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Abstract. These lecture notes trace the developments triggered by
Church’s classic synthesis problem from the early solutions in the 1960s
to the practical tools that have come out in the past few years. The
article gives an overview on the automata- and game-theoretic founda-
tions of the synthesis problem. We then explore the spectrum of logics
for the synthesis of reactive systems, from reduced logics, like GR(1),
to advanced logics such as strategy and coordination logic. Finally, we
discuss the ideas behind recent synthesis approaches, like bounded syn-
thesis and symbolic and SAT-based methods.
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1. Introduction

More than fifty years after its introduction by Alonzo Church [1], the synthesis
problem is still one of the most intriguing challenges in the theory of reactive sys-
tems. Reactive systems are computer systems that maintain a continuous inter-
action with their environment. Hardware circuits, communication protocols, and
embedded controllers are typical examples. Synthesis algorithms construct such
systems automatically from logical specifications, such as formulas of a temporal
logic. Because synthesis eliminates the need for a manual implementation, it has
the potential to revolutionize the development process for reactive systems. And
indeed, synthesis has, over the past few years, found applications in several areas
of systems engineering, notably in the construction of circuits and device drivers
and in the synthesis of controllers for robots and manufacturing plants. The quest,
however, is far from over: the performance of the available algorithms still leaves
much to be desired. Finding logics and algorithms that make the synthesis of
reactive systems efficient and scalable remains a vigorously pursued research goal.

Church’s problem statement in 1957 ignited research on several fundamental
topics, notably on the connection between logics and automata, on algorithmic
solutions of infinite games over finite graphs, and on the theory of automata over
infinite objects. The basic underlying insight is that the synthesis problem can be
understood as a game between the system, trying to satisfy the specification, and
the environment, trying to expose an error. A winning strategy for the system
player defines an implementation that is guaranteed to satisfy the specification.
The games that result from formulas of the usual specification logics for reactive



systems are infinite in the sense that the plays have infinite duration, and yet
finite in the sense that the games are played on a finite game arena. These games
can be solved algorithmically, i.e., one can determine which player wins the game,
and produce a winning strategy; the winner is guaranteed to have a strategy that
only requires finite memory; and the winning strategies form a regular set, which
can be recognized and manipulated with automata over infinite trees.

Progress in automata and game theory allowed Church’s problem to be solved
within a decade, in the sense that the decidability of the problem was estab-
lished [2]. The path towards practical algorithms, however, turned out to be much
longer. The main challenge to be overcome was the algorithmic complexity of the
problem. In his 1974 thesis, Larry Stockmeyer discussed one of the corner stones
of the solution of Church’s problem, the translation of formulas of the monadic
second-order logic of one successor (S1S) into Biichi automata. The translation
from S1S to automata is nonelementary in the length of the formula. Stockmeyer
predicted, somewhat darkly, that “any attempt to find an efficient algorithm for
the problem is foredoomed” [3].

The expensive translation from formulas to automata was not to remain the
only obstacle towards practical solutions of Church’s problem. A very discourag-
ing result was Rosner and Pnueli’s discovery of the undecidability of the synthesis
problem for distributed systems [4]. Most modern reactive systems are distributed
in the sense that they consist of multiple processes with individual inputs, which
they may or may not share with other processes. A key difficulty in the design of
such systems is to decide how the processes should interact so that each process
obtains the information needed to carry out its functionality. Distributed synthe-
sis, i.e., the extension of Church’s problem to the case that the implementation
consists of several processes, is thus a particularly useful type of synthesis. How-
ever, when Pnueli and Rosner began, in the late 1980s, to investigate Church’s
problem for distributed systems, they quickly discovered that the problem is un-
decidable in even the most restricted settings, such as architectures with as few
as two independent processes.

Today, reactive synthesis has matured, despite these challenges, into an area
with not only well-understood foundations, but also a rich supply of practical
algorithms. There is a growing landscape of tool implementations (cf. [5,6,7]). In
2014, the first synthesis competition took place at the annual CAV conference,
where the synthesis tools were compared against each other using an initial col-
lection of roughly 500 standard benchmark problems [8]. While synthesis may
not yet have reached the same level of industrial acceptance as its twin brother,
computer-aided verification, there is a growing number of impressive success sto-
ries from areas such as hardware circuits, device drivers, and robotics.

The historical developments on the synthesis problem can broadly be grouped
into three big waves. The first wave, during the decade after Church’s inception
of the problem, brought an initial set of basic algorithms that established the
principal decidability. In 1969, Biichi and Landweber gave the first game-theoretic
solution [2]. Michael Rabin invented automata over infinite trees and provided an
automata-theoretic approach to the solution of Church’s problem [9], which paved
the way for more advanced automata-based algorithms to be discovered later.
The common basis for these early synthesis algorithms was a system specification



given as a formula of monadic second order logic (MSO). As a result, the early
algorithms suffer, as observed by Stockmeyer, from nonelementary complexity.

The focus on MSO was disrupted in the 1980s, when the introduction of tem-
poral logic for the specification of reactive systems by Amir Pnueli triggered a
second wave of interest in Church’s problem. The translation of linear-time tem-
poral logic (LTL) to deterministic automata is doubly exponential, and, hence,
while far from cheap, certainly much closer to practicality than MSO. At the same
time, LTL-based model checking, which only requires PSPACE, took off as an
industrial technique, in particular in the hardware industry. The need to detect
unrealizable, and, hence, erroneous, specifications before verification — “a spec-
ification is useless if it cannot be realized by any concrete implementation” [10]
— provided additional, practical motivation for the study of Church’s problem.
Synthesis algorithms were developed for the common linear and branching-time
temporal logics.

The algorithmic advances led to broader interest in realizability and simi-
lar questions. Properties about the existence of strategies, including realizability
and related properties, like the existence of Nash equilibria or recoverability from
faults, began to be recognized as genuine system properties worthy of formal spec-
ification and analysis. Game-based logics like ATL [11], Strategy Logic [12], and
Coordination Logic [13] extend temporal logic with quantification over strategies,
and can express properties like realizability within the logic, as opposed to an ex-
ternal semantical condition, like the realizability of an MSO or LTL formula. The
result is much greater flexibility: customized queries, such as realizability under
specific assumptions or in specific system architectures, can be checked without
the need to come up, every time, with customized synthesis algorithms. Once the
desired variation is encoded in an appropriate logic, the actual synthesis work can
be left to the model checking algorithm or decision procedure of the logic.

A third wave of inquiry into Church’s problem, this time with the explicit
goal of developing practical algorithms, began about a decade ago. The stage for
the third wave had been set by the enormous advances in the performance of
automatic verification during the 1980s and 1990s. To reduce the complexity of
the synthesis problem, much attention focussed on “synthesis-friendly” reduced
logics, such as generalized reactivity GR(1), and on practically relevant variations
of the basic synthesis problems, such as bounded synthesis [14]. Bounded syn-
thesis focusses the search for an implementation to implementations with small
(bounded) size. Motivated by the success of symbolic and SAT-based verification
(cf. [15,85,86]), similar techniques were also developed for synthesis. Eventually,
the advances in the performance of the synthesis algorithms and the growing
availability of tools made it possible to tackle the first real-world design problems,
such as the synthesis of an arbiter for the AMBA AHB bus, an open industrial
standard for the on-chip communication and management of functional blocks in
system-on-a-chip (SoC) designs [16] and the synthesis of device drivers like the
Intel PRO/1000 ethernet controller [17].



2. Church’s Problem

Church’s problem [1,18] is concerned with the existence of reactive systems, which
transform, in an online fashion, an infinite stream of inputs into an infinite stream
of outputs. Reactive systems differ fundamentally from data transforming pro-
grams, which read some input and produce, upon termination, some output. The
synthesis of data transforming programs is a fascinating subject with a rich his-
tory of its own (cf. [19,20,21]), which is, however, beyond the scope of this article.

In Church’s problem, the inputs and outputs of the reactive system to be
synthesized are valuations of boolean variables. Consider a set I of input variables
and a set O of output variables; the reactive system must, given a finite sequence
of valuations of the input variables w € (2)* produce a valuation f(w) € 2° of
the output variables. A specification of a reactive system is a set Spec C (2/YC)
of infinite sequences of valuations of both the input and the output variables.
The system is correct if for every infinite sequence of inputs, the input-output
sequence that is obtained by computing the outputs according to f, is an element
of Spec.

In the following, we make the definition of Church’s problem precise, by fixing
monadic second-order logic as the specification language and finite-state machines
as implementations.

Monadic Second-Order Logic The input to Church’s problem is a regular set of
w-words, given as a formula of the monadic second-order logic of one successor
(S1S). Suppose, for example, we are interested in constructing an arbiter circuit.
Arbiters are used when more than one client circuit needs access to some shared
resource, such as a communication bus. To access the resource, the client sends a
request signal R and waits until it receives a grant signal G from the arbiter. The
task of the arbiter is to answer each request with a grant without giving grants
to the two clients at the same time. In S1S, an arbiter with two clients can be
specified as a conjunction of three properties:

Vo . —Gi(x) V —Ga(x) (mutual exclusion)
Ve . Ri(z) = Iy .y>x A Gi(y) (response 1)
Vo . Ro(z) = Jy .y >z A Ga(y) (response 2)

The mutual exclusion property states that at every point in time z, at most one
grant signal can be set; the response properties state that if a request is made at
time x, then there must exist a point in time y > x, where the corresponding grant
signal is set. S1S formulas are based on two types of variables: first-order variables
V1, which range over natural numbers, and second-order variables V5, which range
over sets of natural numbers. We will distinguish the two types of variables here
by using small letters Vi = {z,y,x,...} for the first-order variables and capital
letters Vo = {Z,Y, X, ...} for second-order variables. Terms are constructed from
first-order variables, the constant 0, and the successor function: ¢ 4 1; formulas
consist of the membership test X (¢), where ¢ is a term and X a second-order
variable, equality t; = t5 on terms, first-order quantification 3z and second-order
quantification 93X, and boolean combinations. Greater-than-or-equal = > y is
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Figure 1. Moore machine implementing the arbiter specification.

definable in S1S as the requirement that every upward-closed set Z that contains
y must also contain z: VZ . (Z(y) A(VY . Z(y') = Z(y' + 1)) =z € Z.

A model of an S1S formula can be interpreted as an infinite word from
(2¥19V2)« where each letter is a set of variables. A second-order variable evaluates
to the set of positions where it occurs, first-order variables must occur at exactly
one position and evaluate to this position. To specify the behavior of a reactive
system in S1S, we use free second-order variables that are interpreted as the val-
ues of input and output signals at various points in time. In the arbiter exam-
ple, R1, Ry are second-order variable representing the input, Gy, Ga second-order
variables representing the output.

Implementations. A solution to Church’s problem is a circuit that satisfies the
S1S formula for every possible input. The restriction to circuits means that we
are interested in finite-state solutions, which we will formalize in the following as
finite-state machines.

A (finite-state) Moore machine over input alphabet ¥ and output alphabet
A has the form M = (S5, s, T, G), where S is a finite set of states, s € S is an
initial state, T : S x X — S is a transition function, mapping a state and an input
letter to the next state, and G : S — A is an output function mapping each state
to an output letter.

For a given sequence of inputs o = «(0) a(1) a(2) . . ., the Moore machine gen-
erates a sequence 5 = 5o T(5(0),(0)) T(5(1), (1)) ... of states and a sequence
v = G(B(0)) G(B(1)) G(B(2)) ... of outputs.

For Church’s problem, the input alphabet ¥ = 27 consists of the valuations of
the input variables I, and the output alphabet A = 29 consists of the valuations
of the output variables O. The Moore machine is a realization of the S1S formula
¢ if for all possible inputs o € (27)“, the combination «(0)Uv(0) a(1)Ury(1) a(2)U
~v(2) ... satisfies .

Figure 1 shows a Moore machine that implements the arbiter specification.
This implementation carefully answers every request with a grant at a later point
in time. Note that this implementation is actually unnecessarily complicated. If a
request comes in at a point in time where a grant is already being given out, there



is, according to our specification, no need for a further grant at a later point in
time. Also, there is no requirement in our specification that grants must actually
be preceded by requests. Another, and much simpler, solution for our specification
would be to completely ignore the input and alternate between giving a grant to
the first and to the second client, independently of whether there was a request
or not.

3. Early Solutions

In 1960, Biichi [22] and Elgot [23] established the connection between logic and
automata, by showing that formulas of monadic second-order logic over finite
words and finite automata can be translated into each other. Biichi’s Theorem [24]
extends this connection to S1S and automata over infinite words. Biichi’s Theorem
establishes the decidability of S1S and also provides the first step for the solution
of Church’s problem: the translation of the logical specification to an automaton.
This first step is common to both the game-based solution due to Biichi and
Landweber, and the automata-based solution due to Rabin.

8.1. The Logic-Automata Connection

A (nondeterministic) automaton over infinite words over alphabet ¥ has the form
A = (Q,Qo,T, Acc), where @ is a finite set of states, Qo C @ is a set of initial
states, T C @ x X X @ is a set of transitions, and Acc is an acceptance condition.
We assume that A is complete, i.e., for every ¢ € @ and o € ¥ there is at least
one ¢’ € @ such that (q,0,q) € T. If, furthermore, Qg is singleton and for every
q € Q and o € X there is at most one ¢’ € Q such that (¢,0,q) € T, then A is
deterministic. In this case, we also write T" as a function T: Q x ¥ — Q.

The language of automata over infinite words is defined with the follow-
ing mechanism. A run of an automaton .4 on an infinite input word a =
a(0) a(l) a(2)... € 3¢ is an infinite sequence of states r = r(0) (1) r(2) ... € Q¥
such that the sequence starts with the initial state r(0) = ¢y and subsequently
follows the transitions, i.e., for all ¢ € N, (r(4), «(4),r(i+1)) € T. An automaton A
accepts an infinite word « if there is a run of 4 on « that satisfies the acceptance
condition. The language of A consists of all accepted words.

A basic acceptance condition is safety, which is given as a subset of S C @ of
states; a run is accepting if only safe states are visited. For the automata-theoretic
representation of MSO it suffices to use a comparatively simple extension of the
safety condition, the Biichi condition [24], which is given as a subset F C S of
accepting states. The Biichi condition requires that some state in F' is visited
infinitely often.

There are several other useful acceptance conditions. The co-Biichi condi-
tion is given as a set of rejecting states F' and is satisfied if the states in F
are only visited finitely often. The Muller acceptance condition consists of a set
F C 29 of sets of states. A run is accepting if the set of states that occur in-
finitely often on the run is an element of F. The Rabin condition consists of a set
Q= {(E1, F1),...,(Ey, Fy)} of pairs of sets of states. A run is accepted if there



{Alz ¢ A} {Alz €A} {A|{z,y}nA=0} {A[{z,y}n A =0}

{A|{z,Y} C 4} g{AWGA} {Alzea)
O — O O

Figure 2. Biichi automata for S1S formulas. The automaton on the left accepts the models of
the S1S formula Y (z), the automaton on the right accepts the models of x = y + 1.
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exists a pair (E, F') € Q such that none of the states in E occurs infinitely often
and some state in F' occurs infinitely often. A commonly used special case of the
Rabin condition is the Rabin chain or parity condition [25]. Here, the acccepting
pairs (E1, F1),...,(Ek, Fg) form a chain Fy C Fy C Ey C ... C Ey C Fj, with
respect to set inclusion. The states can thus be colored with natural numbers,
where the states of E; are colored with 1, the states of F} ~ E; with 2, and so
forth. A run is accepting if the least color that occurs infinitely often is even.

The construction of a Biichi automaton from an S1S formula follows the
structure of the formula. The base cases are atomic formulas like Y (z) and x =
y + 1, which are translated into the automata shown in Fig. 2.

Automata for more complex formulas are built by applying automata trans-
formations corresponding to the logical operators, i.e., disjunction is implemented
by language union, conjunction by intersection, quantification by projection, nega-
tion by complementation. Language complementation is exponential in the num-
ber of states; the complexity of this translation is therefore, in general, nonele-
mentary.

3.2. The Biichi-Landweber Theorem

In 1969, one decade after its inception, Church’s problem was solved by Biichi and
Landweber [2]. Biichi and Landweber stated Church’s problem as a game between
two players, one player representing the system and one player representing the
environment. In each round of the game, the environment player first chooses a
valuation of the inputs, then the system chooses the valuation of the outputs. The
system player wins if the sequence of valuations produced in this way satisfies
the given S1S formula. Realizability thus amounts to the existence of a winning
strategy for the system player against all possible behaviors of the environment
player.

Determinization. Biichi and Landweber’s construction is based on the connec-
tion between logic and automata provided by Biichi’s Theorem. Instead of check-
ing the original S1S formula on every possible play, the game is played directly on
a finite graph that is constructed from the the states of an automaton obtained
from the formula.

The automata in Biichi’s Theorem are, in general, nondeterministic, i.e., the
set of initial states may consist of more than one state and there may be two
transitions (¢, 0, q1), (¢, 0,¢2) € T from the same source state ¢ that lead, for some
input symbol o, to two different target states ¢; # ¢o. This is a problem for the



construction of the game, because every sequence of choices of the two players
must result in a unique play. An important preprocessing step, before the game
can be constructed, is therefore to determinize the automaton.

Unlike automata over finite words, where each nondeterministic automaton
can be translated into an equivalent deterministic automaton, deterministic Biichi
automata are strictly weaker than nondeterministic Biichi automata. The deter-
minization of a Biichi automaton therefore results in automata with more ex-
pressive acceptance conditions. Already in 1966, McNaughton [26] showed that
every nondeterministic Biichi automaton can be translated into an equivalent de-
terministic automaton with Muller acceptance condition. In 1988, Safra gave a
translation that produces a deterministic Rabin automaton with only 20("logn)
states and O(n) pairs in the acceptance condition, where n is the number of states
of the nondeterministic automaton [27]. Michel showed that Safra’s construction
is in fact optimal [28]. More recently, Piterman gave an adaptation of Safra’s
construction that translates nondeterministic Biichi automata into deterministic
parity automata [29].

The synthesis game. The treatment of Church’s problem as an infinite game was
first proposed by McNaughton [30].

A game arena is a graph A = (V, E), where the nodes V are partitioned into
two disjoint sets V' = V;, U Vi, the positions of players 0 and 1, respectively. The
edges E are a subset of V' x V such that every every position p € V' has at least
one outgoing edge (p,p’) € E. A game G = (A, Win) counsists of a game arena
and a winning condition Win C V%, given for example as a Biichi, Muller, or
parity condition.

In the synthesis game of an S1S formula ¢, Player 0 represents the system,
Player 1 the environment. A round of the game consists of Player 0 choosing a
valuation of the output variables, then Player 1 choosing a valuation of the input
variables. The positions of the game keep track of the state of the deterministic
automaton A, = (Q,{qo}, T, Acc) for ¢: for Player 0, we set V = Q. For Player 1,
we set V) = @ x 29. The game position of Player 1 stores the output selected
by Player 0; a position p of Player 0 has edges to all positions (p,0) of Player 1
for some o € 2°. Player 1 then chooses some input and the game moves to the
successor state of the automaton. A position (p, o) of Player 1 thus has edges to
all positions T'(p,i U o) of Player 0, where i € 2! is some input. The winning
condition is derived from the acceptance condition of the automaton. For example,
if the acceptance condition of the deterministic automaton is a parity condition
¢ : @ — N, then the winning condition of the game is the parity condition
d QU (Q %29 — N with ¢(q) = c(q) for ¢ € Q and ¢/(g,0) = c(q) for
geQ,o€2°.

A play 7 € V¥ is an infinite sequence ™ = 7(0) (1) m(2) ... of positions such
that Vi € N . (w(¢),7(i + 1)) € E. The players take turns in choosing successor
positions, i.e., w(1) is chosen by Player 0 from the available successors of 7(0) in
E, then 7(2) is chosen by Player 1, etc. A play 7 is won by Player 0 iff 7 satisfies
the winning condition. A strategy for player o is a function f, : V*-V, — V that
maps a sequence of game positions, representing a history of a play, to a successor
position such that (p,p’) € E whenever f,(u-p) = p'. A play 7 conforms to a
strategy f, of player o if Vi € N . if p; € V, then w(i +1) = fo(7(0)...7(4)).
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Figure 3. Deterministic Biichi automaton and synthesis game for the response property. Game
positions depicted as circles belong to Player 0, game positions depicted as rectangles to Player 1.
Double lines indicate that the game position or automaton state is accepting.
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Strategies that do not depend on the history of the game except for the last
position can be given as a function g, : V, — V (defining the strategy f,(w-v) =
go(v) for w € V*) and are called memoryless. A strategy f, is p-winning for
player o and position p if all plays that conform to f, and that start in p are won
by Player o.

In the synthesis game of an S1S formula ¢, Player 0 has a go-winning strategy
if and only if ¢ is realizable. As an example, consider the deterministic automaton
and the synthesis game shown in Fig. 3 for the response property:

Ve . R(x) — 3y .y >z A G(y) (response)

Note that this example is chosen so that the acceptance condition of the deter-
ministic automaton, and, hence, the winning condition of the game, is a Biichi
condition. In general, the result of the determinization would be an automaton
with a more expressive acceptance condition such as parity.

Player 0 has a p-winning strategy. For example, if Player 0 always gives out
the grant, the game moves back and forth between p and (p, { G}), without ever
reaching gq.

Game Solving. The Biichi-Landweber Theorem [2] says that for a game with
Muller winning condition, one can decide whether Player 0 has a winning strategy
and, if the answer is yes, construct a finite-state winning strategy. Starting with
this fundamental result, the detailed analysis of the game solving problem, in
particular with regard to the size of the required strategies and the complexity of
determining the winning player, evolved into a research area that still flourishes
today.

Gurevich and Harrington showed that the memory needed to win a Muller
game can be limited to store a latest appearance record, which indicates the order
in which the positions of the game arena were visited most recently [31]. The
memory required for the latest appearance records is bounded by the factorial of
the number of positions. A corresponding exponential lower bound for the memory
required to win Muller games was shown by Lescow [32]. The situation is simpler
for games with Rabin winning condition, where memoryless winning strategies
suffice for Player 0 [33], although Player 1 may need exponential memory [32].



For parity games (and games with subsumed winning conditions like safety and
Biichi), the winning player always has a memoryless winning strategy [34].

The complexity of determining the winner of a Muller game depends on the
precise representation of the winning condition. For an explicit representation of
the winning condition F as a list of sets of states, the winner can be determined
in polynomial time [35]. For succinct representations, such as the Emerson-Lei
representation [36], where F is given as a boolean formula whose variables are
the positions of the game, the problem is PSPACE-complete [37].

Safety games can be solved in linear time in the size of the arena [38,39]; Biichi
games in quadratic time in the number of positions [40]. Deciding the winner of
a Rabin game is NP-complete [41]. An intriguing open question is the complexity
of solving parity games. The problem is known to be in NP N co-NP [42] (and in
UP N co-UP [43]). All currently known deterministic algorithms have complexity
bounds that are either exponential in the number of colors [44,45,46], or in the
square root of the number of game positions [47,48]. For some time, strategy
improvement algorithms [47,49] were believed to be promising candidates for a
polynomial-time solution; recently, however, a family of games with exponential
running time was demonstrated for this class of algorithms as well [50].

A winning strategy for Player 0 in the synthesis game can be translated into
an implementation. Suppose, for example, that the synthesis game is a parity
game, derived from a deterministic parity automaton A = (Q, {q0},T,¢), and a
memoryless winning strategy fo : Vo — V. The strategy is implemented by the
Moore machine M = (S, 59, 7", G), where S = Q, so = qo, T"(q,%) = T(q, fo(q) U
i), and G(q) = fo(g), which always chooses the next output according to f.

8.8. Automata-Based Synthesis

In 1969, Rabin introduced automata over infinite trees [51]. Tree automata provide
an alternative, and very elegant, solution to Church’s problem [9]. Rabin’s insight
was to view implementations as infinite trees that branch according to the possible
inputs and that are labeled with the outputs chosen by the system. Figure 4
shows such a tree representation for a strategy f : (2{h)* — 29 with a single
input variable 7. Rabin’s solution to Church’s problem is to represent the set
of all implementations that satisfy the specification as a tree automaton. The
specification is thus realizable if and only if the language of the tree automaton
is non-empty.

Automata on Infinite Trees. For a given set YT of directions, the infinite tree is
the set T* of finite sequences over Y. A ¥-labeled Y-tree is a function T* — 3.

A tree automaton over Y-labeled Y-trees has the form A = (Q, qo, T, Acc),
where @ is a finite set of states, g9 € @ is an initial state, T C Q x ¥ x (T — Q)
is a set of transitions and Acc is an acceptance condition Acc C Q.

A run of a tree automaton A on a Y-labeled Y-tree v : T* — ¥ is a Q-labeled
Y-tree r : T* — @, where the root is labeled with the initial state, r(¢) = go, and
every node n € T* satisfies some transition (r(n),v(n), f) € T in the sense that
f(v) =r(n-v) for all directions v € Y. A run r is accepting if all paths satisfy the
acceptance condition Acc. The language of A consists of all accepted X-labeled
T-trees.
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Figure 4. A strategy tree for a strategy fo : (Z{i})* — 20,

To build a tree automaton that accepts all implementations of a given S1S
formula ¢, we first translate ¢ into a deterministic word automaton A,. The tree
automaton then simply simulates the word automaton along every path of the
input tree. Suppose A, is a deterministic parity word automaton (Q, {qo},T,c).
To simulate A, the tree automaton A, = (Q,qo,T",c), transitions, for every
direction, to the successor state of the word automaton for the combination of
the label and the direction, i.e., 7" = {(¢,0,f) | ¢ € Q,0 € X, f(v) = T(q,0 U
v) for all v € T}. An example of this construction is shown in Fig. 5. The tree
automaton for the response property shown on the left of Fig. 5 was obtained from
the deterministic word automaton shown on the left of Fig. 3. In this example,
the tree automaton has a Biichi acceptance condition, because the automaton in
Fig. 3 is a Biichi automaton. In general, the tree automaton might have a more
expressive acceptance condition, such as a parity condition.

Tree Automata Emptiness. Rabin’s original emptiness test for tree automata
had nonelementary running time. In 1972, this was improved to algorithms with
exponential running time in both the number of states and in the number of
pairs of the Rabin condition [52,9]. Finally, in 1989, algorithms with polynomial
running time in the number of states and exponential running time in the number
of pairs were found [53,54].

In general, one can easily reduce the emptiness problem of a tree automaton
with a certain acceptance condition to the problem of solving the game with the
same type of condition as its winning condition. Following [31], the players in this
game are often called Automaton and Pathfinder: Automaton (Player 0) tries to
prove that an accepted tree exists, Pathfinder (Player 1) tries to disprove this by
finding a path where the acceptance condition is violated.

For a tree automaton A = (Q,qo,T,w), the emptiness game ((V, E), Win)
has positions V = V5 UV} where Automaton’s positions Vo = () are the states of
the automaton and Pathfinder’s positions Vi3 = T are the transitions. The edges
E = EyU E; correspond to Automaton choosing a transition originating from the
present state Ey = {(q,(¢,0,f)) | ¢ € @,(q,0, f) € T} and Pathfinder choosing
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Figure 5. Biichi tree automaton and emptiness game for the response property. Game positions
for player Automaton (Player 0) are depicted as circles, game positions for player Pathfinder
(Player 1) as rectangles.

a direction E1 = {((¢,0, f), f(v)) | v € T}. The winning condition checks if the
sequence of states satisfies the acceptance condition of the automaton; e.g., if
Acc is given as a parity condition ¢ : @ — N, then Win is the parity condition
¢ :V = Nwith ¢(¢) = ¢(q) for ¢ € @ and ¢/((g,0, f)) = ¢(q) for (q,0,f) € T.
The tree automaton is non-empty iff Player Automaton has a go-winning strategy.

Figure 5 shows a Biichi tree automaton for the response property and its
emptiness game. A p-winning strategy for Player Automaton is to move from p to
(p,{G},f : 0 — p,{R} — p), corresponding to the implementation that always
provides the grant.

The automata-based solution to Church’s problem thus leads to an infinite
game, just like the game-based approach. The automata-based approach is, how-
ever, an important generalization, because the representation as automata makes
it possible to manipulate sets of implementations with automata transformations
(see, for example, Section 4.3).

4. Synthesis from Temporal Logics

The invention of temporal logic and the discovery of temporal logic based model
checking in the 1980s established computer-aided verification as a field with prac-
tical relevance especially for the hardware industry. The temporal logics turned
out not only to be often more intuitive to use than SIS, but also to lead to
significantly lower complexity for both verification and synthesis.

4.1. Linear-time Temporal Logic

In his seminal paper “The temporal logics of programs” [55], Pnueli introduced
linear-time temporal logic (LTL) as a new specification language for the desired
behavior of reactive systems. Similar to S1S, LTL is based on sequences. LTL dif-
fers from S1S in that there is no explicit mechanism for quantification. References
to points in time, and quantification over time is done implicitly through modal
operators. For a given set of atomic propositions AP, LTL is generated by the
following grammar:

o = p| o | eAp | Op | eUep



where p € AP is an atomic proposition, = and A are Boolean connectives, and
O and U are temporal operators: O is the next operator, U the until operator.
Typically, the logic is extended with other Boolean operators and with derived
temporal operators such as eventually & @ = true U ¢ and globally O = - .

Like S1S, models of LTL formulas are infinite words. For an infinite word
a€ (24P) apiffp € a(0);a EOpiffa(l) a(2) a(3) ... = ¢; and a = ¢1Ups
iff there is an ¢ > 0 such that a(i) a(i + 1) a(i +2)... = ¢2 and for all 0 < j < 4,
a(j)a(i+1a(i+2)... = o1

The arbiter specification, which was given as a conjunction of S1S formulas
in Section 2, can be equivalently stated in LTL as follows:

O(=Gy vV —Gy) (mutual exclusion)
Ok = O Gy) (response 1)
O(R2 — O Ga) (response 2)

For synthesis from LTL formulas, we assume that the atomic propositions
AP = I UQ are partitioned into inputs I and outputs O. Given an LTL formula
¢ over AP of length n, one can build a Biichi word automaton with 2°(™ states
that recognizes the models of ¢ [56]. The basic idea of the translation is to store,
in each state, a set of subformulas that are required to hold on the suffix of the
input word. This idea has been optimized in various ways [57,58]. In practice, it is
particularly important to simplify the automaton on-the-fly during the construc-
tion, for example by removing redundant transitions and by merging equivalent
states [59].

From the nondeterministic Biichi automaton, one can obtain, via Safra’s con-
struction, a deterministic automaton as required by the game-based or automata-
based synthesis approaches discussed in Sections 3.2 and 3.3. In terms of complex-
ity, the LTL-to-automata translation results in a Biichi automaton with an expo-
nential number of states in the length of the formula; from there, one obtains, via
Safra’s construction, a deterministic Rabin automaton with a doubly exponential
number of states and a single-exponential number of pairs. The emptiness game
of the corresponding tree automaton can be solved in polynomial running time
in the number of states and in exponential running time in the number of pairs,
resulting overall in a doubly exponential running time. The problem is, in fact,
2EXPTIME-complete [54].

4.2. Branching-time Temporal Logic

The temporal operators of LTL describe possible observations along a single time
line. Branching-time temporal logics, by contrast, see time as a tree structure: at
any point in time, there may be multiple futures. Path quantifiers make it possible
to specify the existence and absence of futures with certain properties.

The standard branching-time temporal logics are CTL* [60] and its sublogic
CTL [61]. The syntax of CTL* distinguishes state formulas ® and path formulas
v, as generated by the following grammar:

® i=a | P|PAD | Ap | Egp
o w=@ | 2o | pAp | Op | pUgp



As for LTL, CTL* is usually extended with additional Boolean connectives and
temporal operators. CTL is the sublogic of CTL* where every temporal operator
is immediately preceded by a path quantifier.

CTL* formulas can be interpreted over arbitrary Kripke structures. For the
purposes of synthesis, the models of interest are again 29-labeled 2!-trees. Let v
be such a tree. A path « in v is an infinite sequence (0) v(1) y(2) ... € ((27)*)* of
nodes such that for each node (i) in the sequence, the successor node (i + 1) is
a child of (i), i.e., y(i + 1) = (i) -v for some v € 2!. The set of paths originating
in a node n is denoted by Paths(n).

A node n satisfies an existentially quantified state formula E ¢ iff there is
a path in Paths(n) that satisfies the path formula ¢; analogously, n satisfies a
universally quantified state formula E ¢ iff all paths in Paths(n) satisfy ¢. A path
- satisfies an atomic proposition p € AP iff p € v((0)). The satisfaction of the
temporal modalities is defined as for LTL, i.e., v satisfies O ¢ iff v(1) y(2) v(3) ...
satisfies ¢, and « satisfies @1 Uyps iff there is an ¢ > 0 such that (i) y(i + 1) v(i +
2)... satisfies o and for all 0 < j < i y(j)v(j+1)v(j = 2)... satisfies ¢;. The
Boolean connectives are interpreted in the usual way.

Similar to the translation of LTL formulas into equivalent Biichi word au-
tomata, CTL formulas can be translated into Biichi tree automata. The size of
the resulting automaton is exponential in the length of the formula [62]. Since
Biichi games can be solved in polynomial time, the realizability of a CTL formula
can thus be checked in exponential time. A matching lower bound follows from
the satisfiability problem of CTL [63].

For CTL* formulas, we obtain a Rabin automaton with a doubly exponen-
tial number of states and a single exponential number of pairs. The synthesis
problem can therefore be solved in doubly exponential time [64], and is, hence,
2EXPTIME-complete (the lower bound follows from the synthesis problem for
LTL).

4.8. Synthesis under Incomplete Information

Church’s problem is based on a specification that refers to the inputs and outputs
of the implementation to be synthesized. Since the inputs are, by definition, ob-
servable by the implementation, this results in a game with perfect information.
Often, however, one is interested in synthesizing a process within a larger system,
where the process only observes a subset of the global inputs. This results in a
game with incomplete information.

The classic solution to games with incomplete information is the translation
to perfect-information games with a knowledge-based subset construction due to
Reif [65]. Reif’s construction simulates a given game G with incomplete informa-
tion with a game G’ with perfect information, where the positions of G’ are sets
of positions of G. The set of positions of G reached after a certain sequence of
moves in G’ consists of those positions of G that would have been reached after
some sequence of moves that is indistinguishable, by Player 0, from the sequence
that actually occurred.

A similar idea can also be applied in a transformation on tree automata that
recognize sets of strategy trees. Figure 6 shows the widening of the strategy tree



S FO0)FOF) AP0 FHIHD
F(00) @) F{a30) FAHD)

FO0) f(0{i}) FHi30) f({iH{d})
f(00) F(0{}) F{i30) FHHD)

Figure 6. Widening of the strategy tree for strategy f : (2{1)* — 29 over input variable i,
shown in Fig. 4, to input variables ¢ and .

from Fig. 4 for input variable i to the larger set of input variables consisting of
both 7 and #’. Since the original strategy does not depend on i’, the widened tree
has identical labels on paths where the values of ¢ are identical. Kupferman and
Vardi defined a tree automata transformation called narrowing that transforms a
given tree automaton on strategy trees to a tree automaton on strategies with a
reduced set of inputs such that a strategy tree is accepted by the new automaton if
and only if its widening is accepted by the original automaton [66]. To synthesize
an implementation for a temporal specification, one first builds, as in standard
synthesis, a tree automaton for the specification and then applies narrowing to
reduce the inputs to the subset that is actually observable by the implementation.
Realizability under incomplete information corresponds to non-emptiness of this
automaton. Independently of the presence of incomplete information, the synthe-
sis problems for LTL, CTL, and CTL* are complete for 2EXPTIME, EXPTIME,
and 2EXPTIME, respectively.

4.4. Synthesis of Distributed Systems

The distributed synthesis problem is the generalization of the synthesis problem
where we construct, instead of a single implementation, a set of implementations,
one for each system process, that together must satisfy the specification. The
system architecture is typically given as a directed graph, where the nodes repre-
sent processes, including the environment as a special process. The edges of the
graph are labeled by variables indicating that data may be transmitted between
two processes. The same variable may occur on multiple outgoing edges of a sin-
gle node, allowing for the broadcast of data. Figure 7 shows several examples of
system architectures.

The distributed synthesis problem was introduced by Pnueli and Rosner, who
showed that the problem is decidable for pipeline architectures but undecidable
in general [4]. In particular, the problem is already undecidable for the simple
architecture Ag, which consists of the environment and two independent system
processes. The decidability result was later generalized to one-way ring architec-
tures [67] and, finally, to all architectures without information forks [68].
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Figure 7. Distributed architectures

Information forks are a comprehensive criterion that characterizes all archi-
tectures with an undecidable synthesis problem. Intuitively, an information fork
is a situation where two processes receive information from the environment (di-
rectly or indirectly), in such a way that they cannot completely deduce the in-
formation received by the other process. Consider, for example, the two-way ring
with five system processes shown in Figure 7 on the bottom on the right side. The
synthesis problem is undecidable because of the information fork in processes py
and ps. The environment p; can transmit information through a,b, c to ps that
remains secret to ps, and vice versa, transmit information through a,b, f to ps
that remains secret to ps. The distributed synthesis problem becomes decidable
if we eliminate one of the two processes, resulting in the two-way ring with four
processes shown on the top on the right side.

For architectures without information forks, the synthesis problem is solved
in two phases. First, the architecture is simplified, by grouping the system pro-
cesses according to the information they possess about the environment’s behav-
ior. Groups of processes with the same level of information can simulate each
other, and are therefore collapsed into a single process. Feedback edges from pro-
cesses with a lower level of information to those with a higher level are elimi-
nated, because they do not transmit new information. In the second phase, the
synthesis problem is solved with an automata-based construction that, by repeat-
edly applying the narrowing construction, successively eliminates processes along
the information order, starting with the best-informed process. The complexity
of this construction is nonelementary in the number of processes.

4.5. Temporal Logics with Strategy Quantifiers

In 1997, Alur, Henzinger, and Kupferman extended the linear — branching-time
spectrum of the temporal logics with the alternating-time temporal logics as a
third type of temporal logic [11]. The alternating-time logic ATL* replaces the
path quantifier of CTL* with the more general strategy quantifier. While the
CTL* formula E ¢ means that there exists a path where ¢ holds, the ATL* for-
mula ((0))¢ means that Player 0 has a strategy to ensure ¢. With alternating-time
temporal logic, the realizability of a temporal property became itself a property
expressible inside the logic, rather than as an externally defined semantical con-



dition. The added expressiveness is useful to describe the game-like behavior of
multiprocess systems. For example in a cache-coherence protocol, one might re-
quire that every process has the capability to obtain memory access, irrespective
of the behavior of the other processes.

The semantics of the alternating-time temporal logics refer to concurrent
game structures, a game-based extension of Kripke structures. For a natural num-
ber k, a k-player concurrent game structure over a set of atomic propositions
AP has the form G = (S, L, d,d), where S is a set of states, L : S — 247 is a
labeling function; d, : S — N assigns to each player a € {1,2,...,k} and each
state s € S a number of moves available to player a, the resulting set of vectors
D(s)={1,...,di(s)} x {1,...,da(s)} x ... x {1,...,dk(s)} are called the move
vectors of state s; d is the transition function, which assigns to each state s and
move vector (j1,Ja,-..,Jk) € D(s) a successor state d(s, (j1,72,...Jk)) € S. If a
play reaches state s, each player chooses, concurrently, a number j, beween 1 and
d.(s), and the play continues with state &(s, (j1,j2, .- - jk))-

Since realizability of a temporal property ¢ can be stated as the ATL* prop-
erty ((0)¢ of a generic game structure in which Player 0 gets to set the outputs
and Player 1 the inputs, it is the model checking problem, not the realizability
problem, that is most relevant for synthesis. ATL* model checking requires, like
LTL synthesis, doubly exponential time. Model checking formulas of the restricted
sublogic ATL requires the solution of games with Boolean combinations of Biichi
conditions, which can be done in PSPACE.

Strategy Logic (SL) [12,69] generalizes alternating-time temporal logic by
treating strategies as explicit first-order objects. In SL, the ATL* property ((1))¢
is expressed as Jz. Vy. ¢(x,y), i.e., there exists a strategy x for Player 1 such
that for all strategies y of Player 2, ¢ is guaranteed to hold. The explicit quan-
tification over strategies makes it possible to compare multiple strategies for the
same player; Nash equilibria and similar properties can easily be expressed as SL
formulas. The complexity of the model checking problem for SL formulas (which
suffices for synthesis) is nonelementary; the satisfiability problem is undecidable.

A first attempt of a logical characterization of the distributed synthesis prob-
lem was already carried out within the setting of the alternating-time temporal
logics. Game structures under incomplete information extend game structures
with an observability vector P = {II, | 1 < a < k}, which identifies, for each
player a, a set of atomic propositions that are observable by a. A strategy for
player a may only depend on the history of its observable propositions, not on
the history of the other, unobservable propositions. ATL* under incomplete in-
formation can thus express the existence of a distributed implementation. Not
suprisingly, however, the model checking problem for ATL* (and even ATL) under
incomplete information turned out to be undecidable [70].

A decidable logic for the distributed synthesis problem is Coordination Logic
(CL) [13]. Like Strategy Logic, CL has explicit strategy quantifiers. The informed-
ness of the strategies is not, as in ATL* under incomplete information, defined by
the model, but is defined directly in the formula. CL uses two types of variables:
strategy variables S, which represent, like in SL, strategies (or output) and coor-
dination variables C, which represent information (or input). The syntax of CL
is given by the grammar



pu=z|x[eVeleAe|Op|eU¢|dCTs.p| ACVs.,

where z € CWS, C CC, and s € S. The operators of CL consist of the usual LTL
operators as well as the new subtree quantifiers 4C3s.¢ | ICVs.¢.

Coordination variables provide strategy variables with the information re-
quired for their decisions. Following the structure of a formula, a bound coor-
dination variable c¢ is wisible to a bound strategy variable s, if s is in the scope
of the subtree quantifier that introduced c¢ or if ¢ is a free coordination variable.
The strategies the subtree quantifier ranges over are mappings from histories of
valuations of the coordination variables in the scope of s, to a (Boolean) valuation
of s.

CL can express all decidable distributed synthesis problems discussed in Sec-
tion 4.4. In practice, many more synthesis problems can be expressed in CL (and
are, hence, decidable), even though their system architecture does not fall into a
decidable class. Suppose, for example, that the outputs ¢ and d of processes p;
and po, respectively, in the undecidable architecture Ay from Fig. 7 are indepen-
dent of each other and only depend on their respective inputs a and b. Then, the
synthesis problem can be expressed as the CL formula

Ha}3e. p(a,c) A I{b}3d. (b, d),

where the independence of the outputs is reflected by the fact that the two con-
juncts do not have any shared variables and can, hence, be evaluated indepen-
dently of each other.

5. Towards Practical Synthesis Algorithms

Even with the reduction in complexity from nonelementary for S1S to doubly
exponential for LTL, the complexity challenge was not solved — for practical pur-
poses, doubly exponential is still an intractable complexity. The quest for more
practical synthesis methods since about a decade ago has, so far, been based on
three main lines of research. The first line is concerned with the input to the
synthesis problem, the specification logic. The goal is to find fragments of speci-
fication languages like LTL that allow for faster synthesis algorithms, while still
being sufficiently expressive for the specification of relevant synthesis problems.
The second line is concerned with the output of the synthesis problem, the imple-
mentation. Bounded synthesis restricts the size of the implementation and thus
forces the synthesis algorithm to search for small, and, hence, easy to find, so-
lutions. The third line of work towards practical algorithms is concerned with
the internal representation of the synthesis problem. Symbolic and SAT-based
approaches can, in certain cases, reduce the required memory exponentially.

5.1. Efficient Fragments

A fruitful starting point for “synthesis-friendly” specification logics is the obser-
vation that certain games, such as Biichi games and parity games with a constant
number of colors, can be solved in polynomial time. Synthesis algorithms based



on such games are often referred to as “polynomial-time” even though, strictly
speaking, the polynomial-time complexity is in the size of the game arena, which
is typically at least exponential in its logical description.

A widely used synthesis-friendly fragment of LTL is GR(1), short for Gen-
eralized Reactivity (1), which was introduced in 2006 by Piterman, Pnueli, and
Sa’ar [71]. GR(1) generalizes other fragments of LTL considered earlier [72,73].
For a given set of input variables I and output variables O, a GR(1) formula is
an implication

Al/\AQ/\.../\Am —)C—r‘l/\(;2/\.../\(;77,7

of a conjunction of assumptions A;,i = 1...m to a conjunction of guarantees
G;,i =1...n. The guarantees are restricted to the following types of formulas: (1)
initialization properties, which are state formulas, i.e., formulas without temporal
operators; these formulas are used to specify the initial state of the system; (2)
safety properties of the form O(¢ — O), where ¢ and v are state formulas;
these properties are used to describe the evolution of the system; and (3) liveness
properties of the form (0 ¢, where ¢ is a state formula; these properties describe
objectives that need to be accomplished infinitely often. The assumptions have
the same form, but are additionally restricted to refer to the environment in
the sense that initialization properties are state formulas over I only, and safety
properties are of the form (¢ — O1) where ¢ is a state formula over I U O and
1) is a state formula over 1.

GR(1) specifications define a game, where each position identifies a valuation
of the input and output variables, the edges are defined by the safety assumptions
and guarantees, and the winning condition for Player 0 is given by an LTL formula
based on the liveness properties, i.e., a temporal formula of the form

O AOC w2 A...O0C¢r) — @O0 AOOY2 A...OOY),

where p;,7 =1...k,and ¢;,7 = 1...[, are state formulas. This game can be trans-
lated into a parity game with three colors [74], which can be solved in quadratic
time [75]. Ehlers showed that the same principle also applies to an extension
of GR(1) with stability properties of the form ¢, called Generalized Rabin
(1) [76]. Generalized Rabin (1) specifications translate to parity games with five
colors, which can also be solved in polynomial time.

A disadvantage of GR(1) and similar fragments of LTL is, however, that they
often require an expensive pre-processing step known as pre-synthesis [77]. Pre-
synthesis is needed to encode system properties that cannot be specified directly
in GR(1). Consider, for example, the response property (J(R — < @), which
cannot be expressed directly in GR(1). To encode the response property in GR(1),
pre-synthesis adds an auxiliary output variable H which is true whenever there
was a request that has not yet been followed by a grant:

(=H) A Q((RVH)A-G) - OH) AN ((-RA-H)V-G) - O—-H) A (OC—H)

The initialization property —H and the safety properties J((RVH)A—-G) - OH
and O((-RA-H)V~G) — O—H ensure that H is indeed true if and only if there
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Figure 8. Universal co-Blichi automaton corresponding to the arbiter specification. The states
depicted as double circles (b, L, and c¢) are the rejecting states in F'. The abbreviations r1g7,
g192, 1292, g1, g2 are used to indicate, in Boolean notation, the input symbols of the transitions;
e.g., rigr = {ri,r2,92}, {r1,92}, {r1,r2}, {r1}. * denotes all subsets of {r1,r2, 91,92}

is an unanswered request; the liveness property [J<>—H ensures that no request
remains unanswered forever.

Despite the syntactic restrictions and the need for pre-synthesis, GR(1) has
found many applications in practice.

5.2. Bounded Synthesis

The bounded synthesis problem [14] is a variation of the synthesis problem, where
only implementations up to a given bound on the number of states are considered.
The motivation for bounded synthesis is to focus on small implementations. In
practice, realizable specifications often have reasonably small implementations,
even though the theoretical bound on the smallest implementation is large, such
as doubly exponential for LTL specifications.

Algorithmically, bounded synthesis is closely related to Kupferman and
Vardi’s Safraless approach [78], which avoids Safra’s complicated determinization
construction with an alternative automata transformation that only preserves re-
alizability, not language-equivalence in the sense that all implementations remain
represented. The Safraless construction goes via a universal co-Biichi automaton
to a nondeterministic Biichi tree automaton that is non-empty if and only if the
original specification is realizable. The Safraless approach is easier to implement
than the standard construction, in particular using symbolic representations (see
Section 5.3). Bounded synthesis improves the Safraless approach by constructing,
instead of a single Biichi tree automaton, a sequence of increasingly larger safety
tree automata, corresponding to an increasing bound on the size of the imple-
mentation, until a precomputed maximal bound is reached, at which point, an
implementation, if it exists, must have been found.

The form A = (Q, qo, T, Acc) of a universal automaton over infinite words
is the same as that of a nondeterministic automaton (see Section 3.1): @ is a
finite set of states, qo € @Q is an initial state, T C Q X ¥ X @Q is a set of tran-
sitions, and Acc is an acceptance condition. The transitions are, however, not
interpreted existentially, which means that, in every run, some applicable tran-
sition is chosen; instead, the transitions are interpreted universally: all applica-
ble transitions must be chosen. A run on an infinite input word ogoi0s... is an
S-labeled Y-tree r : T* — X for some set of directions Y, such that the root is



labeled with the initial state, r(¢) = qo, and for every node n € T* and every
transition (r(n),o,|,q") € T, ¢’ occurs on a child of n, i.e., there exists a direc-
tion v € T such that r(n - v) = ¢’. The run is accepting if every branch satisfies
the acceptance condition Acc. Algorithms for the translation of LTL formulas to
nondeterministic Biichi automata can also be used to translate the formulas to
universal co-Biichi automata. For this purpose, one actually translates the nega-
tion of the formula of interest; the nondeterministic Biichi automaton obtained
from the negation thus recognizes the complement of the intended language. The
same automaton interpreted as a universal co-Biichi automaton is the exact dual
of the nondeterministic automaton, and, hence, recognizes again the complement,
i.e., the set of models of the original formula. Figure 8 shows an example of a
universal co-Biichi automaton. The automaton accepts precisely the models of
the arbiter specification.

In bounded synthesis, the universal co-Biichi automaton is approximated with
a sequence of deterministic safety automata. The safety automata maintain a set
of “currently active” states of the universal automaton, and, for each state of the
universal automaton, a natural number, which indicates the maximal number of
visits to rejecting states on some path in the run tree that leads to this state. The
ith safety automaton in the sequence limits this number to ¢ (and rejects if the
number is exceeded).

5.3. Symbolic Synthesis

Symbolic synthesis algorithms are based on compact representations of sets
of game positions, using data structures such as binary decision diagrams
(BDDs) [79], and-inverter graphs (AIGs) [80], or antichains [81]. The symbolic
data structures are used to represent the arena (V, E) and the sets of positions
that occur in a fixed point iteration that computes the winning positions. For a
safety game ((V, E),S), the fixed point computation iterates the uncontrollable
predecessors operator, defined as

UPRE(X)={veV|VW eV. (vv)eE—veX}U
{veV | eV. (vv)e Env € X}.

The UPRE operator collects all positions of Player 1 where some outgoing edge
leads to the given set X of positions, and all positions of Player 0, where all
outgoing edges lead to X. The least fixed point of the function 7 : X + S U
UPRE(X), where S denotes the complement of the safe states S, consists of
exactly the game positions from which Player 1 has a winning strategy [82].

For slightly more complex synthesis games, such as Biichi games and the syn-
thesis games that result from GR(1) specifications (cf. Section 5.1), the winning
positions are similarily computed in a nested fixed point iteration (cf. [71]). For
full LTL specifications, the synthesis problem is often reduced, via the bounded
synthesis approach described in Section 5.2, to the solution of safety games [81,83].

There is no general guarantee that the symbolic algorithms outperform algo-
rithms based on an explicit representation of the game arena, and there are, in
fact, well-known structures on which, for example, BDDs perform poorly [84]. In
most practical situations, however, symbolic methods perform significantly better



than explicit methods. especially in synthesis problems with many input variables,
which result in game arenas with a large number of edges.

5.4. SAT-based Synthesis

The advances in Boolean satisfiability (SAT) and satisfiability modulo theories
(SMT) solving during the 1990s and the success of bounded model checking [85,86]
and other satisfiability-based verification techniques inspired the development of
synthesis techniques based on SAT and SMT solvers. The bounded synthesis
approach (cf. Section 5.2) can, for example, be encoded as a constraint system,
where the transition function and the output function of the Moore machine to
be synthesized are represented as uninterpreted functions [87]. This approach
generalizes naturally to the distributed synthesis problem, where each process has
its own transition function, and other variations of the synthesis problem, such
as the synthesis of symmetric processes or the synthesis of systems built from
component libraries [88]. SMT-based bounded synthesis has been combined with
symbolic verification in the lazy synthesis approach [89], where the SMT solver
builds candidate implementations based on an incomplete constraint system; the
symbolic verifier then compares the candidate against the specification and either
proves the correctness of the candidate, which terminates the synthesis process,
or finds counter examples, which are in turn used to refine the constraint system
used by the SMT solver.

For safety games, satisfiability checking for quantified boolean formulas (QBF)
combined with computational learning has been used to compute the winning
region of Player 0 [90]. QBF solving has also been used to refute realizability, by
unrolling the game arena for a bounded number of steps, quantifying universally
over choices of Player 0 and existentially over choices of Player 1 [91]. This ap-
proach again generalizes to the distributed synthesis problem, by unrolling the
game arena simultaneously along several paths that are indistinguishable from
the perspective of some process [92].

6. Modern Applications

For a long time, reactive synthesis was considered a theoretician’s exercise. It was
only about five to ten years ago that serious case studies started to be carried
out. With the advances towards practical synthesis algorithms and the growing
availability of synthesis tools, it suddenly became clear that reactive synthesis
was no longer limited to academic toy examples and should, instead, venture out
to industrial applications. At the time of this writing, it is still too early to give a
complete picture of the real-world applications of reactive synthesis. The following
examples should give a reasonable idea, however, of the breadth and potential of
the modern applications.

Hardware. The automatic construction of circuits is still one of the main targets
of reactive synthesis. A good illustration of the current state of the art is the syn-
thesis of the arbiter for the AMBA AHB bus. The Advanced Microcontroller Bus
Architecture (AMBA) is an open-standard, on-chip interconnect specification for



the connection and management of functional blocks in system-on-a-chip (SoC)
designs [93]. The Advanced high-performance Bus (AHB) is a bus protocol defined
in the AMBA standard that connects up to 16 masters with up to 16 slaves. The
role of the arbiter is to control the access to the bus in response to requests by the
masters. In 2007, Bloem et al. gave a specification of the AMBA AHB bus as a
GR(1) formula with four assumptions and eleven guarantees [16] and reported the
synthesis of an arbiter for up to three masters; in follow-up work, the synthesis
was scaled to the full set of 16 masters specified in the AMBA standard [94,95].

Device drivers. A device driver is a computer program that provides a software
interface to a hardware device. In addition to the manufacturer of the hardware
device, the operating systems vendors also care about the quality of the device
drivers, and impose quality checks, because it impacts the reputation of the op-
erating system. Manually developing device drivers is an error-prone and often
tedious task. Synthesis can be used to construct device drivers automatically from
formal specifications of the operating system (OS) interface and of the hardware
device. The synthesis game begins with the environment making OS-to-driver re-
quests. In response to these requests, the system selects commands to the device
that cause the device to produce the correct response for the given OS request and
to continue to operate correctly in the future. Examples of low-level drivers that
have been synthesized successfully are an Intel PRO/1000 ethernet controller, a
UART NS16450 Linux driver, and an SD Host controller [17].

Robotics. Reactive synthesis is used to generate controllers for robotic mission
and motion planning for complex robot behaviors. The advantage of reactive
synthesis over traditional hierarchical planning is that the robot is guaranteed to
achieve the desired task if it is feasible. In the LTLMoP tool [96], the user defines
a task for a robot by drawing a workspace map and then defining goals, such as
search and rescue, coverage, or collision avoidance, that refer to the regions of
the map. This task specification is translated into a GR(1) formula. The atomic
propositions of this formula include propositions that refer to the robot’s sensor
readings, which are controlled by the environment. If the formula is realizable,
the resulting strategy is combined with continuous control handlers to create a
hybrid controller, which is then used to control a real or simulated robot.

7. Conclusions

This article went on a journey through more than 50 years of research on the syn-
thesis problem; we traced the evolution of Church’s problem from the theoretical
challenge in 1957 to practical synthesis algorithms and modern applications. Each
of the three waves of inquiry into Church’s problem, the early solutions during
the 1960s, the synthesis algorithms for the temporal logics starting in the 1980s,
and the quest for practical algorithms over the past decade, has brought enor-
mous progress. In terms of complexity, we have gone from “foredoomed” problems
to algorithms with substantial but reasonable complexity; the running times are
somewhere between polynomial and exponential, provided that certain realistic
assumptions are satisfied, such as specifications given in a synthesis-friendly frag-



ment, like GR(1), or implementations that are sufficiently small implementation
to be discovered quickly by SMT-based bounded synthesis. For distributed sys-
tems, we have gone from isolated decidability results in restricted system archi-
tectures to uniform algorithms and a comprehensive logical representation that
covers all decidable cases. In terms of applications, academic toy examples have
started to give way to real design problems from industry. In short, we have gone
from an open theoretical problem to a field with modern applications, practical al-
gorithms, and the potential to revolutionize the development process for reactive
systems.
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