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Abstract. Stream-based monitoring is a runtime assurance technique
for cyber-physical systems, where monitors are synthesized from formal
specifications. These monitors evaluate system behavior during execu-
tion, typically using data from physical sensors. However, sensor mea-
surements are subject to noise and calibration errors, introducing uncer-
tainty in the monitored data.

Robustness is the hyperproperty that requires that small variations in
the input - such as those caused by sensor noise - result in only small
variations in the monitor’s verdicts. In this talk, we present methods for
constructing robust monitors using symbolic slack variables and affine
arithmetic, and discuss the practical and theoretical challenges involved.

1 Robustness against Measurement Noise

Hyperproperties are properties that relate multiple execution traces of one or
more systems. Cyber-physical systems are safety-critical systems that observe
the physical environment through sensors. These sensors are subject to calibra-
tion errors and random measurement noise. As a result, each sequence of sensor
measurements corresponds to a set of possible ground-truth traces that are con-
sistent with the observed data.

Measurement Noise. Measurement noise is a well-known issue in cyber-physical
systems [4] and signal processing [II]. ISO Standard 5725 [9] models measure-
ment error as the combination of an unknown but fixed calibration error and a
random error for each sample. Sensor specifications typically provide bounds for
both error types.

Following [6/5], we define the set of input traces consistent with a sequence
of sensor measurements mg at discrete time points 7" C N. Let § > 0 be the
maximum calibration offset and ¢ > 0 the maximum random error. The set of
consistent input traces is:

Clms) 2 {n" € S |3FA€[-6,6]:Vt €T :3e € [—€, ¢ : 7" (t)+e+A =ms(t).}
Robustness. Robustness is a hyperproperty that requires small differences in

input traces to result in small differences in output traces. It has, for example,
been studied in the context of real-valued signals [10] and timed I/O systems [g].
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In the context of safety-critical systems, runtime monitors typically produce
Boolean verdicts to indicate system health. For clarity, we define the monitor’s
verdict to be true if at least one ground-truth trace that is consistent with the
observed measurements satisfies the monitoring condition. However, Boolean
verdicts do not align well with distance-based robustness definitions. Instead, we
define robustness against measurement noise as follows: For any ground-truth
trace that violates the monitoring condition, the monitor must return false for
any measurement sequence that is consistent with that trace. Intuitively, this
states that for a fixed, unsatisfying ground truth trace, the monitor is robust
against any admissible measurement noise imposed onto the trace.

The challenge in constructing such monitors lies in their real-time and mem-
ory constraints.

2 Constructing Robust Monitors

Interval Methods. A common approach to handle measurement noise in tempo-
ral logics is to use robust semantics based on interval arithmetic [3I2I7]. In this
method, input measurements are interpreted as intervals centered around the
observed values to account for uncertainty. However, interval arithmetic suffers
from the aliasing problem. For example, if a measured value i is represented
by the interval [—10,10], then computing ¢ — ¢ yields: [-10,10] — [-10,10] =
[—20,20]. Instead of the expected result 0, the operation doubles the uncer-
tainty. This over-approximation propagates through computations, resulting in
overly pessimistic error bounds. As a consequence, interval-based methods often
yield monitors with inaccurate or inconclusive verdicts.

Slack Variables. Instead we propose to track measurement noise throughout mon-
itoring computations through symbolic slack variables bounded by the interval
[—1, 1]. Input values are represented as an affine form: i = ms+5¢+5A. Here, m
is the scalar sensor measurement, € is a slack variable representing per-sample
random error, and A is a constant slack variable representing the sensor’s cali-
bration error. This formulation captures the measurement noise model described
above without introducing the aliasing problem of interval arithmetic.

In our approach [6], we incorporated slack variables into the stream-based
monitoring language Lola [1]. Consider the following simple Lola example that

sums input measurements:
The input stream on line one represents scalar

1 | input i

2 sensor measurements. These measurements
3 | constant d: Variable are augmented with slack variables in the
4 | output e: Variable . .

5 stream ia. The slack variables are declared
g output ia := i + Sxe + bxd in lines three and four: d is a constant slack

output sum := sum.last(or: 0) + ia . A .
variable, and e is a stream of slack variables,

producing a new symbolic variable for each measurement. The stream sum ag-
gregates the affine forms using the last operator to reference the previous value,
with an initial default.

Generating bounded-memory monitors for such specifications is non-trivial.
During execution, slack variables accumulate in memory because their con-
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crete values are unknown. For instance, given input measurements i, 12,3,
the monitor must retain the following affine expression for the sum stream:
Sumg:i1+5€1+5d+i2+562+5d+i3+563+5d

3 Experimental Evaluation

To solve this, we identified a fragment of the Lola with slack variables that can
indeed be monitored using only bounded memory. To evaluate its practicality,
we tested the approach on randomly generated traces.
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The left figure compares error margins for a single output stream. The grey
line represents the ground truth value. The orange area shows the error bounds
computed using interval arithmetic, while the blue area shows the tighter bounds
produced by our slack-variable-based method. The right figure shows the runtime
overhead of using slack variables. While some performance cost is incurred, it is
minor relative to the improvement in accuracy.

4 Talk Outline

The talk will be structured in three parts:

1. Robustness against Measurement Noise. We introduce the problem of
measurement noise in cyber-physical system monitoring and relate it to the
hyperproperty of robustness.

2. Robust Lola with Slack Variables. We present the integration of slack
variables into Lola, including its benefits and implementation challenges. We
explain the simplifications and approximations that are neccesary to achieve
constant memory monitors.

3. Future Directions. We discuss open questions and ongoing challenges in
managing slack variables within runtime monitors such as precise offline
monitoring and error estimation.

5 Conclusion

We presented an extension of the Lola monitoring framework to support ro-
bustness against measurement noise through the use of slack variables. These
symbolic variables allow uncertainty from sensor measurements to be tracked
throughout computation. While the approach can lead to unbounded memory
usage, we identified a fragment of the logic for which constant memory monitors
can be generated without loss of precision. Experimental results show that this
method significantly improves accuracy with minimal runtime overhead.
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