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Abstract. Stream-based monitoring is a runtime verification approach
for cyber-physical systems that translates streams of input data, such as
sensor readings, into streams of aggregate statistics and verdicts about
the safety of the running system. It is usually assumed that the values
on the input streams represent fully accurate measurements of the physi-
cal world. In reality, however, physical sensors are prone to measurement
noise and errors. These errors are further amplified by the processing and
aggregation steps within the monitor. This paper introduces RLola, a
robust extension of the stream-based specification language Lola. RLola
incorporates the concept of slack variables, which symbolically represent
measurement noise while avoiding the aliasing problem of interval arith-
metic. With RLola, standard sensor error models can be expressed di-
rectly in the specification. While the monitoring of RLola specifications
may, in general, require an unbounded amount of memory, we identify a
rich fragment of RLola that can automatically be translated into precise
monitors with guaranteed constant-memory consumption.
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1 Introduction

Stream-based monitoring is a successful runtime verification approach for cyber-
physical systems. Input streams containing sensor readings and other data are
translated into output streams that process and aggregate this data. The re-
sulting values on the output streams are then continuously evaluated against
trigger conditions that characterize erroneous or dangerous situations. Tools for
stream-based monitoring, like RTLola [4], TeSSLa [6] or Striver [14], are used in
safety-critical applications, such as autonomous aircraft [3], where the precision
of the monitoring result is vital. But how precise are stream-based monitors?
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Most frameworks for stream-based monitoring operate under the assumption
that the values on the input streams represent fully accurate measurements of the
physical reality. As a result, the values in the output streams are also assumed to
be precise, even if they are based on input data that was collected from physical
sensors, which are prone to measurement noise and errors, and even if this data
has been processed in a way that may have amplified these errors significantly.

A straightforward idea to keep track of the precision of the stream values
is to lift the individual values from scalars to intervals, akin to interval-based
robust monitoring of Signal Temporal Logic specifications [21]. Input streams
then produce intervals centered around the measured value with a width defined
by the precision of the sensor. The error in the output streams can be tracked via
interval arithmetic: as more errors are combined into individual output values,
the intervals of these outputs become larger, and we can determine whether a
violation of the trigger conditions is possible, given the precision of the data.

Unfortunately, interval analysis usually leads to an overly pessimistic result.
This phenomenon is known as the aliasing or dependency problem: in situations
where errors cancel each other out, for example, because the same input is added
and later subtracted from an aggregate value, interval arithmetic will still add,
rather than subtract, the errors. In the trivial example, the term x − x should
evaluate to 0, independently of the value of x. However, if, because of noise, we
assume x to be in the interval [−10, 10], then interval arithmetic produces the
even larger interval [−10, 10]− [−10, 10] = [−20, 20].

In this paper, we present a new version of the Lola monitoring language [7],
where we explicitly track the precision of the stream values. To avoid the aliasing
problem, we introduce explicit slack variables that represent measurement noise
by symbolically representing the interval [−1, 1], which can be extended to arbi-
trary intervals through affine arithmetic [11]. Because each variable identifies a
particular source of noise, they are not susceptible to the aliasing problem. In the
example, the uncertain input is represented as x+10ϵ, where ϵ is a slack variable.
Subtracting the input from itself would then result in (x+10ϵ)− (x+10ϵ) = 0.

The challenge in building a stream-based monitor with slack variables is the
unbounded number of input values. If the noise on individual values of some
input stream is at least partially independent, then we need a separate slack
variable for each point in time. As slack variables are unlikely to resolve to
scalar values, the number of slack variables in the equation store of the monitor
may grow beyond any bound. In the paper, we demonstrate this phenomenon
for the stream-based monitoring language Lola [7]. We define the syntax and
semantics of RLola (robust Lola), the extension of Lola with slack variables.

It turns out, however, that for a large class of practically relevant RLola
specifications, it is possible to combine multiple slack variables into a single
variable without losing precision. For example, the term x+5ϵ1+5ϵ2 is equivalent
to x+10ϵ′ if ϵ1 and ϵ2 occurs only there. Suppose now that x is an output stream
in which the term 5ϵ, with fresh slack variable ϵ, is added in every step. Then
instead of keeping a growing term 5ϵ1 + 5ϵ2 + . . .+ 5ϵn in memory, it suffices to
count the number of steps n, and replace the n slack variables with a single slack
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variable with factor 5n, resulting in the term 5nϵ′. In fact, we can eliminate the
slack variables and use an ordinary Lola specification to track the factor 5n.

In the paper, we make use of this insight to identify a syntactic fragment of
RLola for which we can automatically translate the given RLola specification
into an equivalent Lola specification. The memory consumption of the resulting
monitor is guaranteed to be constant.

1.1 Motivating Example

As a motivating example, consider an industrial
warehouse robot that autonomously navigates by
tracking its position through an unreliable indoor
positioning system. To validate these potentially er-
ratic position readings, a runtime monitor compares
position measurements to positions computed from
the traveled distance and a discrete direction. The
movement directions of the robot are visualized in
Figure 1. An RLola specification capturing this be-
havior is given in Example 1 below. Note that for
simplicity, the computation of the y position is omit-
ted as it follows analogously.
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Fig. 1: Movement Direc-
tions in Example 1

Example 1 (Warehouse Robot).

input direction: Int
input raw_distance, position_x, position_y: Float
constant cos_45: Float := (1/2) * sqrt(2)

constant delta: Variable
output e: Variable
output distance := raw_distance + e + 5*delta

output computed_pos_x := if direction = 1 then
computed_pos_x.offset(by: -1, or: 0) + distance

else if direction = -1 then
computed_pos_x.offset(by: -1, or: 0) - distance

else if direction = 3 then
computed_pos_x.offset(by: -1, or: 0) + cos_45 * distance

else if direction = -3 then
computed_pos_x.offset(by: -1, or: 0) - cos_45 * distance

else if direction = 4 then
computed_pos_x.offset(by: -1, or: 0) - cos_45 * distance

else if direction = -4 then
computed_pos_x.offset(by: -1, or: 0) + cos_45 * distance

else
computed_pos_x.offset(by: -1, or: 0)

trigger position_x >0.5 computed_pos_x || position_x <0.5 computed_pos_x

Intuitively, slack variables extend the value domain of streams such that a stream
of type Variable produces a fresh slack variable every time it is computed. As
the precise value of the slack variables cannot be computed, such streams do
not require a defining stream equation. Similarly, a constant of type Variable
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represents a single slack variable. In the above example, we define a stream of
slack variables e and a single slack variable delta that are added to the raw_distance

in the distance output stream to capture the measurement noise of the distance
measurements. A more detailed description of this measurement error model
is given in Section 2.2. Depending on the movement direction, this corrected
distance is added proportionally to the computed position.

In the above example, all slack variables produced by the e stream will ac-
cumulate in the computed position streams, as the offset(by: -1, or: 0) operator
refers to the last stream value (or 0 if that does not exist yet). As later shown
in Section 5, multiple linear dependent slack variables can be combined without
losing precision. Based on this, building a finite memory monitor for the above
specification is possible. In fact, it is possible to translate the specification to
one without slack variables:

input direction: Int
input raw_distance, position_x, position_y: Float
constant cos_45: Float := (1/2) * sqrt(2)

output d1 := if direction = 1
then d1.offset(by: -1, or: 0.0) + 1.0
else d1.offset(by: -1, or: 0.0)

output dn1 := if direction = -1
then dn1.offset(by: -1, or: 0.0) + 1.0
else dn1.offset(by: -1, or: 0.0)

output d3, dn3, d4, dn4 := ...

output delta_x := d1 - dn1 + d3*cos_45 - dn3*cos_45 - d4*cos_45 + dn4*cos_45
output epsilon_x := d1 + dn1 + d3 + dn3 + d4 + dn4
output raw_computed_pos_x := ...

output position_x_lower := raw_computed_pos_x - epsilon_x - delta_x
output position_x_upper := raw_computed_pos_x + epsilon_x + delta_x
trigger (position_x - position_x_lower) / (position_x_upper - position_x_lower) > 0.5
trigger (position_x_upper - position_x) / (position_x_upper - position_x_lower) > 0.5

Note that this specification is optimized by removing unreachable or equivalent
cases. The raw_computed_pos_x is defined analogously to the computed_pos_x stream in
Example 1 with the difference that it references the raw_distance input stream in-
stead of the distance stream. Conceptually, this specification replaces the stream
of slack variables e with eight individual slack variables, one for each direction.
The streams d1 to d4 and their negative counterparts dynamically compute the
coefficients of these slack variables, while the delta_x stream tracks the coefficient
of the delta slack variable. The streams position_x_lower and position_x_upper recon-
struct a precise lower and upper bound of the original computed_pos_x stream by
applying interval arithmetic. In Section 5, we define a syntactical fragment of
RLola for which such a transformation is always possible.

1.2 Related Work

In runtime verification, multiple logics have been studied to express valid system
behavior, such as LTL [2], STL [19], or stream-based languages such as Lola
[7], TeSSLa [6] or Striver [14]. In stream-based languages, the temporal history
of measurements is represented as streams of values, and temporal properties
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are expressed through recursive stream equations involving time-offset accesses
between these streams.

As established by Kauffman et al. [17], there are properties that cannot be
monitored over unreliable channels that alter, delay, or lose data. While previous
work was focused on missing or shifted events [18], this paper targets events that
are present but mutated by measurement noise as specified by an error model.

While this could be encoded in first-order logic [8], the goal is to keep a
strict memory bound on the resulting monitor. Kallwies et al. [16] handle missing
events in the stream-based setting through symbolic input variables. The authors
show that, in general, if streams are defined over real and boolean values, precise
monitoring requires unbounded memory. Yet, this paper identifies a syntactic
fragment in this domain that still allows for bounded memory monitors.

For temporal logics, there exist robust quantitative interpretations [10,9,13]
that can handle inaccurate timestamps or measurement noise. Most such logics
do not support measurement-related error models, leading to pessimistic ver-
dicts. One exception is “truly robust” monitoring of Signal Temporal Logic [12],
which also uses slack variables to express error models, but is significantly less
expressive than stream-based specification languages.

2 Preliminaries

Runtime monitoring validates observed system behavior against a formal specifi-
cation at runtime. The approach presented in this paper adapts the stream-based
specification language Lola [7]. In the following, we provide an overview of its
definition.

2.1 Lola

A Lola [7] specification consists of input streams, representing the observations
made of the system, and output streams, which compute new values from input
streams and other output streams. A Lola specification is a set of (recursive)
equations over stream variables of the form:

o1 = expr1(i1, ..., im, o1, ..., on) . . . on = exprn(i1, ..., im, o1, ..., on)

where o1, ..., on are output stream variables and i1, ..., im are input stream
variables and expr1, ..., exprn are stream expressions.

Stream expressions determine how the next value of an output stream is
computed. They are defined as arithmetic and logic expressions over stream
variables. They include if ... then ... else ... clauses, stream variable references,
and a stream offset operator: .offset(by: i, or: l) for i < 0 ∈ Z and some literal l.
Further, we use .last(or: l) as syntactic sugar for .offset(by: -1, or l).

The semantics of Lola is defined by an evaluation model that relates input
stream values to output stream values. For its full definition, we refer to the
original Lola paper [7]. Notice that a specification can have multiple valid eval-
uation models. For example, the specification: output o = o has infinitely many
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evaluation models for any given vector of input streams τ1, . . . , τn. Such specifi-
cations are called not well-defined due to their non-determinism. A specification
is well-defined only if it assigns precisely one evaluation model to each vector of
input streams τ1, . . . , τn. A syntactic criterion for well-definedness is given with
the help of a dependency graph:

Definition 1 (Dependency Graph). Let ϕ be a Lola specification. The depen-
dency graph of ϕ is a directed weighted multi-graph G = ⟨V,E⟩ with
V = {i1, ..., im, o1, ..., on}. An edge e = ⟨oi, ok, w⟩ is in E iff the expression
of oi contains ok.offset(by: w, or: c) as a sub-expression (or e = ⟨oi, ik, w⟩ if
ik.offset(by: w, or: c) is a sub-expression). Analogously, edges with weight 0 are
added for non-offset accesses.

A specification is labeled well-formed iff its dependency graph does not contain
any non-negative weight cycle, where the weight of a cycle is defined as the sum
of all its edge weights.

2.2 Error Model

Following [12], we adapt the error model induced by the ISO norm 5725 [15] by
decomposing the measurement error into a constant, but unknown per-sensor off-
set and a randomly varying per-measurement error. This decomposition directly
correlates with the “trueness” and “precision” described in the ISO 5725 stan-
dard and is also reflected in Example 1 through the constant delta slack variable
and the e stream of fresh slack variables. We adopt the definition of consistency
from [12] and define when a series of sensor measurements is consistent with the
unknown ground truth of a physical property.

Definition 2 (Consistency). Let S be a sensor measuring a physical property
at times T ⊆ N with a maximal sensor offset of δ ≥ 0 and a maximal random
measurement error of ϵ ≥ 0. Let τ be the ground-truth time series. Then mS :
T → R is a possible S time series over τ of sensor measurements iff

∃∆ ∈ [−δ, δ] : ∀t ∈ T : ∃ε ∈ [−ϵ, ϵ] : τ(t) + ε+∆ = mS(t).

We say the trajectory τ is consistent with mS and denote this fact by mS |= τ .

Note that the consistency relation, as defined above, can be rewritten using affine
arithmetic [11] as: τ(t)+ ϵet + δd = mS(t) if d is a slack constant and et is a per
time-step fresh slack variable, ranging over the interval [−1, 1].

3 Robust Lola

This section defines the syntax and semantics of RLola (robust Lola). RLola
extends Lola with symbolic slack variables to represent error margins. To gen-
erate slack variables in RLola, we introduce the Variable value type.
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An output stream of type Variable will pro-
duce a new slack variable in each time step
or, in case of a constant stream, a single slack
variable for the entire execution of the mon-
itor.

input a_raw: Float

output e: Variable
constant d: Variable

output a := a_raw + 2 * e + 0.5 * d

Since slack variables are not explicitly bound to any values, streams of type Vari-
able have no stream expressions. Instead, the variables symbolically represent a
value in the range [−1, 1]. With streams of type Variable we can implement the
measurement error model from Section 2.2 (like many other error models).

RLola Specifications. We define an RLola specification as a set of (recursive)
equations over stream and slack variables as follows:

o1 := expr1(i1, ..., iI , o1, ..., oO, c1, ..., cC , cV1 , ..., c
V
Vc
, oV1 , ..., o

V
Vo
)

...

oO := exprO(i1, ..., iI , o1, ..., oO, c1, ..., cC , cV1 , ..., c
V
Vc
, oV1 , ..., o

V
Vo
)

Where i1, ..., iI are input stream variables, o1, ..., oO are output stream vari-
ables, c1, ..., cC are constants, cV1 , ..., c

V
Vc

are constant slack variables, oV1 , ..., o
V
Vo

are slack variable streams, expr1, ..., exprO are stream expressions, and c1 :=
C1, ..., cC := CC are constant streams with C1, ..., CC ∈ R ∪ B.

Omitted from the definition above are trigger streams. They are defined as
boolean output streams specifying assertions that are communicated to a system
operator upon violation. Stream expressions, the dependency graph and well-
formed specifications are defined as for Lola in Section 2.1.

RLola Semantics. As for Lola, the semantics for RLola is defined by an eval-
uation model connecting input stream values to output stream values. Let ϕ be
a robust Lola specification with: input stream variables i1, ..., iI , output stream
variables o1, ..., oO, constants c1, ..., cC , constant slack variables cV1 , ..., c

V
Vc
, and

slack variable streams oV1 , ..., o
V
Vo
.

Let τ1, ..., τI be streams of length N of input values. Let σ1, ..., σO be streams
of length N of output values. Let ζ1, ..., ζVc

be streams of length N of constant
values. Let σV

1 , ..., σ
V
Vo

be streams of length N of slack values. A single evaluation

of ϕ is then defined as: ψ := {τ1, ..., τI , σ1, ..., σO, σV
1 , ..., σ

V
Vo
, ζ1, ..., ζVc}.

An evaluation model of ϕ is then the possibly infinite set of evaluations such
that for all evaluations, the following holds:

∀1 ≤ t ≤ N, 1 ≤ i ≤ I, 1 ≤ o ≤ O, 1 ≤ oV ≤ Vo, 1 ≤ cV ≤ Vc :

σo(t) := val(expro)(t)

σV
oV (t) ∈ [−1, 1]

ζcV (t) ∈ [−1, 1]

ζcV (t) = ζcV (t− 1), if t > 0
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Where val(expro)(t) is defined for

oo := expro(i1, ..., iI , o1, ..., oO, c1, ..., cC , cV1 , ..., c
V
Vc
, oV1 , ..., o

V
Vo
)

with cj := Cj as follows:

val(ij)(t) := τj(t)

val(oj)(t) := σj(t)

val(cj)(t) := Cj

val(cVj )(t) := ζj(t)

val(oVj )(t) := σV
j (t)

val(f(expr1, ..., exprk))(t) = f(val(expr1)(t), ..., val(exprk)(t))

val(expr.offset(by: i, or: l))(t) =

{
val(expr)(t+ i) for 1 ≤ t+ i ≤ N

l otherwise

An RLola monitor for a specification ϕ with the evaluation model φ and input
streams i1, ..., iI given the uncertain series of measurements m1, ...,mI computes
a (symbolic) representation of a set of evaluations

φ′ := {m1, ...,mI , σ1, ..., σO, σ
V
1 , ..., σ

V
Vo
, ζ1, ..., ζVc}

for any set of output streams σ1, ..., σO, streams of slack values σV
1 , ..., σ

V
Vo
, and

constant slack values ζ1, ..., ζVc such that φ′ ⊆ φ. Triggers are then evaluated
existentially based on the set ψ′.

Boolean Conditions. With slack variables, stream equations may resolve to
symbolically represented intervals instead of scalar values. We use the ternary
predicates >p and <p to compare intervals to scalar thresholds in relation to an
overlap percentage p. The overlap percentage sets a bound on the overlap of the
interval with the threshold such that the predicate still evaluates to true:

The predicate expri >p c is satisfied for p ∈ [0, 1] if the stream expression
expri resolves to range [l, u] and (u− c)/(u− l) > p holds. The definition for <p

is analogous.
The explicit definition of an overlap percentage concretizes the inconclusive

verdict found in other logics with robust semantics (cf. [12,9]). There, comparing
an interval of values to a scalar threshold produces an inconclusive verdict if the
interval overlaps the threshold. The >p and <p predicates allow for a more
precise assessment of the overlap.

4 Approximate Online Monitoring

We first present an online monitoring algorithm for RLola that over-approxi-
mates the semantics presented above. An evaluation algorithm for RLola has
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to manage two potentially unbounded quantities: the number of equations the
monitor has to keep in memory and the length of these equations.

The number of equations in memory can be unbounded as, in general, the
presented approach allows for refining or correcting earlier verdicts of the monitor
at a later point in time, as slack variables can temporally relate measurement
errors. Consider the scenario where the robot from Example 1 does not move,
repeatedly measuring the same position. Such repeated measurements of the
same physical value can increase the accuracy of the measured value, potentially
leading to changes in past triggers. Yet, as shown in [12], to refine or correct
previous monitor verdicts, the monitor would have to keep all previous stream
equations in memory and solve a system of linear equations to evaluate trigger
conditions across multiple time points. We argue that the monitor’s constant
memory footprint is more important than refining previous verdicts in an online
monitoring setting, allowing the monitor to evict old stream equations.

The length of the equations can grow beyond any bound if more and more
slack variables accumulate. Consider the following example. By definition, the
equation for sum at time 3 includes the slack
variables e1, e2, and e3. As time progresses,
the equation for sum grows, accumulating
more and more slack variables. One ap-
proach to evaluate RLola specifications is

input a_raw: Float
output e: Variable
constant d: Variable

output a := a_raw + 2 * e + 0.5 * d
output sum := sum.last(or: 0) + a

to immediately interpret slack variables as the interval [−1, 1].

Interval Arithmetic. Interval arithmetic [20] lifts arithmetic operations such
as addition and subtraction to intervals. An uncertain scalar value x can be
represented as an interval [a, b] of all possible values that x might have. An
interval is defined as a set of real values [a, b] = {x | a ≤ x ≤ b}. Arithmetic
operations and functions are then defined as follows: For two intervals a = [al, au]
and b = [bl, bu] it holds that:

a+ b = [al + bl, au + bu]

a− b = [al − bu, au − bl]

a ∗ b = [min(albl, albu, aubl, aubu),max(albl, albu, aubl, aubu)]

a/b = a ∗ 1

b
with

1

b
= [bu

−1, bl
−1], if 0 ̸∈ b

In general, for any monotonic operation · it holds that:

a · b = [min(al · bl, al · bu, au · bl, au · bu),max(al · bl, al · bu, au · bl, au · bu)]

Interval Approximation. In the following, we present a monitoring procedure
that over-approximates the semantics of the RLola specification by translating
it to a Lola specification defined over intervals using interval arithmetic. Note
that Lola is generic regarding the value domains of streams and their supported
operators, which enables this translation.

Interval Replacement. Let ϕ be an RLola specification with input stream
variables i1, ..., iI , output stream variables o1, ..., oO, constants c1, ..., cC , con-
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stant slack variables cV1 , ..., c
V
Vc
, slack variable streams oV1 , ..., o

V
Vo

and expressions
expr1, ..., exprO. Let ϕ

′ be a Lola specification with expressions expr′1, ..., expr
′
O,

where expr′i is equal to expri with all references to cV1 , ..., c
V
Vc
, oV1 , ..., o

V
Vo

replaced
with the interval [−1, 1]. Boolean conditions, such as trigger conditions, are eval-
uated using the ternary operators defined in Section 3.

Proposition 1. Let ϕ be an RLola specification and ϕ′ be the Lola specification
obtained from ϕ using interval replacement. Let ψ be the evaluation model of ϕ
and ψ′ be the evaluation model of ϕ′. If it holds for all sub-expressions of ϕ of
the form

if p then expr1 else expr2

that p does not (transitively) reference any slack variable, then it holds for fixed
streams of input data τ1, ..., τI that if {τ1, ..., τI , σ1, ..., σO, σV

1 , ..., σ
V
Vo
, ζ1, ..., ζVc

} ∈
ψ then {τ1, ..., τI , σ1, ..., σO} ∈ ψ′.

The proposition states that interval replacement indeed produces a Lola spec-
ification that over-approximates an RLola specification. Intuitively, intervals
reintroduce the aliasing problem, which, as described in Section 1, results in
over-approximating measurement noise. The additional syntactic requirement
on if conditions stems from conditionals being non-monotonic functions.

5 Precise Constant Memory Online Monitoring

We now present a syntactic fragment of RLola for which constant-memory
monitors exist. We develop this result in multiple steps. First, we define two
requirements that all specifications in the fragment must fulfill and show how
slack variables can be pruned from the monitor if their coefficients are linearly
dependent. Then, we give examples of increasing complexity, highlighting how
these requirements ensure the collinearity of subsets of the slack variables.

Requirement 1. First, we syntactically limit stream expressions. They are re-
quired to be in one of the following two forms:

expri := cs ∗ oi[o, d] + cTi

i1...
iI

+ cTϵ

oV1
...
oVVo

+ cTδ

cV1
...
cVVc

 (1)

expri := if p then exprci else exprai (2)

Where cs ∈ {0, 1}, p is a boolean stream expression and ci ∈ RI , cϵ ∈ RVo , cδ ∈
RVc . Intuitively, this requirement ensures that at every point in time, each equa-
tion entailed by a stream expression is an affine form [11].
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Requirement 2. Second, we require that every output stream only occurs in
dependency loops of equal weight. Concretely, let ϕ be a specification with output
streams o1, ..., oO and let G = (V,E) be the dependency graph of ϕ, then:

∀1 ≤ i ≤ O.∃co ∈ Z.∀⟨oi
o1−→ ...

on−→ oi⟩ ∈ E.
∑

1≤r≤n

or = co

Intuitively, this requirement ensures that equations in the equation store are
affine. For example, it prohibits calculating the Fibonacci sequence.

One exception from these requirements are trigger streams. As their value
can, by definition, not be used by other streams and they are hence stateless,
they can express arbitrary boolean assessments over output streams.

Consider Example 1; If the distance output stream is inlined, all stream expres-
sions in the specification satisfy Requirement 1. Requirement 2 is also satisfied,
as computed_pos_x and computed_pos_y are both only part of self-loops with weight -1.

We now develop the construction of constant-memory Lola monitors that
monitor specifications of the fragment without loss of precision. We first define
a method to reduce the number of slack variables in equations.

Definition 3 (Slack Variable Pruning). Let ϵ⃗ ∈ [−1, 1]j be a vector of slack
variables and let C ∈ Rk×j be a matrix of coefficients, then

y = C(ϵ1, ..., ϵj)
T

defines a zonotope over slack variables ϵ1, ..., ϵj. To prune slack variables, we
reduce the dimension of ϵ⃗ by finding collinear column vectors of the matrix C to
obtain an equivalent (pruned) representation of the zonotope:

y = C ′(ϵ1, ..., ϵl)
T

with C ′ ∈ Rk×l for l ≤ j. If two or more column vectors of C are collinear, it
holds that l < j.

We use Definition 3 to prune variables from the equations the monitor maintains
at runtime. For that, we define the state of a monitor as follows:

Monitoring State. Let ϕ be an RLola specification with output streams:

o1 := expr1 ... oO := exprO

A monitor manages two sets of equations called equation stores: R for resolved
equations of the form: σi(t) = c′ + c1ϵ1 + · · ·+ csϵs and U for unresolved equa-
tions of the form σi(t) = expri. At time t for measurements m1, ...,mI the
following equations are added to R: τ1(t) = m1, ..., τI(t) = mI and σ1(t) =
expr1, ..., σO(t) = exprO to U . If, through simplifications, equations from U be-
come resolved, they are moved to R.

At any time point t, the sets U and R are called the monitoring state. We
call the equations in R monitoring equations.
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input a_raw: Float

output e: Variable
constant d: Variable

output a := a_raw + e + d
output sum2 := sum2.last(or: 0) + 2a
output sum3 := sum3.last(or: 0) + 3a

(a) The RLola specification with slack
variables.

input a_raw: Float
constant e: Variable
constant d: Variable

output e_coeff :=
e_coeff.last(or: 0) + 1

output sum2_raw :=
sum2_raw.last(or: 0) + 2a_raw + 2d

output sum3_raw :=
sum3_raw.last(or: 0) + 3a_raw + 3d

output sum_2 := sum2_raw + 2 * e_coeff * e
output sum_3 := sum3_raw + 3 * e_coeff * e

(b) The translated RLola specification
without slack variables.

Fig. 2: An RLola specification where a slack variable occurs with different co-
efficients.

Different Coefficients. As a first example, consider the specification in Fig-
ure 2a and its partial monitoring state depicted below:

1 2 3 4

sum2 2e1 + 2d 2e1 + 2e2 + 4d 2e1 + 2e2 + 2e3 + 6d 2e1 + 2e2 + 2e3 + 2e4 + 8d

sum3 3e1 + 3d 3e1 + 3e2 + 6d 3e1 + 3e2 + 3e3 + 9d 3e1 + 3e2 + 3e3 + 3e4 + 12d

The table depicts partial monitoring equations truncated to their slack variable
part at time points one to four. As discussed in Section 4, one can see that the
slack variables produced by e accumulate in the monitoring equations of sum2

and sum3. Yet, when rewriting the equations at time four as vectors, omitting the
constant slack variable d: (

2, 2, 2, 2
3, 3, 3, 3

)
(e1, e2, e3, e4)

T

it is easy to see that pruning, as defined in Definition 3, can reduce the number
of slack variables to one, as all column vectors of the matrix are collinear. In fact,
this holds for every time step due to Requirement 1 which ensures that slack
variables only occur with a constant coefficient in stream equations. Based on
this, Figure 2b depicts an equivalent RLola specification using only constant
slack variables.

Different Offsets. Next, consider the example where slack variables are used
in streams that reference themselves with different offsets in Figure 3a. Note
that the constant slack variable d is omitted for simplicity. Again, consider the
partial monitoring equations for this specification in the table below:

1 2 3 4

sum 2e1 2e1 + 2e2 2e1 + 2e2 + 2e3 2e1 + 2e2 + 2e3 + 2e4

eo sum 3e1 3e2 3e1 + 3e3 3e2 + 3e4
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input a_raw: Float
output e: Variable

output a := a_raw + e
output sum := sum.offset(by: -1, or: 0) + 2a
output eo_sum := eo_summ.offset(by: -2, or: 0) + 3a

(a) The RLola specification with slack variables.

input a_raw: Float
constant e_even: Variable
constant e_odd: Variable

output step := step.last(or: 0) + 1
output e_even_coeff := if step % 2 = 0 ∧ step % 1 = 0

then e_even_coeff.last(or: 0) + 1 else e_even_coeff.last(or: 0)
output e_odd_coeff := if step % 2 = 1 ∧ step % 1 = 0

then e_odd_coeff.last(or: 0) + 1 else e_odd_coeff.last(or: 0)

output sum_raw := sum_raw.last(or: 0) + a_raw
output eo_sum_raw := eo_sum_raw.offset(by: -2, or: 0) + a_raw
output sum := sum_raw + 2 * e_even_coeff * e_even + 2 * e_odd_coeff * e_odd
output eo_sum := if step % 2 = 0 ∧ step % 1 = 0

then eo_sum_raw + 3 * e_even_coeff * e_even
else eo_sum_raw + 3 * e_odd_coeff * e_odd

(b) The translated RLola specification without slack variables.

Fig. 3: A specification where slack variables accumulate under different offsets.

Because of the offset of −2, a slack variable ei is added at either an even position
or an odd position of eo_sum, never at both. This stems from the stream-based
semantics of RLola. Because of this, we analyze these two cases separately.
Consider the equations at time three and four in their vector representation:(

2, 2, 2
3, 0, 3

)
(e1, e2, e3)

T

(
2, 2, 2, 2
0, 3, 0, 3

)
(e1, e2, e3, e4)

T

Both matrices can be pruned to reduce the number of slack variables to two.
With the same argument as for different coefficients, this holds for all even
and odd positions, respectively. We give an equivalent RLola specification that
only uses constant slack variables in Figure 3b. Note that the if conditions in the
specification can be simplified. Yet, they are kept as is to demonstrate how the
construction scales to arbitrary offsets in multiple streams as long as Require-
ment 2 is satisfied. In general, if a slack variable appears in multiple streams
with different offsets o1, ..., ok, the above case distinction has to be extended to
s = o1∗ ...∗ok cases of offset combinations resulting in s constant slack variables.

Central Observation. When partitioning the monitoring equations of a specifi-
cation in the fragment by case, the coefficients of the slack variables occurring
in each case will always be equal. For example, in the above specification, the
coefficients at even and at odd positions will always be equal. This is explained
by the constant coefficients asserted by Requirement 1.
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If Clauses. Lastly, we extend this case distinction to if clauses. Consider the
following example:

input a_raw: Float

output e: Variable
output a := a_raw + e
output sum := if a_raw > 10

then sum.offset(by: -1, or: 0) + 2a
else sum.offset(by: -1, or: 0) + 5a

output eo_sum := eo_sum.offset(by: -2, or: 0) + 3a

To handle if clauses, we distinguish one case per if condition. Let a slack variable
output stream be referenced in n output streams that contain if conditions. Let
there be a total of k if conditions in their stream expressions. Then, a monitor
has to handle s ∗ (n + k) slack variables where s is the previous bound on the
number of slack variables.

In the above example, there are two different offsets (-1 and -2), and one
stream contains a total of one if condition. Hence, to precisely monitor the
above specification, the monitor has to distinguish 2 ∗ (1 + 1) = 4 cases. In the
following, we group the coefficients by their case:

even odd

a raw ≤ 10

(
5
3

)
e2

(
5
3

)
e1 +

(
5
3

)
e5

a raw > 10

(
2
3

)
e4

(
2
3

)
e3

By Definition 3, the variables e1 and e5 of the above example can be pruned.
Following the central observation, it is easy to see that a monitor for the

fragment only needs to keep a single constant slack variable for each case for
each stream of slack variables. Figure 4 summarizes the construction.

The specifications generated by this construction can be evaluated, without
any loss of precision, using the algorithm from Section 4. This is because all
constant slack variables generated by the construction are only referenced once
in streams that are state-less, meaning that they do not propagate through
computations, preventing the aliasing problem.

Proposition 2. The construction in Figure 4 is correct and only requires a
bounded number of slack variables.

As the specification is finite, there can only be a bounded number of cases; hence,
the number of slack variables is also bounded. The correctness of the construction
follows from Definition 3 and from the fact that, by the requirements of the
fragment, a slack variable can only occur in one case per output stream at each
time step.
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Let C1, ..., Ck be the cases in which subsets of slack variables occur with equal
coefficients in the monitoring equations.

1. For each case Ci introduce a constant slack variable di and construct a stream
that counts how often this case occurs as follows:

constant di: Variable
output ci := if Ci then ci.offset(by:-1, or:0) + 1 else ci.offset(by:-1, or:0)

2. For each output stream s and slack variable stream ϵ, where s references ϵ in
cases Ci, ..., Cj with coefficients xi, ..., xj add a stream that reconstructs ϵ for
s:

output s_ϵ := ci * xi * di + ... + cj * xj * dj

3. For each output stream s and constant slack variable δ, where s references δ
in cases Ci, ..., Cj with coefficients xi, ..., xj add a stream that reconstructs δ
for s:

output s_δ:= (ci * xi + ... + cj * xj) * δ

4. For each output stream s that references slack variable streams ϵ1, ..., ϵn and
constant slack variables δ1, ..., δm construct a stream s raw that is equal to s,
apart that all references to slack-variables are removed. Construct a stream s′

that reconstructs s from its partial sums.

output s′ := s_raw + s_ϵ1 + ... + s_ϵn + s_δ1 + ... + s_δm

Fig. 4: Construction of constant-memory monitors.

6 Evaluation

We evaluate our approach with respect to runtime and precision based on Exam-
ple 1. We consider three variants of the specification: First, a Lola specification
that does not take measurement errors into consideration. Second, a specification
using the interval-based over-approximation presented in Section 4. Third, the
RLola specification translated to regular Lola using the construction presented
in Section 5. The experiments were conducted using the RTLola interpreter [5]
on a MacBook Pro from 2020. A ground truth trace was randomly generated to-
gether with a mutated variant based on the error model presented in Section 2.2.

Figure 5a shows the error margins computed using interval arithmetic and
slack variables around the ground truth x coordinates over time. While both error
ranges grow over time, the graph visualizes the pessimistic over-approximation of
interval arithmetic caused by the aliasing problem. It occurs due to the constant
error delta in the example. In RLola this constant error is subtracted when the
robot moves in opposite directions, while it is added in interval analysis.

Figure 5b compares the runtime of the three specifications in relation to
the trace length. The running times were measured using the statistics-driven
benchmarking library Criterion[1]. It shows that the plain Lola specification
computes fastest, the interval-based specification is the second fastest, and the
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Fig. 5: Precision and running time of RLola.

slack variable based specification has the highest computation time, taking 3.5
milliseconds for the whole trace of 1000 events. This is explained by the differ-
ent number of auxiliary streams required to track the measurement errors in
the different approaches. The performance could be improved by adding native
support for the underlying computational domains to the RTLola interpreter.

7 Conclusion

We have presented RLola, a robust extension of the monitoring framework
Lola. In RLola, the addition of slack variables allows us to track measurement
noise induced by inaccurate sensors throughout computations; boolean verdicts
explicitly account for the resulting inaccuracies. We demonstrated that RLola
monitors require, in general, an unbounded amount of memory. We addressed
this issue with a complete, but approximate, online monitoring algorithm based
on interval arithmetic and a construction of fully precise constant-memory mon-
itors for a rich fragment of RLola. Lastly, we demonstrated effectiveness by
evaluating the above methods with respect to running time and precision.

This paper has focused on online monitoring, where data is processed in real
time, and where trigger conditions are evaluated based on the information avail-
able during runtime. An interesting question for future work is how to adapt
this approach to offline monitoring. In offline monitoring, it is possible to eval-
uate trigger conditions with the benefit of hindsight: measurements that were
obtained only after a certain condition was evaluated may still allow for a more
precise re-analysis of the trigger value. At the same time, resource constraints
are less of a concern for offline monitoring. In online monitoring, the bounded-
memory guarantee is crucially important so that the monitor can run indefinitely
on constrained hardware. In offline monitoring, it is generally affordable to re-
evaluate trigger conditions using SMT-solving. A similar approach was recently
proposed for the offline monitoring of robust Signal Temporal Logic [12].
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10. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) 8th International Conference on For-
mal Modeling and Analysis of Timed Systems, FORMATS 2010, Klosterneuburg,
Austria, September 8-10, 2010. Proceedings. Lecture Notes in Computer Science,
vol. 6246, pp. 92–106. Springer (2010). https://doi.org/10.1007/978-3-642-15297-
9 9

https://crates.io/crates/criterion
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1007/978-3-031-65630-9_10
https://doi.org/10.1007/978-3-031-65630-9_10
https://doi.org/10.1007/978-3-030-53291-8_3
https://crates.io/crates/rtlola-interpreter
https://doi.org/10.1007/978-3-030-03044-5_10
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1007/978-3-642-54862-8_23
https://doi.org/10.1007/978-3-642-54862-8_23
https://doi.org/10.1007/978-3-642-39799-8_19
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-642-15297-9_9


18 Finkbeiner et al.

11. de Figueiredo, L.H., Stolfi, J.: Affine arithmetic: Concepts
and applications. Numer. Algorithms 37(1-4), 147–158 (2004).
https://doi.org/10.1023/B:NUMA.0000049462.70970.B6

12. Finkbeiner, B., Fränzle, M., Kohn, F., Kröger, P.: A truly robust sig-
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