
Counterfactual Explanations for MITL Violations
Bernd Finkbeiner #�

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Felix Jahn #�

Saarland University, Saarland Informatics Campus, Saarbrücken, Germany

Julian Siber # �

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Abstract
MITL is a temporal logic that facilitates the verification of real-time systems by expressing the
critical timing constraints placed on these systems. MITL specifications can be checked against
system models expressed as networks of timed automata. A violation of an MITL specification
is then witnessed by a timed trace of the network, i.e., an execution consisting of both discrete
actions and real-valued delays between these actions. Finding and fixing the root cause of such a
violation requires significant manual effort since both discrete actions and real-time delays have to
be considered. In this paper, we present an automatic explanation method that eases this process by
computing the root causes for the violation of an MITL specification on the execution of a network
of timed automata. This method is based on newly developed definitions of counterfactual causality
tailored to networks of timed automata in the style of Halpern and Pearl’s actual causality. We
present and evaluate a prototype implementation that demonstrates the efficacy of our method on
several benchmarks from the literature.

2012 ACM Subject Classification Theory of computation → Timed and hybrid models; Theory of
computation → Modal and temporal logics

Keywords and phrases Timed automata, actual causality, metric interval temporal logic

Supplementary Material Software: https://github.com/reactive-systems/rt-causality
archived at swh:1:snp:a9716ce4356b5dd9f88d9df49a2f8e2eb84cb8b1

Funding This work was partially supported by the DFG in project 389792660 (Center for Perspicuous
Systems, TRR 248) and by the ERC Grant HYPER (No. 101055412).

1 Introduction

Networks of timed automata are a popular formalism to model a wide range of real-time
systems such as automotive controllers [27, 49] and communication protocols [23, 39]. These
models can be automatically checked against specifications in Metric Interval Temporal
Logic (MITL) [4], a real-time extension of linear-time temporal logic that allows to constrain
temporal operators to non-singleton intervals over the real numbers. In case a network of
timed automata does not satisfy an MITL specification, a model-checking procedure will
return an execution of the network as a counterexample. Such an execution is defined by
discrete actions of the automata in the network and by real-valued delays that describe the
time that passes between the discrete actions. Hence, fixing an erroneous system requires
insight into both actions and delays that caused the violation on the given counterexample.

In this paper, we present an approach that facilitates this insight through counterfactual
explanations for the observed violation. Previous approaches for explaining real-time viola-
tions only consider safety properties [51] or only real-time delays without discrete actions [45],
and hence cannot provide a comprehensive insight for violations of unconstrained MITL
properties. Like related efforts for discrete systems [10, 20], we ground our explanation
method in the theory of actual causality as formalized by Halpern and Pearl [34, 35, 36] and

mailto:finkbeiner@cispa.de
mailto:felix.jahn@uni-saarland.de
mailto:julian.siber@cispa.de
 https://github.com/reactive-systems/rt-causality
https://archive.softwareheritage.org/swh:1:snp:a9716ce4356b5dd9f88d9df49a2f8e2eb84cb8b1

2 Counterfactual Explanations for MITL Violations

init
crit
x ≤ 3

β

x := 0

β

x = 3α

x := 0

(a) A component automaton of network A1 || A2.

{init1,2} {crit1, init2} {crit1,2}

{init1, crit2}
(
{init1,2}

)ω

β1

1.0
β2

1.0

β2

1.0
α1

2.0
β1

2.0

(b) An execution of the network A1 || A2.

Figure 1 The network and its execution discussed as an illustrative example in Subsection 1.1.

identify the actions and delays that are actual causes for the violation of the specification on
the observed counterexample. This approach faces several new challenges when confronted
with real-time models expressed as networks of timed automata, instead of the previously
considered structural equation models [35], finite-state machines [20], and traces [10].

The first challenge pertains to the concept of interventions, which describe how the
observed counterexample is modified when hypothetical counterfactual executions are con-
sidered during the analysis. While previous results usually consider models where the set of
counterfactual scenarios is finite, modifying delays in executions of timed automata gives rise
to infinitely many counterfactual scenarios. Our main insight to solve this problem is based on
constructing networks of timed automata that model all such counterfactual executions, such
that checking a causal hypothesis or even synthesizing a cause from scratch can be realized
through model checking of these newly constructed automata. Actual causality in models
with infinitely many variables, each potentially having an infinite domain, is only starting
to be understood [37] and our results suggest that known techniques from timed automata
verification are partially transferable to this general theory, e.g., for cause computation.

A second challenge we face in networks of timed automata pertains to the concept
of contingencies. When two or more potential causes preempt each other, contingencies
allow to isolate the true, non-preempted cause from the others. In structural equations
models [33] and Coenen et al.’s definition for finite-state machines [20], this is realized by
extending the system dynamics with resets that set variables back to the value they had in
the actual, original scenario. Networks of timed automata have both local variables, i.e.,
component locations, and global variables such as clocks. We account for this by defining
two automata constructions that allow such resets through contingencies on the local level
by single components, as well as on the network level for global clock variables.

1.1 Illustrative Example
We discuss our approach for causal analysis with the example of a small network of timed
automata A1 || A2 consisting of two identical component automata as depicted in Figure 1a,
which we will also use as a running example throughout the paper. The two automata can
each switch between the two locations init and crit, but whenever they enter the location crit
with action β, they are required to stay there for exactly three time units. This is realized
through an initial reset of a global clock variable (x := 0) with the first β action and a
location invariant (x ≤ 3) in location crit, as well as a clock guard (x = 3) on the second β

action. We want to check the mutual exclusion property [0,∞)(¬crit1 ∨ ¬crit2) expressed in
MITL, which states that the two automata A1 and A2 are never both in location crit. It
is easy to see that this property is violated, e.g., by the execution depicted in Figure 1b.
This (simplified) execution is an infinite sequence of location labels constructed from delays
and discrete actions, where the ω-part is repeated infinitely often. For abbreviation, we

B. Finkbeiner, F. Jahn, and J. Siber 3

Table 1 A contrastive overview of the four root causes on the execution in the illustrative example,
inferred using but-for causality and actual causality.

Ref. But-For Causes Actual Causes Intuitive Description

1 {(1.0, 1,A1)} {(1.0, 1,A1)} The first component did not wait.

2 {(2.0, 1,A2)} {(2.0, 1,A2)} The second component did not wait.

3 a: {(β, 1, A1), (β, 2, A1)}
b: {(β, 1, A1), (3.0, 2, A1)}

{(β, 1,A1)} The first component entered crit.

4 {(β, 1,A2)} {(β, 1,A2)} The second component entered crit.

place the delay values and actions on the same arrow, which means that the action above
the arrow is performed after delaying for as long as specified under the arrow. Both action
and location labels refer to a component automaton performing the action and being in a
location, respectively, through their index. The execution depicted in Figure 1b respects the
dynamics of the automata, e.g., exactly three time units pass between entering and leaving
crit. As we can see, Automaton 2 uses a β action less than three time units after Automaton
1, while the latter needs to stay in crit for exactly three time units.

We generate explanations through counterfactual reasoning: For instance, we can infer
that one cause of the violation above is that the second component waits only two time
units before entering crit by considering hypothetical executions with alternative delays at
this particular point, all else being the same. This relaxed model allows an execution where
the second component waits with entering the crit location until after the first component
has already left theirs, such that no violation occurs. Hence, we can infer the but-for cause
{(2.0, 1,A2)} which says that the first delay of 2.0 time units by component A2 is a root
cause for the violation. We measure delays locally on the component level and hence need to
add all global delays between actions of the second component as defined in the execution
above. Table 1 lists this cause (Cause 2) along with the other root causes inferred through
but-for causal analysis in the second column. Cause 1 expresses that the delay of component
A1 can similarly be set high enough that no violation occurs.

Cause 3 shows that the but-for counterfactual analysis is not always enough: With this
naïve criterion we cannot infer that the first β action of A1 is a cause for the violation
of the property on this execution, since changing it alone to, e.g., α, does not suffice to
avoid the violation. The second β then steps in to produce the same effect, which means
we are dealing with a preemption of potential causes. In the but-for causal analysis, we
consequently have to additionally intervene on the preempted causes to obtain executions to
avoid the effect. In this case, we can either additionally change the second β (Cause 3a), or
the second delay (Cause 3b – this way we can set the entering of crit to after component
A2 has already left). These larger causes are not desirable, because they do not only point
to the root of the issue. As a solution in such cases of preemption, Halpern and Pearl [35]
suggest contingencies, and Coenen et al. [20] have recently lifted this to finite-state machines
with infinite executions. Inspired by these efforts, we propose a contingency mechanism for
networks of timed automata that similarly allows us to infer the first β as the true cause in
the given scenario (Cause 3). This mechanism extends the network with contingency edges
that, e.g., allow the second β to move to the same location as in the original execution, i.e.,
to init. This then produces a witnessing counterfactual run that avoids the effect.

4 Counterfactual Explanations for MITL Violations

1.2 Outline and Contributions
After recalling preliminaries in Section 2, we develop our definitions of counterfactual
causality in networks of timed automata (Section 3). We follow Halpern’s approach [34]
in first defining a notion of minimal but-for causality. Counterfactual reasoning is realized
through an automaton construction that allows to search for a witnessing intervention in the
infinite set of counterfactual runs through model checking. Inspired by Coenen et al. [20, 21],
we extend but-for causality through a construction of contingency automata, which model
contingencies on the local level of components as well as on the network level for global
variables such as clocks (Subsection 3.3), yielding a main building block for our definition
of actual causality. In Section 4, we present algorithms for computing and checking but-for
and actual causes. These algorithms exploit a property of both notions of causality that
we term cause monotonicity, which allows us to reduce the potential causes we need to
consider during computation. We have implemented a prototype of this algorithm and
report on its experimental evaluation in Section 5. We show that causes can be computed in
reasonable time and help in narrowing down the behavior responsible for an MITL violation.
To summarize, we make the following contributions:

We define and study the notions of but-for causality and actual causality in networks of
timed automata, for effects described by arbitrary MITL properties;
We propose an algorithm for computing these causes and study its theoretical complexity;
We report the results of a prototype implementation of this algorithm for automated
explanations of counterexamples in real-time model checking.

2 Preliminaries

We recall background on actual causality, timed automata as models of real-time systems,
and MITL as a temporal logic for specifying real-time properties.

2.1 Actual Causality
We recall Halpern’s modified version [33] of actual causality [35], which uses structural
equation models to define the causal dependencies of a system. Formally, a causal model
is a tuple M = (S,F) that consists of a signature S = (U ,V,R) and structural equations
F = {FX |X ∈ V}. The sets U and V define exogenous variables and endogenous variables,
respectively. The range R(Y) specifies the possible values of each variable Y ∈ Y = U ∪V . A
structural equation FX ∈ F defines the value of an endogenous variable X ∈ V as a function
FX : (×Y ∈Y\{X}R(Y))→ R(X) of the values of all other variables in U ∪V , without creating
cyclic dependencies in F . Therefore, the structural equations have a unique solution for a
given context u⃗ ∈ (×U∈U R(U)), i.e., a valuation for the variables in U . Actual causality
then defines whether a value assignment X⃗ = x⃗ causes φ, a conjunction of primitive events
Y = y for Y ∈ V, in a given context.

▶ Definition 1 (Halpern’s Version of Actual Causality [33]). X⃗ = x⃗ is an actual cause of φ in
(M, u⃗), if the following three conditions hold:
AC1. (M, u⃗) |= X⃗ = x⃗ and (M, u⃗) |= φ.
AC2. There is a contingency W⃗ ⊆ V with (M, u⃗) |= W⃗ = w⃗ and a setting x⃗′ for the variables

in X⃗ s.t. (M, u⃗) |= [X⃗ ← x⃗′, W⃗ ← w⃗]¬φ.
AC3. X⃗ is minimal, i.e., no strict subset of X⃗ satisfies AC1 and AC2.

B. Finkbeiner, F. Jahn, and J. Siber 5

AC1 simply states that both the cause and the effect have to be satisfied in the given
context u⃗ and causal model M. AC2 appeals to an intervention X⃗ ← x⃗′ that overrides
the structural equations for all X⃗i ∈ X⃗ such that FX⃗i

= x⃗′
i. While the witness x⃗′ can be

chosen arbitrarily, the valuation w⃗ for the contingency variables W⃗ has to be the same as
in the original context. The contingency is applied after the intervention, and in this way
allows to reset certain variables to their original values, with the aim to infer more precise
causes in certain scenarios. Hence, AC2 requires that some intervention together with a
contingency avoids the effect, i.e., the resulting solution to the modified structural equations
falsifies at least one primitive event in φ. AC3 ensures that X⃗ = x⃗ is a concise description of
causal behavior by enforcing minimality. In particular, this ensures that for no variable the
valuation in x⃗′ (AC2) coincides with its original valuation in x⃗.

▶ Example 2. We recall a classic example of Suzy and Billy throwing rocks at a bottle [35].
We have the endogenous variables BT ,ST for Billy and Suzy throwing their rock, respectively.
BH ,SH signify that they hit, and BB encodes that the bottle breaks from a hit. BT and
ST directly depend on some nondeterministic exogenous variables, while the other structural
equations are BH = BT ∧ ¬ST , SH = ST and BB = BH ∨ SH , i.e., Suzy’s throw is
always faster than Billy’s. Hence, in the context where both throw their rock, we have
BT = ST = SH = BB = 1 and BH = 0. The intervention ST = 0 does not suffice to avoid
the effect, because the structural equations still evaluate to BB = 1 due to Billy’s throw. We
say Billy’s throw was preempted. We can pick the contingency BH = 0 from the original
evaluation as a contingency. This means we set both ST = 0 and BH = 0, the latter of which
“blocks” the influence of Billy’s throw, and obtain an evaluation where the effect disappears,
i.e., with BB = 0. Finally, only the event ST = 1 is in the cause.

2.2 Networks of Timed Automata

We use networks of timed automata [1] to model real-time systems. We fix a finite set AP
of atomic propositions and a finite set of actions Act. Given a set of real-valued clocks
X, a clock constraint is a conjunctive formula of atomic constraints of the form x ∼ n or
x− y ∼ n with x, y ∈ X, ∼∈{<,≤,=,≥, >}, and n ∈ N. The set of clock constraints over a
clock set X is denoted C(X). Then, a timed automaton is a tuple A = (Q, q0, X,E, I, L),
where Q is a finite set of locations, q0 ∈ Q is the initial location, X is a finite set of clocks,
E ⊆ (Q × C(X) × Act × U(X) × Q) is the edge relation, I : Q → C(X) is an invariant
assignment, and L : Q → 2AP is a labeling function. We consider a version of updatable timed
automata that can reset clocks to constants [16]. Hence, the set of clock updates U(X) is the
set of partial functions mapping clocks to natural numbers: U(X) = {U : X ⇀ N}. A clock
assignment for a set of clocks X is a function u : X → R≥0. u0 denotes the assignment where
all clocks are mapped to zero. We write u |= g if u satisfies a clock constraint g ∈ C(C),
u+ δ for the clock assignment that results from u after δ ∈ R≥0 time units have passed, i.e.,
(u+ δ)(x) = u(x) + δ, and u← U for the assignment that updates u in accordance with U ,
i.e., (u← U)(x) = U(x) if x ∈ dom(U) else (u← U)(x) = u(x).

▶ Definition 3 (Semantics of Timed Automata). The semantics of a timed automaton
A = (Q, q0, X,E, I, L) is defined by a transition system (Q × R|X|

≥0), (q0, u0),→), where →
contains:
delays: (q, u) δ−→ (q, u+ δ) iff δ ∈ R≥0 and (u+ δ′) |= I(q) for all 0 ≤ δ′ ≤ δ, and
actions: (q, u) α−→ (q′, u← U) iff (q, g, α, U, q′) ∈ E, u |= g, and (u← U) |= I(q′).

6 Counterfactual Explanations for MITL Violations

A run ρ = (q0, u0) δ1−→ α1−→ (q1, u1) δ2−→ α2−→ . . . of A is a sequence of alternating delay
and action transitions. The set Π(A) is the set of all runs of A. The trace π(ρ) =
⟨δρ

1 , α
ρ
1⟩⟨δ

ρ
2 , α

ρ
2⟩ . . . of a run ρ is the sequence of delay and action transitions. We sometimes

denote the elements of some run ρ or trace π at index i with qρ
i , δρ

i etc. We define the
accumulated delay as δ(i, j) =

∑
k=i,...,j δk and δ0 = 0. The signal σρ of the run ρ maps

time points to location labels: σρ(t) = {a | ∃i. a ∈ L(qi) ∧ δ(0, i) ≤ t < δ(0, i + 1)}. The
language L(A) is the set of all signals with a corresponding run of A. We use this left-closed
right-open interpretation of signals due to Maler et al. [50] because of its simplicity. It is
straightforward to extend our counterfactual analysis technique to other semantics, e.g.,
continuous time and point wise [4], or even to other logics with linear-time semantics, as
long as their model checking problem is decidable. Note that we make use of an intersection
operation ∩ for timed automata which intersects the actions, i.e., the edge label of the
automata. You may assume that the operation unifies the labels of the locations, but we
apply it such that only one operand automaton has location labels. This means that the
result of A1 ∩A2 is not (singal-based) language intersection in the classical sense, i.e., we do
not have L(A1 ∩ A2) = L(A1) ∩ L(A2).

▶ Definition 4 (Network of Timed Automata). A network of timed automata A1 || . . . || An

is constructed through parallel composition. Let Ai = (Qi, li0, X,E
i, Ii, Li) for all 1 ≤ i ≤ n

with a common set of global clocks X. The network A1 || . . . || An is defined by the automaton
A = (Q, q0, X,E, I, L), where the locations are the Cartesian product Q = Q1 × . . . × Qn,
with the initial state qn

0 = (q1
0 , . . . , q

n
0), the invariants are combined as I(q⃗) =

∧
1≤i≤n I

i(qi),
and the labels are unified as L(q) =

⋃
1≤i≤n L

i(qi). The edge relation E contains two types:

internal:
(
q⃗, g, ⟨Ai,Ai, α⟩, U, q⃗ [q′

i/qi]
)

iff (qi, g, α, U, q
′
i) ∈ Ei, and

synchronized:
(
q⃗, gi ∧ gj , ⟨Ai,Aj , α⟩, Ui ∪ Uj , q⃗ [q′

i/qi, q
′
j/qj]

)
iff i ̸= j, (qi, gi, α, U, q

′
i) ∈ Ei,

and (qj , gj , ᾱ, U, q
′
j) ∈ Ej.

Hence, we do explicitly identify the component automata participating in action transitions
by constructing tuples containing actions and automata handles. This is for technical
convenience in later constructions, and we define a predicate to check whether an automaton
participates in an action transition as participates(Ai, ⟨Aj ,Ak, α⟩) := (i = j) ∨ (i = k), as
well as a partial function for accessing the original action as action(Ai, ⟨Aj ,Ak, α⟩) = α iff
i = j and action(Ai, ⟨Aj ,Ak, α⟩) = ᾱ iff i = k.

2.3 Metric Interval Temporal Logic
We use Metric Interval Temporal Logic (MITL) [4] for defining real-time properties such
as system specifications and effects. The syntax of MITL formulas over a set of atomic
propositions AP is defined by ϕ := p | ¬ϕ | ϕ ∧ ϕ | ϕ UI ϕ, where p ∈ AP and I is a
non-singleton interval of the form [a, b], (a, b], [a, b), (a, b), (a,∞), or [a,∞) with a, b ∈ N and
a < b. We also consider the usual derived Boolean and temporal operators (I ϕ := ⊤ UI ϕ,

I ϕ := ¬ I ¬ϕ, ϕ U ψ := ϕ U [0,∞) ψ, ϕ := [0,∞) ϕ, and ϕ := [0,∞) ϕ).
The semantics of MITL is defined inductively with respect to a signal σ : R≥0 → 2AP and a
timepoint t ∈ R≥0.

σ, t |= p iff p ∈ σ(t)
σ, t |= ¬ϕ iff σ, t ̸|= ϕ

σ, t |= ϕ ∧ ψ iff σ, t |= ϕ and σ, t |= ψ

σ, t |= ϕ UI ψ iff ∃t′ > t. t′ − t ∈ I, σ, t′ |= ψ and ∀t′′ ∈ (t, t′). σ, t′′ |= ϕ

B. Finkbeiner, F. Jahn, and J. Siber 7

A run ρ satisfies an MITL formula ϕ, iff σ(ρ), 0 |= ϕ. A timed automaton A satisfies ϕ, iff
all of its runs satisfy ϕ. We write ρ |= ϕ and A |= ϕ, respectively.

3 Counterfactual Causality in Real-Time Systems

In this section, we develop two notions of counterfactual causality in real-time systems. We
first define our language for describing causes and how they define interventions on timed
traces (Subsection 3.1). We then start with a simple notion of but-for causality in networks
of timed automata based on interventions without contingencies (Subsection 3.2). Afterward,
we outline how to model contingencies in a timed automaton (Subsection 3.3) and use them
to define actual causes, in the sense of Halpern and Pearl (cf. Subsection 2.1). Note that the
proofs of all nontrivial statements of this section are in Appendix A.

3.1 Interventions on Timed Traces
We describe actual causes as finite sets of events. Events have two distinct types such that
they either refer to an action or a delay transition in a given run.

▶ Definition 5 (Event). A delay event is a tuple (δ, i) ∈ R≥0 × N and an action event is a
tuple (α, i) ∈ Act× N. The sets of all delay and action events are denoted as DE and AE,
respectively. The set of all events is E = DE ∪̇AE. For a trace π, the set of events on π is
defined as Eπ = {(απ

i , i) | i ∈ N>0} ∪ {(δπ
i , i) | i ∈ N>0}.

When we describe a cause as a set of events, we are mainly interested in the counterfactual
runs obtained by modifying the events contained in the cause. In the style of Halpern and
Pearl, we call such modifications interventions. If the actual run is given in a finite, lasso-
shaped form and the cause is a finite set of events, these interventions can be described by a
timed automaton that follows the dynamics of the actual trace, except for events that appear
in the cause. For these events, the behavior is relaxed to allow arbitrary alternative actions
or delays. We call a run ρ lasso-shaped if it can be composed of a (possibly empty) prefix
and an infinitely occurring loop, i.e., if it is of the form

ρ = (q0, u0) . . .
(
(qn, un) . . . (qp−1, up−1) δp−→ αp−−→

)ω
,

where the ω-part is repeated infinitely often. Note that strictly speaking, a lasso-shaped
trace as defined here does not exists for all models that violate an MITL property, because
clock valuations are not guaranteed to stabilize in some infinitely-repeating loop un . . . up−1.
We use the valuations to reset clock values in our contingency construction that will be
introduced in Subsection 3.3. This construction may be generalized by considering clock
regions or zones [14] instead of the valuations. This requires defining the resets in the
contingency automaton accordingly.

In this paper, we simplify by assuming the existence of a lasso-shaped run as defined
above. In general, we can further assume the clocks to be assigned to values in Q, as timed
automata do not distinguish between the real and rational numbers [3]. For a lasso-shaped
run ρ as described above, we define a function to access the successor index of an action as
dstρ : {1, . . . , p} 7→ {0, . . . , p− 1} with dstρ(k) = k if k ̸= p and dstρ(p) = n else. We define
the length of the run ρ as |ρ| = p. The functions dstπ and |π| are defined analogously for the
trace of a lasso-shaped run. We are now ready to define the automaton modelling traces
with interventions.

8 Counterfactual Explanations for MITL Violations

(δπ
i , i) /∈ C (απ

i , i) /∈ C(
i− 1, d = δπ

i , α
π
i , d := 0, dstπ(i)

)
∈ E

(δπ
i , i) ∈ C (απ

i , i) /∈ C(
i− 1,⊤, απ

i , d := 0, dstπ(i)
)
∈ E

(δπ
i , i) /∈ C (απ

i , i) ∈ C β ∈ Act(
i− 1, d = δπ

i , β, d := 0, dstπ(i)
)
∈ E

(δπ
i , i) ∈ C (απ

i , i) ∈ C β ∈ Act(
i− 1,⊤, β, d := 0, dstπ(i)

)
∈ E

Figure 2 Rules defining the edge relation E of the counterfactual trace automaton AC
π.

▶ Definition 6 (Counterfactual Trace Automaton). Let π be a lasso-shaped trace over the set
of actions Act and let C ⊆ Eπ be a finite set of events. The counterfactual trace automaton of
trace π for the set of events C is defined as AC

π := (Q, q0, X,E, I, L) with Q := {0, . . . , |π|−1},
q0 := 0, X := {d}. The transition relation E is defined by the following rules depicted in
Figure 2, we have L(q) = ∅ for all q ∈ Q, and

I(q) :=
{
d ≤ δπ

q+1, if (δπ
q+1, q + 1) ̸∈ C

⊤, otherwise.

The main idea of the counterfactual automaton AC
π is to follow the actions and delays

of the original run for all events that are not in the event set C, and allow arbitrary action
and delays for events in C. Hence, AC

π modifies the trace of ρ, i.e., the sequence of action
and delay events. Subsequently, we will combine a local AC

π with the dynamics of the
original components to obtain full counterfactual runs of a network of timed automata. The
interventions on actions and delays are captured by the rules that define the transition
relation and are listed in Figure 2, which treat the different combination of events that may
or may not be in the cause at a specific index i. Crucially, the automaton AC

π then captures
not just a single concrete intervention on the events in C with respect to the run ρ, such as
a modified trace with a specific alternative delay deviating from the actual trace, but all
(possibly infinitely many) interventions on the events, i.e., it contains all traces with possibly
varying actions and delays at specific indices.

▶ Example 7. For the trace π = ⟨1.0, β⟩⟨3.0, β⟩(⟨2.0, α⟩)ω and the set of events C =
{(β, 1), (3.0, 2)}, we depict the counterfactual trace automaton AC

π in Figure 3. For the first
action and the second delay, arbitrary interventions are allowed, all other action and delay
events are enforced to be as in π.

3.2 But-For Causality in Networks of Timed Automata
We now use the construction from the previous section to define counterfactual causes for
MITL-expressible effects on runs of networks of timed automata. In practice, an effect ϕ
may be the violation of a specification ψ, such that the effect corresponds to the negation of
the specification: ϕ ≡ ¬ψ. The main idea of our definition is to isolate the local traces of the

d ≤ 1 d ≤ 2
{α, β}, d = 1 β, ⊤ α, d = 2

d := 0d := 0 d := 0

Figure 3 Counterfactual trace automaton AC
π.

B. Finkbeiner, F. Jahn, and J. Siber 9

component automata, and then construct a counterfactual trace automaton (cf. Definition 6)
for each component, where the former intervenes on the events in a given cause that refer
to the specific component. Afterward, each counterfactual trace automaton is intersected
with its corresponding component automaton, and the network of all these intersections
describes the counterfactual runs after intervention. To apply interventions locally, we start
by defining the local projections of a run in a network of timed automata.

▶ Definition 8 (Local Projection). For a network An = A1 || . . . || An and one of its runs
ρ, we denote {j1, . . . , jl} := { j ∈ N | participates(Ai, α

ρ
j)} as the the event points of some

component automaton Ai, whereby we let j1 < . . . < jl. Then the local projection ρ(Ai) of
the component automaton Ai is defined as the trace ρ(Ai) := ⟨δ1, α1⟩⟨δ2, α2⟩ . . ., in which

α
ρ(Ai)
k := action(Ai, α

ρ
jk

) for all k = 1, 2, . . ., i.e., the identity of the actions is preserved;
δ

ρ(Ai)
k = Σx=jk−1+1,...,jk

δρ
x for all k = 1, 2, . . . and with j0 := 1, i.e., the delays in the

local projection are the cumulative delays between two actions of the automaton in the
global run of the network.

Furthermore, we denote with locations(ρ,Ai) := (qρ
0)i, (qρ

j1
)i, (qρ

j2
)i, . . . the sequence of local

locations, i.e., the projection to the i-th component of the network location. We define the
localization function as localize(ρ,An) := (ρ(A1), . . . , ρ(An)).

Note that the local projection as defined here differs fundamentally from local runs as
defined for the local time semantics of timed automata [12], as the clocks still advance globally
at the same speed. However, by conducting counterfactual interventions on the delays in a
local projection of a run, we are able to change the order of transitions, which is not possible
by interacting with delays in the global run of the network. It should also be noted that even
if the global run ρ is infinite, the local projections may still turn out to be finite because the
transitions occurring infinitely often may stem from a subset of the automata.

▶ Example 9. For the run ρ from Subsection 1.1, the first local projection ρ(A1) is exactly
the trace π considered in Example 7 and locations(ρ,A1) = init, crit, (init)ω as the sequence of
local locations. The second local projection ρ(A2) is the finite trace ρ(A2) = ⟨2.0, β⟩⟨3.0, β⟩.

It is worth pointing out that every global run induces well-defined local projections,
however, the tuple localize(ρ,A) of local traces may have multiple associated global runs.
This stems from nondeterminism in the order of actions happening at the same timepoint.
In essence, we treat the scheduler’s decisions in such a situation as nondeterministic, and
allow different resolution of this nondeterminism in counterfactual runs of the network.

▶ Proposition 10. The localization function is not injective: There exists a network A and
two runs ρ ̸= ρ′ such that localize(ρ,A) = localize(ρ′,A).

Since we want to apply the construction of the counterfactual trace automaton locally to
every component, we lift the definition of events from traces to (network) runs, such that the
events of a network run are the union of events on local projections of the run.

▶ Definition 11 (Events of a Network Run). Given a run ρ of a network A1 || . . . || An, we
define the set of associated events as

Eρ := { (e, i,Ak) | (e, i) ∈ Eρ(Ak) for some component 1 ≤ k ≤ n } .

We lift the set of all events to a network An and define it as E(An) = {(e, i,Ak) | (e, i) ∈
E ∧ 1 ≤ k ≤ n} and say a run ρ satisfies a set of events C ⊆ E(An), denoted ρ |= C, if C is a
subset of the events on ρ, i.e., if C ⊆ Eρ. We further define an operator to filter for events of
a specific component k: C|k := {(e, i) | (e, i,Ak) ∈ C}.

10 Counterfactual Explanations for MITL Violations

Note that Eρ(Ak) contains both action events as well as locally projected delay events.
Hence, when we speak about the events on a network run we talk about the actions of the
respective component automata (identified through the third position in the event tuple), as
well as about the time between these actions of a component automaton (i.e., the cumulative
delays between two actions of a component). These events are the atomic building blocks
of our counterfactual expalantions. With this at hand we can define our first notion of
counterfactual causality based on allowing arbitrary alternatives for all the events appearing
in a hypothetical cause. The corresponding notion for structural equation models was termed
but-for causality by Halpern [34], so we adopt the same name here. Crucially, in our setting
with networks of timed automata, the alternative delays and events are realized with respect
to the local projections of the network run, such that an alternative delay can change the
order of actions emerging in different component automata.

▶ Definition 12 (But-For Causality in Real-Time Systems). Let A1 || . . . || An be a network of
timed automata and ρ a run of the network. A set of events C ⊆ E(An) is a but-for cause for
ϕ in ρ of A, if the following three conditions hold:
SAT ρ |= C and ρ |= ϕ, i.e., cause and effect are satisfied by the actual run.
CFBF There is an intervention on the events in C s.t. the resulting run avoids the effect ϕ,

i.e., we have
(A1 ∩ AC|1

ρ(A1)) || . . . || (An ∩ AC|n

ρ(An)) ̸|= ϕ .

MIN C is minimal, i.e., no strict subset of C satisfies SAT and CFBF.

▶ Example 13. Consider again the system and run from Subsection 1.1, and the cause
C = {(β, 1,A1), (β, 2,A1)}, i.e., the two β-actions of the first component (Cause 3a). SAT
is satisfied, since the effect ¬ [0,∞)(¬crit1 ∨ ¬crit2), i.e., the negation of the MITL spe-
cification is satisfied and the local projection of A1 is ρ(A1) = ⟨1.0, β⟩⟨3.0, β⟩(⟨2.0, α⟩)ω.
For CFBF, consider that the network run emerging from setting A1’s local projection to
⟨1.0, α⟩⟨3.0, α⟩(⟨2.0, α⟩)ω does not violate the specification since the first component never
enters crit1. To see that C also satisfies MIN consider its two singleton subsets. Setting the
alternative α for either of the actions alone does not suffice to avoid the effect due to the
temporal ordering of the β-actions, e.g., when intervening only on the first β, then the second
β enters crit1 while the second component is also in its critical section, hence the effect is
still present. Similarly, we can show {2.0, 1,A2}, i.e., the first delay of the second component
(Cause 2), as well as all the other but-for causes from Table 1 to be but-for causes for ϕ in ρ.

Besides this intuitive example, we can prove several sanity properties about but-for
causality. These properties concern the existence and identity of causes in certain distinctive
cases. First up, we show that the existence of a but-for cause is guaranteed as long as a
system run avoiding the effect exists.

▶ Proposition 14. Given an effect ϕ and a network of timed automata An = A1 || . . . || An,
then for every run ρ of the network in which ϕ appears, there is a but-for cause for ϕ in ρ of
An, if and only if there exists a run ρ′ of the network with ρ′ ̸|= ϕ.

Next, we consider the case where there is nondeterminism on the actual run, i.e., when
there is another run with the same trace, that does no satisfy the effect. In this case, our
definition returns the empty set as a unique actual cause.

▶ Proposition 15. Given an effect ϕ and a network of timed automata An, ∅ is the (unique)
but-for cause for an effect ϕ on a run ρ of An, if and only if there exists a run η of An

with localize(ρ,An) = localize(η,An) and η ̸|= ϕ, i.e., a run with the same local traces as the
actual run, that does, however, not satisfy the effect.

B. Finkbeiner, F. Jahn, and J. Siber 11

From a philosophical point of view, the empty set is a desirable verdict: It conveys that
the smallest change necessary to avoid the effect does not consist of any changes of delay or
action events, instead simply an alternative resolution of the underlying nondeterminism of
this trace suffices to obtain a witnessing counterfactual run. Also from a practical perspective,
it is helpful to know that the empty set gets returned only in this distinguishable scenario.

3.3 Contingencies in Networks of Timed Automata
Actual causality employs a contingency mechanism to isolate the true cause in the case of
preemption. The key idea of contingencies to overcome this preemption is to reset certain
propositions in counterfactual executions to their value as it is in the actual world. Coenen et
al. [20] have outlined how to model contingencies for lasso-shaped traces of a Moore machine.
We now describe a construction that applies this idea to networks of timed automata. The
central idea is that the state resets resulting from applying a contingency now do not only
reset the discrete machine state, but the clock assignment and the location of the timed
automaton, i.e., the full underlying state. However, a central issue in networks of timed
automata is that clocks are global variables shared by all component automata of the network,
while the location is a local attribute of single components. We respect this dichotomy by
allowing location contingencies only by actions of the corresponding component automaton
and clock contingencies by any action in the global network. This is realized by two automata
constructions, i.e., a local one applied to all component automata (for resetting locations)
and a global one applied to the full network (for resetting clocks). In both cases, we model
the behavior as an updatable timed automaton, as we outline in the following.

▶ Definition 16 (Location Contingency Automaton). Let ρ be a lasso-shaped run of a network
and the timed automaton A = (Q, q0, X,E, I, L) a component of this network. The location
contingency automaton of A and ρ is defined as Aloc(ρ) := (Q′, q′

0, X,E
′, I ′, L′) with Q′ :=

Q × {0, . . . , |locations(ρ,A)| − 1}, q′
0 := ⟨q0, 0⟩, I ′(⟨q, i⟩) := I(q), L′(⟨q, i⟩) := L(q), and E′

is defined as follows, where π = localize(ρ,A).

(q, g, α, U, q′) ∈ E i = 1, . . . , |ρ|
(⟨q, i− 1⟩, g, α, U, ⟨q′, dstπ(i)⟩) ∈ E′

(q, g, α, U, q′) ∈ E i = 1, . . . , |ρ|
(⟨q, i− 1⟩, g, α, U, ⟨qπ

j , dstπ(i)⟩) ∈ E′

The location contingency automaton Aloc
ρ hence consists of copies of the original system, one

for each position in the lasso-shaped local projection π. With an action transition, it moves
from one copy into the next, either following the edge (q, g, α, U, q′) of the original system
(left rule in Definition 16) or moving to the same location qπ

j as present in π at the respective
position dstπ(i) by applying a contingency (right rule in Definition 16). Note that after the
end of the loop in the lasso-shaped projection, the transitions are redirected to the copy
corresponding to the initial position of the loop by the definition of the function dstπ. The
same principle can now also be applied to global variables. In our setting, this only concerns
clocks, but the following definition of the clock contingency automaton can be generalized to
all global variables such as integers, if these are included in the system model.

▶ Definition 17 (Clock Contingency Automaton). Let ρ be a lasso-shaped run of a timed
automaton A = (Q, q0, X,E, I, L). The clock contingency automaton of A and ρ is defined as
Aclk(ρ) := (Q′, q′

0, X,E
′, I ′, L′) with Q′ := Q×{0, . . . , |ρ|− 1}, q′

0 := ⟨q0, 0⟩, I ′(⟨q, i⟩) := I(q),
L′(⟨q, i⟩) := L(q), and E′ is defined as follows.

(q, g, α, U, q′) ∈ E i = 1, . . . , |ρ|
(⟨q, i− 1⟩, g, α, U, ⟨q′, dstρ(i)⟩) ∈ E′

(q, g, α, U, q′) ∈ E i = 1, . . . , |ρ|
(⟨q, i− 1⟩, g, α, uρ

j , ⟨q
′, dstρ(i)⟩) ∈ E′

12 Counterfactual Explanations for MITL Violations

Note that strictly speaking we have defined clock updates to values in Q, instead of N
as considered in classic decidability results. It is, however, straightforward to scale these
values to the natural numbers [3]. Clearly, the signals modeled by the contingency automata
subsume the ones by the original automaton, because it is possible to simply never invoke a
contingency and, hence, always follow the dynamics of the original system.

▶ Proposition 18. For all timed automata A and runs ρ of A, we have that the languages of
the contingency automata subsume the language of the original automaton: L(Aloc

ρ) ⊇ L(A)
and L(Aclk

ρ) ⊇ L(A).

▶ Definition 19 (Actual Causality in Real-Time Systems). Let A1 || . . . || An be a network of
timed automata and ρ a run of the network. A set of events C ⊆ E(An) is an actual cause
for ϕ in ρ of A, if the following three conditions hold:
SAT ρ |= C and ρ |= ϕ, i.e., cause and effect are satisfied by the actual run.
CFAct There is an intervention on the events in C and a location and clock contingency

(denoted by loc(ρ) and clk(ρ) resp.) s.t. the resulting run avoids the effect ϕ, i.e., we have(
(Aloc(ρ)

1 ∩ AC|1
ρ(A1)) || . . . || (A

loc(ρ)
n ∩ AC|n

ρ(An))
)clk(ρ) ̸|= ϕ .

MIN C is minimal, i.e., no strict subset of C satisfies SAT and CFAct.

▶ Example 20. Consider the but-for cause C = {(β, 1,A1), (β, 2,A1)} from Example 13.
This C is not an actual cause because it does not satisfy the MIN condition of Definition 19:
The subset C′ = {(β, 1,A1)} satisfies SAT and CFAct. For CFAct we can use contingencies to
neutralize the effect of the second β in the local projection ρ(A1) = ⟨1.0, β⟩⟨3.0, β⟩(⟨2.0, α⟩)ω.
Since this action moves to init in the original run (cf. Subsection 1.1), it can also move to
this location in the contingency automaton Aloc(ρ)

1 . Hence we find an intervention (setting
⟨1.0,β⟩ to ⟨1.0,α⟩) and a contingency (setting the target location of ⟨3.0, β⟩ to init) that
avoid the effect together. A more detailed construction of the contingency automaton is
given in Appendix C. In fact, C′ = {(β, 1,A1)} is an actual cause (Cause 3) since additionally
to SAT and CFAct it also satisfies MIN – the empty set does not satisfy CFAct. Again, also
all the other actual causes from Table 1 can be shown to fulfill our definition.

▶ Remark 21. Note that as a consequence of Proposition 18, the statements regarding the
existence and identity of causes as proven in Propositions 14 and 15 can be lifted to actual
causality, but require replacing the original networks in the equivalence statements by the
contingency automata construction used in CFAct (cf. Definition 19).

4 Computing Counterfactual Causes

In this section, we develop algorithms for computing but-for and actual causes for any MITL
effect. Proofs and further details related to this section can be found in Appendix B. We
only explicitly present the algorithm for but-for causes; for actual causes the central model
checking query needs to be substituted (cf. Definition 19, Lines 4 and 10 in Algorithm 1).

In principle, the algorithms are based on enumerating all candidate causes. However, we
can speed up this process significantly by utilizing what we term the monotonicity of causes.

▶ Lemma 22 (Cause Monotonicity). For every network of timed automaton A, run ρ, and
effect ϕ, we have that
1. if a set of events C fulfills SAT also every subset C′ ⊆ C fulfills SAT.
2. if a set of events C fulfills CFBF (fulfills CFAct) also every superset C′ ⊇ C fulfills

CFBF (fulfills CFAct).

B. Finkbeiner, F. Jahn, and J. Siber 13

Algorithm 1 Compute But-For Causes

Input: network A = A1 || . . . || An, run ρ of A satisfying effect ϕ, i.e. ρ |= ϕ

Output: set of all but-for causes for ϕ in ρ of A
1 Ress := {}, Resl := {}, Power := P(Eρ)
2 for i = 0, 1, 2, . . . , |Eρ|

2 do
3 for C ∈ Power with |C| = i: do
4 if (A1 ∩ AC|1

ρ(A1)) || . . . || (An ∩ AC|n

ρ(An)) ̸|= ϕ then // cause found?
5 Ress := Ress ∪ C
6 Power := {C′ ∈ Power | C ̸⊆ C′}; // remove all supersets
7 end
8 end
9 for C ∈ Power with |C| = |Eρ|

2 − i: do
10 if (A1 ∩ AC|1

ρ(A1)) || . . . || (An ∩ AC|n

ρ(An)) ̸|= ϕ then // cause found?
11 Resl := Resl ∪ C
12 else
13 Power := {C′ ∈ Power | C′ ̸⊆ C}; // remove all subsets
14 end
15 end
16 end
17 return Ress ∪ {C ∈ Resl | ¬∃ C′ ⊊ C. C′ ∈ Ress ∪Resl}; // filter Resl for MIN

The second monotonicity property enables efficient checking of the MIN condition, as it
suffices to check only the subsets with one element less instead of checking all subsets of a
potential cause. For the computation of causes on a given run ρ, a naive approach could
now simply enumerate all elements of P(Eρ), that is, all subsets of the all events Eρ on ρ,
and check whether they form a cause. By further exploiting monotonicity properties, we can
find a more efficient enumeration significantly accelerating the computation of causes. The
key idea is to enumerate through the powerset P(Eρ) simultaneously from below (starting
with the empty cause and then causes of increasing size) and above (starting with the full
cause and then causes of decreasing size). This then allows to exclude certain parts of the
powerset from the computation in two ways: First, when finding a set of events C fulfilling
CFBF, we can exclude all of its supersets as we know that they cannot satisfy MIN. Second,
when finding a set of events C not fulfilling CFBF, we can exclude all of its subsets as
the monotonicity of CFBF implies that C′ ⊆ C will neither fulfill CFBF. This idea of the
simultaneous enumeration of P(Eρ) is implemented in Algorithm 1.

▶ Theorem 23. Algorithm 1 is sound and complete, i.e., it terminates with

Compute But-For Causes(A, ρ, ϕ) = { C | C is a but-for cause for ϕ in ρ of A} ,

for all networks A = A1 || . . . || An and runs ρ of A satisfying an effect ϕ.

While it is clear that our algorithm requires to solve several model checking problems
for the effect ϕ, we can show that we cannot do better: Model checking some formula ϕ

can be encoded as a cause checking problem. Hence, asymptotically, cause checking and
computation scale similar to MITL model checking for the formula φ.

▶ Theorem 24. Checking and computing causes for an effect ϕ on the run ρ in a network of
timed automata A is EXPSPACE(ϕ)-complete.

14 Counterfactual Explanations for MITL Violations

Table 2 Experimental results. n: number of automata in the network; |ρ|: run length; |Eρ|:
number of events on the run; #C: number of but-for/actual causes; |C|: average but-for/actual
cause size; t: runtime for computing but-for/actual causes

Instance n |ρ| |Eρ| #CBF #CAct |CBF | |CAct| tBF tAct

Run. Ex. 2 5
6

11
16

6
10

5
7

1.83
3.2

1.2
2

5.67s
88.2s

5.42s
128.8s

Run. Ex. 3 5
7

11
16

6
6

5
6

1.83
1.5

1.2
1.17

5.70s
55.0s

5.53s
78.6s

Run. Ex. 4 9 19 8 7 1.625 1.14 279.3s 331.8s

Fischer 2 4
7

12
20

2
5

2
5

1
1.2

1
1.2

2.37s
273.1s

9.73s
1499s

Fischer 3 5
7

14
20

2
5

2
5

1
1.2

1
1.2

3.40s
283.6s

16.9s
1516s

Fischer 4 6
7

16
20

2
5

2
5

1
1.2

1
1.2

4.58s
295.3s

28.8s
1535s

Note that this discussion on the complexity with respect to the size of the effect abstracts
away from the, e.g., the length of the counterexample, which contributes polynomially to
cause checking and exponentially to cause computation since we need to check all subsets
of events. In practice, we have observed that the bidirectional enumeration of the powerset
realized in Algorithm 1 significantly speeds up the compuation of causes.

5 Experimental Evaluation

We have implemented a prototype in Python.1 For model checking networks of timed
automata, we use Uppaal [13] and the library PyUppaal [55]. Our tool can check and
compute causes for effects in the fragment of MITL that is supported by the Uppaal
verification suite. We conducted experiments on the running example of this paper, as well as
on Fischer’s protocol, a popular benchmark for real-time model checking. The experiments
were run on a MacBook Pro with an Apple M3 Max and 64GB of memory. The results can
be found in Table 2. For the running example, the tool found exactly the causes depicted in
Table 1; for Fischer’s protocol, we report details in Appendix D. The computed causes narrow
down the responsible behavior on a given execution, with the average size of the causes
between 1 and 3.2 on execution with a large number of events (|Eρ|). Using contingencies
does result in smaller causes (cf. Avg. |CBF | vs. |CAct |) on the running example. This is
not the case for Fischer’s protocol, where but-for and actual causes are identical. These
findings suggest some directions for optimization, since computing but-for causes is more
efficient than computing actual causes. Since the latter are always subsets of the former, it
may be sensible to first compute but-for causes and then refine them by taking into account
contingencies. Further, the times in Table 2 refer to the time to compute all causes. Hence,
the performance in practical applications may be improved by iteratively presenting the user
with (but-for or actual) causes that have already been found during the execution.

1 Our prototype and benchmarks are available on GitHub [43].

B. Finkbeiner, F. Jahn, and J. Siber 15

6 Related Work

Providing explanatory insight into why a system does not satisfy a specification has been
of growing interest in the verification community: Baier et al. [6] provide a recent and
detailed survey. Most works focus on discrete systems and perform error localization in
executions [9, 31, 58, 44] or by identifying responsible components [57, 29, 28, 59, 32, 5]. There
are also several works on program slicing for analyzing dependencies between different parts
of a program [60, 41, 38]. The concepts of vacuity and coverage can be used to gain causal
insight also in the case of a successful verification [11, 8, 42, 18]. There are several recent
works that take a state-based view of responsibility allocation in transition systems [7, 52], but
they do not consider infinite state systems where such an approach is not directly applicable.
There are several works [53, 21, 26] that use a notion of distance defined by similarity relations
in the counterfactual tradition of Lewis [48]. These are more closely related to our work since
the minimality criterion in our definitions of but-for and actual causality can be interpreted
as a similarity relation [26]. Like this paper, a range of works has been inspired by Halpern
and Pearl’s actual causality for generating explanations [10, 22, 32, 20, 47, 56, 15]. Our
contingency automata constructions are particularly inspired by Coenen et al. [20, 21]. There
is a growing interest in counterfactual causality in models with infinitely many variables
or infinite domains [26, 37]. In the latter work, Halpern and Peters provide an axiomatic
account for counterfactual causes in such (structural equation) models, where variables are
further allowed to have infinite ranges. Our results suggest that fragments of structural
equation models related to networks of timed automata as studied here may be particularly
amenable to cause computation. A correspondence between these modeling formalisms has
already been pointed out by the same authors [54], albeit to the even more expressive hybrid
automata [2] that subsume timed automata. For real-time systems, Dierks et al. develop an
automated abstraction refinement technique [19] for timed automata based on considering
causal relationships [24]. Wang et al. introduce a framework for the causal analysis of
component-based real-time systems [59]. Kölbl et al. follow a similar direction and propose
a repairing technique of timed systems focusing on static clock bounds [46]. In a further
contribution, they consider the delay values of timed systems to compute causal delay values
and ranges in traces violating reachability properties [45]. Mari et al. propose an explanation
technique for the violation of safety properties in real-time systems [51], their approach is
based on their corresponding work on explaining discrete systems [30]. Hence, in the domain
of real-time systems ours is the first technique to consider arbitrary MITL properties, i.e.,
safety and liveness, as effects, together with both actions and real-time delays as causes.

7 Conclusion

Based on the seminal works of Halpern and Pearl, we have proposed notions of but-for and
actual causality for networks of timed automata, which define counterfactual explanations for
violations of MITL specifications. Our definitions rely on the idea of counterfactual automata
that represent infinitely many possible counterfactual executions. We then leveraged results
on real-time model checking for algorithms that check and compute but-for and counterfactual
causes, demonstrating with a prototype that our explanations significantly narrow down
the root causes in counterexamples of MITL properties. Interesting directions of future
work are to study symbolic causes [47, 21, 25] in real-time system, i.e., to consider real-time
properties specified in MITL or an event-based logic as causes [47, 17], and to develop tools
for visualizing [40] counterfactual explanations in networks of timed automata.

16 Counterfactual Explanations for MITL Violations

References
1 Rajeev Alur. Timed automata. In Nicolas Halbwachs and Doron A. Peled, editors, Computer

Aided Verification, 11th International Conference, CAV ’99, Trento, Italy, July 6-10, 1999,
Proceedings, volume 1633 of Lecture Notes in Computer Science, pages 8–22. Springer, 1999.
doi:10.1007/3-540-48683-6_3.

2 Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-Hsin Ho. Hybrid automata:
An algorithmic approach to the specification and verification of hybrid systems. In Robert L.
Grossman, Anil Nerode, Anders P. Ravn, and Hans Rischel, editors, Hybrid Systems, volume
736 of Lecture Notes in Computer Science, pages 209–229. Springer, 1992. doi:10.1007/
3-540-57318-6_30.

3 Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):183–
235, 1994. doi:10.1016/0304-3975(94)90010-8.

4 Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. The benefits of relaxing punctuality. J.
ACM, 43(1):116–146, jan 1996. doi:10.1145/227595.227602.

5 Uwe Aßmann, Christel Baier, Clemens Dubslaff, Dominik Grzelak, Simon Hanisch, Ardhi
Putra Pratama Hartono, Stefan Köpsell, Tianfang Lin, and Thorsten Strufe. Tactile computing:
Essential building blocks for the Tactile Internet, page 293–317. Academic Press, 2021. 46.23.01;
LK 01. doi:10.1016/B978-0-12-821343-8.00025-3.

6 Christel Baier, Clemens Dubslaff, Florian Funke, Simon Jantsch, Rupak Majumdar, Jakob
Piribauer, and Robin Ziemek. From verification to causality-based explications (invited talk). In
Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on
Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland
(Virtual Conference), volume 198 of LIPIcs, pages 1:1–1:20. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ICALP.2021.1, doi:
10.4230/LIPICS.ICALP.2021.1.

7 Christel Baier, Roxane van den Bossche, Sascha Klüppelholz, Johannes Lehmann, and Jakob
Piribauer. Backward responsibility in transition systems using general power indices. In
Michael J. Wooldridge, Jennifer G. Dy, and Sriraam Natarajan, editors, Thirty-Eighth AAAI
Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative
Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Educational
Advances in Artificial Intelligence, EAAI 2014, February 20-27, 2024, Vancouver, Canada,
pages 20320–20327. AAAI Press, 2024. URL: https://doi.org/10.1609/aaai.v38i18.30013,
doi:10.1609/AAAI.V38I18.30013.

8 Thomas Ball and Orna Kupferman. Vacuity in testing. In Bernhard Beckert and Reiner Hähnle,
editors, Tests and Proofs, pages 4–17, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

9 Thomas Ball, Mayur Naik, and Sriram K. Rajamani. From symptom to cause: Localizing errors
in counterexample traces. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’03, page 97–105, New York, NY, USA, 2003.
Association for Computing Machinery. doi:10.1145/604131.604140.

10 Ilan Beer, Shoham Ben-David, Hana Chockler, Avigail Orni, and Richard Trefler. Explaining
counterexamples using causality. In Ahmed Bouajjani and Oded Maler, editors, Computer
Aided Verification, pages 94–108, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

11 Ilan Beer, Shoham Ben-David, Cindy Eisner, and Yoav Rodeh. Efficient detection of vacuity
in actl formulas. In Orna Grumberg, editor, Computer Aided Verification, pages 279–290,
Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

12 Johan Bengtsson, Bengt Jonsson, Johan Lilius, and Wang Yi. Partial order reductions
for timed systems. In Davide Sangiorgi and Robert de Simone, editors, CONCUR ’98:
Concurrency Theory, 9th International Conference, Nice, France, September 8-11, 1998,
Proceedings, volume 1466 of Lecture Notes in Computer Science, pages 485–500. Springer,
1998. URL: https://doi.org/10.1007/BFb0055643, doi:10.1007/BFB0055643.

13 Johan Bengtsson, Kim Guldstrand Larsen, Fredrik Larsson, Paul Pettersson, and Wang
Yi. UPPAAL - a tool suite for automatic verification of real-time systems. In Rajeev Alur,

https://doi.org/10.1007/3-540-48683-6_3
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1145/227595.227602
https://doi.org/10.1016/B978-0-12-821343-8.00025-3
https://doi.org/10.4230/LIPIcs.ICALP.2021.1
https://doi.org/10.4230/LIPICS.ICALP.2021.1
https://doi.org/10.4230/LIPICS.ICALP.2021.1
https://doi.org/10.1609/aaai.v38i18.30013
https://doi.org/10.1609/AAAI.V38I18.30013
https://doi.org/10.1145/604131.604140
https://doi.org/10.1007/BFb0055643
https://doi.org/10.1007/BFB0055643

B. Finkbeiner, F. Jahn, and J. Siber 17

Thomas A. Henzinger, and Eduardo D. Sontag, editors, Hybrid Systems III: Verification
and Control, Proceedings of the DIMACS/SYCON Workshop on Verification and Control
of Hybrid Systems, October 22-25, 1995, Ruttgers University, New Brunswick, NJ, USA,
volume 1066 of Lecture Notes in Computer Science, pages 232–243. Springer, 1995. URL:
https://doi.org/10.1007/BFb0020949, doi:10.1007/BFB0020949.

14 Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools. In Jörg
Desel, Wolfgang Reisig, and Grzegorz Rozenberg, editors, Lectures on Concurrency and Petri
Nets, Advances in Petri Nets [This tutorial volume originates from the 4th Advanced Course on
Petri Nets, ACPN 2003, held in Eichstätt, Germany in September 2003. In addition to lectures
given at ACPN 2003, additional chapters have been commissioned], volume 3098 of Lecture Notes
in Computer Science, pages 87–124. Springer, 2003. doi:10.1007/978-3-540-27755-2_3.

15 Raven Beutner, Bernd Finkbeiner, Hadar Frenkel, and Julian Siber. Checking and sketching
causes on temporal sequences. In Étienne André and Jun Sun, editors, Automated Technology
for Verification and Analysis - 21st International Symposium, ATVA 2023, Singapore, October
24-27, 2023, Proceedings, Part II, volume 14216 of Lecture Notes in Computer Science, pages
314–327. Springer, 2023. doi:10.1007/978-3-031-45332-8_18.

16 Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, and Antoine Petit. Updatable timed
automata. Theor. Comput. Sci., 321(2-3):291–345, 2004. URL: https://doi.org/10.1016/j.
tcs.2004.04.003, doi:10.1016/J.TCS.2004.04.003.

17 Georgiana Caltais, Sophie Linnea Guetlein, and Stefan Leue. Causality for general LTL-
definable properties. Electronic Proceedings in Theoretical Computer Science, 286:1–15, jan
2019. URL: https://doi.org/10.4204%2Feptcs.286.1, doi:10.4204/eptcs.286.1.

18 Hana Chockler, Joseph Y. Halpern, and Orna Kupferman. What causes a system to satisfy a
specification? ACM Trans. Comput. Logic, 9(3), jun 2008. doi:10.1145/1352582.1352588.

19 Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. Counterexample-
guided abstraction refinement. In E. Allen Emerson and Aravinda Prasad Sistla, editors,
Computer Aided Verification, pages 154–169, Berlin, Heidelberg, 2000. Springer Berlin Heidel-
berg.

20 Norine Coenen, Raimund Dachselt, Bernd Finkbeiner, Hadar Frenkel, Christopher Hahn, Tom
Horak, Niklas Metzger, and Julian Siber. Explaining hyperproperty violations. In Sharon
Shoham and Yakir Vizel, editors, Computer Aided Verification - 34th International Conference,
CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings, Part I, volume 13371 of Lecture Notes
in Computer Science, pages 407–429. Springer, 2022. doi:10.1007/978-3-031-13185-1_20.

21 Norine Coenen, Bernd Finkbeiner, Hadar Frenkel, Christopher Hahn, Niklas Metzger,
and Julian Siber. Temporal causality in reactive systems. In Ahmed Bouajjani, Lukás
Holík, and Zhilin Wu, editors, Automated Technology for Verification and Analysis -
20th International Symposium, ATVA 2022, Virtual Event, October 25-28, 2022, Proceed-
ings, volume 13505 of Lecture Notes in Computer Science, pages 208–224. Springer, 2022.
doi:10.1007/978-3-031-19992-9_13.

22 Anupam Datta, Deepak Garg, Dilsun Kaynar, Divya Sharma, and Arunesh Sinha. Program
actions as actual causes: A building block for accountability. In 2015 IEEE 28th Computer
Security Foundations Symposium, pages 261–275, 2015. doi:10.1109/CSF.2015.25.

23 Alexandre David and Wang Yi. Modelling and analysis of a commercial field bus protocol. In
12th Euromicro Conference on Real-Time Systems (ECRTS 2000), 19-21 June 2000, Stockholm,
Sweden, Proceedings, pages 165–172. IEEE Computer Society, 2000. doi:10.1109/EMRTS.2000.
854004.

24 Henning Dierks, Sebastian Kupferschmid, and Kim Guldstrand Larsen. Automatic abstraction
refinement for timed automata. In Jean-François Raskin and P. S. Thiagarajan, editors, Formal
Modeling and Analysis of Timed Systems, 5th International Conference, FORMATS 2007,
Salzburg, Austria, October 3-5, 2007, Proceedings, volume 4763 of Lecture Notes in Computer
Science, pages 114–129. Springer, 2007. doi:10.1007/978-3-540-75454-1_10.

https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/BFB0020949
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/978-3-031-45332-8_18
https://doi.org/10.1016/j.tcs.2004.04.003
https://doi.org/10.1016/j.tcs.2004.04.003
https://doi.org/10.1016/J.TCS.2004.04.003
https://doi.org/10.4204%2Feptcs.286.1
https://doi.org/10.4204/eptcs.286.1
https://doi.org/10.1145/1352582.1352588
https://doi.org/10.1007/978-3-031-13185-1_20
https://doi.org/10.1007/978-3-031-19992-9_13
https://doi.org/10.1109/CSF.2015.25
https://doi.org/10.1109/EMRTS.2000.854004
https://doi.org/10.1109/EMRTS.2000.854004
https://doi.org/10.1007/978-3-540-75454-1_10

18 Counterfactual Explanations for MITL Violations

25 Bernd Finkbeiner, Hadar Frenkel, Niklas Metzger, and Julian Siber. Synthesis of temporal
causality. In Arie Gurfinkel and Vijay Ganesh, editors, Computer Aided Verification - 36th
International Conference, CAV 2024, Montreal, QC, Canada, July 24-27, 2024, Proceedings,
Part III, volume 14683 of Lecture Notes in Computer Science, pages 87–111. Springer, 2024.
doi:10.1007/978-3-031-65633-0_5.

26 Bernd Finkbeiner and Julian Siber. Counterfactuals modulo temporal logics. In Ruzica
Piskac and Andrei Voronkov, editors, LPAR 2023: 24th International Conference on Logic
for Programming, Artificial Intelligence and Reasoning, Manizales, Colombia, June 4-9,
2023, volume 94 of EPiC Series in Computing, pages 181–204. EasyChair, 2023. URL:
https://easychair.org/publications/paper/sWZw, doi:10.29007/qtw7.

27 Michael Gerke, Rüdiger Ehlers, Bernd Finkbeiner, and Hans-Jörg Peter. Model checking
the flexray physical layer protocol. In Stefan Kowalewski and Marco Roveri, editors, Formal
Methods for Industrial Critical Systems - 15th International Workshop, FMICS 2010, Antwerp,
Belgium, September 20-21, 2010. Proceedings, volume 6371 of Lecture Notes in Computer
Science, pages 132–147. Springer, 2010. doi:10.1007/978-3-642-15898-8_9.

28 Gregor Gössler and Daniel Le Métayer. A General Trace-Based Framework of Logical Causal-
ity. Research Report RR-8378, INRIA, October 2013. URL: https://inria.hal.science/
hal-00873665.

29 Gregor Gössler, Daniel Le Métayer, and Jean-Baptiste Raclet. Causality analysis in contract
violation. In Howard Barringer, Ylies Falcone, Bernd Finkbeiner, Klaus Havelund, Insup
Lee, Gordon Pace, Grigore Roşu, Oleg Sokolsky, and Nikolai Tillmann, editors, Runtime
Verification, pages 270–284, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

30 Gregor Gössler, Thomas Mari, Yannick Pencolé, and Louise Travé-Massuyès. Towards Causal
Explanations of Property Violations in Discrete Event Systems. In DX’19 - 30th International
Workshop on Principles of Diagnosis, pages 1–8, Klagenfurt, Austria, November 2019. URL:
https://inria.hal.science/hal-02369014.

31 Alex Groce. Error explanation with distance metrics. In Kurt Jensen and Andreas Podelski,
editors, Tools and Algorithms for the Construction and Analysis of Systems, pages 108–122,
Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

32 Gregor Gössler and Jean-Bernard Stefani. Causality analysis and fault ascription in component-
based systems. Theoretical Computer Science, 837:158–180, 2020. URL: https://www.
sciencedirect.com/science/article/pii/S0304397520303510, doi:10.1016/j.tcs.2020.
06.010.

33 Joseph Y. Halpern. A modification of the halpern-pearl definition of causality. In Qiang Yang
and Michael J. Wooldridge, editors, Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015,
pages 3022–3033. AAAI Press, 2015. URL: http://ijcai.org/Abstract/15/427.

34 Joseph Y. Halpern. Actual Causality. MIT Press, 2016.
35 Joseph Y. Halpern and Judea Pearl. Causes and explanations: A structural-model approach.

part i: Causes. The British Journal for the Philosophy of Science, 2005.
36 Joseph Y. Halpern and Judea Pearl. Causes and explanations: A structural-model approach.

part ii: Explanations. The British Journal for the Philosophy of Science, 2005.
37 Joseph Y. Halpern and Spencer Peters. Reasoning about causal models with infinitely

many variables. Proceedings of the AAAI Conference on Artificial Intelligence, 36(5):5668–
5675, Jun. 2022. URL: https://ojs.aaai.org/index.php/AAAI/article/view/20508, doi:
10.1609/aaai.v36i5.20508.

38 Mark Harman and Robert M. Hierons. An overview of program slicing. Softw. Focus, 2(3):85–92,
2001. URL: https://doi.org/10.1002/swf.41, doi:10.1002/SWF.41.

39 K. Havelund, A. Skou, K.G. Larsen, and K. Lund. Formal modeling and analysis of an
audio/video protocol: an industrial case study using uppaal. In Proceedings Real-Time Systems
Symposium, pages 2–13, 1997. doi:10.1109/REAL.1997.641264.

https://doi.org/10.1007/978-3-031-65633-0_5
https://easychair.org/publications/paper/sWZw
https://doi.org/10.29007/qtw7
https://doi.org/10.1007/978-3-642-15898-8_9
https://inria.hal.science/hal-00873665
https://inria.hal.science/hal-00873665
https://inria.hal.science/hal-02369014
https://www.sciencedirect.com/science/article/pii/S0304397520303510
https://www.sciencedirect.com/science/article/pii/S0304397520303510
https://doi.org/10.1016/j.tcs.2020.06.010
https://doi.org/10.1016/j.tcs.2020.06.010
http://ijcai.org/Abstract/15/427
https://ojs.aaai.org/index.php/AAAI/article/view/20508
https://doi.org/10.1609/aaai.v36i5.20508
https://doi.org/10.1609/aaai.v36i5.20508
https://doi.org/10.1002/swf.41
https://doi.org/10.1002/SWF.41
https://doi.org/10.1109/REAL.1997.641264

B. Finkbeiner, F. Jahn, and J. Siber 19

40 Tom Horak, Norine Coenen, Niklas Metzger, Christopher Hahn, Tamara Flemisch, Julián
Méndez, Dennis Dimov, Bernd Finkbeiner, and Raimund Dachselt. Visual analysis of hy-
perproperties for understanding model checking results. IEEE Trans. Vis. Comput. Graph.,
28(1):357–367, 2022. doi:10.1109/TVCG.2021.3114866.

41 Susan B. Horwitz, Thomas Reps, and Dave Binkley. Interprocedural slicing using dependence
graphs. SIGPLAN Not., 23(7):35–46, jun 1988. doi:10.1145/960116.53994.

42 Yatin Vasant Hoskote, Timothy Kam, Pei-Hsin Ho, and Xudong Zhao. Coverage estimation
for symbolic model checking. In Mary Jane Irwin, editor, Proceedings of the 36th Conference
on Design Automation, New Orleans, LA, USA, June 21-25, 1999, pages 300–305. ACM Press,
1999. doi:10.1145/309847.309936.

43 Felix Jahn. Prototype tool of our approach. URL: https://github.com/FelixJahnFJ/
Real-Time-Causality-Tool.git.

44 Manu Jose and Rupak Majumdar. Cause clue clauses: error localization using maximum
satisfiability. In Mary W. Hall and David A. Padua, editors, Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2011, San
Jose, CA, USA, June 4-8, 2011, pages 437–446. ACM, 2011. doi:10.1145/1993498.1993550.

45 Martin Kölbl, Stefan Leue, and Robert Schmid. Dynamic causes for the violation of timed
reachability properties. In Nathalie Bertrand and Nils Jansen, editors, Formal Modeling and
Analysis of Timed Systems - 18th International Conference, FORMATS 2020, Vienna, Austria,
September 1-3, 2020, Proceedings, volume 12288 of Lecture Notes in Computer Science, pages
127–143. Springer, 2020. doi:10.1007/978-3-030-57628-8_8.

46 Martin Kölbl, Stefan Leue, and Thomas Wies. Clock bound repair for timed systems. In
Isil Dillig and Serdar Tasiran, editors, Computer Aided Verification - 31st International
Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part I,
volume 11561 of Lecture Notes in Computer Science, pages 79–96. Springer, 2019. doi:
10.1007/978-3-030-25540-4_5.

47 Florian Leitner-Fischer and Stefan Leue. Causality checking for complex system models.
In Roberto Giacobazzi, Josh Berdine, and Isabella Mastroeni, editors, Verification, Model
Checking, and Abstract Interpretation, 14th International Conference, VMCAI 2013, Rome,
Italy, January 20-22, 2013. Proceedings, volume 7737 of Lecture Notes in Computer Science,
pages 248–267. Springer, 2013. doi:10.1007/978-3-642-35873-9_16.

48 David K. Lewis. Counterfactuals. Cambridge, MA, USA: Blackwell, 1973.
49 Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal design and analysis of a gear controller.

In Bernhard Steffen, editor, Tools and Algorithms for Construction and Analysis of Systems,
4th International Conference, TACAS ’98, Held as Part of the European Joint Conferences on
the Theory and Practice of Software, ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998,
Proceedings, volume 1384 of Lecture Notes in Computer Science, pages 281–297. Springer,
1998. URL: https://doi.org/10.1007/BFb0054178, doi:10.1007/BFB0054178.

50 Oded Maler, Dejan Nickovic, and Amir Pnueli. From MITL to timed automata. In Eugene
Asarin and Patricia Bouyer, editors, Formal Modeling and Analysis of Timed Systems, 4th
International Conference, FORMATS 2006, Paris, France, September 25-27, 2006, Proceedings,
volume 4202 of Lecture Notes in Computer Science, pages 274–289. Springer, 2006. doi:
10.1007/11867340_20.

51 Thomas Marix, Thao Dang, and Gregor Gössler. Explaining safety violations in real-time
systems. In Catalin Dima and Mahsa Shirmohammadi, editors, Formal Modeling and Analysis
of Timed Systems - 19th International Conference, FORMATS 2021, Paris, France, August
24-26, 2021, Proceedings, volume 12860 of Lecture Notes in Computer Science, pages 100–116.
Springer, 2021. doi:10.1007/978-3-030-85037-1_7.

52 Corto Mascle, Christel Baier, Florian Funke, Simon Jantsch, and Stefan Kiefer. Responsibility
and verification: Importance value in temporal logics. In 36th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–14.
IEEE, 2021. doi:10.1109/LICS52264.2021.9470597.

https://doi.org/10.1109/TVCG.2021.3114866
https://doi.org/10.1145/960116.53994
https://doi.org/10.1145/309847.309936
https://github.com/FelixJahnFJ/Real-Time-Causality-Tool.git
https://github.com/FelixJahnFJ/Real-Time-Causality-Tool.git
https://doi.org/10.1145/1993498.1993550
https://doi.org/10.1007/978-3-030-57628-8_8
https://doi.org/10.1007/978-3-030-25540-4_5
https://doi.org/10.1007/978-3-030-25540-4_5
https://doi.org/10.1007/978-3-642-35873-9_16
https://doi.org/10.1007/BFb0054178
https://doi.org/10.1007/BFB0054178
https://doi.org/10.1007/11867340_20
https://doi.org/10.1007/11867340_20
https://doi.org/10.1007/978-3-030-85037-1_7
https://doi.org/10.1109/LICS52264.2021.9470597

20 Counterfactual Explanations for MITL Violations

53 Julie Parreaux, Jakob Piribauer, and Christel Baier. Counterfactual causality for reachability
and safety based on distance functions. In Antonis Achilleos and Dario Della Monica, editors,
Proceedings of the Fourteenth International Symposium on Games, Automata, Logics, and
Formal Verification, GandALF 2023, Udine, Italy, 18-20th September 2023, volume 390 of
EPTCS, pages 132–149, 2023. doi:10.4204/EPTCS.390.9.

54 Spencer Peters and Joseph Y. Halpern. Causal modeling with infinitely many variables. CoRR,
abs/2112.09171, 2021. URL: https://arxiv.org/abs/2112.09171, arXiv:2112.09171.

55 Pyuppaal library webpage. URL: https://pypi.org/project/pyuppaal/1.0.0/.
56 Arshia Rafieioskouei and Borzoo Bonakdarpour. Efficient discovery of actual causality using

abstraction-refinement. CoRR, abs/2407.16629, 2024. URL: https://doi.org/10.48550/
arXiv.2407.16629, arXiv:2407.16629, doi:10.48550/ARXIV.2407.16629.

57 Raymond Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32(1):57–
95, 1987. URL: https://www.sciencedirect.com/science/article/pii/0004370287900622,
doi:10.1016/0004-3702(87)90062-2.

58 Chao Wang, Zijiang Yang, Franjo Ivančić, and Aarti Gupta. Whodunit? causal analysis for
counterexamples. In Susanne Graf and Wenhui Zhang, editors, Automated Technology for
Verification and Analysis, pages 82–95, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

59 Shaohui Wang, Anaheed Ayoub, BaekGyu Kim, Gregor Gössler, Oleg Sokolsky, and Insup
Lee. A causality analysis framework for component-based real-time systems. In Axel Legay
and Saddek Bensalem, editors, Runtime Verification, pages 285–303, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

60 Mark Weiser. Program slicing. IEEE Transactions on Software Engineering, SE-10(4):352–357,
1984. doi:10.1109/TSE.1984.5010248.

https://doi.org/10.4204/EPTCS.390.9
https://arxiv.org/abs/2112.09171
https://arxiv.org/abs/2112.09171
https://pypi.org/project/pyuppaal/1.0.0/
https://doi.org/10.48550/arXiv.2407.16629
https://doi.org/10.48550/arXiv.2407.16629
https://arxiv.org/abs/2407.16629
https://doi.org/10.48550/ARXIV.2407.16629
https://www.sciencedirect.com/science/article/pii/0004370287900622
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.1109/TSE.1984.5010248

B. Finkbeiner, F. Jahn, and J. Siber 21

A Proofs of Section 3

▶ Proposition 14. Given an effect ϕ and a network of timed automata An = A1 || . . . || An,
then for every run ρ of the network in which ϕ appears, there is a but-for cause for ϕ in ρ of
An, if and only if there exists a run ρ′ of the network with ρ′ ̸|= ϕ.

Proof. Let ρ be a run of such a network with ρ |= ϕ. We show both direction of the
equivalence separately.

“⇒”: Assume there is a but-for cause C for ϕ in ρ of A. From CFBF, we know that there ex-
ists a run ρ′ ∈ Π

(
(A1∩AC|1

ρ(A1)) || . . . || (An∩AC|n

ρ(An))
)

such that ρ′ ̸|= ϕ. Since the components
of the network are built from (trace) intersections, is easy to see that Π(Ai∩AC

ρ(Ai)) ⊆ Π(Ai)
for all components 1 ≤ i ≤ n. From the semantics of the network based on parallel composi-
tion, it follows that Π

(
(A1 ∩ AC|1

ρ(A1)) || . . . || (An ∩ AC|n

ρ(An))
)
⊆ Π(A1 || . . . || An), from which

this direction of the claim immediately follows.

“⇐”: Let ρ′ be a run of the network A1 || . . . || An with ρ′ ̸|= ϕ. We show that the set
of events Eρ, i.e., the set of all events appearing on the path ρ, fulfills the SAT and the
CFBF condition: From our initial assumption, it follows that ρ |= ϕ and from the definition
of Eρ we have ρ |= Eρ, hence the SAT condition is fulfilled. From the definition of the
counterfactual trace automaton, it follows that the language AEρ|i

ρ(Ai) of every component
i describes all possible traces, i.e., arbitrary orderings of actions, with arbitrary delays,
over the alphabet of actions Act. From this we can deduce that the runs of the network
under arbitrary interventions are in fact the runs of the original network, i.e., we have
Π

(
(A1 ∩ A

Eρ|1
ρ(A1)) || . . . || (An ∩ A

Eρ|n

ρ(An))
)

= Π(A1 || . . . || An). Since by our initial assumption
there exists a ρ′ ̸|= ϕ in A1 || . . . || An, we can deduce that CFBF is fulfilled. Finally, since Eρ

is finite, it either has a minimal subset that satisfies the two criteria and hence witnesses
this direction of our claim, or Eρ itself is the desired witness. ◀

▶ Proposition 15. Given an effect ϕ and a network of timed automata An, ∅ is the (unique)
but-for cause for an effect ϕ on a run ρ of An, if and only if there exists a run η of An

with localize(ρ,An) = localize(η,An) and η ̸|= ϕ, i.e., a run with the same local traces as the
actual run, that does, however, not satisfy the effect.

Proof. Let a network An = A1 || . . . || An be given. First up, it is easy to see that whenever
∅ is a but-for cause, it is unique: No other set C ≠ ∅ can satisfy MIN, since ∅ ⊂ C and ∅
satisfies SAT and CFBF by assumption. We proceed with proving the equivalence:

“⇒ ”: Assume that ∅ is a but-for cause on some run ρ, then from CFBF it follows that
there exists a run ρ′ ∈ Π

(
(A1 ∩ A∅

ρ(A1)) || . . . || (An ∩ A∅
ρ(An))

)
such that ρ′ ̸|= ϕ. From the

definition of the counterfactual trace automaton A∅
ρ(Ai) it follows that for all components

i and for all ρi ∈ Π(Ai ∩ A∅
ρ(Ai)) we have that πρi = ρ(Ai). From the definition of the

localization function it then follows that for all ζ ∈ Π
(
(A1 ∩ A∅

ρ(A1)) || . . . || (An ∩ A∅
ρ(An))

)
we have that localize(ρ,A) = localize(ζ,A), so in particular for ρ′, which shows this direction
of the claim.

“⇐ ”: Assume there is such an η with localize(ρ,A) = localize(η,A) and η ̸|= ϕ. It is
easy to see that ∅ trivially satisfies SAT and MIN. Hence, we only need to show that
Π

(
(A1 ∩ A∅

ρ(A1)) || . . . || (An ∩ A∅
ρ(An))

)
includes η (and indeed all runs with the same

22 Counterfactual Explanations for MITL Violations

Algorithm 2 Checking But-For Cause

Input: network A = A1 || . . . || An, run ρ, effect ϕ, set of events C
Output: “Is C a but-for cause for ϕ in ρ of A?”

1 if ρ ̸|= ϕ or C ̸⊆ Eρ then // checking SAT
2 return false
3 end
4 if (A1 ∩ AC|1

ρ(A1)) || . . . || (An ∩ AC|n

ρ(An)) |= ϕ then // checking CFBF

5 return false
6 end
7 for event e ∈ C do // checking MIN
8 C ′ := C \ {e}
9 if (A1 ∩ AC′|1

ρ(A1)) || . . . || (An ∩ AC′|n

ρ(An)) ̸|= ϕ then
10 return false
11 end
12 end
13 return true

local traces as ρ). This follows from the fact that Π(Ai ∩ A∅
ρ(Ai)) includes all runs ηi that

have the same trace as the local projection of ρ with respect to this component, i.e., all
ηi = ρ(Ai), due to the definition of A∅

ρ(Ai) and of trace intersection. By the definition of
parallel composition, we can conclude that Π

(
(A1 ∩ A∅

ρ(A1)) || . . . || (An ∩ A∅
ρ(An))

)
includes

all ρ′ with localize(ρ,A) = localize(ρ′,A), hence it also includes η, which can then serve as a
witness for ∅ satisfying CFBF, which closes this direction of the equivalence. ◀

B Algorithms and Proofs of Section 4

In this section, we give the algorithm for checking causality and detailed proofs of the
statements from Section 4. We start by proving the monotonicity properties.

▶ Lemma 22 (Cause Monotonicity). For every network of timed automaton A1 || . . . || TAn,
run ρ, and effect ϕ, we have that
1. if a set of events C fulfills SAT also every subset C′ ⊆ C fulfills SAT.
2. if a set of events C fulfills CFBF (fulfills CFAct) also every superset C′ ⊇ C fulfills

CFBF (fulfills CFAct).

Proof. We show the two statements separately:

1. Follows by the transitivity of set inclusions: If C fulfills SAT, we have that ρ |= C and ρ |=
E. Hence, C′ ⊆ C ⊆ Eρ and therefore ρ |= C′ such that also C′ fulfills SAT.

2. Let C fulfill CFBF, that is, there is a counterfactual run ρ′ of (A1 ∩AC|1
ρ(A1)) || . . . || (An ∩

AC|n

ρ(An)) with ρ ̸|= ϕ. Now notice that for C′ ⊇ C, also the transition relation of each
counterfactual trace automaton of C′ is a superset of the one of C such that we also have
Π(AC′|i

ρ(Ai)) ⊇ Π(AC|i

ρ(Ai)). Therefore, ρ′ is also a run of (A1 ∩AC′|1
ρ(A1)) || . . . || (An ∩AC′|n

ρ(An))
such that C′ fulfills CFBF. The proof for CFAct works analogously for the run in
intersection of the contingency and counterfactual trace automata.

◀

B. Finkbeiner, F. Jahn, and J. Siber 23

Algorithm 2 decides whether a given set of events forms a but-for cause. It is a straight-
forward implementation of Definition 12 of but-for causality under the use of monotonicity
for accelerating the verification of the MIN condition. Hence, we do not give a detailed
proof of correctness for Algorithm 2 and continue directly with cause computation.

▶ Theorem 23. Algorithm 1 is sound and complete, i.e., it terminates with

Compute But-For Causes(A, ρ, ϕ) = {C | C is a but-for cause for ϕ in ρ of A},

for all networks A = A1 || . . . || An and runs ρ of A satisfying an effect ϕ.

Proof. We argue for soundness (⊆) and completeness (⊇) separately:

“⊇”: Let C be a but-for cause for ϕ in ρ of A, i.e. fulfilling SAT, CFBF, MIN. We first
notice that the algorithm does then not remove C from Power (until it may be added to Ress):
C is not removed by Line 6 since the minimality of C implies that it has no subset fulfilling
CFBF; and C is not removed by Line 13 since the monotonicity of CFBF implies that it has
no superset not fulfilling CFBF. Now since C fulfills CFBF, if |C| ≤ Eρ

2 , C is added to Ress in
Line 5, if |C| > Eρ

2 it is added to Resl in Line 11 and is, in addition, not removed in the last line
as C fulfills the MIN condition. Therefore, C is returned by Compute But-For Causes(A, ρ, ϕ).

“⊆”: Let C ∈ Compute But-For Causes(A, ρ, ϕ). As for all set of events considered by the
algorithm, we have C ∈ P(Eρ) and, hence, C ⊆ Eρ such that C fulfills SAT. By definition
of the algorithm, C is only returned as a result when it was added to Ress or Resl. This,
in turn, is only the case, if (A1 ∩ AC|1

ρ(A1)) || . . . || (An ∩ AC|n

ρ(An)) ̸|= ϕ. Therefore, C fulfills
CFBF. Lastly to establish the MIN condition, we have to show that there are no proper
subsets of C that fulfill SAT and CFBF. Towards a contradiction, lets assume there are
such subsets and let C′ ⊊ C be the minimal one. Then, C′ is but-for cause and by the first
inclusion C′ ∈ Compute But-For Causes(A, ρ, ϕ). Now, if C was returned by the algorithm
since C ∈ Ress, then |C′| < |C| implies that the algorithm has considered C′ earlier. From this
point, however, C ̸∈ Power, a contradiction. If C was returned since C ∈ Resl, the filtering
in Line 17 results in a contradiction. Therefore, C is a but-for cause for ϕ in ρ of A. ◀

▶ Theorem 24. Checking and computing causes for an effect ϕ on the run ρ in a network of
timed automata A is EXPSPACE(ϕ)-complete.

Proof. Analyzing the computational compexity of Algorithms 1 and 2 shows the two prob-
lems of cause checking and computations to be solvalbe in EXPSPACE(ϕ). For showing
EXPSPACE(ϕ)-hardness, we present a reduction from the model checking problem, that is
EXPSPACE-complete [4]. We construct for a timed automaton A = (Q, q0, X,E, I, L) an
extended reduction automaton Ared := (Q ∪̇ {snew, qnew} , snew , X ∪̇ {xnew} , E′ , I ′ , L′) over
an extended set of actions Act ∪̇ {αnew, βnew} and labels AP ∪̇ {pnew} whereby snew and qnew
are fresh locations, αnew and βnew are fresh actions, xnew is a fresh clock, pnew is a fresh atomic
proposition, and we have

E′ := E ∪ {(snew,⊤, αnew, {xnew := 1}, qnew) , (qnew,⊤, αnew, ∅, qnew) , (snew,⊤, βnew, ϵ, q0)},

I ′(q) :=


I(q), q ∈ Q,
xnew ≤ 0, q = snew,

xnew ≤ 1, q = qnew,

and L′(q) :=


L(q), q ∈ Q,
{ }, q = snew,

{pnew}, q = qnew.

24 Counterfactual Explanations for MITL Violations

That is, Ared is an extension of A that has a new initial location snew from which a
direct transition (delay of 0) to either a second new location qnew or to the initial state
of the original automaton A is enforced. This new automaton has a new run, namely
ρred := (snew, u0) 0.0−−→ αnew−−→ (qnew, u0) 1.0−−→ αnew−−→)ω fulfilling the effect ϕred := ϕ ∨ pnew.

Instances (A, ϕ) of the model checking problem are now mapped to instances of the
cause checking problem via the reduction r : (A, ϕ) 7→ (Ared, ρred, ϕred, Cred) with Cred :=
{((αnew, 1, ρ(Ared)}. Now, we have that A ̸|= ϕ iff Cred is a cause for ϕred in ρred of Ared. ◀

C Contingency Automaton

In this section, we illustrate the contingency automaton construction from Example 20. For
automaton A1, run ρ from Subsection 1.1 and its sequence of local locations loc(ρ,A1) =
init, crit, init, the location contingency automaton Aloc(ρ)

1 is depicted in Figure 4. Following
Definiton 16, the contingency automaton is constructed in the following way:

we copy the automaton |ρ(A1)| times, to encode the current step in the states (second
component of the tuple);
we redirect the transitions from the original automata (black transitions) to their target
location in the next copy;
in each step, we add contingency transitions (red transitions), allowing the location to be
reset to what it had been in the corresponding step of the original run ρ.

We can now find a counterfactual run in Aloc(ρ)
1 avoiding the critical section by taking

the contingency from (init, 1) β−→ (init, 2). That is, the location after the second transition is
reset to what it had been in the original run, namely to location init. The construction of
the clock contingency automaton works in a similar way: We allow additional transitions to
reset the clocks as they had been in the original run at the respective positions.

(init, 0)

(crit, 0)
x ≤ 3

(init, 1)

(crit, 1)
x ≤ 3

(init, 2)

(crit, 2)
x ≤ 3

β

x := 0

β

x = 3

α

x := 0

α

α

β

x := 0

β

x := 0

β

x = 3

α

x := 0

α

β

x = 3

α

x := 0 β

x := 0
β

x = 3

α

x := 0

α

β

x := 0

α

Figure 4 The contingency automaton Aloc(ρ)
1 from Example 20.

B. Finkbeiner, F. Jahn, and J. Siber 25

init req

waitcrit

xi ≤ 2
id := i

xi := 0

id = 0
xi := 0

xi ≥ 2 ∧ id = i

id := 0

id = 0
xi := 0

xi ≤ 2

Figure 5 A single component automaton Ai of Fischer’s protocol network A1 || . . . || An.

D Experimental Setup and Results for Fischer’s Protocol

We report on the details in the experimental evaluation for Fischer’s protocol and the causes
identified by the tool. Fischer’s protocol is a popular real-time mutual exclusion protocol, we
depict one component Ai in Figure 5. We then test the effect ϕ := ¬ [0,∞) ¬crit1 on the
network A1 || . . . || An, i.e. that the first component reaches its critical section.

We state the tested runs and results exemplary for n = 2:

ρ1 :=
(
{init1,2}

τ1−−→
1.0
{req1, init2}

τ1−−→
1.0
{req1, init2}

τ1−−→
4.0
{wait1, init2}

τ1−−→
1.0
{crit1, init2}

τ1−−→
2.0

)ω

ρ2 :={init1,2}
τ2−−→
1.0

(
{init1, req2}

τ1−−→
1.0
{req1, req2}

τ2−−→
1.0
{req1,wait2}

τ1−−→
1.0
{wait1,wait2}

τ1−−→
3.0
{crit1,wait2}

τ1−−→
1.0
{init1,wait2}

τ2−−→
1.0

)ω

The detected causes for those two runs are reported in Table 3. As in Fischer’s protocol
only internal actions are used, the detected root causes only consist out of delay actions.
Further, since we do not encounter cases of preemption, but-for and actual causes agree on
this example. For n = 3, 4 we tested runs with the same lasso-part.

Table 3 Overview of the root causes found in the experiments for Fischer’s protocol.

Ref.ρ1: BF Causes ρ1 : Actual Causes ρ2: BF Causes ρ2 : Actual Causes

1 {(1.0, 1,A1)} {(1.0, 1,A1)} {(1.0, 1,A2)} {(1.0, 1,A2)}

2 {(4.0, 3,A1)} {(4.0, 3,A1)} {(2.0, 1,A1)} {(2.0, 1,A1)}

3 {(2.0, 2,A2)} {(2.0, 2,A2)}

4 {(2.0, 2,A1)} {(2.0, 2,A1)}

5 {(3.0, 3, A1),
(6.0, 3, A2)}

{(3.0, 3, A1),
(6.0, 3, A2)}

	1 Introduction
	1.1 Illustrative Example
	1.2 Outline and Contributions

	2 Preliminaries
	2.1 Actual Causality
	2.2 Networks of Timed Automata
	2.3 Metric Interval Temporal Logic

	3 Counterfactual Causality in Real-Time Systems
	3.1 Interventions on Timed Traces
	3.2 But-For Causality in Networks of Timed Automata
	3.3 Contingencies in Networks of Timed Automata

	4 Computing Counterfactual Causes
	5 Experimental Evaluation
	6 Related Work
	7 Conclusion
	A Proofs of Section 3
	B Algorithms and Proofs of Section 4
	C Contingency Automaton
	D Experimental Setup and Results for Fischer's Protocol

