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Abstract. We present an automata-based algorithm to synthesize ω-
regular causes for ω-regular effects on executions of a reactive system,
such as counterexamples uncovered by a model checker. Our theory is
a generalization of temporal causality, which has recently been proposed
as a framework for drawing causal relationships between trace properties
on a given trace. So far, algorithms exist only for verifying a single causal
relationship and, as an extension, cause synthesis through enumeration,
which is complete only for a small fragment of effect properties. This work
presents the first complete cause-synthesis algorithm for the class of ω-
regular effects. We show that in this case, causes are guaranteed to be ω-
regular themselves and can be computed as, e.g., nondeterministic Büchi
automata. We demonstrate the practical feasibility of this algorithm with
a prototype tool and evaluate its performance for cause synthesis and
cause checking.

Keywords: Actual causality · Cause synthesis · Reactive systems ·
Temporal logic · Büchi automata

1 Introduction

Causality is a key ingredient for explaining model-checking results [5,15,38,46]
and a reasoning tool in several verification and synthesis algorithms [2,36,37].
These techniques have retrofitted causality definitions from philosophy [33,40]
and artificial intelligence [31], which were not designed for reactive systems with
infinite dynamics and often fall short in such ad-hoc applications. For instance,
popular approaches for explaining model-checking results highlight the coun-
terexample trace at events that constitute causes [7,18,32]. Yet, marking a (pos-
sibly infinite) set of events does not clearly describe the temporal behavior man-
ifested by them since, e.g., two events can be individually responsible for the
effect or only together. Similarly, the occurrence of events in the loop part of a
trace can be relevant, e.g., only once or infinitely often.

To address such reoccurring problems arising with causal reasoning in reac-
tive systems, Coenen et al. have recently proposed temporal causality for draw-
ing causal relationships between temporal properties on a given trace of a sys-
tem [19]. Causal properties can then be described symbolically with logics or
automata, which give a concise description of the possibly infinite causal behav-
ior, and are, moreover, amenable to verification algorithms.
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1.1 Temporal Causality

At its core, temporal causality uses counterfactual reasoning to infer a causal
relationship: A property is a cause for some effect property on a given trace,
where both properties hold, if on all closest traces that do not satisfy the cause,
the effect is not satisfied either. Additionally, the cause property has to be seman-
tically minimal. Hence, it is a form of actual causation [30], which describes the
concrete causal behavior in the given, actual observation (the trace), and not all
of the system behavior that may cause the effect (which loosely corresponds to
the concept of general causation).1
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Fig. 1. Example system.

To illustrate, consider the system
depicted in Fig. 1, where x and y
are inputs and e is an output. We
are interested in what input behav-
ior causes the effect e on the trace
π = ({x, e})ω – we skip the output
label of the first position. Our first
guess may be y ∨ x, which char-
acterizes all system traces that sat-
isfy e. However, this is too general
to describe the causal behavior on π.
After all, the left disjunct y is not even
satisfied by π. Let us see which condi-
tion fails. The counterfactual criterion
holds: The closest system traces that
do not satisfy y ∨ x also do not sat-
isfy the effect, as these are exactly the
traces that go directly to the lower state labeled with the empty set and loop
there infinitely. However, minimality is not satisfied, as the property x implies
y ∨ x (i.e., is semantically smaller) and also satisfies the counterfactual crite-
rion: the closest trace that does not satisfy it is ({})ω. In particular, the existence
of, e.g., trace {y, e}({})ω that also does not satisfy the cause x, but still satis-
fies the effect e, is irrelevant, as ({})ω is closer to π than the trace {y, e}({})ω.
It is worth pointing out that we only measure distance over inputs. Picking a
property that is too small fails the counterfactual criterion: If we picked x,
which implies x, there would be, e.g., the closest trace {}({x, e})ω that still
satisfies the effect.

In their original work [19], Coenen et al. showed that the requirements for a
valid causal relationship can be encoded as a hyperproperty [17], such that check-
ing whether a given ω-regular property is indeed the cause for a given ω-regular
effect on a trace can be decided via model checking. This has recently been
implemented in a sketch-based algorithm for enumerating causes [11], which is
complete for effects containing as the only temporal operator. That approach,
of course, covers only a tiny fragment of the original theory. How to compute
the cause for an arbitrary ω-regular effect has remained an open question.
1 Actual and general causality are also called token and type causality in the literature.
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1.2 Contributions and Structure

As it turns out, the intricate balance between the counterfactual criterion and
minimality of temporal causality gives rise to an intuitive order-theoretic char-
acterization of causes: The complement of the cause is the upward closure of
the negated effect property in the partial order defined by the similarity relation
(measuring distance from the actual trace). We illustrate the intuition behind
this characterization in Sect. 3.1, and formally develop it in Sect. 5.1.

The consequence of our characterization is that if we can compute the upward
closure of the negated effect E and the complement of the result, then we can
compute the cause for E on π. We show that if E is an ω-regular property, π in a
lasso shape, and the similarity relation is also defined by a (relational) ω-regular
property, such an upward closure can be constructed as a nondeterministic Büchi
automaton, which means that the cause (i.e., the complement of the automa-
ton) again is an ω-regular property. This approach forms the core of our cause
synthesis algorithm, which we describe in Sect. 5.

The complexity of our algorithm significantly scales in the size of the descrip-
tion of the similarity relation, which is problematic due to the complex and large
similarity relations of previous work. Coenen et al. [19] observed that with the
original counterfactual criterion, these similarity relations need to satisfy the
assumption that there is a non-empty set of closest traces for any actual trace
and candidate cause, otherwise the counterfactual condition can be vacuously
true. We tie this restriction to the limit assumption first introduced by Lewis [41]
and study similarity relations through this lens. Concrete similarity relations
that have been proposed so far [11,19] satisfy the limit assumption by adding
additional criteria, but these increase the size of the formula describing the sim-
ilarity relation significantly. In Sect. 4, we show that we can instead modify the
counterfactual condition of the causality definition to allow similarity relations
that do not satisfy the limit assumption, using Lewis’ semantics for counterfactu-
als [41], as extended to non-total similarity relations by Finkbeiner and Siber [23].
Crucially, this modification retains the original semantics of Coenen et al. for
similarity relations that satisfy the limit assumption as long as the actual trace
is deterministic. Hence, it generalizes our closure-based characterization and the
corresponding algorithm to significantly simpler similarity relations. All proofs
can be found in the full version of this paper [22].

In Sect. 6, we show through experiments with our prototype tool CORP that
our modified counterfactual criterion leads to significantly faster computations in
practice. We further compare our cause synthesis algorithm with the incomplete
sketching approach of the tool CATS [11]. Last, we extend our approach to cause
checking through cause synthesis with an additional equivalence check, which we
compare with the checker implemented in CATS.

Contributions. In summary, we make the following contributions:

– We extend the theory of temporal causality to similarity relations that do not
satisfy the limit assumption.
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– We prove an order-theoretic characterization of causes as downward closed
sets of the similarity relation.

– Based on this characterization, we develop the first complete method for ω-
regular cause synthesis.

– We present and evaluate a prototype implementation of our approach.

2 Preliminaries

We start by recalling preliminaries regarding our system model. Then, we provide
background on automata and logics for describing temporal properties.

Systems and Traces. We model systems as nondeterministic finite state
machines T = (S, s0,AP , δ, l) where S is a finite set of states, s0 ∈ S is the
initial state, AP = I ∪· O is the set of atomic propositions consisting of inputs
I and outputs O , δ : S × 2I → 2S is the transition function determining a set
of successor states for a given state and input, and l : S → 2O is the labeling
function mapping each state to a set of outputs. A trace of T is an infinite
sequence π = π[0]π[1] . . . ∈ (2AP )ω, with π[i] = A ∪ l(si+1) for some A ⊆ I
and si+1 ∈ δ(si, A) for all i ≥ 0, i.e., we skip the label of the initial state in
the first position. traces(T ) is the set of all traces of T . For two subsets of
atomic propositions V ,W ⊆ AP , let V |W = V ∩W , π|W = π0|W π1|W . . . and
π =V π′ iff π|V = π′|V for traces π, π′. A trace π0 is deterministic in T iff for
all π1 ∈ traces(T ) : π0 =I π1 → π0 = π1. A trace π is lasso-shaped, if there exist
i, j = i+1, k ∈ N such that π = π0 . . . πi · (πj . . . πk)ω, we then define |π| = k−1.

Büchi Automata. A nondeterministic Büchi automaton (NBA) [13] is a tuple
A = (Q,Σ,Q0, F,Δ), where Q denotes a finite set of states, Σ is a finite alphabet,
Q0 ⊆ Q is a set of initial states, F ⊆ Q is the set of accepting states, and
Δ : Q×Σ → 2Q is the transition function that maps a state and a letter to a set
of possible successor states. The size of an NBA |A| is the number of its states
|Q|. A run of A on an infinite word w = w1w2 · · · ∈ Σω is an infinite sequence
r = q0q1 · · · ∈ Qω with q0 ∈ Q0 and qi+1 ∈ Δ(qi, wi) for all i ∈ N. A run r of
the NBA is accepting if there exist infinitely many i ∈ N such that qi ∈ F . The
language L(A) is the set of all words that have an accepting run. We say that
some trace property P ⊆ (2A)ω is ω-regular, if there is an NBA A such that
L(A) = P. A trace π satisfies any P ⊆ (2A)ω, denoted by π � P, iff π|A ∈ P.

Linear-Time Temporal Logic. We use Linear-time Temporal Logic (LTL)
[44] to succinctly specify a fragment of ω-regular properties throughout the
paper. LTL formulas are built using the following grammar, where a ∈ AP :

ϕ ::= a | ¬ϕ | ϕ ∧ ϕ | ϕ | ϕ U ϕ .
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The semantics of LTL are given by the following satisfaction relation, which
recurses over the positions i of the trace π.

π, i � a iff a ∈ π[i]
π, i � ¬ϕ iff π, i � ϕ
π, i � ϕ ∧ ψ iff π, i � ϕ and π, i � ψ
π, i � ϕ iff π, i + 1 � ϕ
π, i � ϕ U ψ iff ∃j ≥ i such that π, j � ψ and ∀i ≤ k < j. π, k � ϕ

A trace π satisfies a formula ϕ, denoted by π � ϕ iff the formula holds at
the first position: π, 0 � ϕ. The language L(ϕ) is the set of all traces that satisfy
a formula ϕ. We also consider the usual derived Boolean connectives: ∨, →, ↔;
and temporal operators: ϕ R ψ ≡ ¬(¬ϕ U ¬ψ), ϕ ≡ true U ϕ, ϕ ≡ false R ϕ.

Relational Properties. Relational properties, or, hyperproperties [17], allow us
to relate multiple system executions, and reason about their interaction. Coun-
terfactual reasoning often is a hyperproperty, and in particular, temporal causal-
ity as defined by Coenen et al. was formally shown to be a hyperproperty [19].
Many logics to express temporal hyperproperties have been suggested in recent
years (e.g., [6,8,10,28]), the most prominent one being HyperLTL [16]. In this
paper, we do not use a hyperlogic to express temporal causality, but we use the
related notion of zipped traces (e.g., [9]) for defining similarity relations. A zipped
trace of three traces π0,1,2 is defined as zip(π0, π1, π2)[i] = {(a, tk) | a ∈ πk[i]},
i.e., we construct the zipped trace from disjoint unions of the positions of the
three traces, where atomic propositions from the traces π0,1,2 are distinguished
through pairing them with the trace variables t0,1,2.

3 Overview: The Topology of Causality

Our main results on cause synthesis heavily rely on a characterization of causes
as certain downward closed sets of system traces that are ordered by a similarity
relation. We illustrate the main intuition behind this characterization in Sect. 3.1.
Then, in Sect. 3.2, we outline how we extend this result to more general similarity
relations than originally considered by Coenen et al. [19].

3.1 Actual Causes as Downward Closed Sets of Traces

Our central theorem states that the temporal cause for an effect E on some actual
trace π is the largest subset of E that is downward closed2 in the preordered
set of system traces (traces(T ),≤π), where ≤π is a (comparative) similarity
relation that orders traces based on their similarity to π. Figure 2a illustrates
this abstractly. Arrows together with nodes represent system executions, whose

2 X ⊆ traces(T ) is downward (upward) closed in (traces(T ), ≤π) if for all πx ∈ X and
πt ∈ traces(T ), πt ≤π πx (πx ≤π πt) implies πt ∈ X.
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Fig. 2. Two highlighted aspects of the cause C in the preordered set (traces(T ), ≤π).
Figure 2a illustrates that the cause is the largest downward-closed subset of the effect
E. The quantifiers in Fig. 2b show which traces outside of the cause are required to
avoid the effect in our formalization (without limit assumption) and in Coenen et al.’s
definition [19] (with limit assumption). (Color figure online)

traces form traces(T ) and are ordered by the irreflexive reduction <π of the
similarity relation. The set of system traces is, in general, infinite, such that
there may be infinitely many other traces which are omitted from the illustration
for sake of clarity. However, note that similarity relations must be designed such
that all traces are further away from the actual trace π than itself, i.e., π is a
minimum of ≤π. The set of traces that satisfy the effect is depicted by the area
that is colored in light blue. The actual trace π is an element of this set, as this
is the trace on which the cause for a given effect is analyzed.

Coenen et al.’s temporal causality is counterfactual in nature, and now
requires that the closest traces outside of the cause C, which in Fig. 2a is marked
by the red border, do not satisfy the effect. In the illustration, this is reflected
by πb and πc not satisfying the effect, i.e., not being in a light blue area. At the
same time, Coenen et al. require the cause to be the smallest set that satisfies
this, which means that only traces that satisfy the effect are included: Otherwise,
the upward closure3 of traces that do not satisfy the effect could be removed.
Hence, in Fig. 2a the area inside the red border is light blue.

In this paper, we show that the balance between these criteria defines causes
that are the largest subsets of E that are downward closed in the preordered
set (traces(T ),≤π). We also propose an algorithm that constructs these causes
for effects that are ω-regular properties and traces that are in a lasso-shape.
Our algorithm first constructs a nondeterministic Büchi automaton for the com-
plement of the cause C. This complement is the upward closure of the negated
effect E, which means it includes all traces for which there exists an at-least-as
close trace that does not satisfy the effect. Since ≤π is reflexive, this naturally
includes all traces in E, such as πb and πc in Fig. 2a. It also includes all traces
that are further away than a trace in E, such as πa and πd.

3 The upward closure of a set X is the smallest upward closed set containing X.
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In the end, these mechanisms make temporal causality a form of actual
causality that describes a local generalization of the behavior that causes the
effect on the actual trace. In the introductory example from Fig. 1 with the
actual trace π = {x, e}ω, traces in, e.g., L(y ∧ ¬ x) are all further away from
π than the trace {}ω, which is in E = L( ¬e). Hence, L(y ∧ ¬ x) is included
in the upward closure of E, and none of its elements is included in the cause.

3.2 Causality Without the Limit Assumption

With our approach based on set closure, we can solve a central issue of temporal
causality: Since the preordered set (traces(T ),≤π) is infinite, there only exist
traces in C that are the closest with respect to the actual trace π if (C,≤π) is
well-founded. If this is the case for all possible pairs of actual trace π and cause
candidate C, we say the similarity relation satisfies the limit assumption, after
Lewis [41], who formalized it for counterfactual modal logic. Since Coenen et al.’s
definition [19] requires that all closest traces avoid the effect, it is restricted to
similarity relations that satisfy this assumption. Their counterfactual condition
is illustrated in the lower part of Fig. 2b. If the limit assumption holds, any
descending chain πj ≥π πj−1 ≥π . . . stabilizes at some πi, for which Coenen et
al. require πi ∈ E.

If the limit assumption does not hold (upper part of Fig. 2b), there may be
infinite chains πj ≥π πj−1 ≥ . . . for which a closest πi does not exist. In these
instances, Coenen et al.’s criterion would be vacuously true. This is particularly
problematic as the canonical similarity relation ≤subset

π does not satisfy the limit
assumption. This metric orders two traces as πj ≤subset

π πk if the changes between
πj and π are a subset of the changes between πk and π. This may lead, for
example, to the infinite chain {}ω ≥subset

π {x}{}ω ≥subset
π . . . in the preordered set

(L( ¬x),≤subset
π ), where π = {x}ω. Coenen et al. add additional constraints

on top of ≤subset
π to ensure that it satisfies the limit assumption. These, however,

make cause checking more expensive, as observed by Beutner et al. [11], who
therefore combine ≤subset

π with a vacuity check. While this is computationally
better, this check simply fails in instances as outlined above, and so certain
causes cannot be checked by this method [11].

In this work, we solve this conundrum by modifying the definition of temporal
causality to accommodate similarity relations that satisfy the limit assumption.
We change the central counterfactual condition from a universal quantification
over the closest traces in C to an ∀∃-quantification over all traces πj ∈ C. For
each such trace πj , we require the existence of a closer trace πi ≤π πj that does
not satisfy the effect. This is depicted in the upper part of Fig. 2b. Naturally,
this quantification mirrors exactly the characterization of cause-complements
via upward closed sets (cf. Sect. 5.1). On the theoretical side, we show that if
the similarity relation satisfies the limit assumption and a minor assumption
on nondeterminism is met, our definition is equivalent to Coenen et al.’s origi-
nal definition (Sect. 4.3). On the practical side, we confirm experimentally that
our approach leads to significant improvements through the accommodation of
simpler similarity relations that do not satisfy the limit assumption (Sect. 6).
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4 Generalized Temporal Causality

In this section, we generalize the definition of temporal causality to accommodate
similarity relations that do not satisfy the limit assumption. We first recall sim-
ilarity relations and formalize the limit assumption (Sect. 4.1). Then we present
our updated definition of temporal causality (Sect. 4.2). Last, we prove that it
retains the original semantics in the special case considered by Coenen et al.
with a minor additional assumption on nondeterminism (Sect. 4.3).

4.1 Similarity Relations and the Limit Assumption

A comparative similarity relation ≤π ⊆ (2I)ω × (2I)ω is a partial order that
orders traces by their comparative distance from the given actual trace π, i.e., it
gives no quantitative but a relative measurement of distance: π0 ≤π π1 means
π0 is at-least-as close to π as π1. We measure distance over the set of inputs I,
i.e., for two traces π0,1 ∈ (2AP )ω we are only interested in π0|I ≤π π1|I .

If I is clear from the context, we write π0 ≤π π1. We require the actual trace
to be closer to itself than any other trace, i.e., π ≤π π′ for all π′ ∈ (2AP )ω. The
ternary relation ≤, where (π0, π1, π2) ∈ ≤ iff π1 ≤π0 π2, encodes the comparative
similarity relations of all possible actual traces π0.

Example 1. To illustrate our formalism for similarity relations, consider the
following subset-based similarity relation ≤subset defined via the zipped trace
zip(π0, π1, π2) ∈ (2AP×{t0,t1,t2})ω. To ease comprehension, for some a ∈ AP we
write aactual for (a, t0), aclose for (a, t1), and afar for (a, t2) to explicitly iden-
tify, e.g., propositions on the actual trace, in a given formula. We then have
πclose ≤subset

πactual
πclose iff

zip(πactual, πclose, πfar) �
∧

i∈I

(
(iactual �↔ iclose) → (iactual �↔ ifar)

)
.

For the three traces πactual, πclose, πfar this requirement states that the changes
between πactual and πclose are a subset of the changes between πactual and πfar,
where we define the changes between two traces π0, π1 as changes(π0, π1) =
{(a, i) | π0[i] �={a} π1[i]}. For example, let π = {x}({})ω, π0 = {}({})ω, π1 =
{}{y}({})ω and I = {x, y}. Then, π0 ≤π π1, since changes(π, π0) = {(x, 0)} ⊆
{(x, 0), (y, 1)} = changes(π, π1). The trace π2 = {x}({y})ω, however, is incom-
parable to π0 and π1, as changes(π, π2) = {(y, j) | j ≥ 1} is not in any subset
relationship with the respective sets for π0, π1.

The similarity relations considered in previous works [11,19] are all funda-
mentally based on ≤subset as defined in Example 1, with added conditions to
avoid infinite chains of closer traces. This is directly tied to the limit assumption
first studied by Lewis in his seminal work on counterfactual modal logic [41]. In
our setting, this assumption can be formalized as follows.
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Definition 1 (Limit Assumption). A similarity relation ≤ ⊆ (2I)ω ×(2I)ω ×
(2I)ω satisfies the limit assumption, if for all traces π ∈ (2I∪O)ω and all possible
causes C ⊆ (2I)ω, we have that (C, <π) is well-founded, i.e., there is no infinite
descending chain π0 >π π1 >π . . . with πi ∈ C.

This requirement means that there always exist closest counterfactual traces
that do not satisfy the cause no matter which actual trace we pick (except if
all traces satisfy the cause). These closest traces would be ideal candidates for
causal analysis, but unfortunately, they do not always exist, in particular not for
the similarity relation ≤subset, as stated in Proposition 1. Note that all proofs
can be found in the full version of this paper [22].

Proposition 1. ≤subset does not satisfy the limit assumption.

Since the original definition of Coenen et al. [19] quantifies universally over
closest traces, it can be vacuously satisfied if the similarity relation does not
satisfy the limit assumption. Previous works have therefore added additional
constraints. For instance, Beutner et al. [11] propose ≤full, which additionally to
the constraints of ≤subset (cf. Example 1) requires the following:

zip(πactual , πclose , πfar ) �
∧

i∈I

(
(iactual �↔ iclose) → (iclose ↔ ifar )

)
.

This encodes that whenever πclose differs differs from πactual on some input
at infinitely many locations, then πfar agrees with πclose on this input. Hence,
on any chain in <full

π , infinite changes on some i ∈ I eventually get converted
into finite ones, which ensures finiteness of the chain since there are only finitely
many atomic propositions. We confirm that this results in ≤full satisfying the
limit assumption.

Proposition 2. ≤full satisfies the limit assumption.

While satisfying the limit assumption is, in principle, useful, in the case of
≤full this comes at a significant cost: Its logical description contains a large
conjunction over the inputs, each containing an implication between temporal
formulas. Hence, any algorithmic approach to cause synthesis (and checking)
that uses ≤full will scale poorly in the size of I. This motivates us to develop a
modified definition of temporal causality that can directly work with the smaller,
canonical similarity relation ≤subset, while retaining most of the original seman-
tics of Coenen et al. for similarity relations that satisfy the limit assumption,
such as ≤full.

4.2 A General Definition of Temporal Causality

We now develop our generalized definition of temporal causality for similarity
relations that do not satisfy the limit assumption.
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The idea behind our generalization stems from counterfactual modal logic
as formalized by Lewis [41]. Lewis’ semantics a priori only work for total sim-
ilarity relations, making them unsuitable for our setting. However, they were
recently extended to non-total similarity relations by Finkbeiner and Siber [23].
We apply these semantics to our concrete problem to obtain a well-defined notion
of causality for similarity relations that do not satisfy the limit assumption. In
Sect. 4.3, we show that our definition retains the original semantics proposed by
Coenen et al. for similarity relations that satisfy the limit assumption.

Definition 2 (Temporal Causality). Let T be a system, π ∈ traces(T ) a
trace, ≤π a similarity relation, and E ⊆ (2AP )ω an effect property. We say that
C ⊆ (2I)ω is a cause of E on π in T if the following conditions hold.

SAT: For all π0 ∈ traces(T ) such that π0 =I π we have π0|I ∈ C and π0 ∈ E.
CF: For all π0 ∈ C there is an at-least-as close trace π1 ∈ C, i.e., with π1 ≤π π0,

such that there is a π2 ∈ traces(T ) with π1 =I π2 and π2 ∈ E.
MIN: There is no C′ ⊂ C such that C′ satisfies SAT and CF.

The main idea of the counterfactual criterion CF is that for every trace π0

that does not satisfy the cause, there exists a closer trace π2 that does not satisfy
the cause and the effect. The additional quantification over π1 is a technicality
included because the cause C ⊆ (2I)ω consists of input sequences while π2 ∈
traces(T ) is a full system trace. It also closely mirrors the structure of Coenen
et al.’s PC2 criterion (cf. Definition 3) which it neatly generalizes to similarity
relations that do not satisfy the limit assumption: If the assumption holds, then
a π2 is, in particular, required for the closest traces π0 in C, for which π2 can
only be instantiated by themselves. Hence, the closest traces are required to not
satisfy the effect (we develop this comparison more formally in Sect. 4.3). If the
limit assumption does not hold and there exists an infinite chain of ever-closer
traces π0 ∈ C, the condition requires that for all these π0 there is a closer π2

that avoids the effect, even in infinity: No matter how far we descend on this
chain, we are always guaranteed that we can descend further towards a closer
counterfactual trace that does not satisfy the effect.

Example 2. To illustrate these conditions with a concrete example, consider the
system from Fig. 1, the trace π = {x, e}ω, the effect E = L( e), and the
cause C = L( x), with similarity relation ≤subset. It is easy to that SAT
is satisfied, as the system is deterministic and π|I = {x}ω ∈ C and π ∈ E.
There is, as discussed in Sect. 3.2, an infinite chain in (L( ¬x),≤subset

π ) and,
hence, no closest trace. We require for all π0 ∈ L( ¬x) = C a π1 ∈ C with
π1 ∈ L( ¬e) = E and a π2 =I π1 such that π2 ∈ E. In this case, we can
pick π1 as π0 and π2 as the corresponding system trace, hence CF is satisfied.
To see that MIN is satisfied, consider any strict subset C′ ⊂ C. Hence, there is
some π′ ∈ C′ such that π′ � x. Then, all system traces π2 with π2 ≤π π′

satisfy π2 � x by the definition of ≤subset
π , and in this system this also means

π2 � e. Hence, C satisfies MIN because no strict subset satisfies CF.
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Remark 1. Note that Definition 2 is not restricted to similarity relations that
can be expressed via zipped traces and LTL formulas as used in the previous
examples, but instead applies to any comparative similarity relation as defined
at the start of this section.

4.3 Proving Generalization

This section is dedicated to proving that our generalization (Definition 2) is
conservative, i.e., agrees with Coenen et al.’s original definition whenever the
underlying similarity relation satisfies the limit assumption and the actual trace
is deterministic. First, we recall Coenen et al.’s definition.

Definition 3 (Coenen et al. [19]). Let T be a system, π ∈ traces(T ) a trace,
≤π a similarity relation, and E ⊆ (2O)ω an effect property. C ⊆ (2I)ω is a cause
of E on π in T if the following three conditions hold.

PC1: π|I ∈ C and π ∈ E.
PC2: For all closest counterfactual traces π0 ∈ C, i.e., traces for which there

are no closer traces π1 ∈ C with π1 <π π0, there exists a π2 ∈ traces(T ) such
that π0 =I π2 and π2 ∈ E.

PC3: There is no C′ ⊂ C such that C′ satisfies PC1 and PC2.

Unlike in our updated definition, PC1 only works if the actual trace π is
deterministic. If the π is nondeterministic, the effect can be avoided with no
modifications at all to π (which is minimal), hence the cause should be empty.
PC1 does not reflect this and allows to build a cause that includes π|I (and pos-
sibly more), wrongfully implying that a modification of the sequence is required
to avoid the effect. PC2 may be vacuously satisfied if the similarity relation does
not satisfy the limit assumption, as outlined in Sect. 3.2.

Remark 2. Note that Coenen et al. consider traces π ∈ traces(CT
π ) of the coun-

terfactual automaton CT
π for PC2. This automaton models contingencies, which

allow to partially reset outputs back to as they were on the actual trace π, and to
change the system state accordingly. For PC2 in Definition 3, this means that the
closest counterfactual traces π2 do not have to avoid the effect themselves, but
together with some contingency. This mechanism, inspired by Halpern’s mod-
ified version of actual causality [29], was extended by Coenen et al. [18,19] to
lasso-shaped traces and finite state machines to sometimes obtain more accu-
rate causes. However, to guarantee meaningful results, the original system has
to have unique output labels. Beutner et al.’s implementation [11] therefore
allows to toggle the usage of contingencies. Similarly, our generalization works
both with contingencies and without. For the latter case, one simply supplants
T with CT

π in both definitions. Our cause synthesis algorithm can also handle
contingencies, and our implementation allows to toggle them as a feature. Our
theoretical contribution is independent of this detail.



98 B. Finkbeiner et al.

We now proceed to show the equivalence between our definition (Defini-
tion 2) and Coenen et al.’s definition (Definition 3) in case the limit assumption
is fulfilled and the actual trace is deterministic. We start with proving the equiv-
alence of the counterfactual conditions CF and PC2, which holds regardless of
nondeterminism on the actual trace.

Lemma 1. Let T be a system, π ∈ traces(T ) a trace, C ⊆ (2I)ω a cause prop-
erty, and E ⊆ (2AP )ω an effect property. Let ≤ be a similarity relation that
satisfies the limit assumption. Then we have that PC2 is satisfied iff CF is
satisfied.

With Lemma 1 at hand, we only need to address the differences between
PC1 and SAT. It is easy to see that their equivalence fails when behavior on
the actual trace π is nondeterministic, i.e., when there is another trace that
is input-equivalent to π but does not satisfy the effect. In such a case, PC1
is satisfied but SAT is not. Hence, our definition is equivalent to Coenen et
al.’s definition only in deterministic systems, as we deliberately diverge in the
case of nondeterminism on the actual trace. Notably, Lemma 1 holds for both
deterministic and nondeterministic systems, and determinism is only relevant on
the actual trace. The restriction to output-only effects E ⊆ (2O)ω is inherited
from Coenen et al.’s definition, but technically not necessary.

Theorem 1. Let ≤ be a similarity relation that satisfies the limit assumption.
Then C ⊆ (2I)ω is a cause for E ⊆ (2O)ω on a trace π that is deterministic in
T according to our definition (Definition 2) if and only if it is a cause according
to Coenen et al.’s definition (Definition 3).

5 Cause Synthesis

In this section, we develop our algorithm for synthesizing causes. In Sect. 5.1 we
formalize the characterization of a cause as the complement of the upper closure
of the negated effect, which we have discussed intuitively in Sect. 3.1. In Sect. 5.2
we provide an algorithm for cause synthesis in the ω-regular setting, when the
effect is given as a nondeterministic Büchi automaton and the actual trace is in
a lasso shape.

5.1 Proving Our Characterization

For this section, we fix a system T , an actual trace π ∈ traces(T ), a similarity
relation ≤, and an effect E. We now show that, if it exists, the cause for E on π
is the complement of the upward closure of E in (traces(T ),≤π). Formally, we
construct a set D that is a cause for E on π via its complement:

D = { ρ ∈ (2I)ω | ∃σ ∈ traces(T ). σ ≤π ρ ∧ σ ∈ E } , hence

D = { ρ ∈ (2I)ω | ∀σ ∈ traces(T ). σ ≤π ρ → σ ∈ E } .

The set D directly corresponds to the (unique) cause if there exists one, and is
empty if there is none. We establish this in a series of lemmas.
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Lemma 2. If the set D is non-empty, it is a cause for E on π in T .

Lemma 2 shows that D satisfies Definition 2 assuming it is non-empty. The
assumption is only required for SAT, as this criterion requires that π and all
input-equivalent traces are in the cause. CF follows from the definition of D, and
for MIN we can show that any strict subset of D does not satisfy CF.

Lemma 3. Iff the set D is empty, there exists no cause that satisfies SAT.

Lemma 3 serves two purposes. First, it helps us argue for the completeness
of our construction. Second, it shows that the only reason why there may be no
cause is due to a nondeterministic actual trace. To fully argue completeness, we
show that causes are unique, and hence D is the only relevant cause in all cases.

Lemma 4. Causes are (semantically) unique: There can be no two sets C �= C′

that are both causes for some effect property E on a trace π in some system T .

Remark 3. This does not mean that there can only exist a single causal event,
such as “a at position 0” or “b at position 1”, in a given scenario. Instead,
Lemma 4 states that the semantics of the symbolic description of the causal
behavior in a given scenario is unique. It is precisely the idea of temporal causal-
ity to encompass multiple single events in a single symbolic description, e.g.,
through a conjunction such as a ∧ b.

5.2 Cause-Synthesis Algorithm for ω-Regular Effects

In Sect. 5.1, we have established a direct characterization of causes as downward
closed sets, independent of any concrete descriptions of cause, effect, and trace.
In this section, we develop an automata-based algorithm for synthesizing causes
of ω-regular effects given, e.g., by a nondeterministic Büchi automaton (NBA),
on lasso-shaped traces. We assume that the relation ≤ ⊆ (2I)ω × (2I)ω × (2I)ω

is definable by a relational ω-regular property P≤ ⊆ (2I×{t0,t1,t2})ω, such that
(π0, π1, π2) ∈ ≤ iff the zipped trace zip(π0, π1, π2) satisfies P≤. Note that this
applies to all concrete similarity relations introduced in Sect. 4. We show that
under these assumptions, the set D from Sect. 5.1 can be constructed as an
NBA. First, we construct an NBA for D and subsequently complement it. This
is necessary because we start out from an NBA representation for the effect, and
assume the similarity relation to be given by an NBA as well. Since the NBAs
acceptance condition is existential, we need the additional complementations to
express the universal quantification over the closer traces σ appearing in the
definition of D.

The main technical difficulty that remains is to ensure that the conditions
on the three traces πactual, πclose and πfar, as they appear in the alphabet of a
similarity relation, are applied consistently, and that the quantification over σ in
D, which corresponds to πclose, is resolved at the correct step, as the automaton
should range over the inputs I and not, e.g., over I × {t0, t1, t2} as used by the
similarity relation.
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Similarity Relation. Our starting point is the NBA for the similarity relation
defined by the ω-regular property P≤: AI

≤ = (Q≤, 2I×{t0,t1,t2}, Q0
≤, F≤,ΔI

≤). The
automaton AI

≤ only reasons about inputs and uses tuples with the trace vari-
ables t0, t1 and t2 to encode whether the input appears on the actual, closer or
farther trace, respectively. We lift the automaton to the full set of atomic propo-
sitions as the automaton A≤ = (Q≤, 2(I×{t0,t1,t2})∪(O×{t0,t1}), Q0

≤, F≤,Δ≤). The
transition relation is defined as follows, for a letter w: q2 ∈ Δ≤(q1, w) iff q2 ∈
ΔI

≤
(
q1, w \ (O × {t0, t1})

)
. Hence, A≤ specifies the same relation between the

inputs of the three traces as AI
≤, but allows arbitrary output behavior. Its alpha-

bet does not contain outputs for π2, as these traces eventually form the elements
of the cause, which only ranges over the inputs.

Effect. Next, we modify the NBA A∗
E = (QE, 2AP , qE, FE,Δ

∗
E) for the ω-regular

effect E such that it refers to the closer trace t1 and ranges over the same alphabet
as A≤. We obtain AE = (QE, 2(I×{t0,t1,t2})∪(O×{t0,t1}), qE, FE,ΔE) with:

q2 ∈ ΔE

(
q1, (w × {t1}) ∪ X ∪ Y

)
iff

q2 ∈ Δ∗
E(q1, w) ∧ X ⊆ (AP × {t0}) ∧ Y ⊆ (I × {t2}) .

Hence, AE restricts π1 to be in E by restricting it to the transition relation of
A∗

E, while allowing an arbitrary trace π0 and arbitrary input sequence in π2.

Intersection. For the conjunction that defines the set D, we intersect A≤ with the
complement of AE to obtain A∩ = (Q∩, 2(I×{t0,t1,t2})∪(O×{t0,t1}), Q0

∩, F∩,Δ∩)
such that: A∩ = A≤ ∩ AE.

System Product. As the next step, we construct the product of the automaton
A∩ with the system T = (S, s0,AP , δ, l), ensuring that the atomic propositions
t1 are picked from a valid system trace. When building the product, we project
away explicit atomic propositions paired with t1, as the traces of the desired set
D are only the traces paired with t2. The resulting automaton is A× = (S ×Q∩,
2(I×{t0,t2})∪(O×{t0}), {s0} × Q0

∩, S × F∩,Δ×), where

Δ×
(
(si, qi), w

)
=

{
(si+1, qi+1) | ∃A ⊆ I. si+1 ∈ Δ∩(si, A)

∧ qi+1 ∈ Δ∩(qi, (l(si+1) ∪ A) × {t1})
}

.

Cause Automaton. To obtain the final result, we first complement the automaton
from the previous step to obtain A× = (Q×, 2(I×{t0,t2})∪(O×{t0}), Q0

×, F×,Δ×),
and then build the product with the trace. At the same step we project away
atomic propositions paired with t0, and remove the trace variable t2 to obtain the
alphabet 2I for the cause. For the lasso-shaped trace π = π0 . . . πj−1 ·(πj . . . πk)ω

we define the set of positions as Π = {π0, . . . , πk} and a successor function
succ : Π �→ Π as succ(πr) = πr+1 for r < k, and succ(πk) = πj . The cause
automaton is then AD = (Π × Q×, 2I , {π0} × Q0

×,Π × F×,ΔD), where

ΔD

(
(πi, qi), w

)
=

{
(succ(πi), qi+1) | qi+1 ∈ Δ×

(
qi, (πi × {t0}) ∪ (w × {t2})

)}
.
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From the lemmas established in Sect. 5.1, we conclude that there is a cause
iff AD is non-empty, and then the cause is uniquely determined by its language.

Corollary 1. The language of AD is empty iff there is no cause C for E on π
in T , and if L(AD) is non-empty, then it is the unique cause for E on π in T .

We can also state an upper bound on the size of AD, which is dominated by
the potentially exponential growth from NBA complementation [47].

Proposition 3. If the effect E and the similarity relation ≤ are given as NBAs
AE and A≤, respectively, then the size of AD is in |π| · 2(2

O(|AE|)·|A≤|·|T |).

Note that the doubly-exponential upper bound in the description of E per-
sists independent of whether it is given as an NBA or LTL formula. In the latter
case, we simply translate the negated formula, which again leads to an expo-
nential blow-up. In theory, the description does make a difference for ≤: If it is
represented as a formula, we first need to translate it with a potentially expo-
nential increase in size, hence it would move up one exponent in the bound. In
practice, the canonical similarity relation ≤subset can always be represented by
a 1-state NBA, such that its contribution to the bound is less relevant.

While the stated upper bound may seem daunting, it mirrors the (tight)
bounds of related problems, such as LTL synthesis [45]. In the following section,
we show that, not only can our approach solve many cause-synthesis problems in
practice, it also significantly improves upon previous methods for cause checking.

6 Implementation and Evaluation

In this section, we evaluate a prototype tool implementing our cause-synthesis
approach, called CORP - Causes for Omega-Regular Properties.4 Our prototype
is written in Python and uses Spot [21] for automata operations and manipula-
tion. The prototype allows for both cause synthesis and cause checking, where in
the latter case the correct cause is first synthesized and than checked for equiv-
alence against the cause candidate. This allows for a direct comparison with
the cause checking tool CATS [11] in Sect. 6.2. Before, we report on our exper-
iments on cause synthesis, where we compare our method with the incomplete,
sketch-based approach of CATS. All experiments were carried out on a machine
equipped with a 2.8 GHz Intel Xeon processor and 64 GB of memory, running
Ubuntu 22.04.

6.1 Cause Synthesis

We conducted three different experiments that highlight how the similarity rela-
tions, effect size and system size contribute to the performance of our algorithm.
4 Our prototype is on GitHub: https://github.com/reactive-systems/corp. Our full

evaluation can be reproduced with the artifact on Zenodo: https://doi.org/10.5281/
zenodo.10946309.

https://github.com/reactive-systems/corp
https://doi.org/10.5281/zenodo.10946309
https://doi.org/10.5281/zenodo.10946309
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Table 1. Cause synthesis for arbiters. |T | is the number of system states. In all
instances, π is the (unique) trace where all n clients send a request at every posi-
tion, which has length |π| = n. ϕE is the effect. We report the time taken to synthesize
the causal NBA with the metrics ≤full and ≤subset in seconds and the respective NBA
sizes |Afull

C | and |Asubset
C |, and provide an LTL description ϕC of the NBA language

(guessed manually). TO denotes the timeout of 60 seconds.

Instance |T | ϕE t(≤full) t(≤subset) |Afull
C | |Asubset

C | ϕC

Spurious 1 1 g0 0.11 0.11 1 1 true

Spurious 2 2 g0 0.11 0.11 1 1 true

Spurious 3 3 g0 0.21 0.11 1 1 true

Spurious 4 4 g0 TO 0.11 - 1 true

Unfair 2 2 ¬g0 0.11 0.11 1 1 rprio

Unfair 3 4 ¬g0 0.16 0.11 1 1 rprio

Unfair 4 6 ¬g0 TO 0.11 - 1 rprio

Full 1 1
g0
g0

0.11
0.11

0.11
0.11

2
2

2
2

r0
r0

Full 2 4
g0
g0

0.11
0.11

0.11
0.11

2
12

2
4

r0
r0

Full 3 11
g0
g0

0.16
2.04

0.11
0.16

2
215

2
24

r0
r0

Full 4 46
g0
g0

TO
TO

0.11
33.22

-
-

2
214

r0
r0

Arbiters. We computed causes on traces of resource arbiters to compare the
performance of our algorithm under different similarity relations, whose logical
description scales in the number of system inputs. An arbiter instance is parame-
terized by a number of clients n, each with its own input. This let us easily scale
the size of the similarity relation’s description. For some number n of clients
(indexed by k) that request access to a shared resource with a request rk, an
arbiter grants mutually exclusive access to the resource with a grant gk. We con-
sidered different arbiter strategies, and for each we synthesize causes as NBAs
Afull

C and Asubset
C with the similarity relations ≤full and ≤subset, respectively. The

results of these instances are depicted in Table 1. Spurious arbiters simply give
out grants to all clients in a round-robin manner, regardless of previous requests.
Unfair arbiters prioritize one client with request rprio over the others, while full
arbiters are fully functional arbiters that only give out grants that were requested
beforehand. In all instances, we computed causes on the (unique) trace π where
all clients send requests continuously, i.e., π|I = {r0, . . . , rn}ω. Consequently,
on this trace both the spurious and the full arbiter send grants to all clients,
while the unfair arbiter only gives grants to the prioritized client. These vary-
ing strategies are reflected in the synthesized cause-effect pairs. In the spurious
arbiters, the language of the synthesized cause NBA for the effect g0 is true,
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which reflects that the effect appears on all system traces. In the unfair arbiters,
the cause for no grant being given to client 0 is that the prioritized arbiter sends
requests permanently, i.e., the causal NBA has the language rprio. In the full
arbiters, g0 is caused, as expected, by r0 and g0 is caused by r0.
From a performance standpoint, the arbiter instances show us that accommodat-
ing the canonical similarity relation ≤subset, as we did through our generalization
of temporal causality in Sect. 4, leads to significant improvements in practice: In
all instances, synthesizing causes with ≤subset was faster than with ≤full, and the
resulting causal NBAs were smaller as well. This is mostly because of the num-
ber of inputs involved: The other parameters stay comparably small when going
from the spurious 1-arbiter to the spurious 4-arbiter, but the latter times out
when using ≤full. When the systems get larger and the effects more complex,
e.g., in the instance of the full 4-arbiter with the effect g0, the automata
produced can become bigger even with ≤subset. However, the language of the
produced automata has a small representation, i.e., r0, such that we see
potential for improvement through automata minimization techniques.

Fig. 3. Computing causes for neural syn-
thesis mispredictions with CORP. Size of
a point represents the length of the coun-
terexample (between 2 and 16).

Neural Synthesis. For more diverse
effects, we considered mispredicted
circuits from a neural synthesis
model [48]. Given some specifica-
tion (in this case, generated by
Spot’s randltl) the neural model
predicts an implementation as an
AIGER [12] circuit, which is in the
end model-checked against the spec-
ification. Since neural synthesis is not
sound, this check fails occasionally
and returns a counterexample, which
may be used for further repair [20].
We used our tool CORP to compute
the cause for the violation of the spec-
ification on such a counterexample. In
Fig. 3 we report the time of comput-
ing causes with respect to size of the
syntax tree of the effect formula, and the system size. The timeout was set to
100 s. The size of the points in the scatter plot corresponds to the length of the
counterexample and the color to the system size. From the plot we can deduce
that a large effect does not mean a long runtime of our tool per se. However, a
combination of large effects, bigger systems, and longer counterexamples usually
means that the tool takes longer. The sizes of the synthesized causes are diverse
and range from 2 to 60 states.

Example 3. We discuss an illustrative example of cause synthesis with a small
benchmark from the neural synthesis datatset. All relevant inputs and outputs of
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Fig. 4. A system predicted wrongly by a neural synthesis model (Fig. 4a) for the speci-
fication ¬ϕE, i.e., the negation of the effect. The effect is shown together with the actual
trace π, i.e., a counterexample obtained from model checking, and the computed cause
automaton Asubset

C in Fig. 4b.

our cause synthesis algorithm are depicted in Fig. 4. First, we have the system (cf.
Fig. 4a), which is a wrongly predicted circuit of the neural synthesis model. This
model tried to come up with a solution for the specification (i2 U i0) ↔ ( o4),
i.e., o4 appears infinitely often if and only if input i2 is enabled until input i0 is
enabled. The predicted system does not satisfy this specification, because there
are cases where o4 holds without the inputs meeting the required condition.
Hence, model checking the specification returns a counterexample π that violates
the formula, which means the negated specification can be seen as an effect
ϕE that is present on the counterexample π (cf. Fig. 4b). Our algorithm then
computes the cause for this effect, i.e., for the violation of the specification, on
the counterexample π, as a nondeterministic Büchi automaton. The computed
automaton Asubset

C is depicted at the bottom of Fig. 4b. It is language-equivalent
to the LTL formula ¬i0∧ (¬i0∧¬i2∧ i0), which basically states that the effect
is caused by a conjunction of four inputs spread out over the first three steps.
Indeed, it is easy to see that modifying any of these four inputs results in a trace
that satisfies the specification: For instance, setting i0 at the first position results
in the trace that immediately enters the state labeled with o4 and loops there
forever such that the left part of the equivalence is satisfied, while removing i0
from the third position results in looping in the initial state such that the right
part of the equivalence is not satisfied anymore.

Comparison with Cause Sketching. CATS, the tool of Beutner et al. [11],
allows to enumerate non-temporal formulas in holes of a provided cause sketch
until a cause is found. If the effect contains as the only temporal operator
and a cause exists, there is a sketch that is guaranteed to encompass the cause.
This provides us with a baseline with which we can compare our cause-synthesis
algorithm. We constructed random benchmarks that fall into CATS’ complete
fragment using Spot’s randaut function to generate systems with 10 up to 1000
states, obtaining traces of length 2 and then inserting a new atomic proposition e
at the last position of the trace and in the system. The effect then is defined as the
occurrence of e at exactly this position. We chose such small traces and effects
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because CATS timed out already on slightly larger instances. We conducted
additional experiments using just our tool CORP with traces (and effects) of size
10. Figure 5a shows the time taken by CATS and CORP to synthesize causes. The
influence of the system size on the runtime of CORP in this setting is negligible,
which we believe is due to the efficient automata operations performed by Spot.
The hyperproperty encoding of CATS does not seem as amenable to similar
optimizations.

Fig. 5. Direct comparisons between our tool CORP and the tool CATS [11]. Figure 5a
shows the time CATS needs to synthesize a cause in its complete fragment with trace
and effect of size 2, and the time taken by CORP for sizes 2 and 10. Figure 5b shows
the time taken to check single causal relationships. These problems are taken from
Beutner et al. [11] (where “Instances” are “Examples”).

6.2 Cause Checking

It is straightforward to use our cause synthesis algorithm to also check causes
through an equivalence check between the synthesized causal NBA and the can-
didate formula (or automaton). This allows a direct performance comparison
with the cause checking tool CATS of Beutner et al. [11], which we conducted
on the publicly available benchmarks of their paper. In these cause-checking
benchmarks, a cause candidate is given in addition to the system, actual trace
and effect. The time CATS and our tool CORP took in each instance to check
whether the given candidate is a cause is depicted in Fig. 5b. Somewhat surpris-
ingly, our cause checker based on cause synthesis performs significantly better on
all benchmarks. This shows that our characterization of causes as complements
of the upward closure of the negated effect (cf. Section 5.1) is more efficient than
encoding the cause-checking instances into a hyperlogic, as done by CATS.
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7 Related Work

The study of causality and its applications in formal methods has gained great
interest in recent years [3]. In a finite setting, Ibrahim et al. use SAT solvers and
linear programming to check [35] and infer [34] actual causes. Our definition of
actual causality for reactive systems extends the definitions of Coenen et al. [19]
to cases in which the limit assumption does not hold. While Coenen et al. study
the theory of actual causality [29] in reactive systems, they do not provide a way
to generate causes and explanations. In terms of cause synthesis, the most related
work is by Beutner et al. [11], which checks causality and generates causes based
on sketching. Unlike ours, their tool is only applicable for the small fragment of
LTL containing only operators, while we are able to generate temporal causes
for all ω-regular specifications.

In a series of works, Leue et al. study symbolic description of counterfactual
causes in Event Order Logic [14,38,39]. However, this logic can only reason about
the ordering of events, and not their absolute timing, as we can do with ω-regular
properties (e.g., specifying that the input at the second position is the cause).

Gössler and Métayer [24] define causality for component-based systems, and
Gössler and Stefani [25] study causality based on counterfactual builders. Their
formalisms differ from ours, which is based on Coenen et al. [19], and none of
the works considers cause synthesis.

Most other works related to cause synthesis concern generating explanations
for effects observed on finite traces [5,26,27,49], or effects restricted to safety
properties [43]. In the context of cause synthesis over infinite traces for effects
given as temporal specifications, existing works are limited to causes given as
sets of events (i.e., atomic propositions and times points) [7,18,32] or take a
state-centric view to, e.g., measure the responsibility of a state for an observed
effect property [1,4,42].

8 Conclusion

This paper presents the first complete algorithm to compute temporal causes
for arbitrary ω-regular properties. It is based on a new, generalized version of
temporal causality that solves a central dilemma of previous definitions by loos-
ening the assumptions on similarity relations. From a philosophical perspective,
this is an immense step forward since it is the first definition that accommodates
the canonical similarity relation used in previous literature. Our experimental
results show that our generalization also leads to significant improvements from
a practical perspective. These mainly stem from characterizing causes based
on set-closure properties, which may be an interesting approach for counterfac-
tual causality in other formalisms. Besides, our work opens up exciting research
directions on generating explanations from temporal causes, i.e., as formulas or
annotations in highlighted counterexamples.
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1. Baier, C., van den Bossche, R., Klüppelholz, S., Lehmann, J., Piribauer, J.:
Backward responsibility in transition systems using general power indices. In:
Wooldridge, M.J., Dy, J.G., Natarajan, S. (eds.) Thirty-Eighth AAAI Confer-
ence on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative
Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Edu-
cational Advances in Artificial Intelligence, EAAI 2014, 20-27 February 2024, Van-
couver, Canada, pp. 20320–20327. AAAI Press (2024). https://doi.org/10.1609/
AAAI.V38I18.30013

2. Baier, C., Coenen, N., Finkbeiner, B., Funke, F., Jantsch, S., Siber, J.: Causality-
based game solving. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol.
12759, pp. 894–917. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
81685-8 42

3. Baier, C., Dubslaff, C., Funke, F., Jantsch, S., Majumdar, R., Piribauer, J., Ziemek,
R.: From Verification to Causality-Based Explications. In: Bansal, N., Merelli,
E., Worrell, J. (eds.) 48th International Colloquium on Automata, Languages,
and Programming (ICALP 2021). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 198, pp. 1:1–1:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany (2021). https://drops.dagstuhl.de/opus/volltexte/2021/14070

4. Baier, C., Dubslaff, C., Funke, F., Jantsch, S., Piribauer, J., Ziemek, R.: Opera-
tional causality - necessarily sufficient and sufficiently necessary. In: Jansen, N.,
Stoelinga, M., van den Bos, P. (eds.) A Journey from Process Algebra via Timed
Automata to Model Learning - Essays Dedicated to Frits Vaandrager on the Occa-
sion of His 60th Birthday. Lecture Notes in Computer Science, vol. 13560, pp.
27–45. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15629-8 2

5. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: localizing errors in
counterexample traces. In: Aiken, A., Morrisett, G. (eds.) Conference Record of
POPL 2003: The 30th SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, New Orleans, Louisisana, USA, 15-17 January 2003, pp. 97–105.
ACM (2003). https://doi.org/10.1145/604131.604140

6. Baumeister, J., Coenen, N., Bonakdarpour, B., Finkbeiner, B., Sánchez, C.: A
temporal logic for asynchronous hyperproperties. In: Silva, A., Leino, K.R.M. (eds.)
CAV 2021. LNCS, vol. 12759, pp. 694–717. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-81685-8 33

7. Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.: Explaining counterex-
amples using causality. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol.
5643, pp. 94–108. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
02658-4 11

8. Beutner, R., Finkbeiner, B.: HyperATL*: A logic for hyperproperties in multi-agent
systems. Log. Methods Comput. Sci. 19, 13:1–13:44 (2023)

9. Beutner, R., Finkbeiner, B.: Model checking omega-regular hyperproperties with
autohyperq. In: Piskac, R., Voronkov, A. (eds.) LPAR 2023: Proceedings of 24th
International Conference on Logic for Programming, Artificial Intelligence and

https://doi.org/10.1609/AAAI.V38I18.30013
https://doi.org/10.1609/AAAI.V38I18.30013
https://doi.org/10.1007/978-3-030-81685-8_42
https://doi.org/10.1007/978-3-030-81685-8_42
https://drops.dagstuhl.de/opus/volltexte/2021/14070
https://doi.org/10.1007/978-3-031-15629-8_2
https://doi.org/10.1145/604131.604140
https://doi.org/10.1007/978-3-030-81685-8_33
https://doi.org/10.1007/978-3-030-81685-8_33
https://doi.org/10.1007/978-3-642-02658-4_11
https://doi.org/10.1007/978-3-642-02658-4_11


108 B. Finkbeiner et al.

Reasoning, Manizales, Colombia, 4-9th June 2023. EPiC Series in Computing,
vol. 94, pp. 23–35. EasyChair (2023). https://doi.org/10.29007/1XJT

10. Beutner, R., Finkbeiner, B., Frenkel, H., Metzger, N.: Second-order hyperproper-
ties. In: Enea, C., Lal, A. (eds.) Computer Aided Verification - 35th International
Conference, CAV 2023, Paris, France, 17-22 July 2023, Proceedings, Part II. Lec-
ture Notes in Computer Science, vol. 13965, pp. 309–332. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-37703-7 15

11. Beutner, R., Finkbeiner, B., Frenkel, H., Siber, J.: Checking and sketching causes
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