
Adam: Causality-Based Synthesis of

Distributed Systems⋆

Bernd Finkbeiner1, Manuel Gieseking2, and Ernst-Rüdiger Olderog2

1 Universität des Saarlandes
2 Carl von Ossietzky Universität Oldenburg

Abstract. We present Adam, a tool for the automatic synthesis of dis-
tributed systems with multiple concurrent processes. For each process,
an individual controller is synthesized that acts on locally available in-
formation obtained through synchronization with the environment and
with other system processes. Adam is based on Petri games, an extension
of Petri nets where each token is a player in a multiplayer game. Adam

implements the first symbolic game solving algorithm for Petri games.
We report on experience from several case studies with up to 38 system
processes.

1 Introduction

Research on the reactive synthesis problem, i.e., the challenge of constructing
a reactive system automatically from a formal specification, dates back to the
early years of computer science [6, 5, 16]. Over the past decade, this research has
led to tools like Acacia+ [4], Ratsy [3], and Unbeast [7], which translate a formal
specification automatically into an implementation that is correct in the sense
that the system reacts to every possible input from the system’s environment
in a way that ensures that the specification is satisfied. The tools have been
used in nontrivial applications, such as the synthesis of bus arbiter circuits [2]
and robotic control [12]. The key limitation of the current state of the art is
that the underlying system model consists of a single process. If the system
under construction consists of several distributed parts, such as several robots,
then the implementation is always based on a central controller with whom
the entire system must constantly synchronize. This is unfortunate, because
in practice, it is specifically the design of the distributed implementation with
multiple concurrent processes that is most error-prone and would, therefore,
benefit most from a synthesis tool.

In this paper, we present Adam, a synthesis tool designed for distributed
systems with multiple concurrent processes. Unlike previous tools based on au-
tomata, Adam uses concurrent processes in the form of Petri nets as its under-
lying system model. (Adam is named in honor of Carl Adam Petri.) Our aim

⋆ This research was partially supported by the German Research Council (DFG) in
the Transregional Collaborative Research Center SFB/TR 14 AVACS.

2 Bernd Finkbeiner, Manuel Gieseking, and Ernst-Rüdiger Olderog

is to automate the construction of complex distributed systems, such as pro-
duction plants with multiple independent robots. Rather than creating a central
controller, with whom all robots must constantly synchronize, Adam creates an
individual controller for each robot, which acts on locally available information
such as the information obtained through observations and through synchroniza-
tion with nearby robots.

Sys

••

M0 M1 M2

G0 B0

G1

B1

G2

B2Env

•

t0

A0

t1

A1

t2

A2

2

2

2

Fig. 1. Example Petri game from the synthesis of
two independent robots in a manufacturing situation
with k orders on n machines (here: k = 2, n = 3),
where one machine is chosen by the environment to
be defective.

The most well-studied model
for the synthesis of dis-
tributed systems is due to
Pnueli and Rosner [14]. This
model captures the partial

information available to the
processes by specifying for
each process the subset of
events that are visible to
the process. The decisions of
the process are based only
on the history of its ob-
servations, not on the full
state history. Unfortunately,
the Pnueli/Rosner model has
never been translated into practical tools; the synthesis problem under the
Pnueli/Rosner model is undecidable in general, and very expensive (nonelemen-
tary) in the special cases where it can be decided [15, 10].

Adam is based on the more recently developed model of Petri games [9].
The synthesis problem is modeled as a game between a team of system play-
ers, representing the processes, and an environment (player), representing the
user (and other external influences) of the system. Both the system players and
the environment are represented as tokens of a Petri net. As Petri nets, the
games capture the complex causal dependencies (and independence) between
the processes (cf. [17]). Figure 1 shows a typical application scenario, taken here
from the synthesis of robot controllers in a production plant, addressing con-
currency, usage constraints, and uncertain availability of machines. The robots
are expected to process k orders on n machines (here: k = 2, n = 3), despite
the actions of a hostile environment, which is allowed to declare one machine to
be defective. The environment, initially at place Env , chooses which machine is
defective and activates the remaining machines by putting tokens on two of the
places Ai, i ∈ {0, 1, 2}. The two system players in place Sys represent the two
robots. Different robots can take their orders concurrently to different machines.
If a robot chooses a machine Mi right away, it does not know whether Mi is
defective, i.e., without a token on Ai. Then from Mi only the bad place Bi is
reachable. If a robot chooses an active machine Mi (with a token on Ai) then
from Mi the good place Gi is reachable by consuming the token from Ai. If a
robot chooses Mi again, the token on Ai is missing, and only the bad place Bi

is reachable. A winning strategy for the robots must avoid any transitions to a

Adam: Causality-Based Synthesis of Distributed Systems 3

bad place. To this end, the robots first inform themselves, via the synchronizing
transitions t0, t1 and t2, which machines are broken (this is done simultaneously
by the two robots due to the arc multiplicity 2) and then use two different active
machines.

In recent work [9], we showed that solving Petri games with safety objec-
tives, a single environment player and an arbitrary (but fixed) number of system
players is EXPTIME-complete, and thus dramatically cheaper than compara-
ble synthesis problems in the Pnueli/Rosner setting. Adam represents the first
practical implementation of this theoretical result.

2 The Synthesis Game

We model the synthesis problem as a game between a team of system players on
one side and a hostile environment player on the other side. The system players
have a joint objective, to defeat the environment, but are independent of each
other in the sense that they have no information of each other’s state unless
they explicitly communicate. A Petri game [9] is a refinement of a Petri net.
The players are the tokens in the underlying Petri net. They are organized into
two teams, the system players and the environment players, where the system
players wish to avoid a certain “bad” place (i.e., they follow a safety objective),
while the environment players wish to reach just such a marking. To partition
the tokens into the teams, we distinguish each place p as belonging to either the
system (p ∈ PS) or the environment (p ∈ PE). A token belongs to one of these
teams whenever it is on a place that belongs to that team. Formally, a Petri
game is a structure G = (PS ,PE , T ,F , In,B), where the underlying Petri net
of G is N = (P, T ,F , In) with set of places P = PS ∪ PE , set of transitions T ,
flow relation F , initial marking In, and set of bad places B. We depict places
of PS in gray and of PE in white. In the following, we assume that there is
a single environment player and an arbitrary (but bounded) number of system
players. We further assume that the Petri net is safe, i.e., every place is, at all
times, occupied by at most one token. Petri games that are bounded, but not
necessarily safe, like the example from the introduction, can be translated into
an equivalent game with a safe net using the standard transformation.

A player (token) is always informed about its causal past. As long as different
players move in concurrent places of the net, they do not know of each other. Only
when they communicate, i.e., synchronize at a joint transition, they exchange
their knowledge about the past. Formally, this is modelled by the net unfolding.

A strategy σ for the system players will eliminate at each place of the net
unfolding some of the available branches. A strategy is winning for the system
players if all branches that lead to a bad place are eliminated. For each player
we can obtain a local controller by isolating the part of σ that is relevant for
this player. These local controllers can proceed independently unless they have
to synchronize at a joint transition with other local controllers as described by
σ. Since the winning condition of a game is a safety objective, the system play-
ers can satisfy it by doing nothing. To avoid such trivial solutions, we look for

4 Bernd Finkbeiner, Manuel Gieseking, and Ernst-Rüdiger Olderog

0 1 2 3 4 5 6 7 8

pi
(binary-coded) type ⊤ t1 · · · t|T |

Fig. 2. Bitvector representation of a cut. The subvector encodes the ith system token.

strategies that are deadlock-avoiding in the sense that in every reachable mark-
ing, whenever there is a transition enabled in the unfolding then there is some
transition enabled in the strategy. A marking where there is no enabled transi-
tion in the unfolding either is not a deadlock. Then we say that the game has
terminated. A play π (conforming to a strategy σ) is obtained from σ by elimi-
nating all remaining choices such that at each place there is only one transition
left (determinism). The system players win the play π if it does not contain a
bad place. Otherwise, the environment wins.

3 Solving Petri Games

Petri games can be solved via a reduction to two-player games over finite graphs.
In this section, we give an informal sketch of the reduction, focusing on the sym-
bolic representation and the fixed point iteration of the game solving algorithm.
For a more formal presentation of the reduction from Petri games to two-player
games over finite graphs, the reader is referred to [9].

The two-player game simulates the Petri game through a sequence of cuts,
i.e., maximal sets of concurrent places. We annotate the system places in a cut
with a decision set, i.e., a set of transitions currently selected by the player
represented by the token on the system place. In each cut, we designate a sub-
set of the system places as type-2, which means that its strategy will no longer
synchronize (directly or indirectly through other system tokens) with the en-
vironment. Additionally, we designate a subset of the system places as type-1.
These are places that still require a synchronization with the environment but
are, in the current cut, not able to move (following their decision sets) before
the environment makes its next move.

Cuts where all system places are either type-1 or type-2 are called mcuts.
Mcuts correspond to situations in which the system players have progressed
maximally in the sense that all non-type-2 places are blocked until the environ-
ment moves. The key idea of the reduction is to delay all environment decisions
until an mcut is reached. This ensures that all system decisions that should be
made independently of the environment choice have actually been made before

the environment decision is made, and are, hence, guaranteed to be independent
of this decision. A winning strategy for the system players must thus legally move
from mcut to mcut, in response to the environment decisions at the mcuts, with-
out encountering bad situations (such as bad places), either until the Petri net
terminates or forever, if the play never terminates.

The symbolic representation of cuts. Our representation of a cut is organized
by the tokens, rather than places: this is motivated by the fact that the number
of tokens in a Petri net is usually much smaller than the number of places; it is

Adam: Causality-Based Synthesis of Distributed Systems 5

therefore cheaper to assign to each token the currently occupied place instead of
simply representing an (arbitrary) subset of the places. A cut is represented as a
bitvector, which is composed of several subvectors, one for each token. Figure 2
depicts such a subvector for a system token i. The first part of the bitvector
encodes the place pi and its type (type-1 vs. type-2). The second part encodes
the decision of the strategy. The bit tj is set iff the player represented by token i

chooses to allow the jth transition of the Petri net. The ⊤-bit is set right after
a transition is executed. It indicates that the player is allowed to choose a new
set of transitions. For the special case of the environment token, we only need
to encode the place, without the type, ⊤-, and transition flags. We use BDDs to
represent sets of cuts and relations on cuts.

The game solving algorithm. The game solving algorithm consists of three
phases. Phase 1 is a preprocessing step that identifies the type-2 places in the
cuts. The strategy from type-2 places must guarantee that the tokens on the
type-2 places have no further interaction with the environment. The set of all
cuts with correct type-2 annotation is computed as a largest fixed point. Phase
2 identifies the winning mcuts, i.e., mcuts where the strategy from type-1 places
guarantees that the game continues with an infinite sequence of mcuts or reaches
an mcut with only type-2 tokens. The set of mcuts is computed as a largest
fixed point. Nested inside the largest fixed point computation is a least fixed
point iteration that finds the predecessor mcuts, by first identifying all cuts
from which the system players can force the game without further interaction
with the environment into some mcut of the current approximation of the largest
fixed point. Phase 2 also computes, as a least fixed point, the set of all cuts from
which the system players can enforce a visit of such an mcut. The game is won by
the system players iff the initial cut is in this set. Phase 3 constructs a winning
strategy if the game is won by the system players. The strategy first enforces the
visit of a winning mcut according to the computation in Phase 2. From there,
the strategy from type-1 places forces the game into new winning mcuts, and the
strategy from type-2 places ensures, according to the computation in Phase 1,
the safe continuation without any further interaction with the environment.

4 Experience with Adam

Adam is a Java-based implementation of the fixed point construction described
in Section 3. For the BDD operations, Adam uses BuDDy [13], a BDD library
written in C. The size of the BDDs is reduced with various optimizations, in-
cluding a compact representation of the place encodings, based on net invariants
(which reduce the set of potential places for each token). We use the DOT [1]
format as output for Graphviz for the visualization of the Petri games and the
strategy graph of the 2-player game, as well as the Petri game strategies.

We have applied Adam in several case studies from robotic control, work-
flow management, and other distributed applications. Table 1 shows representa-
tive results from several synthesis problems. The tool, more examples and their
benchmarks are available online [8].

6 Bernd Finkbeiner, Manuel Gieseking, and Ernst-Rüdiger Olderog

Table 1. Experimental results.

Ben. Par. #Tok #Var #P #T time memory #Ps #Ts

CM 2/1 6 66 13 10 1.4 0.31 14 8
2/2 7 96 18 16 1.3 0.29 - -

.

2/6 11 216 38 40 206.5 5.43 - -
3/1 8 92 18 15 1.3 0.29 26 12
3/2 9 132 25 24 2.1 0.3 36 18
3/3 10 172 32 33 3.3 0.38 - -
3/4 11 212 39 42 11.6 0.8 - -
3/5 12 252 46 51 180.9 5.43 - -
4/1 10 120 23 20 1.6 0.29 42 16
4/2 11 172 32 32 3.9 0.38 55 24
4/3 12 224 41 44 14.4 0.8 68 32
4/4 13 276 50 56 155.3 4.27 - -
5/1 12 146 28 25 4.0 0.38 62 20
5/2 13 208 39 40 24.3 0.8 78 30
5/3 14 270 50 55 468.3 3.5 94 40
6/1 14 172 33 30 19.6 0.8 86 24
6/2 15 244 46 48 1042.2 2.51 105 36

SR 2/1 5 86 18 17 1.3 0.29 32 16
2/2 6 116 24 26 1.6 0.29 - -
2/3 7 144 30 35 4.4 0.39 - -
2/4 8 174 36 44 42.7 0.8 - -
3/1 6 204 34 49 1155.6 10.05 79.7 45

JP 2 3 46 12 13 1.1 0.31 16 13
3 4 76 18 23 1.8 0.31 34 28

.

10 11 612 88 149 146.9 5.43 552 385
11 12 762 102 175 434.8 16.62 706 484

DW 1 3 46 12 10 0.9 0.25 10 6
2 4 72 19 16 1.8 0.30 22 15

.

19 21 492 138 118 1411.8 15.93 1144 780
20 22 516 145 124 1734.7 15.85 1264 861

DWs 1 3 36 11 6 0.8 0.31 8 3
2 5 70 21 12 1.6 0.31 23 10

.

18 37 588 181 108 1027.3 11.94 1351 666
19 39 620 191 114 1451.9 15.99 1502 741

’-’ means no winning strategy exists.

For each benchmark, the table
shows the number #Tok of tokens,
the number #Var of BDD variables
used, and the numbers #P and #T

of places and transitions, respectively,
of the Petri game. We give the elapsed
CPU time in s, and the used memory

in GB for solving the problem. For
the resulting solution, #Ps and #Ts

are the number of places and transi-
tions of the strategy, respectively. Par
states the parameter size(s) of the ex-
ample. The time and memory values
are an average of 10 runs. The results
were obtained on an Intel i7-2700K
CPU with 3.50GHz and 32 GB RAM.
The experiments refer to the following
scalable benchmarks:

• CM: Concurrent Machines (see
Fig. 1). The environment decides
which of n machines is functioning.
On these machines, k orders should
be processed, each order by one ma-
chine. Different orders can be processed concurrently on different machines. No
machine should be used twice for processing orders.
Parameters : n machines / k orders

• SR: Self-reconfiguring Robots [11]. Each piece of material needs to be processed
by n different tools. There are n robots having all n tools to their disposal, of
which only one tool is currently used. The environment may (repeatedly) destroy
a tool on a robot R. Then the robots reconfigure themselves so that R uses
another tool and the other robots adapt their usage of tools accordingly.
Parameters : n robots with n tools / k tools will be successively destroyed

• JP: Job Processing. The environment chooses a subset of n different processors
and a job that requires handling by each processor in this subset in ascending
order. Parameter : n processors

• DW: Document Workflow. The environment hands over a document to one
of n clerks. The document then circulates among the clerks. Each clerk should
endorse it or not, but wants to make the decision dependent on who has endorsed
it already. Altogether they should reach a unanimous decision. In a simpler
variant DWs, all clerks should endorse it. Parameter : n clerks

The benchmarks represent essential building blocks for modeling various
manufacturing and workflow scenarios that can be analyzed automatically by
synthesizing winning strategies with Adam.

Adam: Causality-Based Synthesis of Distributed Systems 7

References

1. AT&T, Bell-Labs: DOT file format for Graphviz – Graph visualization software.
http://www.graphviz.org/

2. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:
Automatic hardware synthesis from specifications: A case study. In: Proc. of the
Conf. on Design, Automation and Test in Europe (DATE). pp. 1188–1193 (2007)

3. Bloem, R.P., Gamauf, H.J., Hofferek, G., Könighofer, B., Könighofer, R.: Synthe-
sizing robust systems with RATSY. In: Association, O.P. (ed.) SYNT 2012. vol. 84,
pp. 47 – 53. Electronic Proceedings in Theoretical Computer Science (2012)

4. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.F.: Acacia+, a tool for LTL
synthesis. In: Madhusudan, P., Seshia, S.A. (eds.) CAV. LNCS, vol. 7358, pp. 652–
657. Springer (2012)

5. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strate-
gies. Transactions of the American Mathematical Society 138 (1969)

6. Church, A.: Logic, arithmetic and automata. In: Proc. 1962 Intl. Congr. Math. pp.
23–25. Uppsala (1963)

7. Ehlers, R.: Unbeast: Symbolic bounded synthesis. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS. LNCS, vol. 6605, pp. 272–275. Springer (2011)

8. Finkbeiner, B., Gieseking, M., Olderog, E.: ADAM – Analyzer of dis-
tributed asynchronous models. University of Oldenburg and Saarland University.
http://www.uni-oldenburg.de/csd/adam (2014)

9. Finkbeiner, B., Olderog, E.: Petri games: Synthesis of distributed systems with
causal memory. In: Peron, A., Piazza, C. (eds.) Proc. Fifth Intern. Symp. on Games,
Automata, Logics and Formal Verification (GandALF). EPTCS, vol. 161, pp. 217–
230 (2014), http://dx.doi.org/10.4204/EPTCS.161.19

10. Finkbeiner, B., Schewe, S.: Coordination logic. In: CSL. LNCS, vol. 6247, pp. 305–
319. Springer (2010)

11. Güdemann, M., Ortmeier, F., Reif, W.: Formal modeling and verification of sys-
tems with self-x properties. In: Yang, L., Jin, H., Ma, J., Ungerer, T. (eds.) Auto-
nomic and Trusted Computing. LNCS, vol. 4158, pp. 38–47. Springer (2006)

12. Kress-Gazit, H., Fainekos, G., Pappas, G.: Temporal-logic-based reactive mission
and motion planning. Robotics, IEEE Transactions on 25(6), 1370–1381 (Dec 2009)

13. Lind-Nielsen, J.: BuDDy – Binary decision diagram package. IT-University of
Copenhagen. http://sourceforge.net/projects/buddy/

14. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. POPL’89.
pp. 179–190. ACM Press, New York, NY, USA (1989)

15. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
Proc. FOCS’90. pp. 746–757 (1990)

16. Rabin, M.O.: Automata on Infinite Objects and Church’s Problem, Regional Con-
ference Series in Mathematics, vol. 13. Amer. Math. Soc. (1972)

17. Reisig, W.: Elements of Distributed Algorithms – Modeling and Analysis with
Petri Nets. Springer (1998)

