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Abstract

Hyperproperties allow us to specify properties that relate multiple
execution traces of systems with each other. The increased expressiveness
comes at the cost of a significantly higher complexity of model checking.
This gives rise to the development of feasible model checking algorithms
that are applicable to particular fragments of hyperproperties.

In this context, recent work has generalized linear temporal logic
(LTL) bounded model checking (BMC) to the hyperlogic HyperLTL, an
extension of LTL to multiple traces. The fundamental idea of BMC
is to establish a witness by considering only trace prefixes of bounded
length. But the proposed algorithm is subject to the restriction that it is
unable to argue about infinite traces such that formulas involving global
requirements cannot be verified.

In this thesis, we attempt to eliminate this limitation. We discuss to
what extent completeness techniques for LTL bounded model checking
are applicable to HyperLTL. Aside from this, we develop novel approaches
that are suitable to deal with trace quantification. Overall, we find ways
to verify HyperLTL formulas incorporating an LTL invariant.

iii





Acknowledgements

First of all, I am deeply grateful to Prof. Bernd Finkbeiner for his
manifold support over the past year. His influence not only shaped my
undergraduate studies, but extends far beyond into my future career.

I am also very thankful to Norine Coenen for having accompanied me
on my journey towards this thesis from the very beginning. At the same
time, I thank Niklas Metzger for being an excellent deputy for Norine
and for staying with us. Both of them deserve great thanks for having
spend countless hours in meetings with me.

Furthermore, I would like to thank Dr. Rayna Dimitrova for her
willingness to reviewing this thesis.

v





Contents

1 Introduction 1

2 Related Work 5

3 Definitions 7
3.1 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Hyperproperties . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5 Temporal Logics . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.5.1 LTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5.2 HyperLTL . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.6 Quantified Boolean Formulas . . . . . . . . . . . . . . . . . . . 17

4 Bounded Model Checking 21
4.1 LTL Bounded Model Checking . . . . . . . . . . . . . . . . . . 21

4.1.1 Encoding of the System . . . . . . . . . . . . . . . . . . 22
4.1.2 Encoding of the Formula . . . . . . . . . . . . . . . . . 23

4.2 HyperLTL Bounded Model Checking . . . . . . . . . . . . . . . 24

5 Completeness for LTL Bounded Model Checking 27
5.1 Completeness Threshold . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Loop Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Completeness for HyperLTL Bounded Model Checking 33
6.1 Alternation-free Fragment . . . . . . . . . . . . . . . . . . . . . 33
6.2 Automaton-Based Completeness Threshold . . . . . . . . . . . 35
6.3 Distinction from LTL Bounded Model Checking . . . . . . . . . 39
6.4 ∃∀ + LTL Invariant . . . . . . . . . . . . . . . . . . . . . . . . 40

6.4.1 Completeness Threshold . . . . . . . . . . . . . . . . . . 40
6.4.2 Incremental Algorithm . . . . . . . . . . . . . . . . . . . 43

6.5 ∀∃ + LTL Invariant . . . . . . . . . . . . . . . . . . . . . . . . 44

vii



CONTENTS

7 Evaluation 49
7.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.1.1 Btor2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.1.2 Satisfiability Modulo Theories . . . . . . . . . . . . . . . 50

7.2 ∃∀ + LTL Invariant . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2.1 System Representation . . . . . . . . . . . . . . . . . . . 52
7.2.2 Full Example . . . . . . . . . . . . . . . . . . . . . . . . 54
7.2.3 More Benchmarks . . . . . . . . . . . . . . . . . . . . . 56

7.3 ∀∃ + LTL Invariant . . . . . . . . . . . . . . . . . . . . . . . . 62
7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8 Conclusion 67
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Index 71

Bibliography 73

viii



Chapter 1

Introduction

The concept of hyperproperties reasoning about sets of execution traces has
been introduced by Clarkson and Schneider as a generalization of traditional
trace properties [1]. Instead of being limited to the verification of individual
system executions, they allow us to establish correctness statements with
respect to multiple simultaneous runs. Hyperproperties have been proposed
particularly as a means to express security properties that traditional non-
hyper properties cannot [1]. The ability to relate multiple executions of a
system enables us to for instance to specify various information-flow control
properties [2]. However, potential applications of hyperlogics go far beyond
this scope. In particular, many planning objectives may be considered as
hyperproperties [3]. For instance, an optimal plan is characterized by the fact
that it is at least as good as any other plan. This statement clearly relates
two traces to each other.

Numerous temporal hyperlogics as well as associated model checking al-
gorithms for hyperproperties have emerged since then [4]. Most notably,
Clarkson et al. have proposed HyperLTL and HyperCTL* [5] as natural ex-
tensions of the corresponding standard temporal logics LTL [6] and CTL* [7],
allowing us to express a wide range of hyperproperties in a unified logic. Verify-
ing properties given as HyperLTL formulas is the main issue considered within
the scope of this work.

The fundamental innovation of HyperLTL is the introduction of explicit
trace quantification, enabling a refined reasoning about relations between
multiple traces. While trace quantification in LTL is always universal implicitly,
HyperLTL allows to intermix universal and existential trace quantification. As
long as only the same sort of quantification appears in a HyperLTL formula,
model checking may be reduced to the LTL case by composing all traces, or
rather their underlying systems. Only the introduction of varied quantifiers
enables us to formalise a richer set of properties.
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CHAPTER 1. INTRODUCTION

Example 1.1 (Generalized noninterference). The information-flow property
generalized noninterference (GNI) [8] can be naturally expressed in HyperLTL.
We define it with respect to a secret input h and a public output o of a system.
GNI requires that for any two system executions π1 and π2, there is another
execution π3 that always agrees with π1 on the secret input and with π2 on
the public output. This requirement prevents leakage of secret information.
The existence of π3 ensures that the public output is not affected by a change
of the secret input. The corresponding HyperLTL formula is given below.

∀π1.∀π2.∃π3. ((hπ1 ↔hπ2) ∧ (oπ1 ↔ oπ2)) ⌟

The semantic and syntactical resemblance of LTL and HyperLTL suggests
that well-known LTL model checking algorithms can possibly be lifted to
HyperLTL. Indeed, many existing model checking procedures for HyperLTL
stem from their LTL counterparts. For example, the first model checking
algorithm for HyperLTL is inspired by automata-based LTL model checking [5].
This work already suggests that HyperLTL model checking algorithms are
quite expensive in many cases. That particular construction involves the
complementation of Büchi automata in order to handle quantifier alternations,
causing an exponential blow-up in the overall algorithm. The overall insight is
that model checking HyperLTL formulas including more than one quantifier
sort appears to be often infeasible in practice if we attempt to apply such a
general purpose algorithm without further information about the particular
problem. This calls for more practical approaches which are expected to be
efficient for at least some interesting fragments.

A symbolic LTL model checking algorithm that has proven to be very useful
in practice is bounded model checking (BMC) [9]. What is bounded in this
context is the length of the witnesses. In the case of LTL, these witnesses are
simply trace prefixes. This approach is most successful if it suffices to consider
short trace prefixes in order to establish a proof. Algorithmically, the bound is
increased until a counterexample is found or even a proof can be established.
The basic idea has already been successfully transferred to HyperLTL [10]. But
the approach presented in this work is limited to properties that are refutable
(or conversely verifiable) in finite time. For instance, a finite counterexample
to the property ∀π. a (‘a holds globally’) is a finite trace prefix leading to
a state on which a does not hold. On the other hand, the property ∀π. a
(‘a holds finally’) can only be disproved by an infinite trace on which a never
holds. In LTL bounded model checking, a counterexample in such a case is
simply a looping path1 in the corresponding system, identified by a finite path
prefix containing some state twice. But it is not straightforward to apply this
concept of looping paths to HyperLTL with quantifier alternation. Finding
a single looping path is not sufficient in general since a HyperLTL formula
constraints multiple traces jointly.

1A formal distinction between paths and traces appears in Section 3.2.
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Within this work, we aim to overcome the aforementioned limitation
imposed by the existing HyperLTL bounded model checking implementation.
We intend to verify infinite requirements and thereby create a complete BMC
procedure for HyperLTL. To this end, we first revisit state of the art LTL
bounded model checking. Chapter 4 introduces the fundamental concepts of
LTL BMC as well as its existing extension to HyperLTL. In the subsequent
chapter, we show how completeness may be achieved for LTL BMC and discuss
to what extend we can build upon techniques utilised there.

A common approach for achieving completeness in the context of BMC
is to establish a completeness threshold. The underlying assumption is that
any formula has a finite witness, i.e. it suffices to consider trace prefixes to
determine its validity. A completeness threshold is an upper bound on the
length of such trace prefixes, depending on both the system and the formula.
How to obtain a general completeness threshold for HyperLTL is discussed in
Section 6.2.

Since universal completeness thresholds for hyperproperties are often far
too large to be usable in practice, we propose other algorithmic approaches that
are capable of arguing about infinite computations in Sections 6.4 and 6.5. For
this purpose, we exploit in particular the idea of considering loops occurring
in paths which is also an essential concept in LTL BMC. In fact, we restrict
ourselves to HyperLTL formulas with a once alternating quantifier prefix,
followed by an LTL invariant. This may seem to be a severe restriction, but it
allows us to focus on the actual extensions of existing work. Namely, we aim
to verify infinite requirements imposed on differently quantified traces.

Beyond that, the thesis is structured as follows. In the next chapter, we
relate our approach to other HyperLTL model checking procedures. Preliminary
definitions including those of the relevant logics as well as our formal framework
to specify systems are given in Chapter 3. LTL bounded model checking as well
as the existing extension to HyperLTL is introduced in the subsequent chapter.
After that, we discuss which concepts may lead to a complete bounded model
checking procedure for LTL in Chapter 5, before proposing our own approaches
for HyperLTL in Chapter 6. Those model checking algorithms are evaluated
in Chapter 7. We conclude the thesis Chapter 8 and point out potential future
work.
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Chapter 2

Related Work

Several verification algorithms for fragments or extensions of HyperLTL have
been developed so far [5, 11, 12, 13, 14, 10].

The first approach [5] is an adaptation of automaton-based LTL model
checking [15]. The algorithm is applicable to HyperLTL with at most one
quantifier alternation. Nevertheless, the complexity is exponential in the size of
the system and even doubly exponential in the size of the formula which renders
it infeasible in practice. By far the most expensive part is the complementation
of a nondeterministic Büchi automaton [16] which is introduced in order to
resolve the quantifier alternation.

Against the background of this huge complexity, further work has been
done aiming at obtaining a more practical model checking procedure. Since
HyperLTL model checking is PSPACE hard [5], the scope of feasible algorithms
accomplishing this task is usually limited. Fortunately, there are several
ways to simplify the problem without sacrificing too much of the additional
expressiveness featured by hyperproperties that is relevant in practice.

First of all, if we abstain from quantifier alternation then model checking
HyperLTL is just as complex as model checking LTL [11]. Finkbeiner et
al. presented a practical model checking approach for the alternation-free
fragment. The main insight is that it suffices to self-compose all quantified
systems in this special case before standard LTL model checking algorithms
can be applied [11]. Coenen et al. extended this construction such that up
to one quantifier alternation is allowed, provided that a strategy for resolving
the existential quantifiers can be found [14]. The latter two methods are
implemented in the model checker MCHyper [17].
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CHAPTER 2. RELATED WORK

Bounded model checking for HyperLTL has been initially proposed by Hsu
et al. [10], combined with the practical model checking tool HyperQube [18]. Es-
sentially, it is a generalization of standard LTL bounded model checking [9, 19].
While the problem is reduced to the boolean satisfiability problem (SAT) [20]
for LTL, it is reduced to quantified boolean satisfiability (QBF) [21] for Hy-
perLTL. This has the benefit that the QBF solver takes care of resolving all
quantifiers. Whereas the extension is quite simple and efficient in practice, it
inherits the original bounded model checking characteristic of being inherently
incomplete. In fact, it is even more limited than original LTL bounded model
checking [22] since only finite path witnesses can be provided. Even seemingly
simple HyperLTL formulas with an LTL invariant succeeding the quantifier
prefix cannot be verified, which is the main motivation for our work. There
are actually well known hyperproperties that can be brought into this shape
(cf. Example 1.1).

Our work builds upon this bounded model checking approach for HyperLTL
and aims to lift some of its limitations regarding completeness with techniques
known from bounded LTL model checking. This is why we first revisit LTL
BMC in chapter 4.

The performance of bounded model checking in the contexts mentioned
above relies largely on the underlying satisfiability solver. Due to the success
of the international SAT competition in the past two decades, numerous
advanced and highly efficient SAT solvers have emerged until today [23]. This
boosts the effectiveness of LTL BMC substantially. For HyperLTL BMC,
we rely on a satisfiability solving procedure that is capable of dealing with
quantification. Besides QBF, another promising candidate that fulfils this
requirement is satisfiability modulo theories (SMT) which allows to augment
booleans satisfiability with various logics and theories [24]. While SMT is
far more widespread and dedicated solvers like Z3 [25] or cvc5 [26] are more
mature than existing QBF tools, Hsu et al. observed that QBF solvers tend to
outperform their SMT counterparts when applied to HyperLTL BMC [10]. This
is presumably because SMT is far more extensive, such quantifier elimination
is not the main issue. On the other hand, QBF solvers specifically focus on
the problem of dealing with alternating quantifiers [27].

Recent work proposed to apply HyperLTL model checking on planning
problems [3]. The motivation is that for instance shortest plans or robust plans
may be characterized by their relation to all other plans. Thus, objectives like
optimality or robustness can clearly be perceived as hyperproperties. While
this approach is not competitive to state of the art tools [28] on classical
planning problems like finding a shortest plan, hyperproperties are far more
expressive. Inspired by this work, we discuss particularly problems from the
planning domain to evaluate our algorithms.

6



Chapter 3

Definitions

In this chapter, we formally introduce the basic definitions and concepts we
utilise throughout the thesis.

3.1 Sequences

A sequence is an enumerated listing of objects, denoted either in tuple-notation
or simply as a concatenation of objects if the notation is unambiguous, e.g.
(a, b, c) or abc. A set A is an unordered sequence of unique objects, stated
in curly brackets. We define the set operations intersection ∩, union ∪ and
complementation A (with respect to some contextual universe) as usual. For
a family of n different sets A0, . . . , An−1, we define the Cartesian product
×n−1

i=0 Ai := {(a0, . . . , an−1) | a0 ∈ A0, . . . , an−1 ∈ An−1}. If all sets are the
same set A, we write An for the n-fold Cartesian product over A. The set of
all infinite sequences with elements from A is denoted as Aω. Furthermore, we
define P(A) := {B | B ⊆ A} as the power set of A.

Sequences consisting of natural numbers can be described succinct by the
following conventions. For i, j ∈ N0 with i ≤ j, we define i..j := (i, . . . , j − 1).
If j should be included into the sequence, we write i..=j := (i, . . . , j). If i = 0,
we may omit i and if the sequence should be infinite, we may omit j.

The following definitions for finite sequences also apply to infinite sequences
analogously. Let a ∈ An be a sequence with a = a0 . . . an−1. We write x ∈ a if
there exists an index i ∈ ..n such that x = ai. Since sequences are ordered, we
can access single elements by their position, so a[i] := ai for i ∈ ..n. Similarly,
we allow to extract subsequences by specifying a sequence of indices as an
argument such that a[(i0, . . . , im−1)] := (a[i0], . . . , a[im−1]) where ij < n for
j ∈ ..m.

Let a0, . . . , am−1 ∈ An be sequences. The zip operation maps m sequences
to a single sequence whose elements are sequences of length m, formally
zip(a0, . . . , am−1) := (a0[0] . . . am−1[0], . . . , a0[n− 1] . . . am−1[n− 1]).

7



CHAPTER 3. DEFINITIONS

s0

{}

s1

{a}

s2

{}

s3

{a}

s4

{}

0, 1 0, 1

1

0 0, 1

0, 1

Figure 3.1: Graphical representation of a system with S = {s0, s1, s2, s3, s4},
Act = {0, 1} and AP = {a}. Each state is annotated with its label and each
transition is annotated with its action(s). Hereinafter, we omit specifying the
actions explicitly.

3.2 Systems

The systems we are reasoning about are a variation of transition systems. Most
notably, we require that the transition function is total. This simplifies the
notation a bit later and corresponds to the specification language for systems
we consider in our experiments.

Definition 3.1 (System). A system is a 6-tuple K := (S, s0,Act , δ,AP , L),
where

� S is the set of states,

� s0 ∈ S is the initial state,

� Act is the non-empty set of actions,

� δ : S ×Act → S is the total transition function,

� AP is the set of atomic propositions,

� L : S → P(AP) is the labelling function. ⌟

By requiring that δ is a total function, we ensure particularly that the
transition system does not contain any terminal state, i.e. every state has a
successor. A graphical representation of a sample system is given in Figure 3.1.
We say that an atomic proposition a ∈ AP holds in state s ∈ S if a ∈ L(s).

An execution α ∈ Actω of a system is an infinite sequence of actions. We
can associate a path σ ∈ Sω to each execution, where

σ[0] := s0

σ[i+ 1] := δ(σ[i], α[i]) for i ∈ N0.

We say that a path σ is valid with respect to a system K if there exists an
execution α whose associated path is σ. Usually we only deal with valid paths,
so if it is clear from the context we may omit stating explicitly that we are
referring to a valid path.

8



3.3. AUTOMATA

A trace t ∈ TR is a sequence of sets of atomic propositions, where
TR := (P(AP ))ω is the set of all traces with respect to a set of atomic pro-
positions AP . The trace of a path σ is the sequence of labels of the visited
states, i.e. Tr(σ) := t where t[i] = L(σ[i]) for i ∈ N0. We say that a trace t is
valid with respect to a system K if there exists a valid path σ with Tr(σ) = t.
Thus, each valid trace can be associated with a (not necessarily unique) valid
path. We often use this fact without further mention if it is convenient to
reason about paths instead of traces. The set of all valid traces in a system K
is Traces(K). Again, by trace we usually mean valid trace.

If we talk about a prefix of an execution, a path or a trace the same
definitions apply, except that we mean finite sequences. Variables for prefixes
are usually annotated with a hat, e.g. σ̂. Furthermore, we define a function δn

on an execution prefix of size n as the n-fold application of δ.

δn : Actn → S

δ0(()) := s0

δn+1(α) := δ(δn(α[..n]), α[n]) for n ∈ N0

We define a successor function Post assigning each state its set of possible
immediate successor states. The function is analogously defined on sets of
states.

Post : S → P(S) Post : P(S) → P(S)

Post(s) :=
⋃

α∈Act
{δ(s, α)} Post(Q) :=

⋃
s∈Q

Post(s)

While σ is a single path, ς ∈ (P(S))ω may be perceived as the union of all
valid paths along the time axis such that

ς[0] := {s0}
ς[i+ 1] := Post(ς[i]) for i ∈ N0.

We say that a state is reachable, if it occurs in some valid path. Thus, the set
of all reachable states is defined as

Reach(K) :=
⋃
i∈N0

ς[i].

3.3 Automata

Next, we define Büchi automata as a common conception utilised in the context
of model checking.

9



CHAPTER 3. DEFINITIONS

Definition 3.2 (Büchi automaton). A Büchi automaton is a 5-tuple A :=
(S,Σ, δ, S0, F ), where

� S is the finite set of states,

� Σ is the alphabet,

� ∆ ⊆ S × Σ× S is the transition relation,

� S0 ⊆ S is the set of initial states,

� F ⊆ S is the set of accepting states. ⌟

Let w = w0 · · · ∈ Σω be a word . A run of A for w is a sequence s0 · · · ∈ Sω

such that s0 ∈ S0 and (si, wi, si+1) ∈ ∆ for i ∈ N0. A run is accepting if it
contains infinitely many accepting states. Moreover, a word is accepted by
the automaton if there exists an accepting run for it. The language of an
automaton L(A) is defined as its set of accepted words. Büchi automata are
closed under union ∪, intersection ∩ and complementation A.

A safety automaton A is a Büchi automaton whose language is a safety
property . This means that for each w ∈ L(A), there exists a bad prefix ŵ of w
such that w′ ∈ L(A) for all infinite extensions w′ of ŵ. A co-safety automaton
is a Büchi automaton whose complement is a safety automaton. An equivalent
characterization is that for each w ∈ L(A), there exists a good prefix ŵ of w
such that w′ ∈ L(A) for all infinite extensions w′ of ŵ. Safety automata are
closed under intersection and co-safety automata are closed under union. In
terms of complementation, they are dual.

Each system K = (S, s0,Act , δ,AP , L) can be associated with a safety
automaton AK := (S,Σ,∆, {s0}, S) where Σ = P(AP) and

(s, l, s′) ∈ ∆ ⇐⇒ (s′ = δ(s, α) ∧ l = L(s) for some α ∈ Act).

Note that valid traces TR of K and accepted words of AK coincide, i.e.
TR = L(AK).

Assume that Σ = P(AP) and let A ⊆ AP . For a word w ∈ Σω, we
define the projection onto A as w|A ∈ (P(A))ω such that for each i ∈ N0,
w|A[i] = w[i] \ A. Furthermore, we define the projection A|A on auto-
mata, such that L(A|A) = {w|A | w ∈ L(A)}. The alphabet of A|A is
P(A) and the transition function ∆′ for A|A is defined such that it satisfies
(s, l, s′) ∈ ∆′ ⇐⇒ s′ ∈ {δ(s, l ∪ l′) | l′ ∈ P(A)}. Other than that, the defini-
tion coincides with A. Note that projection preserves the (co-)safety property
of automata.

10



3.4. HYPERPROPERTIES

3.4 Hyperproperties

If we talk about properties in this work, we are usually referring to properties
reasoning about traces. A standard (non-hyper) trace property P ∈ P(TR)
describes a set of traces. A trace property always talks about characteristics
of a single trace. In order to determine whether a system satisfies a trace
property P , we have to check whether the trace of each system execution is
contained in P .

Example 3.1. Consider again the system given in Figure 3.1 and the following
two properties, where a is an atomic proposition:

1. a must not hold at two subsequent points in time on one trace, i.e. for
one trace t, there is no index i ∈ N0 such that a holds in both states t[i]
and t[i+ 1].

2. a must not hold at two subsequent points in time on any traces, i.e. for
any traces t, t′, there is no index i ∈ N0 such that a holds in both states
t[i] and t′[i+ 1].

The first property is clearly a common trace property since it only talks about
one trace. It holds since any state labelled with a is always followed by some
state that is not labelled with any atomic proposition. The second property
requires in addition that if a holds at position i of some trace, then a must
not hold at position i+ 1 of any other trace. This cannot be expressed as an
ordinary trace property any more since it cannot be verified by considering all
traces individually. Still, we would like to be able to verify automatically that
the second property does not hold. ⌟

This is where hyperproperties [1] come into play. They enable us to specify
how different system traces relate to each other. Formally, a hyperproperty
is a property H ∈ P(P(TR)), i.e. a set of trace properties. A set of traces T
satisfies H if and only if it is contained in H.

Example 3.1 (Continued). Consider a formal specification of the two proper-
ties stated above.

1. ∀t ∈ Traces(K).∀i ∈ N0.¬(a ∈ L(t[i]) ∧ a ∈ L(t[i+ 1]))

2. ∀t, t′ ∈ Traces(K).∀i ∈ N0.¬(a ∈ L(t[i]) ∧ a ∈ L(t′[i+ 1]))

It is evident that the former property talks about individual traces while the
latter (hyper)property talks about tuples of traces. The second property is
indeed violated by the trace prefixes t̂ := Ø{a}Ø{a}Ø and t̂′ := Ø{a}ØØ{a},
obtained from the path prefixes σ̂ := s0s1s2s3s4 . . . and σ̂′ := s0s1s2s0s1 . . .
respectively. ⌟

11



CHAPTER 3. DEFINITIONS

3.5 Temporal Logics

We use temporal logics in order to reason about systems. Temporal logics give
us a formal framework to specify trace properties and hyperproperties. In this
work, we consider only the linear-time spectrum of temporal logics logics. Our
notion of time is both linear and discrete.

In the following, we introduce the temporal logic LTL as well as HyperLTL,
its extension to hyperproperties.

3.5.1 LTL

Linear temporal logic (LTL) [6] is a well-known specification language for
linear-time properties.

Definition 3.3 (LTL Syntax). An LTL formula φ is generated by the grammar

φ ::= true | a | ¬φ | φ ∧ φ | φ | φU φ,

where a ∈ AP is an atomic proposition. ⌟

We say that represents the next operator and U denotes the until
operator. Besides negation ¬ and conjunction ∧, we allow other conventional
propositional logic operators like disjunction ∨, implication → and equivalence
↔ as syntactic sugar with their usual meanings. We define the semantics as a
satisfaction relation on traces.

Definition 3.4 (LTL Semantics). Let t be a trace and let φ,φ1, φ2 be LTL
formulas.

t |= true

t |= a ⇐⇒ a ∈ t[0]

t |= ¬φ ⇐⇒ t ̸|= φ

t |= φ1 ∧ φ2 ⇐⇒ t |= φ1 ∧ t |= φ2

t |= φ ⇐⇒ t[1..] |= φ

t |= φ1 U φ2 ⇐⇒ ∃i ∈ N0 : (t[i..] |= φ2 ∧ ∀j ∈ ..i : t[j..] |= φ1) ⌟

The temporal connective φ requires that φ holds on the next state of
trace t. Intuitively, the until expresses that the right sub-formula must hold
at some point in the future and the left sub-formula must hold permanently
beforehand. Based on the until, we define two more derived temporal oper-
ators. φ := true U φ demands that φ must hold at some point in time and
φ := ¬ ¬φ requires that φ holds on the whole trace. A formula of the form
ψ is called an invariant , where ψ is a propositional formula, i.e. an LTL

formula without any temporal operators.
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Example 3.2. The first trace property given in Example 3.1 may be written
as an LTL property: (¬(a ∧ a)) ⌟

The language L(φ) of a formula φ is the set of traces that satisfy φ. We
say that a formula φ is valid or satisfied for a system K, written K |= φ, if
t |= φ for each trace t ∈ Traces(K).

Sometimes it is useful to assume that negations may only occur immediately
in front of atomic propositions. Formulas in this shape are said to be in
negation normal form (NNF). In order to obtain a linear translation from
general LTL formulas into NNF, we introduce the release operator defined
as φ1Rφ2 := ¬(¬φ1 U ¬φ2). Intuitively, it expresses that φ2 must hold the
whole time, except if φ1 was true at some previous point in time. Or rephrased,
φ1 releases φ2.

Definition 3.5 (LTL Negation Normal Form). An LTL formula φ is in negation
normal form if it can be derived from the grammar

φ ::= true | false | a | ¬a | φ ∧ φ | φ ∨ φ | φ | φU φ | φRφ. ⌟

Until and release satisfy an expansion law respectively which can be de-
duced from the semantics, namely φ1 U φ2 = φ2 ∨ (φ1 ∧ (φ1 U φ2)) and
φ1Rφ2 = φ2 ∧ (φ1 ∨ (φ1Rφ2)).

Bounded Semantics

In the context of bounded model checking, it is often the case that we need to
consider a bounded version of the LTL semantics which allows us to reason
about finite trace prefixes [9]. The idea is to come up with a modified relation
|=k which essentially constrains the usual definition to trace prefixes of size k.
Most importantly, it fulfils the following characteristic.

Proposition 3.1.

K |=k φ =⇒ K |= φ. ⌟

In some sense, |=k is an under-approximation of the unbounded semantics.
All formulas that are satisfied in this bounded semantics do also hold in the
regular semantics. Thus, we refer to it as the pessimistic semantics, following
the designation in [10]. Note that |=k is notation for |=k

0 as defined below.
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Definition 3.6 (Pessimistic LTL semantics). Let k ∈ N0 be the bound and
let k′ ∈ ..=k. Let t be a trace (prefix) of length greater than k and let φ,φ1, φ2

be LTL formulas in NNF.

t |=k
k′ true

t ̸|=k
k′ false

t |=k
k′ a ⇐⇒ a ∈ t[k′]

t |=k
k′ ¬a ⇐⇒ a /∈ t[k′]

t |=k
k′ φ1 ∧ φ2 ⇐⇒ t |=k

k′ φ1 ∧ t |=k
k′ φ2

t |=k
k′ φ1 ∨ φ2 ⇐⇒ t |=k

k′ φ1 ∨ t |=k
k′ φ2

t |=k
k′ φ ⇐⇒ k′ < k ∧ t |=k

k′+1 φ

t |=k
k′ φ1 U φ2 ⇐⇒ ∃i ∈ k′..=k :

(
t |=k

i φ2 ∧ ∀j ∈ k′..i : t |=k
j φ1

)
t |=k

k′ φ1Rφ2 ⇐⇒ ∃i ∈ k′..=k :
(
t |=k

i φ1 ∧ ∀j ∈ k′..=i : t |=k
j φ2

)
⌟

We assume that the semantics always evaluates to false if k′ = k in the
next-case. The definition of the release-case implies that ψ always evaluates
to false in the pessimistic semantics. The correctness of Proposition 3.1 for
this definition is an immediate consequence of lemma 1 stated in [22].

Similarly, we can come up with yet another modified relation ˙|=k that
provides an overapproximation to the standard semantics. Thus, we refer
to it as the optimistic semantics, again following the designation in [10]. It
can be obtained by dropping all future requirements, i.e. those exceeding the
observable horizon of a trace prefix bounded by k.

Definition 3.7 (Optimistic LTL semantics). Let k ∈ N0 be the bound and let
k′ ∈ ..=k. Let t be a trace (prefix) of length greater than k and let φ,φ1, φ2 be
LTL formulas in NNF.

t ˙|=k
k′ φ ⇐⇒ k′ ≥ k ∨ t ˙|=k

k′+1 φ

t ˙|=k
k′ φ1 U φ2 ⇐⇒

(
t |=k

k′ φ1 U φ2

)
∨
(
∀i ∈ k′..=k : t ˙|=k

i φ1

)
t ˙|=k

k′ φ1Rφ2 ⇐⇒
(
t |=k

k′ φ1Rφ2

)
∨
(
∀i ∈ k′..=k : t ˙|=k

i φ2

)
The remaining rules are equivalent to those given in Definition 3.6, modulo
replacing |= by ˙|=. ⌟

For this relation, the reverse direction of Proposition 3.1 holds.

Proposition 3.2.

K |= φ =⇒ K ˙|=k φ ⌟

14
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3.5.2 HyperLTL

HyperLTL is a formal logic that enables us to express a wide range of hyper-
properties conveniently. It was proposed by Clarkson et al. [5] as a natural
generalization of LTL.

The essential innovation of HyperLTL is the ability to simultaneously
quantify over multiple system executions. In order to accomplish this, the
syntax of LTL is extended with universal and existential trace quantifiers,
each followed by a trace variable respectively. In general, any HyperLTL
formula is just an LTL formula with a quantifier prefix, except that each
atomic proposition is now explicitly associated with a trace variable π which
is carried as an index.

Definition 3.8 (HyperLTL Syntax). A HyperLTL formula Φ is generated by
the grammar.

Φ ::= ∃π.Φ | ∀π.Φ | φ
φ ::= aπ | ¬φ | φ ∧ φ | φ | φU φ,

where a ∈ AP is an atomic proposition and π ∈ V is a trace variable. ⌟

The inner part of a HyperLTL formula is basically an LTL formula, thus it
may contain all of the syntactic sugar mentioned above. Furthermore, we say
that a HyperLTL formula is in negation normal form if its LTL body (φ in
the above definition) is in this form.

We identify certain syntactical fragments of HyperLTL by the shape of
their quantifier prefix. For a formula Φ := Q1π1. . . . .Qnπn.φ in the notation
of Definition 3.8 (φ is quantifier free), the quantifier prefix is represented as
the corresponding sequence of quantifiers Q1 . . . Qn ∈ {∀,∃}n. Φ contains a
quantifier alternation each time an universal (existential) quantifier is immedi-
ately followed by an existential (universal) quantifier in the quantifier prefix.
The alternation depth of a HyperLTL formula is the number of quantifier
alternations occurring in its quantifier prefix.

We allow each trace variable to quantify over the traces from another
system. Therefore, we define the semantics of a HyperLTL formula φ with
respect to a system environment Γ that maps identifiers κ to concrete systems.

The validity of a formula φ with respect to a system environment Γ and a
trace assignment Π mapping trace variables to traces is written as Π |=Γ φ.
The empty trace assignment is denoted by Ø. An update of a trace assignment
Π is defined by Π[π 7→ t] where Π[π 7→ t](π′) := ifπ = π′ then t elseΠ(π′).
Additionally, Π[X] is a notation for the function mapping a path variable π
to Π(π)[X] for a sequence of natural numbers X. We say that a formula φ
is valid or satisfied in a given environment Γ if Ø |=Γ φ. This satisfaction
relation is defined analogously to the respective relation for LTL.
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Definition 3.9 (HyperLTL Semantics). Let Π be a trace assignment, let Γ be
a system environment, let φ,φ1, φ2 be LTL formulas and let Φ be a HyperLTL
formula.

Π |=Γ aπ ⇐⇒ a ∈ Π(π)[0]

Π |=Γ ¬φ ⇐⇒ Π ̸|=Γ φ

Π |=Γ φ1 ∧ φ2 ⇐⇒ Π |=Γ φ1 ∧Π |=Γ φ2

Π |=Γ φ ⇐⇒ Π[1..] |=Γ φ

Π |=Γ φ1 U φ2 ⇐⇒ ∃i ∈ N0 : (Π[i..] |=Γ φ2 ∧ ∀j ∈ ..i : Π[j..] |=Γ φ1)

Π |=Γ ∃κπ.Φ ⇐⇒ ∃t ∈ Traces(Γ(κ)) : Π[π 7→ t] |=Γ Φ

Π |=Γ ∀κπ.Φ ⇐⇒ ∀t ∈ Traces(Γ(κ)) : Π[π 7→ t] |=Γ Φ ⌟

Usually, we do not specify Γ and κ explicitly. Instead, we enumerate all n
trace quantifiers occurring in the formula and assume that each quantifier refers
to its own system. Now it suffices to specify a sequence K := (K1, . . . ,Kn) of
systems such that Γ(i) := Ki for i ∈ 1..=n. Validity is denoted as K |= φ in
this case. If the alphabets of all systems are pairwise disjoint, we may omit
the trace variable indices of atomic propositions. Moreover, if we mention a
system-related object like a path σi annotated with an index i, this object
belongs to system Ki. A sequence s := (s1, . . . , sn) where each si is a state of
Ki for i ∈ 1..=n is also named a state in this context.

Sometimes, we allow negations to appear in the quantifier prefix. The
negation of a HyperLTL formula can be obtained by applying the equation
¬∃π.φ = ∀π.¬φ multiple times. This leads to the following property that holds
for any HyperLTL formula φ.

Proposition 3.3.

K |= φ ⇐⇒ K ̸|= ¬φ ⌟

Note that this equivalence does not hold for LTL since all LTL formulas
are implicitly universally quantified. A system containing the traces {}ω
and {}{a}ω fulfils neither a nor its negation ¬a. An LTL formula φ
is equisatisfiable to the HyperLTL formula ∀π.φ, so HyperLTL is indeed a
generalization of LTL. Negating an LTL formula does not change the (implicit)
quantification.

Example 3.3 (Language Containment). We can specify language containment
as a HyperLTL property. Given two systems K1,K2 with a common alphabet
AP , this property requires that the traces of a system K1 constitute a subset
of the traces of another system K2.

∀π1.∃π2.

( ∧
a∈AP

aπ1 ↔ aπ2

)
⌟
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Bounded Semantics

Unsurprisingly, we may define bounded versions of the HyperLTL semantics
as well. The definitions are completely analogously to the LTL case, which is
why we omit them here. We use the same notation. Of course, the bounded
semantics have the same characteristics stated in the LTL case. Both are also
stated in [10] as the first two cases of Lemma 2.

Proposition 3.4.

K |=k Φ =⇒ K |= Φ ⌟

Proposition 3.5.

K |= Φ =⇒ K ˙|=k Φ ⌟

The following proposition gives a little more refined overview over the
relation between the different semantics.

Proposition 3.6. Let k, k′ ∈ N0 with k′ ≤ k.

K |=k′ Φ =⇒ K |=k Φ =⇒ K |= Φ =⇒ K ˙|=k Φ =⇒ K ˙|=k′ Φ ⌟

3.6 Quantified Boolean Formulas

Quantified boolean formulas are propositional logic formulas extended with
explicit quantification over variables. The syntax is given by the following
grammar, plus the usual syntactic sugar for the boolean connectives 0,∨,⇒,⇔
and ‘if then else’. Note that the notation of the arrows and constants differs
from LTL such that it is easier to distinguish them visually. Moreover, the
arrows differ from the longer logical arrows.

Definition 3.10 (Quantified boolean formula syntax). A Quantified boolean
formula Ψ is generated by the following grammar.

Ψ ::= ∃x.Ψ | ∀x.Ψ | ψ
ψ ::= 1 | x | ¬ψ | ψ ∧ ψ | Ψ ⌟

Example 3.4. The quantified boolean formula

∀x.∃y.(x⇒ y) ⇒ ¬y

expresses that no matter which boolean value x takes, it is possible to chose a
boolean value for y (which may depend on x) such that the inner propositional
formula is satisfied. ⌟
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A quantified boolean formula is in prenex normal form if it can be derived
from the grammar without using the last rule in the definition of ψ. Thus,
a formula in prenex normal form consists of a quantifier prefix, followed by
a propositional formula. Most formulas we consider hereinafter lie in this
restricted fragment.

We say that Q ∈ {∀, ∃} is a quantifier . Each variable x is taken from a set
of variables X. x ∈ X is a free variable in the boolean formula ψ if ψ = x or if
x is free in all sub-formulas of ψ. A quantified boolean formula of the form
Qx.ψ binds each occurrence of x as a free variable in ψ such that x is not free
in Qx.ψ. A quantified boolean formula is closed if it does not contain any free
variables.

A variable assignment v : X → B maps variables to truth values from the
boolean domain B := {0, 1}. The empty assignment is denoted as Ø. An
update of a variable assignment v is written as v[x 7→ b] where v[x 7→ b](x′) :=
ifx = x′ then b else v(x′) for b ∈ B.

The satisfiability problem for quantified boolean formulas (QBF) is defined
by a relation |=.

Definition 3.11 (QBF semantics). Let v be a variable assignment and let
ψ,ψ1, ψ2 be quantified boolean formulas.

v |= 1

v |= ¬ψ ⇐⇒ v ̸|= ψ

v |= ψ1 ∧ ψ2 ⇐⇒ (v |= ψ1) ∧ (v |= ψ2)

v |= ∃x.ψ ⇐⇒ (v[x 7→ 1] |= ψ) ∨ (v[x 7→ 0] |= ψ)

v |= ∀x.ψ ⇐⇒ (v[x 7→ 1] |= ψ) ∧ (v[x 7→ 0] |= ψ) ⌟

A closed quantified boolean formula ψ is satisfied if and only if Ø |= ψ. In
this case, we write SAT (ψ). In the opposite case, we write UNSAT (ψ).

Example 3.4 (Continued). The quantified boolean formula given before is
satisfied. We can convince ourselves that this is indeed true by applying the
rules provided by the semantics. Another way to think about this is that if we
chose y to be ¬x, then the inner propositional formula holds as witnessed by
well-known logical equalities. ⌟

We allow some more syntactic sugar for quantified boolean formulas. If
x ∈ Xn is a sequence of variables, then we write Qx.ψ as a shortcut for
Qx[0]. . . . Qx[n− 1].ψ. Furthermore, we allow to apply boolean connectives
on variables sequences x,x′ ∈ Xn of equal length. The respective operations
are applied element-wise. For example, x ∧ x′ stands for the conjunction
(x[0] ∧ x′[0]) ∧ · · · ∧ (x[n − 1] ∧ x′[n − 1]). In a similar manner, we define
equality = and inequality ̸= for sequences of variables.
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Finally, we define boolean formulas as quantified boolean formulas that do
not contain any universal quantifier. In this case, we may omit the explicit
quantification. The satisfiability problem for boolean formulas is known as the
SAT problem.

Satisfiability modulo theories (SMT) generalizes boolean satisfiability even
further than QBF. For instance, it allows to reason about bit-vectors or even
real numbers and supports arithmetic operations. SMT extends boolean
formulas with new logics as needed. Note that the fraction of SMT that is
relevant in our context corresponds mostly to QBF such that we do not need
to introduce a new formalism for SMT. In practice, using the bit-vector logic of
SMT can be convenient, depending on how the system is encoded. A genuine
extension of SMT that we need at some point are uninterpreted functions such
that we may quantify over variables representing functions.
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Chapter 4

Bounded Model Checking

Bounded model checking (BMC) is a widespread symbolic model checking
technique that looks for witnesses bounded in length. If those can be identified
easily, BMC is a very promising model checking approach. The fundamental
approach we discuss here was initially proposed by Biere et al. in 1999 [9]. Its
effectiveness relies particularly on the concise symbolic representation of the
state space [29] as well as the capabilities of modern SAT solvers. We start by
introducing BMC for LTL before presenting the BMC algorithm for HyperLTL
derived thereof. Note that the LTL model checking algorithm presented in this
chapter omits one essential feature introduced in [9], namely utilising looping
witnesses. We moved it to the next chapter since it is no prerequisite of current
state of the art HyperLTL BMC.

4.1 LTL Bounded Model Checking

Bounded model checking for LTL is particularly well suited to find violations
of a property. Intuitively, this is because it suffices to provide a single trace
in order to disprove an LTL formula. A witness is also called counterexample
in this case, it is a trace that fulfils the negated property. Since the length of
a witness is bounded in BMC, a counterexample is a finite execution prefix
of size k. It represents a proof for K ̸|= φ given a system K and a property
φ. Algorithmically, the bound k is increased stepwise until a counterexample
of the respective size occurs. In this basic form, we obtain only a semi-
decision procedure which means that if the property holds and thereby no
counterexample exists, the algorithm does not terminate. We outline how this
procedure can be applied to LTL properties.
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In the first step, the algorithm constructs a boolean formula that is satis-
fiable if and only if a counterexample of length k (the current bound) exists.
For now, a counterexample is an execution of size k such that the corresponding
trace prefix t̂ cannot be extended to a valid trace that satisfies the formula
φ. We may formalize this in terms of the optimistic semantics as t̂ ˙̸|=k φ. The
existence of such a trace violates the requirement that all traces must satisfy
φ, thus t̂ is a witness for K ̸|= φ. An equivalent characterization is that all
extensions of t̂ to a valid trace satisfy the negated formula, i.e. t̂ |=k ¬φ, which
means that t̂ violates the formula in any case.

Based on the second characterization, we define an encoding [[¬φ]]k describ-
ing a boolean formula whose proof of satisfiability immediately corresponds
to a counterexample. What remains to be discussed is how to unfold both
the system and the formula up to bound k in order to obtain such a boolean
formula.

4.1.1 Encoding of the System

A formula is always evaluated based on the system states. Those in turn
are solely dependent on the respective execution prefix. Thus, an execution
α ∈ Actk constitutes the set of variables of the boolean formula. Now the
system state at step k′, where k′ ≤ k, is defined by δk

′
(α[..k′]). Usually we

assume that σ is the path obtained from α such that σ[k′] = δk
′
(α[..k′]).

In order to encode the system into a boolean formula representation, we
just have to encode all states and actions as bit-vectors, i.e. sequences of
boolean values. Furthermore, we define one separate labelling function per
atomic proposition. The construction is straightforward. Therefore we do not
formalize it in full detail, but instead illustrate it at an example.

Example 4.1. Consider again the system depicted in Figure 3.1. This system
can be encoded into boolean formulas as written below.

S :={s0, s1, s2, s3, s4} = {000, 001, 010, 011, 100}
Act :={0, 1}

δ(s, α) := if s⇔ 000 then 001 else

if s⇔ 001 then 010 else

if s⇔ 010 then(ifα then 000 else 011) else

if s⇔ 011 then 100 else 000

La := if(s⇔ 001) ∨ (s⇔ 011) then 1 else 0

We can now check for example whether the execution 010 leads to a state
where a holds by computing

δ3(010) = δ(δ(δ(000, 0), 1), 0) = δ(δ(001, 1), 0) = δ(010, 0) = 011 and

La(δ
3(010)) = La(011) = 1. ⌟
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4.1.2 Encoding of the Formula

Given the system encoding described in the previous section, we would like
to construct a formula encoding [[¬φ]]k that is satisfiable if and only if a
counterexample of length k exists. Assuming that ¬φ formula is in NNF,
the most basic translation looks as follows. Note that this encoding does not
recognize all counterexamples yet.

:= k′ ≤ k k′ > k

[[true]]kk′ 1 0

[[false]]kk′ 0 0

|[a]|kk′ La(σ[k
′]) 0

[[¬a]]kk′ ¬La(σ[k
′]) 0

[[φ1 ∧ φ2]]
k
k′ [[φ1]]

k
k′ ∧ [[φ2]]

k
k′ 0

[[φ1 ∨ φ2]]
k
k′ [[φ1]]

k
k′ ∨ [[φ2]]

k
k′ 0

[[ φ]]kk′ [[φ]]kk′+1 0

[[φ1 U φ2]]
k
k′ [[φ2]]

k
k′ ∨ ([[φ1]]

k
k′ ∧ [[φ1 U φ2]]

k
k′+1) 0

[[φ1Rφ2]]
k
k′ [[φ2]]

k
k′ ∧ ([[φ1]]

k
k′ ∨ [[φ1Rφ2]]

k
k′+1) 0

We define [[φ]]k := [[φ]]k0. The variable k′ in the lower index always refers to the
unrolling depth at which the formula is evaluated. The system K is always
treated as an implicit argument of the encoding. In order to determine whether
an atomic proposition holds at a certain point in time, we need to access the
trace of the system as defined in the previous section. This is the only point
where both encodings interact with each other.

The formula encoding is quite close to the (bounded) semantics of LTL
and utilises the expansion law for until and release. This leads to the following
observation.

Lemma 4.1. Let K be a system, let φ be an LTL formula and let k ∈ N.

SAT
(
[[φ]]k

)
⇐⇒ ∃t ∈ Traces(K) : t |=k φ

Proof. The more general statement SAT
(
[[φ]]kk′

)
⇐⇒ ∃t ∈ Traces(K) : t |=k

k′

φ for k′ ≤ k can be proved by straightforward structural induction on φ with
k′ quantified. In the until/release case, we may use the expansion law.

Apparently, the encoding coincides with the pessimistic semantics of LTL.
Note that if we replace the zeros in the right column of the encoding above
by ones, we obtain an encoding ˙[[φ]]

k
for the optimistic semantics in the same

manner.
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Lemma 4.2. Let K be a system, let φ be an LTL formula and let k ∈ N.

SAT
(

˙[[φ]]
k
)

⇐⇒ ∃t ∈ Traces(K) : t ˙|=k φ

Proof. Analogous to Lemma 4.1.

This version of the encoding will be used later as well. Based on the
pessimistic encoding, we can now formulate the core theorem for LTL bounded
model checking.

Theorem 4.3. Let K be a system and let φ be an LTL formula.(
∃k. SAT

(
[[¬φ]]k

))
=⇒ K ̸|= φ

Proof. With Lemma 4.1, we obtain a trace t such that t |=k ¬φ for some bound
k. Proposition 3.1 implies that t |= ¬φ holds in the unbounded semantics
which is equivalent to t ̸|= φ by the LTL semantics. Now that we have found a
trace for which t |= φ does not hold, we may conclude that K |= φ does not
hold as well.

Since the LTL semantics is defined for infinite traces, there are some crucial
limitations of BMC caused by the fact that we only consider trace prefixes.
In the current encoding, we simply assume that the formula is not fulfilled at
all if we did not find a witness within k steps. This is true in the optimistic
semantics, but not in the general case.

Indeed, it is easy to come up with a formula φ whose negation holds
without having a finite witness. Consider for example φ := a. In this case, a
counterexample is an infinite path on which a never holds. The crucial point
is that a counterexample may be infinite. The formula is not refutable in finite
time. Consequentially, we do not even obtain a full semi-decision procedure
for disproving the validity of LTL formulas with this approach. The reverse
direction of Theorem 4.3 does not hold. Before we solve this issue, we introduce
BMC for HyperLTL which is based on the limited encoding we have seen until
now.

4.2 HyperLTL Bounded Model Checking

Since model checking hyperproperties is very expensive in the general case,
there is a quest for model checking algorithms that are at least efficient for
some practically relevant problems. For LTL, bounded model checking is an
algorithm that turned out to be very useful in practice, even though it is
inherently incomplete. Since HyperLTL is just an extension of LTL, a natural
question that emerges is whether we can lift BMC to HyperLTL as well.
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This is indeed possible and was initially proposed by Hsu et al [10]. The
overall idea is to reduce model checking to QBF solving (instead of SAT
solving for LTL) such that we have a satisfiability solver that takes care of
the quantifiers. Since the quantifiers are the only difference between LTL and
HyperLTL, the basic translation is a straightforward extension of the LTL
BMC encoding presented in the last section.

Let Φ be a HyperLTL formula such that Φ = Q1π1. . . . Qnπn.φ, where φ is
quantifier free. We define

[[Φ]]k := Q1α1. . . . Qnαn.[[φ]]
k

where αi ∈ Actk for i ∈ 1..=n. Analogous to the LTL BMC case in the previous
section, the action variables determine the paths of the quantified systems.
Additionally, ˙[[Φ]]

k
is defined analogously based on the optimistic LTL encoding.

Essentially all results of the previous section also apply to HyperLTL.

Lemma 4.4. Let K be a system, let Φ be a HyperLTL formula and let k ∈ N.

SAT
(
[[Φ]]k

)
⇐⇒ K |=k Φ

SAT
(

˙[[Φ]]
k
)

⇐⇒ K ˙|=k Φ

Proof. Lemma 3 from [10]. We start with the inner LTL formula and observe
that the lemmas for LTL BMC from the previous section hold analogously,
except that we consider a tuple of traces instead of a single one. Then we argue
inductively about adding quantifiers to the formula and eliminating them from
the aforementioned tuple stepwise.

Theorem 4.5. Let K be a system and let Φ be a HyperLTL formula.(
∃k. SAT

(
[[¬Φ]]k

))
=⇒ K ̸|= Φ

Proof. Theorem 1 from [10] with the pessimistic semantics. If the negated
formula is satisfied even in the bounded pessimistic semantics, then the same
holds in the unbounded semantics.

It is not surprising to observe that the reverse direction of the theorem
does not hold since we used the same formula encoding as in Section 4.1.2.
Using this result, it is only possible to find finite counterexamples.
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Chapter 5

Completeness for LTL
Bounded Model Checking

A complete bounded model checking procedure for a system K and a formula
φ is a terminating program that outputs true if and only if K |= φ, while
considering only finite executions. We address two different approaches leading
to a complete BMC algorithm for LTL. The former introduces a completeness
threshold, while the latter interprets finite paths as looping infinite paths in
order to reason about the unbounded semantics.

5.1 Completeness Threshold

The conceptually easiest approach to obtain more results from the bounded
encoding is to choose the unfolding bound sufficiently high such that we are
able to deduce more properties. According to [30], a completeness threshold for
LTL BMC is a natural number c such that the absence of a counterexample
up to bound c proves that K |= φ. The intuition is that if we did not find a
counterexample of length c, we have unfolded the system and the formula far
enough such that we can be sure that a longer counterexample does not exist
either. Such a completeness threshold must exist since we are dealing with
finite state systems.
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Finding the smallest completeness threshold is at least as hard as model
checking. It is equal to the length of a shortest counterexample, or zero if
none exists [30]. Thus, we aim for an over-approximation that is as small as
possible. But the issue with (approximations of) completeness thresholds is
that they are often huge in practice. Since LTL model checking is PSPACE-
complete [31] and LTL BMC is in NP [9], a general completeness threshold is
most likely exponential with respect to the size of the system and the formula.
Thus, a completeness threshold is only relevant in practice if we impose some
restrictions ensuring that the bound has a reasonable size. A fragment of LTL
for which model checking is NP-complete consists of formulas involving only
the temporal operators and [31], so this is a more promising starting
point.

Formulas of the form ψ where ψ is a propositional formula are known to
have a comparatively small completeness threshold, namely the reachability
diameter [22].

Definition 5.1 (Reachability Diameter [22]). The reachability diameter rd(K)
is the minimal number of steps required to reach all states of the system.

rd(K) := min
{
d | ∀s ∈ Reach(K).∃d′ ≤ d.∃α ∈ Actd

′
.s = δd

′
(α)
}

⌟

If we know that every reachable state satisfies ψ, then we can obviously con-
clude that every valid trace must satisfy ψ. The reachability diameter can be
computed by QBF solving based on the following alternative characterization.

rd(K) = min

{
d | ∀α ∈ Actd+1.∃α′ ∈ Actd.

d∨
i=0

σ[i] ⇔ σ′[d+ 1]

}

The intuition is to check incrementally whether every state reachable within
d+ 1 steps can also be reached sooner. The largest d for which this does not
hold any more is the reachability diameter.

For formulas of the form ψ, the reachability diameter is not sufficient in
terms of a completeness threshold. This is illustrated by Figure 5.1. In both
transition systems, the reachability diameter is 1. Unfolded for only one step,
both transition systems are equivalent. But only the right one satisfies the
property a.

Instead, it suffices to visit all loop-free paths, i.e. those paths that do
not visit any state twice. The corresponding completeness threshold is called
reachability recurrence diameter [32].
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s0

{}

s1

{a}

s2

{}

K

q0

{}

q1

{a}

q2

{}

K ′

Figure 5.1: Two systems satisfying having the same reachability diameter
rd(K) = rd(K ′) = 1, but a different reachability recurrence diameter
rrd(K) = 1 < 2 = rrd(K ′).

Definition 5.2 (Reachability Recurrence Diameter [32]). The reachability
recurrence diameter rrd(K) is the length of a longest loop-free path in the
system.

rrd(K) := max

d | ∃α ∈ Actd.
∧

0≤i<j≤d

σ[i] ⇎ σ[j]

 ⌟

Note the difference from the reachability diameter at the example of
Figure 5.1. The path q0q1q2 is a longest loop-free path of K ′ while there is
no loop-free path in K of the same size. It is worth mentioning that the
reachability recurrence diameter is an over-approximation of the recurrence
diameter. It is potentially much easier to compute since it does not involve
any quantifier alternation.

Together with the encoding of Lemma 4.4, we obtain a complete BMC
procedure for the ψ and ψ fragments of LTL. Note that we use a different
bounded semantics in each case below since a globally-property is never fulfilled
in the pessimistic semantics |=d and a finally-property is always fulfilled in the
optimistic semantics ˙|=d.

Theorem 5.1. Let K be a system and let ψ be a propositional formula.

1. Let φ := ψ and let d := rd(K).

K ˙|=d φ ⇐⇒ K |= φ

2. Let φ := ψ and let d := rrd(K).

K |=d φ ⇐⇒ K |= φ

Proof. One direction is given by Lemma 4.4 respectively.
1. =⇒ : By assumption, ψ holds on all reachable states. Thus it holds on

every valid trace.
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2. ⇐= : Assume the contrary, that there is a trace t with t ̸|=d φ. By
assumption, t contains a loop, i.e. there exist indices i, j with t[i] = t[j]. Now
t[..i](t[i..j])ω ̸|= φ, contradiction.

The work of Kroening et al. [33] discusses a larger fragment of LTL that
has a completeness threshold which is linear in the recurrence diameter. They
require that the LTL formula can be represented as a Büchi automaton that
fulfils some additional requirements, namely that it can be decomposed into
clique-shaped strongly connected components [33]. A theoretical completeness
threshold for full LTL is presented in [30]. Note that a universal completeness
threshold presupposes neither the optimistic nor the pessimistic encoding, since
both are unable to detect infinite counterexamples in general. Instead it relies
on the encoding presented in the following section, which incorporates a loop
condition.

5.2 Loop Constraints

Now we consider a second approach that enables completeness. An open
question that arose before was how to find infinite counterexamples via bounded
model checking. For example, consider again system K from Figure 5.1.
K |= a does not hold. A counterexample is a trace t satisfying the negated
property t |= ¬a. In general, it is impossible to determine from a trace prefix
whether a globally property holds. Instead, we require a finite representation
of infinite traces such that we can search for counterexamples by SAT solving
in the manner of Theorem 4.3.

This motivates the idea of finding counterexamples consisting of a finite
prefix, followed by a looping finite suffix. Note that we are talking about a
path that must loop, not only the corresponding trace. A loop is characterized
by a state that occurs twice in the path prefix. For instance, a counterexample
for K |= a is an infinite path of the form s0(s2)

ω. In this example, the path
prefix s0s2s2 is a finite representation of the infinite counterexample s0(s2)

ω.
We may assume that the loop end is always determined by the last state

of our path prefix. How to obtain the loop following the previous discussion is
illustrated in Figure 5.2. If we go back to our formula encoding in Section 4.1.2,
we can now evaluate the formula beyond the bound, assuming that we are given
a looping path. In the notation of Figure 5.2, we know that [[φ]]k+1 = [[φ]]j for
any sub-formula φ since σ[(k + 1)..] = σ[j..].
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σ̂[0] σ̂[j − 1] σ̂[j] σ̂[k − 1] σ̂[k]

Figure 5.2: Loop interpretation of a finite path σ̂ ∈ Sk+1 with σ̂[j − 1] = σ̂[k]
representing an infinite path σ := σ̂[..j](σ̂[j..=k])ω.

The complete encoding that we outline here is given in [19]. In contrast
to the pessimistic encoding given in Section 3.5.1, only the rightmost column
changes. Until and release can now be properly evaluated based on a fixed
point characterization. It suffices to iterate once through the loop in order to
evaluate these operations on the full infinite looping trace. This one iteration is
captured by the sharp-bracket encoding. The sharp-bracket encoding ensures
that we obtain a finite encoding by evaluating to fixed point values when
exceeding the bound. We omit some easy cases of the encoding.

:= k′ ≤ k k′ > k

[[a]]kk′ La(σ[k
′])

∨k
j=1

(
lj ∧ La(σ[j])

)
[[ φ]]kk′ [[φ]]kk′+1

∨k
j=1

(
lj ∧ [[φ]]kj+1

)
[[φ1 U φ2]]

k
k′ [[φ2]]

k
k′ ∨ ([[φ1]]

k
k′ ∧ [[φ1 U φ2]]

k
k′+1)

∨k
j=1

(
lj ∧ ⟨⟨φ1 U φ2⟩⟩kj

)
[[φ1Rφ2]]

k
k′ [[φ2]]

k
k′ ∧ ([[φ1]]

k
k′ ∨ [[φ1Rφ2]]

k
k′+1)

∨k
j=1

(
lj ∧ ⟨⟨φ1Rφ2⟩⟩kj

)
⟨⟨φ1 U φ2⟩⟩kk′ [[φ2]]

k
k′ ∨ ([[φ1]]

k
k′ ∧ ⟨⟨φ1 U φ2⟩⟩kk′+1) false

⟨⟨φ1Rφ2⟩⟩kk′ [[φ2]]
k
k′ ∧ ([[φ1]]

k
k′ ∨ ⟨⟨φ1Rφ2⟩⟩kk′+1) true

The variable lj marks the state in the loop following the duplicate, lj = 1 only if
σ[j− 1] = σ[k] for j ∈ 1..=k. In Figure 5.2, precisely the jth position is marked.
Note that if there is no loop, the encoding is equivalent to the old encoding
from section 4.1.2. The loop variables lj are fixed by a separate encoding LC k

(loop constraint) that is conjoined with the actual formula encoding.
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LC k := Loopk ∧AtMostOnek

Loopk :=
k∧

j=1

(lj ⇒ (σ[j − 1] = σ[k]))

AtMostOnek :=
k−1∧
j=1

(InLoopj ⇒ ¬lj+1)

InLoopk :=
k∨

j=1

lj

Overall, we obtain the encoding [[φ]]k := [[φ]]k0 ∧LC k for a HyperLTL formula φ.
For the new encoding, both directions of Theorem 4.3 hold.

Lemma 5.2. Let K be a system, let φ be an LTL formula.(
∃k. SAT

(
[[φ]]k

))
⇐⇒ ∃t ∈ Traces(K) : t |= φ

Proof. Theorem 1 and the comment below in [19].

Theorem 5.3. Let K be a system, let φ be an LTL formula.(
∃k. SAT

(
[[¬φ]]k

))
⇐⇒ K ̸|= φ

Proof. Immediate consequence of Lemma 5.2.

The above does not yet suffice to achieve completeness, but at least The-
orem 5.3 suffices to disprove all invalid formulas. Proving K |= φ based on
this Theorem would require to verify that [[¬φ]]k is unsatisfied for all k. Of
course, we cannot evaluate infinitely many SAT problems in practice. How to
obtain a complete procedure based on the preceding is for example described
in [34]. The fundamental idea is to unfold until all loop-free path prefixes that
potentially violate the formula have been considered. But instead of estimating
a huge completeness threshold, the proof is established by an incremental
algorithm. We abstain from discussing the procedure in full detail here since it
cannot be generalized to HyperLTL for reasons discussed later in Section 6.3.

Nevertheless, the conceptual idea of utilising loops to represent infinite
paths by finite path prefixes is essential when it comes to arguing about infinite
witnesses. We will encounter a generalized version of the loop constraint in
Section 6.5.
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Chapter 6

Completeness for HyperLTL
Bounded Model Checking

Now we go one step further and aim for a complete decision procedure for
HyperLTL, based on what we learned about LTL in the previous chapter. In
the following, we pursue several different approaches that are all applicable
to a fragment of HyperLTL respectively. Those fragments are identified by
the shape of the quantifier prefix and the kind of the inner LTL formula. In
this thesis, we focus on HyperLTL formulas with one quantifier alternation,
followed by an LTL invariant.

At first, we consider alternation-free HyperLTL since this is arguably
the easiest case as mentioned in Chapter 2. After this, we discuss why
a completeness threshold must exist in general and provide a theoretical
completeness threshold derived from automaton-based model checking in
Section 6.2. Since this quickly leads to an infeasible procedure entailing a
huge bound, we continue looking for more tight bounds. We examine whether
techniques from LTL BMC are applicable here. To this end, we highlight the
differences between LTL and HyperLTL that are relevant in the context of
bounded model checking in Section 6.3. It turns out that the LTL procedure
cannot be easily generalized to HyperLTL which is why we propose alternative
approaches for fragments of HyperLTL in Sections 6.4 and 6.5.

6.1 Alternation-free Fragment

First, we consider the alternation-free fragment of HyperLTL, i.e. the fragment
consisting of all formulas with a quantifier prefix of the form ∀n or ∃n for
some n ∈ N. As discussed in Chapter 2, model checking is much easier for
formulas incorporating no quantifier alternation. We review it here primarily
to illustrate the concept of composition to which we refer several times later.
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Model checking alternation-free formulas can be accomplished by con-
structing a single composed system out of all quantified systems. Instead of
considering n traces, we consider a single trace over n-tuples. This implies
that we can replace the totality of all trace assignments by one single trace
assignment in the composed system such that HyperLTL model checking is
finally reduced to LTL model checking. An automaton-based model checking
algorithm relying on this construction is presented in [11]. We adapt this
procedure to our model checking setting.

Definition 6.1 (Composition of systems). Let Ki := (Si, s
i
0,Act i, δi,AP i, Li)

be systems for i ∈ ..n. W.l.o.g. we assume that the sets of atomic propos-
itions are pairwise disjunct. Based on this, we define a composed system
×i∈..nKi := (S, s0,Act , δ,AP , L), where

� S := ×i∈..nSi,

� s0 := (s00, . . . , s
n−1
0 ),

� Act := ×i∈..nAct i,

� δ(s) := (δ0(s[0]), . . . , δn−1(s[n− 1])),

� AP :=
⋃

i∈..nAP i,

� L(s) :=
⋃

i∈..n Li(s[i]). ⌟

Proposition 6.1. Let K = (K1, . . . ,Kn) be a sequence systems and let Φ =
Qπ1. . . . Qπn.φ be a HyperLTL formula with Q ∈ {∀, ∃}.

K |= Φ ⇐⇒ ×i∈..nKi |= Qπ.φ′. ⌟

Remember that model checking a HyperLTL formula of the form ∀π.φ,
where φ is an LTL formula, is equivalent to LTL model checking of φ. Thus,
we can apply LTL bounded model checking as discussed in Chapter 5 to verify
a HyperLTL formula containing only universal quantifiers.

Due to Proposition 3.3, formulas containing only existential quantifiers can
be handled analogously. Negating a formula in the ∃n-fragment results in a
formula in the ∀n-fragment that is satisfied if and only if the original formula
is not satisfied.

Note that a generalization this result enables us to reduce any sequence
of consecutive quantifiers of the same sort in the quantifier prefix to a single
quantifier of the respective sort. Hence, it suffices to differentiate between
quantifier prefixes only based on their quantifier alternations in terms of model
checking.
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6.2 Automaton-Based Completeness Threshold

Now, we aim to come up with a completeness threshold for formulas with
quantifier alternation. Remember that we considered a completeness threshold
in Section 5.1 as a bound, such that evaluating the formula in some bounded
semantics allows to conclude whether or not the formula holds in the unboun-
ded semantics. For simplicity, we restrict ourselves to HyperLTL formulas
incorporating an LTL invariant, as a generalization of what was discussed for
LTL in Section 5.1. The concept described here can potentially be generalized
to full HyperLTL, but this presupposes yet another bounded semantics. Neither
the pessimistic nor the optimistic semantics behave like the unbounded se-
mantics, even for an infinitely large bound. This is because the former assumes

-properties to be always true while the latter evaluates -properties to false.
Against this background, a bounded semantics which behaves optimistically on
global requirements and pessimistically on instantaneous requirements would
be a promising choice.

Our first approach for obtaining a completeness threshold relies on automaton-
based model checking for HyperLTL. In fact, the completeness threshold for
LTL determined in Section 5.1 may be derived analogously from automaton-
based LTL model checking. This has been proposed by Clarke et al. and
leads to a completeness threshold for full LTL [30]. We apply the same idea to
HyperLTL.

The automaton-based model checking procedure we present here is essen-
tially a special case of the model checking algorithm for HyperCTL* given
in [11]. The construction assumes that the HyperLTL formula Φ contains only
∃-quantifiers that may be preceded by a negation. It is possible to transform
an arbitrary HyperLTL formula into this form by applying the negation rule for
quantifiers multiple times and dropping double negations between quantifiers
afterwards. In our case, the inner LTL formula is always of the form ψ or
ψ after applying this transformation, where ψ is a propositional formula.

In order to prove whether or not Φ holds, we aim to construct an automaton
whose language is not empty if and only if the property is satisfied. The
algorithm building this automaton starts with an automaton for the inner
LTL formula and eliminates one quantifier per step subsequently from the
inside to the outside. For the remaining of this section, we assume again that
K := (K1, . . . ,Kn) is the associated sequence of systems, where n ∈ N is the
number of quantifiers in Φ.
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The initial automaton An is defined as a Büchi automaton accepting the
same language as the inner LTL formula. This construction is standard [15].
The language of this automaton is P(

⋃
j∈1..=nAP j). Note that we assume

that the sets AP j are pairwise disjunct. The quantifiers of Φ are eliminated
consecutively by projection. Consider the step where ∃πi is eliminated, given
i ∈ 1..=n. By induction, we have already constructed an automaton Ai over
the alphabet P(

⋃
j∈1..=iAP j). Let AKi be a Büchi automaton over the same

alphabet such that w ∈ L(AKi) if and only if w|i is a valid trace of Ki. Now we
define A′

i−1 := (Ai ∩ AKi)|1..i. If a negation precedes the existential quantifier,

we define Ai−1 := A′
i−1, otherwise Ai−1 := A′

i−1. Note that the projection
onto system indices above is notation for the projection onto the respective
sets of atomic propositions. In the end, we obtain an automaton A0 over an
one-letter alphabet. We argue that Φ is satisfied if and only if the language of
A0 is not empty.

Overall, each automaton Ai represents exactly the language of Φ with the
first i quantifiers removed.

Lemma 6.2. Let Φi be the formula obtained from Φ by dropping the first i
components of the quantifier prefix.

w ∈ L(Ai) ⇐⇒ w |= Φi

where w |= Φi is notation for Ø[π1 7→ w|1] . . . [πi 7→ w|i] |= Φi.

Proof. By induction. The base case i = n holds by definition of An. Let
i ≤ n. By the inductive hypothesis, Ai ∩ AKi accepts all words w over the
alphabet P(

⋃
j∈1..=iAP j) incorporating a valid trace w|i of Ki that satisfy

w |= Φi. The projection (Ai ∩ AKi)|1..i results in an automaton accepting
words w over the smaller alphabet P(

⋃
j∈1..iAP j). w is accepted if and

only if a valid trace t for Ki exists such that w[πi 7→ t] |= Φi+1, or equivalent
w |= ∃πi.Φi. Furthermore, w |= ¬∃πi.Φi holds for each w ∈ L(((Ai ∩ AKi)|1..i)).
Considering the definitions of Φi−1 and Ai−1, it is easy to see that combining
both cases leads to w |= Φi−1 for each w ∈ L(Ai−1).

Theorem 6.3.

L(A0) ̸= ∅ ⇐⇒ K |= Φ

Proof. Special case of Lemma 6.2 with i = 0.

The automata obtained from the construction above fulfil some character-
istic that simplifies arguing about them.

Lemma 6.4. All automata Ai from above are either safety or co-safety auto-
mata.
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Proof. By induction. The base case is easy. An is obviously a safety automaton
since the inner formula is an invariant. In the other case, its negation is a
safety automaton such that An is a co-safety automaton.

The inductive case is easy if Ai is a safety automaton, since safety is
closed under intersection and projection preserves safety. Assume that Ai is
a co-safety automaton. We claim that A′

i−1 = (Ai ∩ AKi)|1..i is a co-safety
automaton as well in this case. It suffices to show that each w ∈ L(A′

i−1) has a
good prefix. We argue that ŵ|1..i is such a good prefix, where ŵ is a good prefix
of some w̄ ∈ L(Ai) with w̄|1..i = w. First assume that ŵ|i is not a valid trace
prefix for Ki. Then all extensions w̄′ (including w̄) of ŵ satisfy w̄′ /∈ L(AKi)
and thus w̄|1..i /∈ L(A′

i−1). But this contradicts w ∈ L(A′
i−1) such that we

may always assume that ŵ|i is a valid trace prefix for Ki. Now let w̄′ be an
extension of ŵ such that w̄′|i is a valid trace for Ki. Note that w̄′|1..i may be
an arbitrary extension of ŵ|1..i, so it remains to show that w̄′|1..i ∈ L(A′

i−1) in
order to prove that ŵ|1..i is a good prefix. We show the equivalent statement
w̄′ ∈ L(Ai ∩ AKi). w̄

′ ∈ L(AKi) holds by construction since w̄′|i is a valid
trace for Ki. Moreover, w̄′ ∈ L(Ai) because w̄

′ extends the good prefix ŵ of
Ai.

Given that A′
i−1 is a safety or co-safety automaton, it is obvious that the

same holds for Ai−1. To handle the case where the ith quantifier is preceded
by a negation, it suffices to see that safety and co-safety are dual under
complementation.

The complexity of the overall procedure is clearly dominated by the auto-
maton complementation caused by the quantifier alternation. But at least
we avoid the doubly-exponential blow-up [16] by restricting the inner LTL
formula to invariants. Complementing each individual (co-)safety automaton
is exponential in the size of the automaton [35]. Constructing the union or
intersection of two automata results in an automaton whose size is linear in
the product [36]. The final non-emptiness check is decidable in linear time as
well [36].

It is easy to see that the above construction introduces essentially one
automaton complementation per quantifier alternation. Thus, each quantifier
alternation adds one more exponent to the size of A0. This illustrates why
quantifier alternation tends to have the biggest influence of the complexity of
HyperLTL model checking

Remember that our initial objective was to derive a completeness threshold
c from the automaton construction above. We argue that the reachability
recurrence diameter of A0 is a completeness bound for HyperLTL BMC. The
fundamental insight is that the non-emptiness problem for A0 may be decided
by considering inputs of at most this length.

Lemma 6.5.

K ̸|= Φ =⇒ ∃d.K ˙̸|=dΦ
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Proof. Φ is always finitely refutable [37] since its inner LTL formula is an
invariant. This is particularly justified by the automaton construction. Since
A0 is finite, the nested DFS algorithm [38] deciding the emptiness of A0 is
bounded in its depth. So given that K ̸|= Φ, it is possible to provide evidence
for the invalidity by considering path prefixes whose length is bounded by the
aforementioned bound.

The following theorem characterises a completeness threshold.

Theorem 6.6. Let d− 1 be the reachability recurrence diameter of A0.

K ˙|=dΦ ⇐⇒ K |= Φ

Proof. =⇒ : It suffices to show that K ˙|=d′ Φ holds for all d′ > d. Together
with Proposition 3.6, we may apply the contraposition of Lemma 6.5 to reach
the goal under this assumption. Assume to the contrary that K ˙̸|=d′ Φ for
some d′ > d. Given that the property is violated, the automaton construction
shows that it suffices to unroll the system up to bound d in order to establish
a refutation. Deciding the non-emptiness of A0 is possible within bound d
since the nested DFS algorithm [38] accomplishing this task either recurses or
terminates as soon as both DFS stacks constitute a looping path. This implies
K ˙̸|=dΦ which contradicts the assumption.
⇐= : Lemma 4.4.

The result is analogous to the completeness threshold for full LTL, stated
as Theorem 1 in [30]. Note that the second bound specified there does not
apply in our case since we require a proof of emptiness for the automaton, not
only non-emptiness.

Even though we have a completeness threshold now, it is fairly useless in
practice. Estimating the completeness thresholds leads to a number that is
far too large. What we aim for as a bound is roughly some two-digit number,
such that evaluating formula in the optimistic semantics is feasible. Even
for only one quantifier alternation and LTL invariants this is unattainable
due to the exponential complexity of automaton complementation. We can
potentially reduce the bound significantly by computing A0 explicitly, but
model checking by performing the final non-emptiness check is not more
expensive than computing the reachability recurrence diameter in this case.

The findings above suggest that bounded model checking of HyperLTL
with quantifier alternation is quite expensive if we aim for a completeness
result. Nevertheless, we aim to invent some algorithms that are significantly
more efficient than this approach and hopefully usable in practice. To this end,
we discuss to what extent completeness approaches known from LTL BMC,
which avoid computing a completeness threshold explicitly, may be utilised
here.
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6.3 Distinction from LTL Bounded Model Checking

One difficulty of BMC for HyperLTL originates from the fact that the notion of
a witness is generalized. In the LTL case, BMC is just about showing whether
or not a single path satisfying the formula exists. But in HyperLTL, we do not
necessarily argue about a single path and most importantly not only about
the existence due to quantifier alternation.

Consider for example a ∀∃ formula. It is not obvious how a witness may be
represented in this case. In the manner of the LTL approach, we could negate
the formula to an ∃∀ formula and look for a counterexample. A proof of the
negated formula may consist of an appropriate existential path. But arguing
why this path is actually a valid choice satisfying the LTL body is not trivial
since the universal path variable is still unbound.

Just negating the HyperLTL formula does not necessarily simplify the
problem. HyperLTL is closed under negation in the sense of Proposition 3.3,
negating the formula only provides the dual model checking problem. Dis-
proving an LTL formula by determining a counterexample is much easier than
proving that it actually holds. The former is its primary scope of application.
Such a distinction is not possible any more in HyperLTL. Instead, HyperLTL
BMC is efficient if a bounded witness exists. This is the case if the LTL
body does not impose any infinite requirements to the trace assignment, or
equivalently if it is satisfiable under the pessimistic semantics. We discussed
this special case in Section 4.2.

For LTL BMC, completeness is achieved by arguing why a counterexample
path cannot exist. This way of thinking seems to be less convenient for Hyper-
LTL. Continuing our example above, what does it mean that no counterexample
to a ∀∃ formula exists? It means that we cannot find a witness for the negated
∃∀ formula. Due to the quantifier alternation, it seems to be impractical
to apply a similar reasoning as in the LTL case. Considering all loop-free
existential paths inspired by the LTL procedure is not necessarily sufficient
since we are dealing with a further unbound path variable here.

Instead of negating the formula, we can aim to determine a witness for the
original formula immediately. In fact, it suffices to develop an algorithm that
provides a witness for any HyperLTL formula in order to achieve completeness.

Against this background, it is worth discussing how a witness for a ∀∃
formula looks like. We cannot even fix the existential path in this case since
it may be chosen depending on the universal path. A witness can be rather
thought of as a function resolving the existential path. This idea can be
generalized to multiple quantifier alternations.

Overall, determining witnesses and proving their validity is not easy for
arbitrary HyperLTL formulas. Thus, we only consider syntactically restricted
fragments of HyperLTL in the following. Those include only one quantifier
alternation as well as an LTL invariant.
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6.4 ∃∀ + LTL Invariant

First, we consider HyperLTL formulas of the shape Φ = ∃π1.∀π2. ψ, where
ψ is a propositional logic formula. For this and the subsequent section, we
assume that K := (K1,K2) is the associated sequence of systems.

6.4.1 Completeness Threshold

A completeness threshold in this case is a bound for which the optimistic
semantics coincides with the standard semantics. We define it in terms of
a solution to a QBF problem since this is how we aim to compute it. In
particular, there is no need of computing an automaton explicitly any more.
On the other hand, the method to obtain a completeness threshold described
here exploits specifically the restricted formula shape and therefore does not
generalize as well as the automaton-based approach.

Since our formula involves a globally operator, we require an infinite witness
here. Thus we employ an idea known from LTL BMC, namely it is possible to
interpret a looping path prefix as an infinite path. Since the formula contains
an universal operator as well, there is an additional requirement to the looping
path. The idea is that we must consider the looping existential path until
we have observed all possible states the system could be in together with an
universal path. Note that we are referring to the state of the composed system
here, the state depends on both paths.

Formally, we claim that the minimal k for which

UNSAT
(
∃α1.SP

k
)

(6.1)

holds, where

SPk :=
∧

0≤i<j≤k

(σ1[i] ⇎ σ1[j]) ∨ (ς2[i] ⇎ ς2[j]), (6.2)

is a completeness threshold. Remember that σ1 is the path obtained by the
execution α1 for π1 and ς2 is the union of all paths σ2 for π2 as defined
in Section 3.2. Intuitively, this property means that for any path σ1, the
path zip(σ1, ς2) loops. The simple path constraint SPk is satisfied exactly
by all loop-free paths of length k. Note the similarity to the reachability
recurrence diameter. They are mostly identical, we are just considering some
sort of a composed system here. Thus, this approach can be thought of as a
generalization of the completeness threshold for LTL invariants discussed in
Section 5.1. It is necessary to verify that the propositional formula holds on
all reachable states.
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s0

{a}

s1

{}

K1

q0

{a}

q1

{}

q2

{}

q3

{}

K2

Figure 6.1: Systems satisfying the formula Φ := ∃π1.∀π2.□(aπ2 → aπ1).

Example 6.1. We illustrate this approach at an example. Consider the sys-
tems given in Figure 6.1. We obtain ς2 = {q0}{q1}{q2}{q3}({q0, q2}{q1, q3})ω.
A maximal path prefix σ̂1 that does not loop simultaneously with ς2 is
σ̂1 := s0s1s1s1s1s1s0. Thus, k := 7 is the minimal bound satisfying equa-
tion 6.1.

Consider the LTL formula Φ := ∃π1.∀π2. (aπ2 → aπ1). By QBF solving
and Lemma 4.2 we obtain a path prefix σ̂1 that is a witness in the optimistic
semantics for bound k, e.g. σ̂1 := s0s1s1s1s0s1s0s1. Equation 6.1 tells us that
σ̂1 and ς2 must loop together. Indeed we can observe that there exists a loop,
e.g. the one obtained from the two repeating states marked below.

0 1 2 3 4 5 6 7 . . .

σ̂1 s0 s1 s1 s1 s0 s1 s0 s1 . . .

ς2 {q0} {q1} {q2} {q3} {q0, q2} {q1, q3} {q0, q2} {q1, q3} . . .

If we continue the above loop of σ̂1 to an infinite path, we do not reach
any new states for any choice of σ2 since ς2 loops simultaneously. Now we
found a valid choice for π1 such that all states reachable together with any
path assignment of π2 satisfy the propositional formula. ⌟

In general, we can prove the following lemma.

Lemma 6.7. Let a k satisfying equation 6.1 be given.

K ˙|=k Φ =⇒ K |= Φ

Proof. Let a k that satisfies the assumption be given. Let σ̂1 be the path prefix
of π1 obtained as a witness of K ˙|=k Φ.

We have to show that there exists a path σ1 such that Ø[π1 7→ Tr(σ1)] |=
∀π2. ψ. By assumption, there are indices i, j ∈ ..=k where i < j satisfying
σ̂1[i] = σ̂1[j] and ς2[i] = ς2[j]. We show that σ1 := σ̂1[..i](σ̂1[i..j])

ω fulfils the
requirement.

First, we observe that ς2 can be represented in a similar manner. The
equality ς2 = ς2[..i](ς2[i..j])

ω follows inductively from the definition of ς2. Each
value in the sequence only depends on its immediate predecessor and we know
that ς2[i] = ς2[j].
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Note that for each ι ∈ ..=j and s ∈ ς2[ι], the propositional formula ψ holds
in state (σ1[ι], s). By definition of ς2, s = σ2[ι] for some path σ2. We know
that the formula is satisfied in the bounded semantics up to bound k ≥ ι.

Now let σ2 be an arbitrary path for π2 and let ι ∈ N0. By the HyperLTL
semantics, we need to show that ψ holds in each state (σ1[ι], σ2[ι]). It suffices
to show that such a state can be reached within at most k steps by choosing
σ2 appropriately. In this case, we already know that ψ must hold. This is an
immediate consequence of the definition of σ1 and the alternative representation
of ς2 mentioned before. Both are looping simultaneously with loop end j ≤ k
such that there exists an ι′ ∈ ..=j with σ1[ι

′] = σ1[ι] and ς2[ι
′] = ς2[ι]. Note

that σ2[ι] ∈ ς2[ι
′] is reachable within ι′ steps by definition of ς2.

This leads to a complete model checking algorithm.

Theorem 6.8. Let a k satisfying equation 6.1 be given.

SAT
(

˙[[Φ]]
k
)

⇐⇒ K |= Φ

Proof.
=⇒ : Lemma 4.4 and Lemma 6.7.
⇐= : Proposition 3.5 and Lemma 4.4.

There is still an issue with this procedure, namely the computation of k via
equation 6.1. So far, we asserted that this is an ordinary QBF problem. This
presupposes particularly that ς2 can be encoded into a boolean formula. Even
though this is possible, it is not advisable since each element of ς2 is a set of
states. In order to encode a set, we have to reserve one bit for each potential
element which means one bit per state of K in our case. Usually, the state
space of a system is huge such that this becomes quickly infeasible in practice.
So we should rather pursue another strategy in this regard.

Since ς2 is a sequence that does not contain any variables, we can pre-
compute it with a standard graph algorithm and enumerate the sets of states
occurring in ς2. As mentioned in the proof of Lemma 6.7, ς2 always ends in a
loop. For our purposes it actually suffices to determine solely this loop. To
this end, we compute ς2 along its definition incrementally until we observe the
first repetition of elements.

Given the aforementioned loop, we may eliminate ς2 and a bunch of con-
juncts from SPk as an optimization. Assuming that l and e are the indices
marking the loop start respectively end, we can rewrite SPk as

SP k =
∧

l≤i<j≤k
((j−i) mod (e−l))=0

(σ1[i] ⇎ σ1[j]).

Note that the completeness threshold computed in equation 6.1 only depends
on the system structure and not at the formula. Thus, it is a completeness
threshold for any invariant. If the systems are fixed, it suffices to compute the
bound only once.
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At first glance, it appears as if computing the completeness threshold is
fairly easy since equation 6.1 is just a SAT-problem. In contrast, the formula
encoding results in a QBF-problem with quantifier alternation. But we must
acknowledge that computing the loop in ς2 is not for free. It involves exploring
the full state space. We continue this discussion in Section 7.2.

In any case, we should aim to keep the unfolding bound as low as possible.
A potential improvement involves incorporating the additional information
provided by the formula when computing the bound. This is what we do next.

6.4.2 Incremental Algorithm

In this section, we will combine the encoding given in equation 6.1 with the
formula encoding such that we can potentially reduce the unfolding bound.
We do not compute a completeness threshold explicitly any more, but rather
give an incremental algorithm that unfolds the formula and the system until a
witness has been found.

Note that equation 6.1 can be rephrased as SAT
(
∀α1.¬SPk

)
. Thus, the

equation requires that all existential paths loop with all universal paths. If we
content ourselves with a proof for K |= Φ, we may weaken this requirement
since we only need one appropriate existential path as a witness. Note that
disproving K |= Φ is easy since the negated formula is covered by the approach
described in Section 4.2.

An additional requirement for the existential path to be a witness is that
it fulfils the propositional formula ψ together with any universal path up
to bound k. This can be formalized as a merging of equation 6.1 and the
optimistic formula encoding.

SAT
(
∃α1.

(
¬SPk ∧ ∀α2. ˙[[ ψ]]

))
(6.3)

The definition of SPk remains untouched. Again, we search for a minimal k
satisfying this equation. Such a k is a proof for K |= Φ.

Lemma 6.9. There exists a k satisfying equation 6.3 if and only if K |= Φ.

Proof.
=⇒ : Let a k that satisfies the assumption be given. Just as in Lemma 6.7,

we obtain a looping path prefix σ̂1 from the encoding. Unrolling the loop leads
to a path σ1. By assumption, σ1 together with any path for π2 satisfy ψ up
to bound k. Analogously to Lemma 6.7, any state reachable beyond bound k
is also reachable within at most k steps such that K |= Φ follows.

⇐= : Since we only consider finite systems, the length of a non-looping
path is bounded. So if we choose large enough, the statement reduces to the
backwards direction of Theorem 6.8.

Algorithm 1 states the complete model checking algorithm. Correctness
and termination follow by Lemma 6.9, Lemma 4.4 and Proposition 3.4.
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Algorithm 1 ∃∀ + LTL invariant

for all k ∈ 1.. do
if SAT

(
[[¬Φ]]k

)
then

return K ̸|= Φ

else if SAT
(
∃α1.

(
¬SPk ∧ ∀α2. ˙[[ ψ]]

))
then

return K |= Φ
end if

end for

s0

{}

s1

{}

s2 {a}

s3 {b}

K1

q0

{}

q1

{a}

q2

{b}

K2

Figure 6.2: The formula ∀π1.∃π2.□(
∧

x∈{a,b} ¬(xπ1 ∧ xπ2)) is violated. The
shortest counterexample has length 4 which exceeds the reachability recurrence
diameter by more than one.

6.5 ∀∃ + LTL Invariant

For this section, we consider the case Φ = ∀π1.∃π2. ψ, where ψ is a proposi-
tional logic formula.

Note that Theorem 6.8 does not hold in this case as witnessed by Figure 6.2.
Consider the formula Φ = ∀π1.∃π2. (

∧
x∈{a,b} ¬(xπ1 ∧ xπ2)). There exists no

loop-free path of size 3, k = 3 satisfies equation 6.1. Nevertheless, there is no
counterexample of length 3, but one of length 4. The path σ1 := s0s1s2s1s3
cannot be mapped to a path σ2 such that Φ is satisfied. So we need another
approach.

Analogous to the previous section, it suffices to invent an algorithm that
terminates if and only there Φ holds. Completeness is achieved by evaluating
the negated formula in the optimistic semantics simultaneously.
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Witness function

At first, we need to remind ourselves what constitutes a proof of satisfiab-
ility for a ∀∃ formula. Just as in the dual case, a witness should resolve
the existential path quantifier. Notably, such a witness is not necessarily a
single path in this setting. The choice of the existential path may depend
on the choice of the universal path. Thus, a witness for K |= Φ is essen-
tially a function w : Sω

1 → Sω
2 mapping each path σ1 to a path σ2 such that

Ø[π1 → Tr(σ1), π2 → Tr(σ2)] |= ψ.
Since the overall strategy is again to determine the witness via QBF solving,

we require is a finite representation of such a witness function. We conjecture
that w may be constructed from a finite function ŵ : Sk+1

1 → Sk+1
2 , determined

from an unrolling up to bound k. To this end, ŵ must fulfil three characteristics
which we describe next.

The first one is obvious, it ensures that the formula is actually fulfilled. So
any two path prefixes σ̂1 and ŵ(σ̂1) must fulfil the invariant ψ at each point
in time up to bound k.

We want to be able to simulate w given ŵ which means that for any σ1,
w(σ1) may be replaced by a repeated application of ŵ on sub-paths of w. It
remains to determine which sub-paths we actually mean here. This results
from our iterative definition of w based on ŵ. Given σ1, we first apply ŵ to
σ1[..=k]. Now we assume that zip(σ1[..=k], ŵ(σ1[..=k])) contains a loop, which
we adopt as the second characteristic. This enables us to shorten σ1 by cutting
out precisely this loop. Now the procedure is repeated on the truncated σ1.

The remaining challenge is to ensure that the path prefixes obtained from
ŵ as described before can actually be merged into an infinite path. Basically
this requirement is exactly the third constraint. Intuitively, it states that after
cutting out the loop of σ1, applying ŵ on the new prefix still provides the same
path as in the previous iteration — of course modulo skipping that loop and
being able to observe the next path segment instead.

Formula Encoding

Now it remains to translate all requirements into a single formula that is
checked for satisfiability. This is actually the point where QBF does not meet
our needs since we have to quantify over a function. Instead we require SMT
solving here. But apart from exchanging the underlying satisfiability solver,
this does not require any further alterations. Somewhat counter-intuitively,
we translate the ∀∃ HyperLTL formula into an ∃∀ QBF formula. This is due
to the fact that the existentially quantified variable is solely a function f ,
corresponding to the witness function ŵ. Note that f is a function over action
variables in this context, but as usual those correspond to some path. The
universal quantifier prefix comprises the action variables defining σ1. The three
constraints imposed on ŵ are conjoined in the formula body.
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Constraint number one just corresponds to the formula encoding as usual.
Constraint number two is something we basically know already. It is the
negation of the simple path constraint SPk with respect to the composed system,
ensuring that σ1 and σ2 loop together. The third constraint is somewhat more
complicated. It argues about loops obtained from the second constraint which
is why it is described as an implication of a loop constraint LC k detecting the
loop and the actual so-called extension constraint EC k.

We introduce a set of boolean loop variables li, ei marking the start respect-
ively end of a loop in the composed system at step i. Now we say that for all
loops, the extension constraint must be fulfilled. It states that any other path
σ′1 agreeing with σ1 modulo the loop (captured by the SubPathk

i,j constraint)
inserted into the witness function provides a path that continues the path
obtained from σ1.

Definition 6.2 (Encoding of the formula).

[[Φ]]k := ∃f∀α1∀ℓ∀α′
1.¬SPk ∧

∧
0≤i≤k

[[ψ]]ki ∧
(
LC k ⇒ EC k

)

SPk :=
∧

0≤i<j≤k

σ[i] ̸= σ[j]

LC k := Loopk ∧AtMostOnek ∧ InLoopk−1

Loopk :=
∧

0≤i<j≤k

(li ∧ ej ⇒ σ[i] = σ[j])

AtMostOnek :=

k−1∧
i=1

((
InLoopi−1 ⇒ ¬li

)
∧
(
LoopEnd i ⇒ ¬ei+1

))
InLoopi :=

i∨
j=0

lj

LoopEnd i :=
i∨

j=1

ej

EC k :=
∧

0≤i<j≤k

(
li ∧ ej ⇒

(
SubPathk

i,j ⇒ σ[k] = σ′[k − (j − i)]
))

SubPathk
i,j :=

k−(j−i)−1∧
κ=0

ifκ ≥ i thenα′
1[κ] = α1[κ+ (j − i)] elseα′

1[κ] = α1[κ]
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In the above, k is the unrolling bound. f is the witness function defined
on actions. α1 and α′

1 both are variables for actions taken by the universal
path. The corresponding actions taken by the existential path are obtained
by applying f on each of them respectively. ℓ is a place holder for all loop
related variables. The path σ (in the composed system) is obtained from α1

and f(α1). It is in particular considered at the evaluation of ψ. The path σ′ is
obtained from α′

1 and f(α′
1). ⌟

Lemma 6.10. The satisfiability of Φ in the above encoding constitutes a
witness for the validity of the formula, i.e.

∃k. SAT([[Φ]]k) =⇒ K |= Φ.

Proof. Let a k that satisfies the assumption be given. Additionally, we obtain
a function ŵ : Sk+1

1 → Sk+1
2 by assumption that can be constructed from f .

We define a function w : Sω
1 → Sω

2 mapping each path σ1 to a path σ2 such
that Ø[π1 → Tr(σ1), π2 → Tr(σ2)] |= ψ.

Let σ1 be a path for π1. We define a family of index sets Ji of size k+1 for
i ∈ N0. Those describe sub-paths of σ1. Let J0 := ..=k. We define a family of
path prefixes σi2 of π2 for i ∈ N0. Let σ

0
2 := ŵ(σ1[J0]). Let i ∈ N0. By assump-

tion, zip(σ1[Ji], ŵ(σ1[Ji])) contains a loop. Let j, j′ be indices marking the
loop start and end such that zip(σ1[Ji], ŵ(σ1[Ji]))[j] = zip(σ1[Ji], ŵ(σ1[Ji]))[j

′].
We define Ji+1 as Ji without the loop and extend the index sequence to
length k + 1, formally Ji+1 := Ji[..j]Ji[j

′..](Ji[k] + 1..Ji[k] + 1 + (j′ − j)).
Note that σ1[Ji] is always a valid path for π1 by definition. We define
σi+1
2 := σi2ŵ(σ1[Ji+1])[−(j′ − j)..]. In order to prove that this is a valid path for
π2, we need to show that σi2[−1] = ŵ(σ1[Ji+1])[−(j′ − j)− 1]. This is exactly
what the extension condition ensures. By definition σi2[−1] = ŵ(σ1[Ji])[−1]
and since Ji+1 is an extension of Ji without a loop the extension constraint
gives us ŵ(σ1[Ji])[−1] = ŵ(σ1[Ji+1])[−(j′ − j)− 1].

We can now define w(σ1) := limi→∞ σi2. What remains to show is that the
invariant ψ holds in each state (σ1, w(σ1))[i] for i ≥ 0. Note that we defined
w(σ1) such that (σ1, w(σ1))[i] = (σ1[Jj ], ŵ(σ1[Jj ]))[j

′] for some j, j′. Now ψ
holds in (σ1[Jj ], ŵ(σ1[Jj ]))[j

′] by assumption.

Note that the other direction of Lemma 6.10 does not hold. Consider
Figure 6.3. A finite witness function ŵ does not exist. For any bound k, there
are two options how to map sk0 without violating the formula. Either we map
it to q0q

k−1
1 , then sk0 can be continued to sk0s2 where b holds in the last state,

but q0q
k−1
1 cannot be continued by a state where b holds as well. Mapping

sk0 to q0q
k−1
2 yields a symmetric case. Still, it is easy to convince oneself that

the property actually holds. The issue is that in the HyperLTL semantics, the
choice of the entire infinite universal path is already known at the time we
chose the existential path.
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Figure 6.3: The formula Φ = ∀π1.∃π2.□(
∧

x∈{a,b}(xπ1 ↔xπ2)) is satisfied, but
no finite witness function exists.
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Evaluation

In the evaluation part, we focus on the results of Sections 6.4 and 6.5. For the
alternation-free fragment, there already exists a tool that essentially imple-
ments the reduction to LTL model checking discussed in Section 6.1 [11, 17].
Estimating a completeness threshold based on the automaton construction
from Section 6.2 quickly leads to a huge bound due to automaton complement-
ation. This is unpracticable as discussed before, particularly since the number
of quantified variables grows linearly with the bound.

All experiments were executed on a standard PC with a quad-core i5 and
16GB memory. Note that stated runtimes are just rough averages since the
concrete values are fluctuating due to SMT solving. But for our purposes, it
suffices to know the order of magnitudes anyway. Our primary mission is to
determine to what extent model checking is feasible with our methods.

7.1 Implementation

We implemented our algorithms in Rust [39]. Systems are accepted in the
Btor2 format [40]. Btor2 is a common word-level hardware model checking
format, particularly utilised as a specification format for the hardware model
checking competition (HWMCC) [41, 42] since 2019. Btor2 allows to represent
bit-vector arithmetic and additionally features arrays. Its semantics follows
closely the corresponding SMT-LIB logics and theories [24]. Thus, we make
use of an SMT model checker instead of a QBF solver for simplicity.
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1 sort bitvec 4

2 state 1 s

3 one 1

4 init 1 2 3

5 sort bitvec 1

6 input 5 i

7 uext 1 6 3

8 sll 1 2 7

9 next 1 2 8

s = b0001;

while (true) {

i = getInput ();

s << i;

}

Figure 7.1: Bit-shift program. Left: Btor2 specification. Right: Correspond-
ing program in pseudocode.

7.1.1 Btor2

Btor2 is a convenient specification language representing systems as defined
in Section 3.2. Each line is identified by its line number and either evaluates
to a sort or a value of a certain sort. The primary sort we consider here are
bit-vectors, denoted as bitvec <size>. Aside from this, Btor2 also supports
arrays built from two sorts. All statements except of sorts are followed by a
reference to the sort of their result, a potential list of arguments referring to
other lines and finally an optional label. Each system state corresponds to
the current value of all state bit-vectors combined and an action corresponds
to all input bit-vectors combined. The initial state is defined by the init

statements assigning each state an initial value. Similarly, the transition
function is defined by the next statements assigning each state its successor
value, based on the current state and input values.

A sample Btor2 program is given in Figure 7.1.1. The state s is a 4-bit
bit-vector that is initially one. In each step, we apply a left-shift by i positions,
where i is a 1-bit input variable. For a more detailed description of the Btor2
language refer to the official documentation [40].

7.1.2 Satisfiability Modulo Theories

In the previous chapters, we discussed primarily how to reduce model checking
to QBF solving, including how to encode systems as QBF formulas. Since the
Btor2 systems operate on word-level, we chose to encode encode our problem
in a little more high-level format supporting the respective language constructs
natively. Another reason is that QBF solvers do not support functions as
variables which we require for the algorithm discussed in Section 6.5.
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Satisfiability modulo theories (SMT) is an extension of QBF allowing for
more language constructs like bit-vectors and arithmetic. SMT-LIB is the de
facto standard specification language for SMT problems. The Btor2 language
is by construction quite close to the SMT-LIB format with the bit-vector and
array extensions. Unfolding an Btor2 system analogous to Section 4.1.1 is
straightforward.

State of the art satisfiability solvers for SMT problems are for instance
Z3 [25] and cvc5 [26], which we utilized in our experiments. We primarily rely
on Z3 and use the Z3 API in order to construct SMT expressions. All runtimes
mentioned below have been obtained using Z3.

7.2 ∃∀ + LTL Invariant

Initially, we analyse the model checking approaches presented in Section 6.4.
So we are restricted to ∃∀ formulas whose inner part is an LTL invariant. First
of all, we require some reasonable benchmarks for this fragment. To the best
of our knowledge, properties of this particular shape have not been considered
in any related work. This suggests that our fragment may not be expressive
enough to represent properties that are relevant in practice. In any case, we
need to define our own problem statements.

The tasks we discuss in the following do not immediately intend to solve
some real-world problems. The objective is rather to point out the capabilities
and limitations of our algorithms. We will see in which cases applying our
procedure is promising and in which cases it is nearly infeasible.

Overall, we focus on planning problems [43] in some form. For a general
introduction into planning, please refer to [44]. In its original form, it is always
about finding a sequence of actions (a plan) solving some task. It is related to
our research in the sense that the desired plan may be obtained as the witness
of some ∃∀ formula, it corresponds to an appropriate choice for the existential
path.

Utilising HyperLTL model checking in order to solve planning problems
was first proposed in [3]. One particular example that is discussed in this work
is optimal planning.

Example 7.1 (Optimal planning). Optimal planning is the task of finding
a shortest plan in a system. In other words, an optimal plan is a plan such
that all other plans do not reach the goal g until the optimal plan reaches
the goal. This phrasing leads to the following HyperLTL formula, where both
paths belong to the same system.

∃π1∀π2.¬gπ2 U gπ1
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Under the assumption that at least one plan exists, we can state the optimal
planning problem in our fragment as well.

∃π1.∀π2. (gπ2 → gπ1)

We may verify whether there exists some plan by determining whether a witness
to the preceding formula is actually a plan. Note that this formula is always
satisfiable, we are just interested in the witness here.

Of course, both formalisations do not lead to an efficient planning algorithm
at all. We could easily avoid the second path variable and instead increase
the unrolling bound stepwise until the first plan has been found. The point
is rather that HyperLTL is much more expressive and allows us to define
more refined objectives, including further requirements to a path that may be
attached to the formula given above. Another example are properties involving
certain notions of robustness, but those do not belong to our fragment of
HyperLTL [3]. ⌟

In the following, we first explain how to obtain planning problems that
suit to our accepted specification language. Afterwards, we introduce several
concrete planning settings and examine how our approach performs in each of
them.

7.2.1 System Representation

The planning domain definition language (PDDL) is the de facto standard
specification language for planning problems [45]. It separates a planning
problem into a general domain file and a specific instance file. The domain
defines a set of atomic propositions respectively predicates constituting the
system state. The system state may proceed by taking an action. An action
defines a requirement to the current state (precondition) enabling the action as
well as a set of changes (effect) applied to the state as part of the transition to
the next state. A concrete problem instance must only define an initial state
and a goal state.

A simple PDDL specification modelling a vehicle is given in Figure 7.2.
PDDL is a huge specification language with various features, but we limit
ourselves to language constructs appearing in this example. This and some
other planning problems we consider here are adapted from benchmarks used
by the international planning competition [46].

Encoding

In order to apply our model checking algorithm to such a planning problem,
we first need to encode and unroll the PDDL problem into Btor2. A general
translation may be obtained as follows.

52



7.2. ∃∀ + LTL INVARIANT

(define (domain drive)

(:types place vehicle

- object)

(: predicates

(road ?p1 ?p2 - place)

(at ?v - vehicle

?p - place)

)

(: action drive

:parameters

(?v - vehicle

?p1 ?p2 - place)

:precondition (and

(at ?v ?p1)

(road ?p1 ?p2)

)

:effect (and

(not (at ?v ?p1))

(at ?v ?p2)

)

)

)

(define (problem A-D)

(: domain drive)

(: objects

A - place

B - place

C - place

D - place

truck - vehicle

)

(:init

(road A B)

(road B A)

(road B C)

(road C B)

(road C D)

(road D C)

(at truck A)

)

(:goal (and

(at truck D)

))

)

Figure 7.2: Left: PDDL domain. We have roads on which vehicles can drive
from one place to another Right: PDDL problem. A truck must drive from
place A to place D.

Objects of each type are represented as bit-vectors respectively. Addi-
tionally, we introduce one action type consisting of all actions, encoded as
bit-vectors. An action variable as well as a set of variables representing the
parameters for all actions constitute the Btor2 inputs. A crucial question is
how to store the state, capturing which predicates hold at the current point in
time. Note that predicates may have multiple arguments. Thus, an obvious
attempt is to keep them in multidimensional arrays where each argument
represents one axis. Btor2 allows to define such nested bit-vector array sorts.
Checking whether an atomic proposition holds in some state corresponds to
reading from an array.
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A B C D

Figure 7.3: Transport planning problem. The goal is to deliver the package
from place C to place D and return to place A with the truck.

It turns out that the support of SMT solvers like Z3 and cvc5 for mul-
tidimensional bit-vector arrays is limited. Some of our experiments led to
inconsistent results. In any case, working with arrays is quite inefficient for
our purposes. This is partly due to the fact that each write operation kind
of creates a new array. According to a Z3 developer, it is advisable to omit
fixed-size arrays completely and replace them by a sequence of single bits [47].
Usually, SMT solvers are much more optimized for the bit(-vector) logic. While
an array representation may be more concise, it leads to harder SMT problems.

There is still one point concerning the encoding that deserves further
consideration. What happens if the inputs in the encoded Btor2 problem are
chosen such that they do not correspond to a valid action? It is conceivable
that the precondition of the selected action is not fulfilled. Or the inputs
representing the parameters possibly do not correspond to any valid object at
all. In both cases, we determine that the encoded system performs implicitly a
stutter step, i.e. it remains in the same state. In order to keep the behaviour
of the encoded system consistent with the PDDL system, we assume that our
domains include a stuttering action. The stuttering action has no precondition
and no effect, thus it is always applicable and does not alter the state.

7.2.2 Full Example

Initially, we consider an extended version of the PDDL problem given in
Figure 7.2 as a running example. In addition to the given specification, we
introduce packages that may be transported by vehicles from one place to
another. This requires a new package type as well as two new predicates,
capturing whether a package is at some place or inside a truck. Additionally,
we need two new actions, namely pickup and drop, defined along their natural
meaning respectively. The goal is to deliver the package from place C to place
D and to return the truck back to position A. A graphical representation of this
scenario is given in Figure 7.3.

Below, we go through the different stages and variations of our approach
stepwise.
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Reachability Loop

The first thing we need to do in any case is determining the loop in ς2 (in
the notation of Section 6.4). In practice, this means that we need to simulate
a system execution stepwise in order to compute ς2. An exhaustive Btor2
simulator already exists as part of the Btor2Tools [48]. This one is rather meant
to be a witness verification tool for hardware model checking benchmarks, but
we could adapt it to our purposes. Alternatively, it is possible to perform the
simulation based on SMT solving on the encoded system.

Since we primarily consider planning benchmarks here, it is possible to avoid
the overhead caused by the problem encoding at this stage. The reachability
analysis may be performed immediately on the PDDL model which tends to
be more efficient.

In our example, a repetition in the set of reachable states loops occurs
after ten steps. The loop is described by the tuple (start , end) := (9, 10). It
turns out that the loop diameter of one occurs in general for all our planning
problems due to the introduced stutter action. This action implies that an
atomic proposition reachable within exactly i steps is reachable within any
greater number of steps as well by simply taking the stutter action. Thus, the
loop start always corresponds to the reachability diameter. A most distant
state in our example is the state where the package is at place A while the
truck is at place D. A shortest path reaching this state is achieved by picking
up the package at C, afterwards dropping it at A and finally driving the truck
to D. We visit nine different states on this path as expected.

This observation suggests that it may not always be desirable to have some
stutter action included into the specification. We continue this discussion later
when considering an example without such an action.

Completeness Threshold

The full algorithm essentially consists of three steps. First, we need to find a
loop in ς2, which is exactly what we discussed just before. Next, we determine
the completeness threshold as the minimal bound satisfying equation 6.1.
Finally, we evaluate the HyperLTL formula in the optimistic semantics for this
bound.

At first glance, it seems to be fairly easy to evaluate equation 6.1 since it
only involves a prefix of existential quantifiers. On the one hand this is indeed
true, but at the other hand we must acknowledge that the loop computation in
the preceding step which eliminates the second quantifier is not for free. The
expected runtime of the individual stages will be compared shortly.
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We obtain 21 as a completeness threshold for our transport example. Again,
we can interpret this number. Due to the loop diameter one, the right disjunct
of equation 6.2 is always false for i, j ≥ start . If we would omit this right
disjunct entirely, we would obtain essentially the definition of the reachability
recurrence diameter. Combining our observations leads to the insight that the
completeness threshold is precisely the reachability diameter plus the maximum
reachability recurrence diameter for any reachable state as initial state (plus
one technically). This is indeed what we observe in our example. If truck and
package are initially located at the most distant positions, we may visit eleven
states without looping by transporting the package to the opposite location
and returning the truck to the initial place.

Now that we have computed a completeness threshold, the final step of
evaluating the HyperLTL formula in the optimistic semantics is straightforward.
Remarkably, this is the only step in the whole procedure that requires solving
an SMT problem involving quantifier alternation. Still this does not necessarily
imply that it is the bottleneck of the whole procedure.

Incremental Algorithm

A completeness threshold of 21 for our small example in Figure 7.2 seems to
be quite large. This is partly due to the fact that the completeness threshold
is valid for the system specification independent of the HyperLTL formula as
discussed before. This is why we invented a modified algorithm in Section 6.4.2
which takes into account the formula while computing the completeness bound.

Step one as described in the previous paragraph remains the same, but
now we merge the last two steps into one. Thus, we check immediately an
SMT formula with one quantifier alternation. In our running example, we find
a proof at bound 10 which is a significant improvement. Note that this value
coincides with the loop end of ς2 which is not a coincidence. This is actually
the least possible bound with respect to solely the simple path constraint. In
the context of optimal planning it is quite obvious that unrolling beyond the
reachability diameter is not necessary. The goal of planning is just reaching a
goal state such that an optimal plan cannot be longer than the reachability
diameter.

7.2.3 More Benchmarks

Now, we consider some more problem settings in order to examine the behaviour
of our algorithms. The detailed PDDL files are enclosed, we only highlight the
most important characteristics here.
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4-1-1 8-1-1 4-2-1 4-1-2 8-2-2

comp. t. 21 (2s) 38 (143s) ? (>> 1h) ? (>> 1h) ? (>> 1h)

incr. 10 (< 1s) 15 (2s) 12 (< 1s) 13 (< 1s) 21 (90s)

optimal 8 10 6 10 13

Figure 7.4: Transport experiments. The last row shows the length of an
optimal path and the two preceding rows indicate the unrolling bounds of the
two algorithms with their runtime.

Transport

We start by considering some variations of the transport task from the previous
section, still with the optimal planning objective. The complexity of the
transport task mainly depends on the number of places, trucks and packages.
Therefore, the benchmarks are named accordingly places-trucks-packages,
where each name stands for the respective quantity. The results are given in
Figure 7.4.

It turns out that increasing the number of packages respectively trucks
increases the completeness threshold significantly such that even computing the
completeness threshold itself becomes quickly infeasible. The size of the SMT
problem to solve during the computation of the completeness threshold grows
linearly, but still this is only feasible for small unfolding bounds. Even for
seemingly small problems, the reachability recurrence diameter (and thereby
the completeness threshold) can become quite large.

With our second approach, we can solve more problems since the com-
pleteness bound does not grow that fast. It is usually not much larger than
the size of an optimal path. Still it takes some computational effort to detect
the loop in ς2. Exactly this is indeed the bottleneck if we try to increase the
problem size further. Even for the 8-2-2 benchmark, there are already several
thousand reachable states. We empathise this issue by considering another
domain in a moment.

In the tasks involving multiple vehicles, we may verify whether a second
vehicle is actually required to reach the optimal solution. This is just an
example for a variation of a classical planning task that can be easily achieved
by modifying the HyperLTL formula. It is accomplished by extending the
invariant with another constraint, namely that one vehicle remains in its initial
position. Note that this stricter requirement influences neither the bound nor
the runtime for the examples discussed above.
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Visit All

Next, we consider another popular planning domain. It features a robot
moving in a grid-world. The robot is obliged to visit a number of states.
Most notably, it must remember all states it already visited. This domain
has the characteristic that even seemingly simple problem instances entail a
huge state space. In our approach, this is a major issue since determining a
loop in ς2 becomes more difficult. In a 3× 3 grid with roughly 800 reachable
states, it is still possible to find a loop within a few seconds. But already in
a 4 × 4 grid-world we have more than 50 000 reachable states. All of them
are reachable within 23 steps. It takes us around 10 minutes to obtain the
loop in this case. Computing the completeness threshold is obviously nearly
impossible against this background. It is to be expected that the reachability
recurrence diameter is large. However, obtaining a solution via the incremental
algorithm is possible in this case since the bound is not too large. It takes less
then a minute given that the loop is already known.

This illustrates a fundamental drawback of our algorithm. If there are lots
of reachable states in the universally quantified system, the model checking
procedure is infeasible. But whenever the universal path is somewhat more
restricted, computing the loop is very likely to be feasible. The same potentially
holds for the entire incremental algorithm under this assumption.

State Space Analysis

One observation we made during the previous tasks is that our procedure is
definitively not efficient for optimal planning. However, the expressiveness of
HyperLTL fragment goes far beyond optimal planning. Particularly in the
planning domain, there are several other interesting properties that we can
specify as HyperLTL formulas [3]. For instance, we are able to analyse the
state space in more detail.

A concrete problem in this context is to examine whether there exists a
plan that seems to be optimal at each intermediate position according to some
heuristic function. Heuristic search is a common concept in planning [44].
Generally speaking, it entails a stepwise construction of a plan such that
we approach the goal more closely in each step. The proximity to the goal
is defined by a heuristic function mapping a state to a natural number. An
optimal plan often has to include steps that seemingly go in the wrong direction
with respect to a specific heuristic. The motivation is to check whether some
greedy algorithm could be misled to take a non-optimal path.

To this end, we consider a modified version of the grid-world from above
that includes walls which prevent certain transitions. Moreover, the goal of the
robot is only to reach a single goal state. Note that we do not need to store
the visited states any more such that the state space reduces significantly. An
appropriate heuristic function h in this case simply calculates the Hamming
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x0 x1

y0

y1

x0 x1 x2 x3

y0

y1

y2

y3

Figure 7.5: Grid-world problem instances. The transparent icons mark the
goal position.

distance between the current cell and the goal cell, i.e. the sum of x- and
y-distance. The property we are interested in can be specified in HyperLTL as
follows.

∃π1.∀π2. (h(sπ1) ≤ h(sπ2)) (7.1)

The LTL-part makes use of considerable amounts of syntactic sugar. It
expands to an expression that constraints the states of π2 based on the state
of π1. Intuitively, it encodes the evaluation of the heuristic function explicitly
for each position in the grid. For the left problem instance given in Figure 7.5,
it expands to

∃π1.∀π2. ((x0y0π1
→ x0y0π2

)

∧(x1y0π1
→(x0y0π2

∨ x1y0π2
∨ x0y1π2

))

∧(x0y1π1
→(x0y0π2

∨ x1y0π2
∨ x0y1π2

))

∧(x1y1π1
→(x0y0π2

∨ x1y0π2
∨ x0y1π2

∨ x1y1π2
)))

where xiyjπ is a shortcut for the respective predicate. This formula holds, we
find a proof at bound 3. The right instance given in Figure 7.5 including the
dashed wall is an example where the property does not hold. The (unique)
optimal plan in this case visits x0y2 after three steps. But within the same
number of steps we could reach position x2y1 as well, which is closer to the
goal according to our heuristic function. Removing the dashed wall leads to a
system satisfying the property. The bound at which a witness occurs is 11.

It turns out that in this domain, property 7.1 can always be proven (or
disproved) within the reachability diameter (plus one technically such that we
observe a loop). This is because the loop size of ς2 is always one and we both
quantified traces refer to the same system. Actually this holds for all sample
tasks we have chosen so far, in this sense our choice was somewhat biased. The
next task will be different in this regard. Before moving there, we elaborate a
bit on the scalability for the current task.
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The complexity depends arguably mostly on the reachability diameter.
We construct a parametrised problem of based on quadratic grids where the
reachability diameter corresponds roughly to the the side length. Our initial
observation is that model checking of a 8× 8 grid takes already around five
minutes. It turns out that the bottleneck is currently the system encoding,
namely the translation from PDDL to Btor2. Our general-purpose translation
does not perform any optimisations so far. For example, the predicates
capturing the transitions (analogous to road in Figure 7.2) are encoded as
states even though they are actually constants. A tailor-made translation for
this task leads to a significant runtime improvement such that we can handle
a 20× 20 grid in about the same time as the 8× 8 previously. Now, we are
in the same order of magnitude as reported by Hsu et al. [10] in a similar
planning task (i.e. grid world and nearly equal unrolling bound).

Note that applying a similar optimisation in the previous two settings does
not help since the bottleneck is elsewhere, namely at the loop computation.

Collision Avoidance

So far, all our infinite witnesses incorporate a trivial loop, namely they end in a
single state that repeats infinitely often. At some point, we reach a goal and it
suffices to perform stutter steps afterwards. This setting is not representative
in general and does not fully exploit the capabilities of an unbounded globally
operator.

Our formula fragment is more powerful in the sense that it is able to verify
continuous planning tasks, where the goal is some invariant that must hold
in each step. This is only sensible if the state of the existential path must
actually change infinitely often in order to achieve this goal, otherwise we are
again in the previous case.

Specifying such formulas does not make much sense as long as a stutter step
is included in the universally quantified system. In this case, ς2 always ends
with the set of reachable states and loop size one. The stutter step requires
that from some point onwards, the invariant must hold for any state reachable
by an universal path. This implies that there is no need to proceed for the
existential path.

We already mentioned before that our approach is potentially more efficient
if the universal path is further restricted. Our next task targets exactly this
insight. We remain in the grid-world setting. Each path variable defines
an individual agent that moves on this grid, so both variables may refer to
different systems. The universal agent moves on a fixed set of routes, but still
there is some uncertainty which path exactly it takes. On the other hand, the
existential agent may move freely across the grid for now, but in principle we
can impose some further restrictions here as well. The invariant is that both
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4 6 8 10 12 14 16

100

101

102

103

Figure 7.6: Collision avoidance task. Left: The robot carriage moves along the
thick lines while the robot may move freely. The robot must commute between
opposite corners. Right: Runtime (in seconds) compared to the grid size, i.e.
side length. The left task has size 5.

agents never occupy one location at the same time, formally

∃π1.∀π2. (
∧
i,j

¬(xiyjπ1
∧ xiyjπ2

)). (7.2)

As a rough motivation of this setting, you can think of the universal agent as
a railway carriage moving on a rail track in a factory while some new agent
must find its own way while avoiding any collisions. A sample task is given
in Figure 7.6. The thick lines capture the paths the carriage may take. An
additional constraint we impose now is that an agent must not stand still, i.e.
we do not include a stutter action. We create an encoding tailored specifically
to this domain since it is not easy to achieve this in general as mentioned
before.

For the task given in Figure 7.6, we require that the existential agent must
always move back and forth between its initial position and the top right
corner such that it actually crosses the path of the carriage. This is ensured
by constraining the location of the existential agent at these points based on
the known location of the carriage. The loop of ς2 is ranges from 0 to 16 in
this scenario. The incremental algorithm also finds a witness within 16 steps
which corresponds to the number of steps it takes the carriage to complete a
full cycle. Note that at least the trail from down left to top right is uniquely
defined. The existential agent must first go straight up and turn right only at
the end in order to avoid a collision. We are able to verify that this is indeed
the path provided as a solution by Z3.
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In this setting, the algorithm scales again quite good to larger problems.
This is essentially due to the fact that the computation of the loop in ς2 is easy.
The complexity of the remaining computation, namely the evaluation of the
∃∀ SMT problem, is comparable to the incomplete bounded model checking
algorithm from [10]. Concrete, we can scale the task to a 10× 10 grid while
keeping the runtime as low as a few seconds. This corresponds to a bound of
36. But from then onwards, the runtime increases noticeable. For a 15× 15
grid, it takes about 15 minutes to obtain a witness within 56 steps. A detailed
overview of the runtime compared to the grid size is given in Figure 7.6. It
grows exponential with the side length. We repeated the experiments three
times, but deviations in the runtime are barely noticeable on a logarithmic
scale.

7.3 ∀∃ + LTL Invariant

Now we discuss the implementation of the algorithm described in Section 6.5.
It appears that several interesting properties lie in the respective HyperLTL
fragment, presumably more than in the fragment discussed in the previous
section. For instance, language containment mentioned in Example 3.3 is
such a property. It is widely used in automaton-based model checking [49].
Also the verification of symmetry properties in the Bakery algorithm [50]
serving as benchmarks to other HyperLTL model checkers belongs to this
fragment [11, 10, 18]. Another example that was particularly used in the
evaluation of HyperQube is linearizability [10, 18].

Linearizability

Linearizability is some notion of correctness for concurrent data types [51].
Basically it requires that any concurrent program execution may be simulated
by another sequential execution of the same program. How to express lineariz-
ability as a hyperproperty is discussed in [52]. It suffices to ensure that every
concurrent program execution is observationally equivalent to some sequential
execution. Here, observational equivalence means that all method invocations
as well as all returned values of the data type are identical. Translated to
HyperLTL, we obtain

∀π1.∃π2. (
∧
obs

obsπ1 ↔ obsπ2) (7.3)

where π1 is a trace from the concurrent program whereas π2 is a trace from
the respective sequential program. obs is an atomic proposition representing
an observable event.
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atomic cas(int *p, int old, int new) -> bool {
if (*p != old) {

return false;
}

*p = new;
return true;

}

Listing 7.1: Compare-and-swap instruction

The authors of [10] use their BMC algorithm for HyperLTL in order to
detect a linearizability violation in a particular concurrent data structure
based on the Snark algorithm [53]. But their approach is unable to verify that
the linearizability property is actually satisfied in a corrected version of the
algorithm [54]. This is something that our algorithm can potentially achieve.

Since proving linearizability is far more difficult than finding a single bug, we
consider a simpler data structure in a first attempt. One of the arguably most
simple concurrent data structures is a counter, implemented using an atomic
compare-and-swap instruction (see Listing 7.1) which is widely supported at
hardware-level. Such an instruction prevents unexpected computations caused
by two processes interfering with each other. The counter stores the current
value as a bit-vector and supports only an increment operation which returns
the new value of the counter after incrementing. A single instance of the
counter is accessed by two concurrent processes. The aim is to prove that such
a counter satisfies the linearizability property 7.3.

It turns out that even such a seemingly small property is a considerable
challenge for our algorithm in practice. Z3 in the default configuration is
unable to find a proof within hours, no matter how small we chose the counter
size. The algorithm is stuck at a small two digit bound. In order to understand
why this is the case, we examine yet another task in more detail, chosen for
illustrative purposes.

Language Containment

Our aim is to verify whether certain Btor2 operators can be simulated by
other ones. The motivation is that Btor2 supports a bunch of operators
and apparently several of them are redundant in the sense that they can be
eliminated by substitution with another operator. For now, we consider the
left bit-shift operator as well as the multiplication operator. We consider the
system depicted in Figure 7.1.1 for the former operator. For the latter one, we
define an analogous system. The HyperLTL property of interest is actually a
language containment property.

∀π<<.∃π*. (sπ<< ↔ sπ*) . (7.4)
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Admittedly, the motivation for this example is somewhat contrived, but it
serves its purpose of being simple and parametrisable. We may customise both
the input size and the state size of either system by altering the respective
bit-vector size.

As a brief remark, note that the above formula contains a bit-vector state
at a place where we would normally assume an atomic proposition. Formally,
we can resolve this by introducing some atomic propositions, each representing
a single bit of the state. But since we are encoding the formula into SMT, this
is not necessary in practice. As a matter of fact, we may allow any kind of
bit-vector arithmetic in the HyperLTL formula without much effort, as long as
they are supported by SMT. In practice this is convenient since it allows for
more concise formulas.

Before discussing the above task in more detail, it is worth pointing out a
crucial characteristics of our algorithm. Remember that we aim to determine
a witness function. Thus, we are existentially quantifying over a bit-vector
function at the outermost level of the encoded SMT formula. Fortunately,
bit-vector functions are natively supported by Z3. A reduction to QBF would
be more cumbersome since functions are not a supported by QBF. Apart
from involving functions, the encoding is mostly straightforward and follows
Definition 6.2. The only technical difference is that we do not define only one
function, but instead split it up into one function per input of the ∃-path such
that each input can be replaced by a function application.

Returning to our actual problem statement again, it is evident that the
validity of formula 7.4 depends on input- and state-size of both programs. For
instance if we have state size four and input size one for both systems (just as
in Figure 7.1.1) the property does not hold. A counterexample, i.e. a proof for
the negated formula ∃π<<.∀π*. (sπ<< ↮ sπ*), can be easily discovered within
one step using the approach discussed in Section 4.2. If we chose the input one
for π<< in the first step, then sπ<< = b0010 holds afterwards. But multiplying
b0001 by zero or one does not result in this value.

We are able to fix this issue by allowing a 2-bit input for the multiplication
program instead. Now our algorithm finds a witness within exactly five steps.
This is actually the lowest possible bound that is permitted solely by the simple
path constraint. A path prefix for π* consisting of only four steps does not
necessarily contain a loop. Four is also the reachability recurrence diameter in
this case, or equivalently the state size plus one.

It is not hard to come up with a proper witness function manually in this
case. It suffices that all individual inputs are mapped such that at each point
in time, a 0-bit-shift is simulated by multiplication by one and a 1-bit-shift is
simulated by multiplication by two. This is essentially discovered by Z3 as well,
except that the function representation is kind of bloated. Furthermore, the
solution is not unique for the last two steps due to overflow. Both operations
return zero by definition if overflow occurs.
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4-1-2 4-2-4 5-2-4 8-1-2 8-1-8 9-1-2

time (s) < 1 110 18000 55 75 550

bound 5 5 6 9 9 10

Figure 7.7: Results for model checking property 7.4. The first number in the
name represents the size of the state bit-vector. The second and the third one
are the input size for π<< respectively π*.

The SMT problem for this task is solved by Z3 in a fraction of a second.
This encourages us to increase the problem size. Doubling the state size to
eight bits already increases the runtime to about a minute while the bound
raises as well. Doubling the input size instead increases the runtime even more,
but the bound does not change at all. Increasing both at the same time takes
considerably more time. Z3 discovers a proof only after hours. In all cases,
we can clearly observe that solving the SMT problem in the final step (which
is actually satisfiable) accounts for nearly all of the runtime. The results are
summarized in Figure 7.7.

Now we want to investigate why solving such a apparently small problem
is actually that hard. In general, the most significant source of complexity
in our use case is handling the quantifiers. Remember that our final SMT
problem is an ∃∗∀∗ formula, but this still coincides with our experiments
in Section 7.2. What complicates this problem even more is that we are
existentially quantifying over bit-vector functions now. This is an integral part
of our algorithm since we are looking for a witness function which is able to
resolve the existential quantifier.

To gain more insight in the complexity of the SMT problem, we examine
the variables occurring in the SMT formula. At bound k, we have 2 · k bits for
the loop variables as well as 2 · k · |iπ* | bits for the inputs of the ∀-paths, where
|iπ* | is the size of the respective input bit-vector. Those are all universally
quantified variables, which is not too bad. Additionally, we are searching
for the witness function of the shape k · |iπ<< | → k · |iπ* |. Even though this
is the only existentially quantified variable, we must acknowledge that the
number of Boolean functions is doubly exponential in the number of arguments.
Thus, most certainly the argument size of the witness function is precisely the
bottleneck in our case.
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This is indeed what the runtime results given in Figure 7.7 suggest. In-
creasing only the input size of π* has negligible effect on the runtime in this
context. On the other hand, increasing the input size of π<< has a drastic
impact on the runtime since is linearly related to the argument size of the
witness function. The state size affects the input size as well since it roughly
corresponds to the final bound k, which explains why choosing a large state
size is infeasible likewise.

Now we can understand why the linearizability example from the previous
section is infeasible. The input size is not the issue, our encoding requires
only one bit for the universal system and two bits for the existential system
which is comparable to the tasks considered here. But the bound grows larger,
concretely we are stuck at bound 29. Similar to the tasks here, almost all of
the runtime is spend at the final bound. This suggests that the higher bound
is caused by a larger state space rather than by a bug in our modelling.

7.4 Discussion

Overall, we can observe that the search for infinite witnesses is potentially
quite expensive. Nevertheless, the results seem to be reasonable.

In the ∃∀ case, the bounds we obtained are all related to the reachability
diameter or variations thereof, similar to the completeness threshold of LTL
invariants. As long as the universal path does not entail thousands of reachable
states, the algorithm is feasible. Finding infinite witnesses in often not harder
than finding finite ones in this case. On the other hand, the approach is
infeasible if the state space of the universal path is huge. But as pointed out
above, sensible properties usually can be rephrased to properties having a finite
witness in this case. Including a stutter action into the universal system is the
most extreme example in this regard.

For the ∀∃ fragment, we did not manage to find a feasible procedure yielding
infinite witnesses. This is somewhat unfortunate since many practically relevant
properties belong to this fragment. The approach of determining a finite witness
function via SMT solving may be applicable to many problems, but it turns
out that this quickly overshoots the capabilities of modern SMT solvers.
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Chapter 8

Conclusion

8.1 Summary

We started with the intention to extend existing HyperLTL BMC with com-
pleteness results by employing techniques well known from LTL BMC. We
pointed out that such an extension is easy as long as no quantifier alternation
is involved, based on the system composition proposed in [11]. But as soon
as quantifier alternation occurs, we are unable to lift the techniques known
from complete LTL BMC in a straightforward manner. The main reason is
that loops do not allow us to draw conclusions about the infinite behaviour
analogously since it does not suffice to argue about a single path respectively
loop.

Against this background, we simplified the problem by focussing on frag-
ments of HyperLTL including one quantifier alternation and an LTL invariant.
As a general-purpose strategy to achieve completeness results, we mentioned
how a completeness threshold may be derived from automaton-based Hyper-
LTL model checking. But we realised quickly that bounds obtained via this
method are either far too large or too hard to compute. Thus, we developed
other individual model checking algorithms for both fragments.

For our ∃∀ fragment, we were able to derive a completeness threshold via
an alternative method. Based on loop detection in the universal path, we
are able to determine at which point all states reachable in the composed
system are guaranteed to have been visited. While the resulting bound is still
quite large in practice, we are able to reduce it by fixing the existential path.
This leads to an incremental algorithm that terminates as soon as a witness
involving a fixed choice for the existential path has been found.
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For the other fragment with switched quantification, it is more complicated
to obtain a witness. A general witness in this case may be perceived as
a function resolving the existential quantifier, mapping the chosen infinite
universal path to an appropriate existential path. Our overall approach was to
simulate such a function based on a bounded variant. While this is possible in
many cases, it introduces quantification over a function variable to the encoded
formula.

It turned out that even those two restricted fragments are hard to verify in
practice. In the ∃∀ fragment, we were able to apply our algorithm successfully to
several sample tasks with decent performance. A vital premise is that the state
space of the universal path is somewhat restricted to, say, a few thousand states.
The ∀∃ fragment actually contains several interesting properties. Unfortunately,
we observed that even fairly small examples are largely infeasible for our
algorithm. We noticed that this is mostly caused by the fact that the underlying
SMT problem includes unbound bit-vector functions.

8.2 Future Work

Based on our investigations, we conjecture that model checking HyperLTL in
general is a fairly challenging task if we aim for a completeness result. When
it comes to the verification of hyperproperties in the real-world, it does not
help to have a complete algorithm if it is infeasible for most non-trivial tasks.
Thus, the most promising path seems to be imposing some restrictions on the
specification.

Our attempts have been limited on restricting the formula shape so far.
Another approach simplifying the task is to require all systems to have certain
characteristics. This idea is to some extent pursued in the original work
proposing HyperLTL BMC [10]. The halting semantics introduced there allows
to draw more conclusion if all states end up in a self-loop. Potentially it
is possible to come up with some less restrictive requirements targeting the
system structure.

On the other hand, we can try to be less restrictive regarding the formula
fragment. We may allow more than two quantifies, as long as they are not
alternating more than once. This is a straightforward extension of our existing
implementation that basically requires to employ the system composition idea.
Allowing more quantifier alternation is rather not top priority since for most
meaningful properties one alternation is sufficient [5]. Extending the algorithms
to formulas consisting of LTL formulas beyond invariants is more desirable.
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Allowing next operators as well is potentially realisable without much effort.
They may be eliminated by introducing new states to the system, serving as
delays. Beyond this, an extension to further safety properties suggests itself.
But it is not obvious how to argue that we may extrapolate from bounded
behaviour to unbounded behaviour for general safety properties. So far, we
are relying on fact that it suffices to evaluate a propositional formula at each
point in time individually for invariants.

Keeping in mind that even our existing algorithms become infeasible
quite quickly, simply increasing the scope of the algorithms is possibly of no
value in practice. Especially for our ∀∃ fragment, it would be nice to have
some more feasible procedure instead. We detected several highly relevant
properties in this fragment, even if we solely consider invariants in the LTL
body. To some extend, a high runtime is surely the price we have to pay for the
extended expressiveness. But it is an open question whether we can abstain
from computing a witness function explicitly via SMT solving, which is the
bottleneck of our current algorithm.

Another issue that we did not discuss at all is to what extent bounded model
checking may be applicable to HyperCTL*, which differs from HyperLTL only
by allowing quantifiers to occur at any place inside the formula. While there
exists work about bounded model checking for the branching-time logic CTL*
(the corresponding non-hyper logic), an analogous procedure for HyperCTL*
has not been proposed yet.
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