, b) target transition system

Since some statements are permuted, in order to apply Ticg the following
lemma has to hold.

Lemma 3.6. For a loop L(I1 ×I2,≺I , S(~i1,~i2)) Ticg is a valid transforma-
tion if

∀(~i1,~i2), (~k1, ~k2) ∈ I : ~i1 ≺I1
~k1 ∧ ~k2 ≺I2

~i2 =⇒ (S(~i1,~i2), S(~k1, ~k2)) ∈ R

Figure 3.13 shows this lemma graphically for I1 = I2 = {0, 1, 2}. If two
lines intersect, the order of the respective statements has changed and thus
they have to be permutable.

π(L) π(Licg)

S(0,0)
S(0,1)
S(0,2)
S(1,0)
S(1,1)

S(0,0)
S(1,0)
S(2,0)
S(0,1)
S(1,1)

S(1,2)
S(2,0)
S(2,1)
S(2,2)

S(2,1)
S(0,2)
S(1,2)
S(2,2)

Figure 3.13: Reordering of statement blocks for Ticg.
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Proof of lemma 3.6. In order to verify lemma 3.6, four cases have to be
checked. Figure 3.13 illustrates them.

Case 1 Dependences between S(~i1,~i2) and S(~k1, ~k2) are preserved if ~i1 =I1

~k1 (lines of the same color do not intersect): trivial

Case 2 Dependences between S(~i1,~i2) and S(~k1, ~k2) are preserved if ~i2 =I2

~k2: trivial

Case 3 Dependences between S(~i1,~i2) and S(~k1, ~k2) are preserved if w.l.o.g.
~i1 ≺I1

~k1∧~i2 ≺I2
~k2: From the assumption follows with definition of

≺I that (~i1,~i2) ≺I (~k1, ~k2). Thus we have to show that (~i1,~i2) ≺J

(~k1, ~k2). By definition of ≺J we obtain (~i2,~i1) ≺I (~k2, ~k1). Since by
assumption ~i2 ≺I2

~k2, (~i1,~i2) ≺J (~k1, ~k2) holds. Thus, S(~i1,~i2) and
S(~k1, ~k2)) are not permuted and thus dependences are preserved.

Case 4 Dependences between S(~i1,~i2) and S(~k1, ~k2) are not preserved if
w.l.o.g. ~i1 ≺I1

~k1 ∧ ~k2 ≺I2
~i2: From the assumption follows with

definition of ≺I that (~i1,~i2) ≺I (~k1, ~k2). Thus we have to show
that (~i1,~i2) ≺J (~k1, ~k2). By definition of ≺J we obtain (~i2,~i1) ≺I

(~k2, ~k1). Since by assumption ~k2 ≺I2
~i2, (~i1,~i2) 6≺J (~k1, ~k2). Thus,

S(~i1,~i2) and S(~k1, ~k2)) are permuted and thus dependences have to
be checked.

3.3 Parameters for Transformations

For each transformation, parameters are chosen such that the transformation
for a transition system is described uniquely. The loops of the transition
system are identified by a unique loop name. How to choose these loop
names is shown in the next chapter. For now, it suffices to choose the loop
names as natural numbers.

• Loop Fusion (Tfus, loop1, loop2): Loop with name loop1 is fused with
loop with name loop2.

• Loop Reversal (Trev, loop1): Loop with name loop1 is reversed.

• Loop Distribution (Tdst, loop1, loc1): loop1 is split behind location loc1
(loc1 is a location of the loop body of loop1). loc1 is also called split
location.

• Loop Reordering (TreordL, loop1, loop2): loop1 and loop2 are switched.

• Reordering of Statements (TreordS, loc1, loc2): Analog to the defini-
tion of TreordS, loc1 and loc2 (together with their incoming edges) are
switched by this transformation.
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• Loop unrolling (Tunr, loop1, k): loop1 is unrolled k − times.

The first parameter of each transformation is called the type of the trans-
formation. In this chapter we consider transformations of type Tfus, Tdst,
TreordL, TreordS, Tunr, and Trev. If the parameters are of less importance, we
just write the type of the transformation as an abbreviation for the whole
transformation with arbitrary parameters.

3.4 Classification of Compiler Transformations

In practice, a compiler applies not only one, but several transformations -
one after another - to a transition system. The application of a compiler
transformation affects the set of applicable transformations, e.g. if a loop L
is reversed, its index range is reversed and thus loop fusion may be enabled.
An effect that can also occur when applying more than one transformation,
is that the transformations may erase each other, i.e. transition system T is
obtained again after applying two transformations that erase each other on
T . An example for this is the application of loop fusion and afterwards loop
distribution on the same loop. In this section the compiler transformations
that were presented above are classified by the effects they have on each
other. Note, that this leads not to disjunctive sets of transformations.

3.4.1 Definitions and Notation

Definition 3.17. A transformation chain B is a finite sequence of trans-
formations T1, . . . ,Tn, i.e. B = T1;T2; . . . ;Tn.

To denote that a transformation T is applied to transition system T ,
we write T [T ]. According to this definition we can define T [B], where B =
T1;B

′ is a transformation chain: First T1 is applied to T yielding transition
system T ′, and afterwards B′ is applied recursively to T ′ (until B′ is empty).

To denote that a transformation (T , p1, . . . , pn) produces new loops
(l1, . . . , ln), we write (T , p1, . . . , pn) → (l1, . . . , ln), where l1, . . . , ln are the
loop names of the new loops. For example (Tfus, L1, L2) → L3.

3.4.2 Enabling Transformations

The transformations of this type may enable other transformations that were
not possible before. That means the order in which they are applied to a
transition system is important.

Definition 3.18. A transformation T1 is called a candidate transforma-
tion for a transition system T iff all basic conditions of T1 hold.

That means, a candidate transformation is a valid transformation if all
dependences are preserved.
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Definition 3.19. Let T be a transition system. Transformation T1 enables
T2 if T2 is not a candidate transformation for T , but for T [T1].

The following transformations enable others:

• Tfus enables Tdst: After fusion of two loops, the resulting loop can be
again distributed.

• Tfus enables TreordS: After fusion of two loops, statements that were
not in the same loop body before can be reordered.

• Trev enables Trev: A loop that was just reversed can be reversed again.

• Trev enables Tfus: After reversing a loop, its index range has changed.
Therefore fusion transformations could be enabled.

• Tdst enables Tfus: After a loop is distributed, the resulting two loops
can be fused again.

• Tdst enables Trev: The loop body of a loop can consist of a part that is
reversible and a part that is not reversible. That means, if the loop is
distributed, loop reversal can be applied to one of the resulting loops.

• Tdst enables TreordL: Here the same argument holds as for Tdst enables
Trev.

• TreordS enables Tdst: The statements in the loop body can be reordered
such that distribution is possible.

• TreordS enables TreordS: If two statements are switched, exactly these
two statements can be reordered again or two statements that are now
new neighbors can be also switched.

• TreordL enables Tfus: After reordering there are new neighboring loops
which can be fused.

• TreordL enables TreordL: Here holds the same argument as for TreordS

enables TreordS, only for loops instead of statements.

• Tunr enables Tfus: Since transformation Tunr changes the number of
loop iterations, Tfus is enabled.

• Tunr enables Tdst: Since transformation Tunr changes the loop body by
replicating the original one, Tdst is enabled.

• Tunr enables TreordS: Since transformation Tunr changes the loop body
by replicating the original one, TreordS is enabled.
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3.4.3 Inverse Transformations

This class of transformations contains all pairs of transformations that erase
each other, i.e. the same transition system is obtained as applying none of
these two transformations.

Definition 3.20. Let T be a transition system. Transformation T2 erases
T1 iff T [T1;T2] = T .
We also say that T2 is the inverse of T1.

The following transformations erase each other:

• (Tfus,Tdst): Fusing two loops and again distributing the resulting loop
yields the same transition system as applying none of them. The
reverse also holds: If a loop is distributed and the resulting loops are
again fused, the original transition system is obtained.

• (Trev,Trev): Reversing the same loop two times yields the original loop.

• (TreordS,TreordS): If the same two statements that were switched be-
fore are switched again, this results in the same transition system as
applying none of these transformations.

• (TreordL,TreordL): Here the same argument holds as for TreordS .

Note that Tunr has no inverse transformation.

3.4.4 Commutative Transformations

The pairs of transformations presented here are commutative. That means,
the order of applying them to a transition system is not essential, i.e. if T1

is applied before T2 the same transition system T can be found as applying
them vice versa.

Definition 3.21. Let T be a transition system and T1 and T2 are valid
transformations for T . Transformation T1 is weak commutative to T2 iff
there exists a transformation T3 ∈ {T1,T2} such that

T [T1;T2] = T [T2;T3;T1].

Transformation T1 is commutative to T2 iff

T [T1;T2] = T [T2;T1].

Note that commutativity implies weak commutativity.
In the following, pairs of transformations (T1,T2) that are commutative

or weak commutative are presented. Confer also table 3.1 for an overview.

• (Tfus,Tfus): It does not matter in which order loops are fused.

33



Chapter 3 Compiler Transformations

T1 T2

Tfus Trev Tdst TreordS TreordL Tunr

Tfus C W X E,C W -

Trev E,W X W C C C

Tdst X E,W C C E -

TreordS C C E,C X C -

TreordL E,W C W C X C

Tunr E C E E C -

Table 3.1: Commutative (C), Weak commutative (W), Erasing (X), and
Enabling (E) transformations.

• (Tfus,Trev): Fusing two loops L1 and L2 and afterwards reversing the
resulting loop yields the same transition system as reversing L1 and
L2 an afterwards fusing them.

• (Tfus,TreordL): Fusing two loops L1 and L2 and afterwards reorder the
resulting loop with L3 yields the same transition system as reordering
L2 with L3 and afterwards L1 with L3 and afterwards fusing L1 and
L2.

• (Trev,Tdst): Reversing a loop L and distributing the resulting loop
yields the same as distributing L and afterwards reversing each of the
resulting loops.

• (Tdst,Tdst): Distributing a loop two times yields 3 loops. The order in
which these loops are produced is not important.

• (Tunr,TreordL) and (TreordL,Tunr): Since TreordL does not influence the
loop body, Tunr can be done before or after TreordL.

Note that also all pairs of transformations are commutative, that do not
effect the same loops (or part) of the transition system, e.g. (Tdst, L1, loc1)
and (Tfus, L2, L3) are commutative.

The described relations between transformations (due to the classifica-
tion presented in the last sections) are presented in table 3.1.
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Finding a Refinement

Mapping

Based on the results of chapter 2 and chapter 3 an algorithm is presented
that checks whether one system is a correct translation of another. This
algorithm is shown to be correct and terminating.

4.1 Naive Algorithm

The task of the algorithm presented here is to find a refinement mapping
from a given target transition system to the given source transition system
if there exists one. Recall that a refinement mapping maps locations and
variables of the target program to locations and variables, respectively, of
the source program. If such a refinement mapping (with the properties
given in chapter 2) exists, the target transition system is proven to be a
correct translation of the source transition system, and thus, the compiler
was proven to be correct for this special input.

As we have seen, a compiler applies optimizing transformations during
the compilation process of the input transition system that can change the
whole structure of this system. Hence, the refinement mapping between
the source and target transition system can not be found directly. The
goal of the algorithm is to find a transformation chain B = T1; . . . ;Tn that
transforms the source transition system A into the target transition system
C, i.e. we have A →T1

A1 . . . →Tn An where An = C. Since we have already
shown that all transformations the compiler can apply preserve the traces
of the transition system (confer chapter 3), it holds that in order to prove
C ref A it suffices to show that C ref An. The following theorem follows
directly from theorem 3.1.

Theorem 4.1. Let A and C be two transition systems and C is the trans-
lated version of A. Let B = T1; . . . ;Tn be a transformation chain that trans-
forms A into C with A →T1

A1 . . . →Tn An. Then it holds
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A ≈ A1 ≈ . . . ≈ An−1 ≈ An ∧ C ref An ⇒ C ref A

where Ai ≈ Aj denotes that transition system Ai and transition system Aj

have the same traces, i.e. transformation Tj preserves all dependences.

Since the transformation chain transforms A to C, the refinement map-
ping between C and An is just the trivial refinement mapping that maps
locations and variables one-to-one. By finding this mapping and the trans-
formation chain, it is proven that C is a correct translation of A.

The naive algorithm for finding a transformation chain is based on
Breadth First Search (BFS). For now, we assume that the compiler has only
applied Trev, Tfus, Tdst, TreordS , and TreordL. All possible transformation
chains that can be applied to the input transition system A are established.
First, all transformation chains of length 1 are computed. If none of these
transformation chains produces C, the length is incremented by 1 and all
transformation chains of the new length are established. This is done until
C is found or until it can be excluded that C is a correct translation. If a
refinement mapping between C and some An could be found, the algorithm
terminates and outputs the computed transformation chain and the refine-
ment mapping between C and An. It is proven in the next section that the
algorithm is correct. In the case that C is not a correct translation of A, C
does not refine any An in the BFS tree and the algorithm outputs false. Later
it is shown that the algorithm terminates, i.e. that the number of different
An’s that can be produced by all transformation chains is finite. Compare
listings 4.1 and 4.2 where TS is an abbreviation for Transition System and
depth is a counter for the currently checked length of the transformation
chain. How maxdepth is computed is shown in the next paragraph.

Since the BFS tree grows exponentially (depending on the number of
allowed transformations), some optimizations to reduce the size of the BFS
tree are introduced later.

Computation of maxdepth

In this section it is shown how maxdepth can be computed. Recall that
maxdepth is a bound for the length of the transformation chains. Unfortu-
nately, a transformation chain can be infinitely long. Consider for example
the path consisting of an alternating sequence of loop fusion and loop dis-
tribution transformations on the same loops, or the path consisting just of
reversal transformations on the same loop. However, note that on such an
infinite path the same transition system occurs over and over again, i.e. at
some point a circle is reached.

Thus, instead of choosing maxdepth as the maximal length of a trans-
formation chain (which is infinite), we choose maxdepth as the maximal
length of a transformation chain where all produced transition system are
pairwise distinct. In other words, if transformation chain B which consists
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Input : Source t r a n s i t i o n system A , Target t r a n s i t i o n system C
Output : if C i s a c o r r e c t t r a n s l a t i o n o f A :

Transformation chain and r e f inement mapping .
Otherwise : output fa l se .

BFSTree tree ; // empty at the beg inn ing
// the nodes are TSs and
// the edges are l a b e l e d with the
// app l i e d t rans format ion

tree.root = A ; // the root o f tree i s s e t to A
int depth = 0 ; // current t r e e depth
int maxdepth = compute maxdepth ( ) ;
set N = emptyset ; // N i s the s e t o f a p p l i c a b l e

// t rans format ions
vector<TS> currentTS ; // the produced TSs

i f (C r e f A)
return ( r e f inement mapping + empty t rans fo rmat i on chain ) ;

// compi ler has app l i e d no trans format ion

while (depth <= maxdepth)
{

add a l l l e a v e s o f tree to currentTS ;
while ( ! ( currentTS . empty ( ) ) )
{

f i l l N (currentTS [ 0 ] ) ; //computes a l l v a l i d
// t rans format ions a p p l i c a b l e to
// currentTS [ 0 ]

f o ra l l t r ans fo rmat i ons T in N do
{

pick T o f N ;
remove T from N ;
TS nextA = apply T on currentTS [ 0 ] ;
add nextA to tree ; // nextA becomes c h i l d o f currentTS [ 0 ]
i f (C r e f nextA)

return ( r e f inement mapping + trans fo rmat i on chain ) ;
// a trans format ion chain , namely the
// path from the root node
// o f tree to nextA , was found

}
e r a s e f i r s t element o f currentTS ;

}
depth++;

}
return fa l se ; // no trans format ion chain was found

// such t ha t C r e f i n e s some An

Listing 4.1: Naive Algorithm
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f i l l N (TS T )
{

add a l l v a l i d t r ans fo rmat i ons for T to N ;
}

Listing 4.2: Procedure fill N

of maxdepth transformations, is applied to A, applying one more trans-
formation to A[B] would erase another transformation in B and thus, the
same transition system Ai as somewhere else in the BFS tree is obtained.
That means, Ai can be also obtained by a transformation chain shorter than
maxdepth. That means, we choose maxdepth in a way such that all possi-
ble An’s can be produced by transformation chains with length smaller than
maxdepth. Thus, we show that the number of all possible An’s is finite.

Therefore, the case that all transformations are applied sequentially to
every loop and every location of transition system A, is analyzed. Since each
of the considered transformation is the inverse of another transformation,
applying one more transformation would erase the other one and a shorter
transformation chain leading to the same transition system can be found.
Thus, applying a transformation chain that consists of more than maxdepth
transformations to A yields a transition system that already occurs some-
where else in the BFS tree and is also reachable by a transformation chain
with less than maxdepth transformations.

In the following we assume that at each transition there is only one
statement. maxdepth is dependent on the number of transformation types
the compiler applies, the number of loops, and the number of locations in the
transition system A. In the case that the compiler only applies Tdst, Tfus,
TreordL, TreordS, and Trev, we obtain the following bound for maxdepth:

maxdepth ≤ n∗(n−1)
2 Bound for TreordS

+ m∗b∗(m∗b−1)
2 Bound for TreordL

+ m ∗ b − 1 Bound for Tfus

+ m ∗ b Bound for Tdst

+ m ∗ b Bound for Trev

where m is the number of loops, n is the number of locations that are not
contained in a loop body, and b is the number of locations of the loop body
with the highest number of locations in the transition system.

Bound for Tdst Since each distribution transformation reduces the num-
ber of locations in the loop body, the number of Tdst is bounded. Let m be
the number of loops and b be the number of locations of the loop body of
the loop with the highest number of locations. In the worst case all loops
are distributed at all locations such that each resulting loop has just one
location in the loop body. Thus, we obtain
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maximal number of Tdst ≤ m ∗ b.

Bound for TreordL Let m be the number of loops and b be the number
of locations of the loop body of the loop with the highest number of lo-
cations. In the worst case all loops were distributed at each location and
afterwards they are all reordered. Since the number of loops produced by
loop distribution is m ∗ b we obtain

maximal number of TreordL ≤ (m∗b)∗(m∗b−1)
2 .

Bound for Trev Let m be the number of loops and b be the number of
locations of the loop body of the loop with the highest number of locations.
In the worst case all loops were distributed at each location and afterwards
they are all reversed. Since the number of loops produced by loop distribu-
tion is m ∗ b we obtain

maximal number of Trev ≤ m ∗ b.

Bound for Tfus Let m be the number of loops and b be the number of
locations of the loop body of the loop with the highest number of locations.
In the worst case all loops were distributed at each location and reordered.
Afterwards, they are all fused again. Since the number of loops produced
by loop distribution is m ∗ b we obtain

maximal number of Tfus ≤ m ∗ b − 1.

Bound for TreordS Let n be the number of locations that are not contained
in a loop body. We have to check for all possibilities they can be reordered.
In the case that the locations are arranged sequentially, i.e. there are no
branches, and that the order of the statements is reversed, the maximal
number of reordering transformations is obtained. Thus, each location has
to be switched with all other locations. Hence, we obtain

maximal number of TreordS ≤ n∗(n−1)
2 .

Reordering of statements in a loop body can be simulated by loop reordering
of loops that have just one location. Thus, this case is already handled in
the bound for TreordL.

This approximation is very coarse and in general the maximal length over
all transformation chains is much smaller. But this does not influence the
correctness of the algorithm: If the real maximal length of all transformation
chains is reached, only transition systems that have already been checked
are produced. Thus, the output result of the algorithm remains the same.
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4.1.1 Correctness

In this section it is shown that the presented algorithm is correct.

Theorem 4.2. (Correctness) If a compiler which uses only the transforma-
tions Trev, Tfus, TreordS, TreordL, and Tdst gets as input the source transition
system A and outputs target transition system C, then the algorithm finds a
transformation chain if and only if C is a correct translation of A.

Note that the transformation chain found by the algorithm is not nec-
essarily the same as the transformation chain the compiler has applied, i.e.
the algorithm can find a shorter transformation chain that leads also to C.
This is due to the existence of erasing and weak commutative transforma-
tions. For example if the compiler has applied the transformation chain
B = (Tdst, Lx, loc1);(Trev , Lx1);(Trev , Lx2) the algorithm finds the shorter
transformation chain B′ = (Trev, Lx);(Tdst, Lx, loc1) which leads to the same
transition system as A[B].

Lemma 4.1. If the algorithm is restricted to transformations Trev, Tfus,
TreordS, TreordL, and Tdst, then the set N of valid transformations is always
finite.

Since all domains of the parameters of the transformations are finite, the
transformations can only be instantiated finitely often. Thus, the set of all
valid transformations is also finite.

Correctness Proof. “⇒” to show: If the algorithm outputs a transformation
chain, then C is a correct translation of A.

All transformations the algorithm applies were shown to be correct (con-
fer chapter 3). Hence, if there is a transformation chain that transforms A
to An and C ref An, then C is a correct translation by theorem 4.1 and
lemma 2.1.

“⇐” to show: If C is a correct translation of A then the algorithm finds
a transformation chain.

This is shown by induction over the number n of transformations the
compiler has applied.
Assumption: The dependency analysis of the algorithm is at least as pow-
erful as the dependency analysis of the compiler.
Induction Hypothesis:
n = 0: In this case the compiler has not applied a transformation, hence
A = C and the algorithm terminates because A ref A by returning the empty
transformation chain.
n = 1: The compiler has applied exactly one transformation T . Since by
assumption the dependency analysis of the algorithm is at least as powerful
as the dependency analysis of the compiler, T is also added to N (in func-
tion fill N). With lemma 4.1, T is applied to A and we obtain C. Thus
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the algorithm has found a transformation chain, namely the transformation
chain only consisting of transformation T , that transforms A to C.
Induction Step:
n − 1 → n: There has to exist a transition system An−1 that is reached
after the compiler has applied n − 1 transformations to A. If the compiler
applies one more transformation, i.e. transformation T , on T , An = C is
obtained. By the I.H. it holds that the algorithm finds a transformation
chain TC from A to An−1. Hence, we can find An−1 also in the BFS tree.
Since the dependency analysis of the algorithm is at least as powerful as
the dependency analysis of the compiler, T is also added to N (in function
fill N).
Case 1: if n < maxdepth, T is applied to An−1 (by lemma 4.1) and we
obtain C. Thus, the algorithm has found a transformation chain, namely
the transformation chain TC;T that transforms A to C.
Case 2: If n ≥ maxdepth, T is not applied to An−1. However, by the
definition of maxdepth and the fact that each transformation is the inverse
of another transformation, we know that applying one more transformation
to TC erases another transformation. Thus, there has to exist a transfor-
mation chain TC ′ which is shorter than TC;T that also produces transition
system C. Hence, the algorithm finds transformation chain TC ′.

4.1.2 Termination

The termination proof of the algorithm is split into two parts. First, it
is proven that the algorithm terminates if C is a correct translation of A.
Afterwards it is shown that the algorithm also terminates if C is not a correct
translation of A and thus, C refines no An in the BFS tree.

The following theorem states that the presented algorithm terminates if
C is a correct translation of A.

Theorem 4.3. (Termination (Part I)) If a compiler which uses only the
transformations Trev, Tfus, TreordS, TreordL, and Tdst gets as input the source
transition system A and returns transition system C which is a correct trans-
lation of A, then the algorithm terminates by finding a transformation chain
that transforms A to C.

Termination Proof (Part I). Since we have already shown that the algo-
rithm is correct, i.e. that a transformation chain is found if C is a correct
translation of A, the algorithm trivially terminates by returning this trans-
formation chain.

The following theorem states, that the presented algorithm also termi-
nates if C is not a correct translation of A.

Theorem 4.4. (Termination (Part II)) If a compiler which uses only the
transformations Trev, Tfus, TreordS, TreordL, and Tdst gets as input the source
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f i l l N (TS T )
{

add a l l v a l i d t r ans fo rmat i ons for T to N ;

check for r u l e s ;
// remove t rans format ions from N t ha t would
// y i e l d the same TS t ha t occurs a l r eady
// somewhere in the BFS t r e e

}

Listing 4.3: Improved procedure fill N

transition system A and returns transition system C which is not a correct
translation of A, then the algorithm terminates by reaching maxdepth.

Termination Proof (Part II). As shown above, the length of all transforma-
tion chains is bounded by maxdepth. Since C is not a correct translation of
A, C does not refine any An in the BFS tree. Hence, depth exceeds maxdepth
at some point and the algorithm terminates by returning false.

4.2 Optimizations

In this section optimizations are presented that reduce the size of the BFS
tree and thus lead to a better performance of the algorithm.

In order to reduce the size of the BFS tree, procedure fill N has to be
adapted. By filling N in a convenient way, it is prevented that the same
transition system occurs over and over again in the BFS tree. This is done
by defining some rules that restrict the set of transformations that are added
to N . Confer listing 4.3.

In the following these rules are presented and it is proven that the algo-
rithm is still correct.

4.2.1 Encoding Transformations in Transition Systems

Each loop and location in the transition system should be identified uniquely,
also after applying some transformations to it. Furthermore, we want to keep
track of the transformations applied so far. This is done by encoding the
applied transformations in the loop names.

Before applying a transformation, the locations of the given transition
system are enumerated from 1 to n, where n is the number of locations.
Afterwards, it is searched for all loops in the transition system. To each
loop, a loop name is assigned. A loop name has the form Lx|w, where x
is called a block and w stands for a sequence of blocks, i.e. w = y|u|v| . . ..
Each non-empty block consists of a sequence of digits. The first digit is in
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{1, ...,m}, where m is the number of loops in the transition system, and
the latter ones are in {1, 2}. Additionally, each non-empty block can be
annotated with r. An empty sequence of blocks is denoted by an underline
’ ’. With w(r) we denote a sequence of blocks, where some blocks may be
annotated with r. Initially, the loops are enumerated with L1| to Lm| .
Note that locations, as well as loops, are enumerated in an ascending order
(in the order they occur in the transition system). That means, if loop Lx is
followed by loop Ly then x < y. In the following w and z denote sequences
of blocks, x and y denote blocks, and i and j represent digits.

After applying a transformation, the loop name changes in the following
way:

• (Trev, Lw(r)), with w 6= , produces loop Lw(r−1): each block that was
not annotated with r, is now annotated with r, and vice versa.

• (Tfus, Lw(r), Lz(r)), with w 6= and z 6= , produces loop Lw(r)|z(r):
the blocks that were annotated with r remain annotated with r.

• (Tdst, Lz(r)|x|w(r), loc) produces loops Lz(r)|x1, Lx2|w(r), if loc is a lo-
cation of the loop body of loop Lx| . Sequences z and w can also be
empty.

• (Tdst, Lz(r)|xr|w(r), loc) produces loops Lz(r)|x1r, Lx2r|w(r), if loc is
location of loop body of loop Lx| . z and w can also be empty.

The reordering transformations leave the loop names unchanged. It can be
checked by the order of the loop names and the order of the location names,
respectively, whether two loops (or statements) were switched. That means,
loc1 and loc2 were not switched, if loc1 < loc2 and Lx| and Ly| were not
reordered, if x <lex y. Figure 4.1 shows an illustration of all transformations.
The circles are an abstract representation of loops in a transition system and
the colored circles are locations of the loop body.

In the following, the loop names are chosen as described in this section.

4.2.2 Removing duplicated Subtrees

As we have seen in the last chapter, there are many transformation pairs
that are commutative or weak commutative. Hence, there are subtrees in
the BFS tree that are exactly the same. Consider for example the path that
starts with (Tfus, L1, L2);(TreordL, L1|2, L3) and the path that starts with
(TreordL, L2, L3);(TreordL, L1, L3); (Tfus, L1, L2). The produced transition
systems T1 and T2 are the same. Thus, the subtree with T1 as root and
the subtree with T2 as root are exactly the same. and hence, one of these
subtrees can be removed. Some rules are brought up which prevent that
such duplicated subtrees are inserted in the BFS tree.
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TreordL

TreordS

Tfus Tdst

Trev

Lw(r)Lw(r)

Lw(r)

Lw(r)

Lw(r)

Lw(r)

Lz(r)

Lz(r)

Lz(r)

Lw(r)|z(r)

Lw(r−1)

Lw(r)|x(r)|z(r) Lw(r)|x1(r)

Lx2(r)|z(r)

a) b) c)

d) e)

Figure 4.1: Illustration of Transformations: a) Loop fusion b) Loop reversal
c) Loop distribution d) Loop reordering e) Reordering of statements.

In the following w,u,v, and z denote sequences of blocks, x and y denote
blocks, and i and j stand for digits. B[Lw(r) 7→ Lz(r)], where B is a trans-
formation chain, denotes that all parameters in B named Lw(r) are replaced
by name Lz(r). We write w ⊆ z for two non-empty sequences of blocks w
and z, if all blocks of w also occur in z. The order of the blocks does not
play a role.

N is already filled with the currently valid transformations for transition
system T .

Rule 1: if ((p = (TreordL, Lu(r)|w(r), Lz(r)) and z 6= ∧w 6= ∧u 6= ): remove
p from N
A loop that was fused already should not be reordered with other

loops.

Rule 2: if (p = (Trev, Lx(r)|w(r)) and w 6= ): remove p from N
A loop that was fused already should not be reversed.

Rule 3: if (p = (Tdst, Lxr| , loc)): remove p from N
A loop that was reversed so far should not be distributed.

That these rules preserve the correctness criterion of the algorithm is
shown later.

4.2.3 Removing Circles

In order to avoid infinite paths, and thus circles, in the BFS tree, some more
rules are established. They have the task to remove those transformations
from N that would yield a transition system that already occurs somewhere
in the path from the root of the BFS tree to currentTS[0].

44



Chapter 4 Finding a Refinement Mapping

In the following w and z denote sequences of blocks, x and y denote
blocks, and i and j stand for digits. N is already filled with the currently
valid transformations for transition system T .

Rule 4: if (p = (Tdst, Lx(r)|w(r), loc) and w 6= ): remove p from N
This rule avoids that a loop that was already fused, is distributed

again.

Rule 5: if (p = (Tfus, Lw(r), Lz(r))) and w 6= ∧ z 6= : if ∃(xi, yj) ∈ w ×
z.x == y: remove p from N
All blocks in w and z are compared pairwise without their last digit.
If two blocks are equal (and non-empty), the loops were derived by
loop distribution of the same loop and they are not allowed to be
fused again.

Rule 6: if (p = (Trev, Lxr| ): remove p from N
Block x was already reversed. Hence, reversing once again is

avoided by this rule.

Rule 7: if (p = (TreordL, Lx(r)| , Ly(r)| )) and y <lex x: remove p from N
Since the loop names are in an lexicographic, ascending order if no
reordering of loops was applied before, Lx(r)| and Ly(r)| were al-
ready reordered if y <lex x. Thus, reordering them again is avoided
by this rule.

Rule 8: if (p = (TreordS, loc1, loc2)) and (loc1 > loc2): remove p from N
Locations loc1 and loc2 were already reordered.

Example 4.1. This example shows the BFS tree that is produced by the
algorithm for the shown part of the input transition system A (Figure 4.2).
For the sake of simplicity we assume that the compiler was only allowed to
use loop fusion, loop distribution and loop reversal. Confer Figure 4.3 for
the respective BFS tree. If C is a correct translation of A then there has
to exist a node Ai in the BFS tree with C ref Ai. Note that because of the
rules, the BFS tree is finite.

4.2.4 Correctness of the Rules

In order to prove that these rules preserve the correctness criterion of the
algorithm, consider the following lemmas. Note that termination of the
algorithm is not influenced by introducing these rules.

Lemma 4.2. (Rule 1) Let T be a transition system with loops Lu, Lw,
and Lz, where u, w, and z are non-empty sequences of blocks. Let B be a
transformation chain. B can be split into B′ and B′′ and it holds:
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0

1

5

2

3

4

6

7

x′ = 0

x′ = 0

x ≤ 3

x ≤ 3 y′ = y + 2

r′ = x

x′ = x + 1

x′ = x + 1

x > 3:

x > 3

z′ = 2

L1

L2

Figure 4.2: Transition system A. Confer example 4.1.

A

A1

(Tfus, L1, L2)

A′
1

(Tdst, L1, 3)

A2

(Tfus, L12, L2)

A3

(Trev, L11)

A′
2

(Trev, L11)

A′
3

(Tfus, L12, L2)

A′′
3

(Trev, L2)

A′′
2

(Trev, L2)

A′′′
3

(Trev, L11)

A′′
1

(Trev, L2)

A′′′
2

(Tdst, L1, 3)

A′′′′
3

(Trev, L11)

Figure 4.3: BFS Tree for transition system A of example 4.1.

T [(Tfus, Lu(r), Lw(r));B; (TreordL, Lu(r)|w(r), Lz(r))] ==
T [B′′; (TreordL, Lw(r), Lz(r)); (TreordL, Lu(r), Lz(r)); (Tfus, Lu(r), Lw(r));B

′]

This lemma states that if T1 = (TreordL, Lu(r)|w(r), Lz(r)) is removed
from N by rule 1, nevertheless a transformation chain can be found that
produces the same transition system as applying T1. Confer Figure 4.4 for
an illustration.

Proof of lemma 4.2. Let T ′ = T [(Tfus, Lu(r), Lw(r));B;
(TreordL, Lu(r)|w(r)), Lz(r)]. B can be split into B′ that only contains trans-
formations on loop Lu(r)|w(r), and B′′ that contains all other transforma-
tions on other loops. With rule 2 (no Trev after Tfus) and rule 4 (no Tdst

after Tfus), B′ can only contain reordering of statements transformations on
Lu(r)|w(r). Thus, B′ can also be applied after TreordL. B′′ can also be applied
before Tfus, since it contains no transformation that affects Lu(r)|w(r).
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TreordL

TreordL

TreordL

Tfus

Tfus

L1

L1

L1 L1

L2

L2

L2

L2

L3
L3

L3

L3
L3

L3

L3

L1|2

L1|2

L1|2

TreordL after Tfus

Figure 4.4: Loop reordering can always be applied before loop fusion (Lemma
4.2).

We obtain the transformation chain T [B′′; (TreordL, Lw(r), Lz(r));
(TreordL, Lu(r), Lz(r)); (Tfus, Lu(r), Lw(r));B

′] == T ′ which is a transforma-
tion chain that can be found in the BFS tree that leads to T ′.

Note that if sequences w, z, or u have more than one block, lemma 4.2
can be applied recursively until only loops with one block are reordered.

Lemma 4.3. (Rule 2) Let T be a transition system with loops Lz and Lw,
where z and w are non-empty sequences of blocks, and let B be a transfor-
mation chain. Then it holds:

T [(Tfus, Lz(r), Lw(r));B; (Trev, Lz(r)|w(r))] ==
T [(Trev, Lz(r)); (Trev, Lw(r)); (Tfus, Lz(r−1), Lw(r−1));

B[Lz(r)|w(r) 7→ Lz(r−1)|w(r−1)]]

This lemma states that if by rule 2 transformation T1 = (Trev, Lz(r)|w(r))
is removed from N , nevertheless, a transformation chain can be found, that
produces the same transition system as applying T1.

Proof of lemma 4.3. Let T ′ = T [(Tfus, Lz(r), Lw(r));B; (Trev, Lz(r)|w(r))].
This transformation chain can not be found in the BFS tree, since
(Trev, Lz(r)|w(r)) is removed from N by rule 2. Thus, we have to find another
transformation chain that also leads to T ′.

B can only contain reordering of statements transformations on the loop
body of loop Lz(r)|w(r) by rule 1 (no TreordL after Tfus) and rule 4 (no
Tdst after Tfus), and transformations that do not influence loop Lz(r)|w(r).
Since loop-independent dependences are preserved by Trev, the reordering
of statements transformations can also be applied after Trev on the reverse
of loop Lz(r)|w(r) which is Lz(r−1)|w(r−1). Since all other transformations in
B do not affect loop Lz(r)|w(r), B can be applied after Trev.
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We obtain the transformation chain
(Trev, Lz(r)); (Trev, Lw(r)); (Tfus, Lz(r−1), Lw(r−1));
B[Lz(r)|w(r) 7→ Lz(r−1)|w(r−1)] that leads also to T ′ and can be found in the
BFS tree.

Note that if sequences w or z have more than one block, lemma 4.3 can
be applied recursively until only loops with one block are reversed.

Lemma 4.4. (Rule 3) Let T be a transition system with loop Lx| . Let B
be a transformation chain. Then it holds:

T [(Trev, Lx| );B; (Tdst, Lxr| , loc)] ==
T [B[Lxr| 7→ Lx| ]; (Tdst, Lx| , loc); (Trev, Lx1| ); (Trev, Lx2| )]

From this lemma follows that if (Tdst, Lxr| , loc) is removed from N by
rule 3, nevertheless a transformation chain can be found, that yields the
same transition system as applying (Tdst, Lxr| , loc).

Proof. Let T ′ = T [(Trev, Lx| );B; (Tdst, Lxr| , loc)]. B can neither contain
loop fusion transformations (otherwise Lxr| could not be distributed again
by rule 4), nor loop reversal (by rule 6). Thus, B can only contain reordering
transformations. Hence, B can also be applied to loop Lx| before Trev.

Since, Trev is a valid transformation for T , (Tdst, Lx| , loc) is also a valid
transformation for T . This is implied by the fact, that loop reversal checks
for more dependences than loop distribution (confer lemma 3.4 and lemma
3.5). We obtain the following transformation chain that applied to T also
yields T ′: T [B[Lxr| 7→ Lx| ]; (Tdst, Lx| , loc); (Trev , Lx1| ); (Trev, Lx2| )] ==
T ′.

To prove the correctness of rules 4 - 8, the following lemma is needed.

Lemma 4.5. Let T be a transition system with loops Lw,Lx, and Lz, where
w and z are a non-empty sequences of blocks, and let B be a transformation
chain. Then B can be split into B′ and B′′ and it holds:

T [(Tfus, Lw(r), Lx(r));B; (Tfus, Lw(r)|x(r), Lz(r))] ==
T [B′′; (Tfus, Lx(r), Lz(r)); (Tfus, Lw(r), Lx(r)|z(r));

B′[Lw(r)|x(r) 7→ Lw(r)|x(r)|z(r)]]

This lemma states that the order of fusion transformations does not play
a role.

Proof. (Proof of lemma 4.5)
Let T ′ = T [(Tfus, Lw(r), Lx(r));B; (Tfus, Lw(r)|x(r), Lz(r))]. B can be split
into B′ that only contains transformations on loop Lw(r)|x(r), and B′′ that
contains all other transformations on other loops. With rule 1, rule 2, and
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rule 4 of the algorithm, B′ can only contain reordering of statements trans-
formations on Lw(r)|x(r). Thus, B′ can also be applied on Lw(r)|x(r)|z(r)

after the second fusion transformation.
B′′ can also be applied before (Tfus, Lx(r), Lz(r)), since it contains no

transformation that affects Lw(r)|x(r). By definition of loop fusion we obtain
the same loop if we fuse Lw(r)|x(r) with Lz(r) or Lw(r) with Lx(r)|z(r). Thus,
T [B′′; (Tfus, Lx(r), Lz(r)); (Tfus, Lw(r), Lx(r)|z(r));
B′[Lw(r)|x(r) 7→ Lw(r)|x(r)|z(r)]] == T ′.

Proof. (Correctness is preserved by rules 4 - 8)
Let TC be the transformation chain from the root of the BFS tree (which
is A) to currentTS[0] and p be the transformation that is removed by
one of the above rules in procedure fill N. We have to show that the
algorithm nevertheless can find a transformation chain from A to Ai =
(currentTS[0])[p].

Rule 4: Let p = (Tdst, Lz(r)|x(r)|w(r), lock) and z or w (or both) is non-
empty.
w.l.o.g. Let lock be a location of loop Lx(r).

p = (Tdst, Lz(r)|x(r)|w(r), lock) → (Lz(r)|x1(r), Lx2(r)|w(r)). By con-
struction of the names of the loops and lemma 4.5, Lz(r)|x(r)|w(r)

is obtained by loop fusion of Lz(r), Lx(r)| , and Lw(r). Thus, p1 =
(Tfus, Lx(r)| , Lw(r)) and p2 = (Tfus, Lz(r), Lx|w(r)) has to be in TC.
We can split TC into TC = B1; p1; p2;B2. Let T ′ be the transition
system before p1 is applied (i.e. T ′[p1; p2;B2] = currentTS[0]).
Note that if z or w is empty, p1 and p2, respectively, are not needed
and can just be omitted.

There are the following cases for transformations contained in B2:

(a) B2 contains no TreordS

Note that TC; p can not be detected by the algorithm, since
p can not be applied to currentTS[0] (because rule 4 is vio-
lated).
Since p is a valid transformation for currentTS[0],
(Tdst, Lx(r)| , lock) → (Lx1(r)| , Lx2(r)| ) is also a valid trans-
formation for T ′. Note that here no rule is violated and distri-
bution can be applied by the algorithm.

The transformation chain B2 only contains fusion- transforma-
tions to loop Lz(r)|x(r)|w(r), since loop reversal is not possible
by rule 2. B2 can also not contain any loop reordering trans-
formation by rule 1. We can split B2 into B′

2 that has only
Tfus with Lz(r)|x(r)|w(r) as second argument, and B′′

2 that has
only Tfus with Lz(r)|x(r)|w(r) as first argument.

With lemma 4.5, the algorithm finds the following transforma-
tion chain from A to Ai:
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B1; (Tdst, Lx(r)| , lock); (Tfus, Lz(r)|, Lx1(r)| );
(Tfus, Lx2(r)| , Lw(r)); B′

2[Lz(r)|x(r)|w(r) 7→ Lz(r)|x1(r)];
B′′

2 [Lz(r)|x(r)|w(r) 7→ Lx2(r)|w(r)].

Figure 4.5 illustrates this case, where
p3 = (Tdst, Lx(r)| , lock) and p4 = (Tfus, Lz(r)|, Lx1(r)| ) and
p5 = (Tfus, Lx2(r)| , Lw(r)).

currentTS[0]

T ′

B1

B2

B′
2

B′′
2

A

Ai

p1 = (Tfus, Lx(r)| , Lw(r))p3

p4

p5

(Tdst, Lz(r)|x(r)|w(r), lock) not possible (rule 4)

Figure 4.5: Whole BFS tree: Loop distribution should be applied to an
already fused loop.

(b) B2 contains reordering of statements transformations
Let loc1, . . . , lock be locations of Lz(r)|x1(r) and
lock+1, . . . , locn be locations of Lx2(r)|w(r).

(b - i) Statements are reordered only within
{loc1, . . . , lock} or within {lock+1, . . . , locn}
That means, that the reordering of statements transfor-
mations can still be applied after (Tdst, Lx(r)| , lock) was
applied. Thus, this case is analog to case (a).

(b - ii) Statements are reordered arbitrarily in
Lz(r)|x(r)|w(r).
That means, there is a loci ∈ {loc1, . . . , lock} and a locj ∈
{lock+1, . . . , locn} such that
p3 = (TreordS, loci, locj) is in B2. But this reordering of
statements can be also simulated by loop reordering on T ′.
This is depicted in Figure 4.6. Thus the following trans-
formation chain is obtained: B1;loop internal reordering
of statements; loop distribution; simulation of reordering
of statements by reordering of loops; loop fusion; loop in-
ternal reordering of statements; B2 without reordering of
statements.
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Note that the loop internal reordering of statements is al-
ways possible, since it is also possible in
Lz(r)|x(r)|w(r). Loop distribution is possible, since the
statements that are distributed would also be distributed
in Lz(r)|x(r)|w(r). Transformation loop reordering is al-
lowed because reordering of exactly these statements of
the loop body is also allowed in Lz(r)|x(r)|w(r).

Tfus

Tfus

Tfus

TreordS

TreordS

TreordS

TreordS

TreordS TreordL

Tdst

Tdst

Tdst

Rule 4 is violated

Figure 4.6: Reordering of statements was applied in B2.

Rule 5: p = (Tfus, Lw(r), Lz(r)) where exists (xi, yj) ∈ w × z with x == y
and w.l.o.g. i = 1 and j = 2.
Thus, TC; p can not be found by the algorithm.
Since x == y, x1 and y2 were derived by loop distribution of the
same loop. Thus, the transformation
p′ = (Tdst, Lx(r)| , loc) → (Lx1(r)| , Lx2(r)| ) has to be in TC. Let
T ′ be the transition system before p′ is applied. TC can be split
into TC = B1; p

′;B2. B2 can be split into B′′
2 that contains only

contains reordering transformations on Lx1(r)| and Lx2(r)| and B′
2

that contains the remaining transformations.

B′
2 can not contain a distribution transformation on Lx1(r)| or

Lx2(r)| . Otherwise x 6= y.

If B′
2 contains Trev on Lx1(r)| then it contains also

(Trev, Lx2(r)| ) because otherwise p (= loop fusion) would not be a
valid transformation. Since both parts of Lx(r) could be reversed,
also Lx(r) could be reversed before distributing it.
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Since p is a valid transformation for currentTS[0] and with lemma
4.5, loop fusion transformations in B′

2 can also be applied to Lx(r).

B′′
2 contains loop reordering transformations on

Lu(r)|x1(r)|u
′
(r) and Lv(r)|x2(r)|v

′
(r), where u, v, u′, and v′ are se-

quences of blocks (note that loop fusion on Lx1(r)| and Lx2(r)| is
possible) with u, v ⊆ w and u′, v′ ⊆ z. Since p is a valid transforma-
tion for currenTS[0], Lu(r)|x1(r)|u

′
(r) and Lv(r)|x2(r)|v

′
(r) have to lie

directly next to each other. Thus, reordering of loops can be sim-
ulated by reordering of statements on loop Lu(r)|u

′
(r)|x(r)|v(r)|v

′
(r).

Thus, this can also be done without distribution of Lx(r)| . Figure
4.7 shows the case when B′′

2 contains loop reordering transforma-
tions, i.e. how loop reordering can be simulated by reordering of
statements.

With the above arguments we have shown that all transformations
B′

2 can contain can be also applied before distribution of Lx(r)| .
Afterwards B′′

2 can be applied. The algorithm finds the following
transformation chain that yields the same transition system as ap-
plying TC; p on A: B1; B′

2[Lx1(r)| 7→ Lx(r)| , Lx2(r)| 7→ Lx(r)| , ];
B′′

2 [Lx1(r)| 7→ Lw(r)|z(r), Lx2(r)| 7→ Lw(r)|z(r)];

L1

L1

L1
L1

L2

L2

L21

L21

L22L22L22

L1|2

L21|1

L21|1|22

L21|1|22

Tdst

Tfus

Tfus

Tfus

TreordS

TreordL Rule 5 is violated

Figure 4.7: Loop fusion should be applied and B2 contains loop reordering
transformations.

Figure 4.8 illustrates this case.

Rule 6: p = (Trev, Lxr| ) → Lx|
Since x is annotated with r, p is removed from N by rule 6. Hence,
the path TC; p does not exist in the BFS tree. Therefore, we have
to find another transformation chain. With rule 3 and rule 2, we
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Ai

T ′

B1

B2

B′
2

B′′
2

A

Ai

p′ = (Tdst, Lx(r)| , loc)

(Tfus, Lw(r), Lz(r)) not possible (rule 5)

Figure 4.8: Whole BFS tree: Loop fusion should be applied to an already
distributed loop.

know that there has to be a transformation p′ = (Trev, Lx| ) in TC.
We can split TC into TC = B1; p

′;B2. Let T ′ be the transition
system before p′ is applied. B2 cannot contain loop fusion trans-
formations since Lxr| consists of just one block, and by rule 3, B2

can not contain loop distribution on Lxr| . Thus, B2 consists only
of reordering transformations.

The algorithm finds the following transformation chain: B1; B2[Lxr| 7→
Lx| ]. This transformation chain is valid, since reordering transfor-
mations on a reversed loop are also valid for the original loop. Figure
4.9 illustrates this case, where B′ = B2[Lxr| 7→ Lx| ].

Ai

T ′

B1

B2B′

A

Ai

p′

(Trev, Lxr| ) not possible (rule 6)

Figure 4.9: Whole BFS tree: Loop reversal should be applied to Lxr| .

Rule 7: p = (TreordL, Lux(r)| , Lvy(r)| ) and vy <lex ux. x and y could be
empty, u and v are sequences of digits that contain at least one
digit.
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TreordL

TreordL

Tdst

Tdst

L1

L1L1

L1

L1

L1

L1

L2

L2

L2

L21

L21

L21

L21

L22

L22L22

L22

Rule 7 is violated

Figure 4.10: Loop reordering should be applied.

In this case, rule 7 of the algorithm is violated. Since vy <lex ux,
there exist two loops Lu(r)| and Lv(r)| that were reordered before.
Thus, there is a transformation
p′ = (TreordL, Lu(r)| , Lv(r)| ) with v >lex u in TC. Let T ′ be the
transition system before p′ is applied. TC can be split into TC =
B1; p

′;B2.

If x and y are non-empty, B2 contains loop distribution operations,
by construction of the loop names. Thus, B2 consists of distribution
transformations, reordering transformations and reversal transfor-
mations. Since B2 cannot contain loop fusion transformations (be-
cause the second block of Lux(r)| and Lvy(r)| ) is empty), B2 can
also be applied on T ′ (before p′ was applied). Afterwards TreordL is
applied several times, i.e. until Lux| and Lvy| are reordered and
Ai is reached. Figure 4.10 illustrates this case by an example.

Rule 8: p = (TreordS, loc1, loc2) and loc1 > loc2

This case occurs if loc1 and loc2 were reordered yet, i.e. there is a
p′ = (TreordS , loc2, loc1) or a p′′ = (TreordL, Lx(r)| , Ly(r)| ) in TC,
where loc1 is a location of loop Ly(r)| and loc2 is a location of loop
Lx(r)| . In the case that p′ was applied by the compiler, we just
remove p′ from TC. In the case that p′′ was applied, the compiler
applied the transformation chain: p′′; (Tfus, Lx| , Ly| ); p. In the
derivation tree we can find the following transformation chain:
(Tfus, Lx| , Ly| );(T ∗

reordS , loc1, loc2) where (T ∗
reordS, loc1, loc2) denotes,

that TreordS is applied several times, until loc1 and loc2 are switched.
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4.3 Extending the Algorithm with more Transfor-

mations

So far, it was shown that the algorithm is correct and terminating if only
Trev, Tdst, Tfus, TreordS, and TreordL were applied by the compiler. Now
it is analyzed which properties a transformation has to fulfill such that
the algorithm can be extended by this transformation without violating
correctness or termination.

In order to guarantee correctness of the algorithm, the added transfor-
mation has to be proven correct, i.e. it is proven to preserve all dependences.
Furthermore, the BFS tree has to be finitely branching. That means that to
each transition system in the BFS tree only finitely many transformations
can be applied. If this is not the case, we would never go into depth and al-
though C is a correct translation of A we would never find a transformation
chain.

Lemma 4.6. (Property 1)
Let T be a transformation that should extend the algorithm. If T preserves
all dependences of the transition system and if the domain of all parameters
of T is finite, then correctness of the algorithm is preserved when adding
this transformation.

If the parameters have a finite domain, the number of instantiations of
the transformations is finite. Thus, it is guaranteed that transformations
can be applied only finitely often to a transition system. Note, that trans-
formations Trev, Tdst, Tfus, TreordS, and TreordL all have this property. The
domains of their parameters which are the set of loops and the set of loca-
tions, are all finite.

Tunr violates this property, since parameter k is a natural number and
thus infinite. Hence, the BFS tree would not be finitely branching, and
correctness is violated. However, if some metrics are used, nevertheless, the
algorithm can be extended by Tunr as it is shown later.

Termination is given, if a transformation T can only be applied finitely
often in a transformation chain or if it can be applied infinitely often but
in this case produces the same transition system over and over again. Trev,
TreordS, and TreordL are only applicable finitely often, as it was shown in sec-
tion 4.1.2. At some point, the transformation was applied to all loops and
locations, respectively. Hence, applying it once more, erases another trans-
formation and the same transition system as somewhere before is obtained.
Tdst and Tfus change the number of locations in a loop and the number of
loops, respectively. Thus, at some point each loop consists of one location or
the transition system contains just one loop and Tdst and Tfus, respectively,
are no longer applicable. Hence, we can conclude:

Lemma 4.7. (Property 2) Let T be a transformation that should extend the
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algorithm. Termination of the algorithm is preserved, if T is applicable only
finitely often in each transformation chain. This is the case if

• T erases T or

• T changes the transition system in such a way (e.g. the number of
loops), that after finitely many applications of T , T is not applicable
any longer.

Tunr also violates this property, since it can be applied infinitely often
in a transformation chain, without producing the same transition system as
somewhere before.

Ticg fulfills all properties, since it erases itself and because the instanti-
ation of its parameters, i.e. the set of loops, is finite. Hence, the algorithm
can be extended by Ticg (analogously to transformation TreordL).

These two properties suffice to guarantee termination and correctness
since they guarantee that the BFS tree is only finitely branching and each
path has only a finite depth when adding a new transformation. Thus, the
BFS tree remains finite.

4.3.1 Loop unrolling

As we have seen in the last section, Tunr violates both properties that guar-
antee correctness and termination of the algorithm. Thus, the algorithm can
not be extended by Tunr without doing some further work. In the following
we show a possibility, how the domain of parameter k can be made finite
and thus, Tunr fulfills the above properties.

By definition, Tunr changes the update of the index variable of the loop.
For example, if k = 5 and index variable i is changed in the original loop L by
1, i.e. i′ = i+1, then i is changed in Lunr by i′ = (((((i+1)+1)+1)+1)+1) =
i + 5. Because the target transition system C is given, the largest change of
the index variable in the whole transition system can be found. Since there
exists no transformation that erases Tunr, i.e. the incrementation of the
index variable can only increase and never can be decreased, the domain of
parameter k can be made finite by checking at which l ∈ dom(k) the largest
change of the index variable in C is exceeded. Hence, for all k > l no loop
in C can be found to which L1 can be mapped after applying (Tunr, L1, k).
Thus, all parameters greater than l can be omitted. With this restriction of
parameter k the first property is fulfilled.

Now lets care about the second property. We have to show, that by
knowing the largest change of the index variable in C, Tunr can only be
applied finitely often in a transformation chain and thus property 2 would
be fulfilled. But this is easy to show:

Since each application of Tunr increases the change of the index variable,
at some point the largest change of the index variable in C is exceeded, and
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thus, this transformation chain can be discarded. Hence, Tunr has not to be
applied further more and the transformation chain is finite. Thus, property
2 is also fulfilled.

Since by using this metric both properties are fulfilled for Tunr, the al-
gorithm can be extended by Tunr as just presented.
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Implementation

The presented algorithm as well as an example compiler were implemented in
the TVopt library (Translation Validation for Optimizing Compilers) which
is embedded in the VRP (Verisoft Refinement Prover). The chosen language
for the implementation is C++. The respective class diagrams and the
hierarchy of them can be found in the appendix. All transition systems of
this chapter were generated by the TVopt tool.

5.1 The Components

The following components form the basis for the implementation of the
compiler as well as for the implementation of the algorithm.

5.1.1 Abstract Transition Systems

The class AbstractTransitionSystem (ATS) represents transition systems
in a very abstract way, i.e. transition systems are reduced to their loops. It
saves all information about loops which are the starting location, locations
that belong to the loop body, the name of the index variable, the initializa-
tion and update of the index variable during execution of the loop, and the
abort condition of the loop.

Furthermore, this class has the task to search all loops in a given transi-
tion systems. Formally a loop in a transition system is a strongly connected
component that can be defined as followed (confer [ASU86]).

Definition 5.1. A location s in a transition system T dominates location
b if every path from the initial location to b goes through s.

There is a loop with starting location s in the transition system if there
exists a b such that there is a transition from b to s and s dominates b.

The best way to find loops in a transition system is by using Depth
First Search (DFS), i.e. the algorithm starts at the initial location of the
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transition system and moves through all other locations. If there is an edge
that goes back to a location we have seen already (a so-called backward
edge), a loop was found.

The class AbstractTransitionSystem also keeps track of the loop names,
i.e. if a transformation is applied to a transition system also its ATS is
updated. Compare the definition of the change of the loop names when
applying a transformation (chapter 4). ATSs are important for checking the
rules of the algorithm (chapter 4.2).

5.1.2 Dependency Analysis

To determine which transformations are valid for a given transition system,
the dependency analysis class is invoked. It consists of two components: the
control flow analysis and the data flow analysis. The control flow analysis
checks for control dependences by building the control flow graph (CFG) and
the data flow analysis checks for data dependences by constructing the data
dependency graph. Confer chapter 3 for the definition of control dependence
and data dependence.

Control Flow Graph The nodes of a control flow graph (CFG) are basic
blocks, i.e. blocks, that consist of a sequence of consecutive statements with
no branching statements inside it. Basic Blocks have exactly one entry point
and one exit point. In the case of transition systems a basic block is a path
fragment where each location has exactly one incoming and one outgoing
transition.

An edge of a CFG connects two basic blocks. There is an edge if the
exit point of the source block is the entry point of the target block. That
means, that the last location of the source block is also the first location of
the target block. Confer Figure 5.1 for an example transition system and its
CFG. The transition system consists of four basic blocks (B1,B2, B3, and
B4).

Data Dependency Graph and Definition-Use-Chains The data de-
pendency graph and the definition-use-chains describe the data flow in a
program or in our case in a transition system.

The nodes of a dependency graph are statements. There is an edge be-
tween two nodes if there is a true dependence, an anti dependence, an output
dependence, or an observable dependence between these two statements. To-
gether with the CFG, the dependency graph is used to check whether two
statements can be reordered and if TreordS is a valid transformation.

For checking dependences between statements that are not direct neigh-
bors, definition-use-chains (du-chains) are used. Confer also [ASU86]. du-
chains are used to determine, whether Trev, Tfus, Tdst, and TreordL are valid
transformations.
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y′ = y + 1
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x > 5
x = 0

x >= 0

B1

B4

B3

B2

(a) (b)

Figure 5.1: (a) Example transition system (b) CFG of example transition
system.
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i′ = 0

i′ = 0
x′ = 0

i′ = i + 1

i′ = i + 1i > 5

i > 5

x′ = 2

i ≤ 5:

i ≤ 5:

true : a′ = x + 2

Figure 5.2: Example: Definition-Use-Chain

Definition 5.2. A variable is used at a transition τ if its value is read by
the statement present at τ .

A variable is defined at a transition τ if it is assigned a value by the
statement present at τ .

For example, a = b + c uses variables b and c and defines variable a.

A definition of a variable x can be redefined (i.e. x is defined more
than one time) on a path in a transition system. A statement that uses x
should be only dependent on its last definition, i.e. the very strict definition
of reordable statements (chapter 3) is loosen a bit for the purposes of the
implementation. Consider for an example the transition system of Figure
5.2. Statement a′ = x + 2 is only dependent on statement x′ = 2 since the
definition of x in statement x′ = 0 is redefined. Thus, for example, loop
fusion would be a valid transformation, although x′ = 0 and a′ = x + 2 are
dependent.

5.1.3 Transformations

The compiler transformations given by their parameters are implemented
in class Transformation. This class does not check if the transformation
which should be applied is valid, i.e. this has to be checked before calling
this class.

When applying a transformation, the transition system is transformed
but also the respective ATS has to be adjusted. Both tasks are handled by
this class. The implementation of the application of a transformation on a
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transition system is one-to-one to the definitions given in chapter 3. After
applying the transformation, the transformed transition system as well as
the transformed ATS are returned.

5.2 Putting it All Together

The just presented components are composed for the implementation of the
compiler as well as for the implementation of the algorithm. Thus, we are
now able to show the framework of both, the compiler and the implemen-
tation of the algorithm. But at first, valid input transition systems are
specified.

5.2.1 The Input

The input for the compiler as well as the input for the algorithm are tran-
sition systems that represent a reactive system. Valid inputs for both are
specified in the following. These restrictions on input transition systems are
only made because of keeping the dependency analysis of the example com-
piler and the algorithm simple. Note that the correctness of the algorithm
is independent of the dependency analysis and therefore the dependency
analysis can be replaced easily by a more complex one.

• Only one process per reactive system is permitted.

• Only integer variables are permitted.

• There is only one initial location.

• At most there are two outgoing edges per location.

• Branches are exclusive and one transition can always be taken.

• Loop guards have the form: x ≤ e|x < e|x > e|x ≥ e|x == e|x 6= e,
where e is an expression and x is the loop index variable.

• If a start loc of a loop has several input edges, they all initialize x with
the same value. x has to be initialized with a constant.

• The update of index variable x is always done on the last transition
that goes back to the start loc of the loop. During the loop body
execution x is only used.

• The update of x has the form: x = e, where e is an expression that
contains no other variables than x.
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5.2.2 Normalform of Transition Systems

The goal of the algorithm is to establish a trivial refinement mapping, i.e.
a mapping that maps states and variables one-to-one. Therefore the input
transition systems have to be transformed into a normalform:

• Each transitions updates only one variable: Transitions that update
more than one variable are split, i.e. new locations and transitions
are introduced. The names of the introduced locations start with “F”.
Confer Figure 5.3.

• There is no data transformation if the guard is not true or false:
Transitions where the guard is not true or false and there is a data
transformation are split, i.e. new locations and transitions are intro-
duced. The names of the introduced locations start with “G”. Confer
Figure 5.3.

• All guards are in normal form: A guard g is in normal form if g ::=
x ≤ e | x ≥ e | x == e | x! = e, where x is the loop index variable and
e is an expression.

• The loop index variable is always initialized directly before the loop is
entered

• The loop index variable is always updated on the last transition that
leads to the starting location of the loop

In Figure 5.3 is presented an example transition system with its normal
form.

5.2.3 Implementation of the Compiler

The compiler gets as input a transition system (the so-called source transi-
tion system) that should be compiled, i.e. arbitrary many transformations
(of the specified compiler transformations) should be applied in arbitrary
order. Afterwards, the compiled version of the source transition system (the
so-called target transition system) is returned.

The compiler works as follows. First a random number d is computed,
that gives the number of transformations that should be applied to the input
transition system T , i.e. d-times the main loop is executed which performs
the following steps.

1. Compute all valid transformations for T : This is done by invoking the
Dependency Analysis class.

2. Pick randomly one transformation of the set of valid transformations

3. Apply this transformation to T : Class Transformation is called.
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Figure 5.3: (a) Example transition system (b) Example transition system in
Normalform.
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The compiler can be found in the VRP. It can be executed with the
following options
./compiler -a sourceTS.xml

[ -c targetTS.xml ]
[ -d number of transformations ]

[ -h ]

The option -a is essential and has to be set, since this is the transition
system (in xml-format) that should be compiled. The other options are op-
tional. -c specifies the outputfile, which is overwritten if it already exists.
If -c is not specified the target transition system is written by default to
out.xml. If option -d with an integer number is set, the number of trans-
formations the compiler applies is not chosen randomly. Instead d is set to
number of transformations. Option -h returns the help message.

5.2.4 Implementation of the Algorithm

The algorithm with all its optimizations is also implemented in the VRP.
The implementation is analog to the pseudo-code of chapter 4. To keep
the memory usage small, the BFS tree does not store all transition systems.
Instead, only the transformation chains are stored from which the Ai’s can be
reconstructed. Thus, as data structure for the BFS tree a two-dimensional
vector is chosen that contains all computed transformation chains.

Furthermore, the computation of maxdepth is not needed by the imple-
mentation, since rules 4-8 preserve that no infinite transformation chains
can occur. Thus, all produced transformation chains are finite and at some
point they were all checked and the algorithm terminates.

The algorithm can be executed with the following options
./refinementopt -a sourceTS.xml

-c targetTS.xml
--prover provername
[--opt ]

[ -h ]

As for the compiler -a specifies the source transition system in xml-format
and -c (which is essential for the TVopt tool) specifies the target transition
system, also in xml-format. The option --prover specifies the prover that
should be used to prove the conditions established by the refinement task.
Option --opt enables the optimizations, i.e. rules 1-3, and option -h returns
the help message.

If the target transition system is a correct translation of the source tran-
sition system, the tool outputs the computed transformation chain, the num-
ber of produced transition systems (the number of the An’s), and a proof for
C ref An. The refinement mapping, i.e. the transformed source transition
system annotated with all invariants needed for the refinement proof, can
be found in file invariants.xml.
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Experiments

In this chapter some running examples and experiments that show termi-
nation and performance of the algorithm are presented. The source files of
the examples and their respective graphical representation can be found in
the testsuite of the VRP.

6.1 A First Example

The first example system “Multiplication” is depicted in Figure 6.1 (a). It
computes the product of two integers by using addition. While translating
this system, three optimizations were applied: Trev and two times TreordS.
The target system is depicted in Figure 6.1 (b).

The TVopt tool is called with
./refinementopt -a multiplication.xml

-c multiplication concrete rev reord reord.xml
--prover yices

It outputs the transformation chain (Trev, L4| ); (TreordS, F1, F3);
(TreordS, F3, F4). The transformed source system annotated with all invari-
ants is shown in Figure 6.2. It can easily be seen that this system simulates
the target system.

6.2 Transformation Tests

For each transformation there is a correctness test. Here only the test for
Tfus is presented. The other test files can be found in the testsuite as well.

For this test, the compiler has applied only one transformation, namely
the transformation that should be tested, to the source program. By these
tests it can be checked that the TVopt tool detects all transformations and
outputs exactly the transformation chain consisting of one transformation.

The input systems for the test of Tfus are presented in figure 6.3.
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Figure 6.1: (a) Example system “Multiplication” (b) Loop reversal and two
times reordering of statements were applied to the source system.
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0 *
((i == :i) && (:result == result)

 && (x == :x) && (y == :y)
 && (z == :z) && multi@0)

1 *
((i == :i) && (:result == result)

 && (x == :x) && (y == :y)
 && (z == :z) && multi@1)

TRUE

(i = 0)

G1 *
((i == :i) && (:result == result)

 && (x == :x) && (y == :y)
 && (z == :z) && multi@G1)

(i >= 0)

2 *
((i == :i) && (:result == result)

 && (x == :x) && (y == :y)
 && (z == :z) && multi@2)

G2 *
((i == :i) && (:result == result)

 && (x == :x) && (y == :y)
 && (z == :z) && multi@G2)

(x <= 5)

G3 *
((i == :i) && (:result == result)

 && (x == :x) && (y == :y)
 && (z == :z) && multi@G3)

(x >= 6)

3 *
((i == :i) && (:result == result)

 && (x == :x) && (y == :y)
 && (z == :z) && multi@3)

TRUE

(x = (x + 1))

F1 *
((i == :i) && (:result == result)

 && (x == :x) && (y == :y)
 && (z == :z) && multi@F1)

TRUE

(result = 0)

TRUE

(z = (y + z))

F2 *
((i == :i) && (:result == result)

 && (x == :x) && (y == :y)
 && (z == :z) && multi@F2)

TRUE

(result = z)

F3 *
((i == :i) && (:result == result)

 && (x == :x) && (y == :y)
 && (z == :z) && multi@F3)

TRUE

(z = 0)

TRUE

(i = (i + 1))

F4 *
((i == :i) && (:result == result)

 && (x == :x) && (y == :y)
 && (z == :z) && multi@F4)

TRUE

(y = 6)

TRUE

(x = 1)

Figure 6.2: Transformed system “Multiplication” with annotated invariants.
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0 *
TRUE

1 *
TRUE

TRUE

(i = 0)

2 *
TRUE

(i >= 0)

(j = 0)

3 *
TRUE

(j <= 5)

(q = 2)

4 *
TRUE

(j > 5)

(j = 0)

TRUE

(j = (j + 1))

(j > 5)

(i = (i + 1))

5 *
TRUE

(j <= 5)

(t = 2)

TRUE

(j = (j + 1))

0 *
TRUE

1 *
TRUE

TRUE

(i = 0)

G1 *
TRUE

(i >= 0)

2 *
TRUE

G3 *
TRUE

(j >= 6)

G4 *
TRUE

(j <= 5)

5 *
TRUE

TRUE

(j = (j + 1))

TRUE

(j = 0)

TRUE

(i = (i + 1))

G5 *
TRUE

TRUE

(q = 2)

TRUE

(t = 2)

(a) (b)

Figure 6.3: (a) Source system for loop fusion test (b) Target system.

70



Chapter 6 Experiments

The TVopt tool is called with
./refinementopt -a twoloops.xml

-c twoloops concrete fus.xml
--prover yices

Indeed the algorithm outputs the correct transformation chain
(Tfus, L3| , L4| ) consisting of just one transformation.

6.3 Termination

For testing termination of the algorithm in the case that the target system
is not a correct translation of the source system, consider the input systems
in Figure 6.4. The source transition system can not be transformed to the
target transition system by any transformation chain, since statement t = 3
is lost somewhere in the compilation process. The TVopt tool is called with
./refinementopt -a testfile1.xml

-c testfile1 concrete terminationfail.xml
--prover yices

The algorithm does not find a transformation chain and outputs false.

6.4 Optimizations

The goal of the optimizations was to keep the size of the BFS tree small.
The here presented tests will show what can be gained from the implemented
optimizations.

For this test the TVopt tool is executed twice for each pair of input
systems. The second time the --opt option is enabled. For all executions
the prover yices is chosen.

Recall that the transformation chains produced by the tool without opti-
mizations and the tool with enabled optimizations can be of different length.
This is due to the fact that the optimizations remove paths in the BFS tree.
Thus, in order to compare the sizes of the BFS trees, the produced trans-
formation chains of both executions have to be the same.

Tabular 6.1 shows the results of this test. The first two columns contain
the name of the input transition systems (TS). Their source files can be found
also in the testsuite of the VRP. The third column shows the number of
transition systems produced (i.e. the number of transformation chains that
were checked) until the target system was found when the optimizations were
not enabled. The fourth column shows the same for enabled optimizations.
The fifth and the sixth column show the number of transformation chains
that were produced so far but that were not yet checked.

As expected, the number of checked transformation chains until C is
found gets less if optimizations are enabled. Furthermore, the size of the
BFS tree is reduced. Thus, in the case that C is not a correct translation of
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0 *
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1 *
TRUE

TRUE

(i = 0)

2 *
TRUE

(i >= 0)

(x = 0)

3 *
TRUE

(x <= 5)

(q = x)

5 *
TRUE

(x > 5)

(x = 0)

4 *
TRUE

TRUE

(t = 3)

TRUE

(x = (x + 1))

TRUE

(i = (i + 1))

0 *
TRUE

1 *
TRUE

TRUE

(i = 0)

G1
TRUE

(i <= 0)

2 *
TRUE

G2
TRUE

(x >= 0)

G3
TRUE

(x <= -1)

4 *
TRUE

TRUE

(x = (x - 1))

5 *
TRUE

TRUE

(i = (i - 1))

TRUE

(x = 5)

TRUE

(q = 2)

TRUE

(x = 0)

(a) (b)

Figure 6.4: (a) Source system for termination test (b) Incorrect translation
of source system.
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Source TS Target TS checked TC --opt unprocessed TC --opt

twoloops twoloops concrete 3 15 14 16 11

opttest opttest concrete 3a 62 59 295 253

opttest opttest concrete 3b 88 82 388 323

opttest opttest concrete 4 752 592 2478 1684

Table 6.1: Results of optimization test.

A, less transformation chains have to be checked. Note, the larger the BFS
tree gets, the more optimizations are applied.
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Conclusion and Future Work

7.1 Conclusion

We have presented an algorithm that takes as input two transition systems
and returns a proof if the target transition system is a correct translation
of the source transition system. Otherwise it outputs false. To define
“correct translation”, the notion of refinement was introduced, i.e. the target
transition system C is a correct translation of the source transition system
A if a refinement mapping between C and A can be established.

As we have seen, finding such a refinement mapping is often not obvious,
since the target transition system and the source transition system often
have completely different structures and it can not be determined which
part of the target transition system is mapped to which part of the source
transition system. This is due to the fact that a compiler applies several
optimization methods while translating the source transition system. The
focus of this thesis was set on structure-modifying transformations such as
loop fusion, loop distribution, loop interchange, loop reversal, etc. These
transformations were defined formally and afterwards they were classified.
This classification was made by analyzing the effect of the transformations
on a transition system and the effect the transformations have on each other.
For example, two transformations can erase each other, or they are commu-
tative.

The presented algorithm was based on breadth first search (BFS). It
searches exhaustively for a transformation chain that transforms the source
transition system into the target transition system. If such a transformation
chain exists, the trivial refinement mapping can be established, i.e. the lo-
cations and variables of the target system can be mapped one-to-one to the
locations and variables, respectively, of the source system. The algorithm
terminates if the target transition system is found or if it can be excluded
that there exists a refinement mapping. This algorithm was shown to be
correct and terminating for a restricted set of transformations. To deter-
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mine by which transformations this set can be extended without violating
correctness or termination, some properties the transformation has to fulfill
were given. We have seen, that for example loop unrolling violates these
properties. Thus, the algorithm can only be extended by loop unrolling if a
metric was used. For loop unrolling such a metric was presented.

To reduce the search space, some optimizations were introduced that
delete infinite paths in the BFS tree or subtrees that occur twice. These op-
timizations were based on the classification of the compiler transformations.
It was shown that the presented optimizations preserve the correctness and
termination criteria of the algorithm.

7.2 Future Work

There are many directions for future work. We list a few as follows:

• The set of the transformations can be extended:
There exist many other transformations a compiler applies while trans-
lating a source program. The algorithm can be extended by these
transformations. Furthermore, the assumed compiler can be a paral-
lelizing compiler.

• More optimizations can be established:
The optimizations that remove duplicated subtrees can be extended.

• Metrics can be developed:
Some metrics can be developed such that it can be determined earlier
in a transformation chain, that this transformation chain can not lead
to the target transition system. This would reduce the search space.

• The set of valid input transition systems can be extended:
In this thesis we have only considered systems with one process. The
approach can be extended to systems with more than one process. Fur-
thermore, the data structures for variables can be extended to arrays,
pointers, etc.
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Appendix A

Implementation: Class

Hierarchy

ControlFlowGraph+ControlFlowGraph()+ControlFlowGraph(sys:System*)+getBlock(e:Process::EdgeDescriptor):BasicBlock+compute_blocks(sys:System*)+isVisited(v:std::vector<Process::VertexDescriptor>&,i:Process::VertexDescriptor):boolBasicBlock+_stmts:std::vector<Process::EdgeDescriptor>+BasicBlock()+BasicBlock(id:id_type)+~BasicBlock()+BasicBlock(b:constBasicBlock&)+operator=(b:constBasicBlock&):BasicBlock&+setStmts(e:std::vector<Process::EdgeDescriptor>)+isStmt(e:Process::EdgeDescriptor):bool+getStmts():std::vector<Process::EdgeDescriptor>
DirectedGraph

Figure A.1: Class hierarchy of class ControlFlowGraph
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DependencyGraph+dependency_graph:DepGraphZ_sys:Datatypes::System*Z_observables:Datatypes::std::set<std::string>Z_mapStmtVertex:Datatypes::std::vector<std::pair<Process::EdgeDescriptor,VertexDescriptor>>+DependencyGraph()+DependencyGraph(abstract:Datatypes::System&)Zcompute_dependences(abstract:Datatypes::System&)+DependencyGraph(sys:Datatypes::System*)+isDependent(from:Process::EdgeDescriptor,to:Process::EdgeDescriptor):Datatypes::bool+getVertex(e:Process::EdgeDescriptor):Datatypes::VertexDescriptor&+isObservable(x:std::string):Datatypes::boolZpreprocess_system()Zcompute_dependences()
Edge+obsdep:Datatypes::bool+datadep:Datatypes::bool+Edge()+~Edge()Node+_defvar:std::string+_obs:Datatypes::boolZstmt:Process::EdgeDescriptorZ_variableuse:Datatypes::std::map<std::string,Access>+Node()+~Node()+setLabel(e:Process::EdgeDescriptor)+getLabel():Process::EdgeDescriptor+setVariableUse(var:std::string,acc:std::string)+isVariableUsed(var:std::string):Datatypes::bool VertexPropertyEdgePropertyUndirectedGraph+UndirectedGraph()+~UndirectedGraph()+get_base():Datatypes::constBase&+insertVertex(p:Datatypes::constVertexProperty&):VertexDescriptor+getVertexProperty(v:Datatypes::constVertexDescriptor&):Datatypes::VertexProperty&+getAdjacents(v:Datatypes::constVertexDescriptor&):AdjacencyIteratorPair+getVertices():VertexIteratorPair+insertEdge(from:constVertexDescriptor&,to:constVertexDescriptor&,p:constEdgeProperty&):EdgeDescriptor+removeEdge(from:Datatypes::VertexDescriptor&,to:Datatypes::VertexDescriptor&)+getEdgeProperty(e:Datatypes::constEdgeDescriptor&):Datatypes::EdgeProperty&+isEdge(from:Datatypes::VertexDescriptor&,to:Datatypes::VertexDescriptor&):Datatypes::bool+getEdge(from:constVertexDescriptor&,to:constVertexDescriptor&):EdgeDescriptor+getOutEdges(v:Datatypes::constVertexDescriptor&):OutEdgeIteratorPair+numOutEdges(v:Datatypes::constVertexDescriptor&):DegreeSizeType+getEdges():EdgeIteratorPair+source(e:Datatypes::constEdgeDescriptor&):VertexDescriptor+target(e:Datatypes::constEdgeDescriptor&):VertexDescriptor+numVertices():size_t+numEdges():size_t+remove_vertex(v:Datatypes::constVertexDescriptor&)+nullVertex():VertexDescriptor

Figure A.2: Class hierarchy of class DependencyGraph
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+_loop2+_loop1LoopName+blocks:std::vector<std::string>Ï_reverse:std::vector<bool>Ï_blocks:std::vector<std::string>+LoopName()+LoopName(b:std::vector<std::string>,r:std::vector<bool>)+is_reversed():bool+operator=(l:constLoopName&):LoopName&+LoopName(ln:conststd::string)+operator==(rhs:constLoopName&):bool+operator<<(out:std::ostream&,l:constLoopName&):std::ostream&+isReversed():bool+getBlock(i:unsignedint):std::string+getReverse(i:unsignedint):bool+getBlocks():std::vector<std::string>&+insertBlock(s:std::string)+insertReverse(b:bool)+getReverse():std::vector<bool>&+getBlocksNum():unsignedint

Parameter+_type:TransfType+_loop1:LoopName+_loop2:LoopName+_loc1:std::string+_loc2:std::string+_e:Process::EdgeDescriptor+Parameter(t:TransfType,l1:LoopName)+Parameter(t:TransfType,l1:LoopName,l2:LoopName)+Parameter(t:TransfType,l1:LoopName,loc2:std::string)+Parameter(t:TransfType,loc1:std::string,loc2:std::string)+Parameter()+Parameter(t:TransfType,l1:LoopName,loc1:Process::id_type)+Parameter(t:TransfType,loc1:Process::id_type,loc2:Process::id_type)+operator=(t:constParameter&):Parameter&+operator<<(out:std::ostream&,l:constParameter&):std::ostream&+getType():TransfType+getLoop1():LoopName+getLoop2():LoopName+getLoc1():Process::id_type+getLoc2():Process::id_type

Transformation+Transformation()+Transformation(t:TransfType,l1:LoopName)+Transformation(t:TransfType,l1:LoopName,l2:LoopName)+Transformation(t:TransfType,l1:LoopName,l2:Process::id_type)+Transformation(t:TransfType,l1:Process::id_type,l2:Process::id_type)+operator=(t:constTransformation&):Transformation&+~Transformation()+apply_transformation(sys:System*,ats:AbstractTransitionSystem*,initialats:AbstractTransitionSystem*):System*Ïapply_fus(sys:System*,ats:AbstractTransitionSystem*):System*Ïapply_dst(sys:System*,ats:AbstractTransitionSystem*,initialats:AbstractTransitionSystem*):System*Ïapply_rev(sys:System*,ats:AbstractTransitionSystem*):System*Ïapply_reordS(sys:System*,ats:AbstractTransitionSystem*):System*Ïapply_reordL(sys:System*,ats:AbstractTransitionSystem*):System*

Figure A.3: Class hierarchy of class Transformation
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Loopò_init:Datatypes::ExpTreeNode*ò_prec:Datatypes::ExpTreeNode*ò_guard:Datatypes::ExpTreeNode*ò_loop_body:Datatypes::std::set<Process::id_type>ò_start_loc:Process::id_typeò_indexvar:std::stringò_name:LoopName+Loop(b:Datatypes::std::set<Process::id_type>,s:Process::id_type,n:LoopName)+Loop(l:Datatypes::constLoop&)+~Loop()+getStartLoc():Process::id_type+setGuard(g:Datatypes::ExpTreeNode*)+getGuard():Datatypes::ExpTreeNode*+setInit(g:Datatypes::ExpTreeNode*)+getInit():Datatypes::ExpTreeNode*+setPrec(g:Datatypes::ExpTreeNode*)+getPrec():Datatypes::ExpTreeNode*+setIndexVar(s:std::string)+getIndexVar():std::string+getLoopBody():Datatypes::std::set<Process::id_type>&+isLoopBodyLoc(i:Process::id_type):Datatypes::bool+setName(l:Datatypes::LoopName&)+getName():LoopName

AbstractTransitionSystem+loops:Datatypes::vector<LoopName>ò_abs:Datatypes::System*òstart_loc:Datatypes::std::map<LoopName,std::string>òloop_body:Datatypes::std::map<LoopName,std::vector<std::string>>ò_loops:Datatypes::std::vector<Loop*>+AbstractTransitionSystem(abstract:Datatypes::System&)+~AbstractTransitionSystem()òcompute_absTS()+AbstractTransitionSystem()+AbstractTransitionSystem(abst:Datatypes::System*)+isStartLoc(id:Process::id_type):Datatypes::bool+getLoop(id:Process::id_type):Datatypes::Loop*+getLoop(id:LoopName):Datatypes::Loop*+getLoop(idx:Datatypes::unsignedint):Datatypes::Loop*+getNumLoops():Datatypes::int+getIndex(id:LoopName):Datatypes::int+update(abst:Datatypes::System*)+removeLoop(l:LoopName)+insertLoop(l:Datatypes::Loop*)òpreprocess_sys(abst:Datatypes::System*)òcompute_absTS(abst:Datatypes::System*)òisVisited(v:Datatypes::std::vector<Process::id_type>&,i:Process::id_type):Datatypes::bool

LoopName,_name
Figure A.4: Class hierarchy of class AbstractTransitionSystem
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AbstractTransitionSystem
Transformation

ControlFlowGraph
DependencyGraph

Utilities+_cnc:Datatypes::System*+_ats:Datatypes::AbstractTransitionSystem*+_initialats:Datatypes::AbstractTransitionSystem*+_cncats:Datatypes::AbstractTransitionSystem*+_depgraph:Datatypes::DependencyGraph*+param:Datatypes::std::vector<Transformation>+_cfg:Datatypes::ControlFlowGraph*+Utilities(abstractfile:std::string,concretefile:std::string)+_abs(:abstract)+computeAllValidTransformations()+isValidTransformation(t:Datatypes::Transformation&):Datatypes::bool+directNeighbours(l1:Datatypes::Loop&,l2:Datatypes::Loop&):Datatypes::bool+check_input()+check_input_cnc()+preprocess_system()+preprocess_system_cnc()+compute_guardNF(gua:Datatypes::ExpTreeNode*):Datatypes::ExpTreeNode*+getPrecLoc(l:LoopName,y:Datatypes::bool):Process::VertexDescriptor+getGuardLoc(l:LoopName,y:Datatypes::bool):Process::VertexDescriptor+isVisited(v:Datatypes::std::vector<Process::VertexDescriptor>&,i:Process::VertexDescriptor):Datatypes::bool+reachusewithoutkill(idxvar:std::string&,loc:Process::VertexDescriptor,endrange:Process::VertexDescriptor):Datatypes::bool+isValidFusDst(s1start:Process::VertexDescriptor,s1end:Process::VertexDescriptor,s2start:Process::VertexDescriptor,s2end:Process::VertexDescriptor):bool+contains_observable(s:Process::VertexDescriptor&,e:Process::VertexDescriptor&):bool
+_cfg
0..1+_ats
0..1

+_depgraph0..1

Figure A.5: Class hierarchy of class Utilities
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Compiler�_abs:Datatypes::System*�_depth:Datatypes::int+depth(:d)+compile_abstract()+Utilities(:abstract)+getConcrete():Datatypes::System*�translate_system()�selectTransformation():Transformation
Utilities

Figure A.6: Class hierarchy of class Compiler

Utilities

RefinementoptÉ_absfile:std::stringÉ_confile:std::stringÉ_prover_name:std::stringÉ_prover_command:std::stringÉ_array_index_size:Datatypes::unsignedlongÉ_prover_log_level:Datatypes::intÉ_cache:Datatypes::ControlRelationCache*+Refinementopt(abstractfile:std::string,concretefile:std::string,pll:int,pn:std::string,pc:std::string,ais:unsignedlong)+~Refinementopt()+refine():Datatypes::boolÉrefine_system():Datatypes::boolÉcheck_rules(red:Datatypes::std::vector<std::pair<Process::id_type,Process::id_type>>&)ÉisReorderd(a:Process::id_type,b:Process::id_type,red:std::vector<std::pair<Process::id_type,Process::id_type>>&):boolÉfoundRefMapping():Datatypes::bool

Figure A.7: Class hierarchy of class Refinementopt (Implementation of the
algorithm)
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