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Abstract

The online evaluation of real-time data streams is an essential part of cyber-physical systems and plays a
crucial role when monitoring those that are intrinsically safety-critical. We present STREAMLAB, a specification
and monitoring framework for stream-based real-time properties, which has already been applied on autonomous
aerial vehicles. As a stream-based monitoring engine, STREAMLAB translates input streams, for example sensor
readings or other data collected at runtime, into output streams containing aggregated statistics. In practice, input
data often arrives in varying, unpredictable frequencies and a monitor has to cope with limited memory and
computational resources. STREAMLAB tackles these problems by combining the benefits of a programming language
and a formal, temporal logic. While it allows for expressing a vast variety of real-time properties, specifications
are also compositional and easy to reuse by design, and STREAMLAB can compute guaranteed upper bounds on
the memory requirements. A monitor for a given specification will respect these bounds and thus never disrupt the
normal operation of a system, notwithstanding the frequency of arriving input values. This makes STREAMLAB a
suitable choice for embedded devices with strictly limited memory.

During the execution of a cyber-physical system, a variety of data is collected, ranging from sensor readings to
external commands. While some of these input values arrive in a relatively fixed frequency, e.g. a sensor provides
a new reading approximately every 200ms, some inputs arrive entirely unpredictably, especially when taking user
behavior into account.

A stream processing engine considers data from each individual input source as its own respective input stream.
The engine aggregates this data to compute statistical and diagnostic information in output streams. When output
data violates a specified assertion, an alarm is raised to inform about a potential problem.

A key advantage of this approach is the modular nature of streams, which allows for compositional, easy to
reuse specifications. Existing stream-based languages like LOLA [1, 2] are based on the synchronous programming
paradigm [3, 4], i.e., they assume the existence of a discrete global clock. In each tick of the global clock, all
input streams receive a new sensor value and each output stream is extended by a new computed value. In real
systems, this is not necessarily true: consider, for example, an autonomous drone with several sensors such as a
GPS module, an inertial measurement unit, and a laser distance meter. While a synchronous arrival of all measured
values would be desirable, sensors do not necessarily operate on a common clock so their frequencies can drift apart
over time. Moreover, not all measurement frequencies are equal, nor are sensors always reliable. Thus, we consider
such a system asynchronous. Monitoring asynchronous systems introduces new challenges and possibilities: in the
synchronous settings, for example, it is not possible to detect deviations in the expected arrival frequency, whereas
in the asynchronous setting, it is.

We propose using STREAMLAB for monitoring asynchronous systems, which has already been applied success-
fully to monitor unmanned aerial vehicles in cooperation with the German Aerospace Center [5, 6]. The core of
STREAMLAB is the specification language RTLOLA based on the stream-based runtime verification language LOLA.
An RTLOLA specification consists of a set of input stream declarations, and several output stream definitions where
each stream is equipped with an expression declaring how an output value ought to be computed. Output streams
are either event-based or periodic. Event-based streams are the output counterpart of input streams: new values are
generated asynchronously when all inputs relevant to this stream occur in an event. In contrast to that, periodic
streams are decoupled from the arrival of input streams and isochronous, i.e., they are extended at pre-defined
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input TAS, pitch, lon, lat: Float64
output gnd_spd := cos(pitch) * TAS
output tas_dist @5Hz := gnd_spd[


, 5s]

output gps_spd := sqrt(delta(lon) ˆ 2 + delta(lat) ˆ 2)
output gps_dist @5Hz := gps_spd[


, 5s]

output error := gps_dist - tas_dist
trigger error[


, 10s] > 5 "Sensor values do not match."

Figure 1: A RTLOLA specification comparing the estimated distance covered according to the true air speed (TAS),
and the GPS values provided by two individual modules. When the accumulated deviation over a 10 s interval
exceeds 5m, an alarm is raised.

points in time. Accesses from event to periodic streams and vice versa are resolved with a zero-order hold. This
split brings forth two advantages: periodic streams allow for resource-intensive computations without overloading
the monitoring process by accident, and event-based streams allow the monitor to react to incoming values in a
timely manner.

Example: Consider the monitor of a fixed-wing aircraft. It gets sensor values from two components. The first
one provides the true air speed (TAS) and pitch of the aircraft, whereas the second one is a GPS module providing
the current longitude and latitude.

The RTLOLA specification in Figure 1 detects a large accumulated error in the estimated position based on
GPS and TAS (the specification is simplified for the sake of illustration and does not take factors like roll or
wind into account). For this, output stream gnd_spd computes the ground speed using TAS and the current pitch
whenever a new sensor reading for both sensors arrive. The tas_dist stream computes the distance the aircraft
traveled within 5 seconds according to the sensed TAS by integrating the ground speed. The integration is a sliding
window, i.e., whenever tas_dist is computed, it uses all values of gnd_spd occurring in the last 5 seconds.
This decouples the frequencies of tas_dist and gnd_spd. To get the velocity according to the GPS location
in output gps_spd, we use Pythagoras’ theorem with the difference in two consecutive GPS readings, denoted
by delta(lon) and delta(lat). Output stream gps_dist then computes the sliding integral over 5 seconds
with a decoupled frequency of 5Hz. The stream error computes the actual deviation between the two measured
distances. Lastly, trigger defines a threshold for the absolute derivation of both distances and raises an alarm
if they exceed 5m. STREAMLAB infers that the trigger and the error output stream need to be computed with
frequency 5Hz because all streams they depend on use this frequency.

RTLOLA simplifies the specification process by providing directives for complex constructs such as the integral
over a sliding window of values. Moreover, extending the specification to detect e.g. hover periods is straightforward:
simply add output hover @10Hz := gnd_spd[


, 1s] < 0.2 and a suitable trigger. The strict decoupling of

periodic and event-based streams allows the specifier to have fine-grained control over when expensive computations
take place, and thus reduces stress on the monitor component in terms of CPU utilization. Since STREAMLAB

analyzes the specification and determines an upper bound on the memory consumption, the user can verify an
undisturbed monitoring process ahead of deployment.
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