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Abstract. Information flow guided synthesis is a compositional ap-
proach to the automated construction of distributed systems where the
assumptions between the components are captured as information-flow
requirements. Information-flow requirements are hyperproperties that
ensure that if a component needs to act on certain information that is
only available in other components, then this information will be passed
to the component. We present a new method for the automatic con-
struction of information flow assumptions from specifications given as
temporal safety properties. The new method is the first approach to han-
dle situations where the required amount of information is unbounded.
For example, we can analyze communication protocols that transmit a
stream of messages in a potentially infinite loop. We show that com-
ponent implementations can then, in principle, be constructed from the
information flow requirements using a synthesis tool for hyperproper-
ties. We additionally present a more practical synthesis technique that
constructs the components using efficient methods for standard synthe-
sis from trace properties. We have implemented the technique in the
prototype tool FlowSy, which outperforms previous approaches to dis-
tributed synthesis on several benchmarks.

1 Introduction

More than 65 years after its introduction by Alonzo Church [7], the synthesis
of reactive systems, and especially the synthesis of distributed reactive systems,
is still a most intriguing challenge. In the basic reactive synthesis problem, we
translate a specification, given as a formula in a temporal logic, into an imple-
mentation that is guaranteed to satisfy the specification for every possible input
from the environment. In the synthesis of distributed systems [32], we must find
an implementation that consists of multiple components that communicate with
each other via shared variables in a given architecture. While the basic synthesis
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problem is, by now, well-supported with algorithms and tools (cf. [5, 23]), and
despite a long history of theoretical advances [15, 25, 27, 28, 30, 32], no practical
methods are currently known for the synthesis of distributed systems.

A potentially game-changing idea is to synthesize the systems composition-
ally, one component at a time [4, 6, 14, 18, 24, 26, 33]. The key difficulty in au-
tomating compositional synthesis is to find assumptions on the behavior of each
component that are sufficiently strong so that each component can guarantee the
satisfaction of the specification based on the guarantees of the other components,
and, at the same time, sufficiently weak, so that the assumptions can actually
be realized. In our previous work on information flow guided synthesis [17], we
identified situations in which certain components must act on information that
these components cannot immediately observe, but must instead obtain from
other components. Such situations are formalized as information-flow assump-
tions, which are hyperproperties that express that the component eventually
receives this information. Once the information flow assumptions are known,
the synthesis proceeds by constructing the components individually so that they
satisfy the information-flow assumptions of the other components provided that
their own information-flow assumptions are likewise taken care of.

Technically, the synthesis algorithm identifies a finite number of sets of in-
finite sequences of external inputs, so-called information classes, such that the
component only needs to know the information class, but not the individual in-
put trace. In the first step, the output behavior of the component is fixed based
on an abstract input that communicates the information class to the component.
This abstract implementation is called a hyper implementation because it leaves
open how the information is encoded in the actual inputs of the component.
Once all components have hyper implementations, the abstract input is then
replaced by the actual input by inserting a monitor automaton that derives the
information class from the input received by the component.

This approach has two major limitations. The first is that the information
flow requirement only states that the information will eventually be transmitted.
This is sufficient for liveness properties where the necessary action can be delayed
until the information is received. For safety, however, such a delay may result
in a violation of the specification. As a result, the information flow assumptions
of [17] are insufficient for handling safety, and the compositional synthesis ap-
proach is thus limited to liveness specifications. The second limitation is due to
the restriction to a finite number of information classes. As a result, the com-
positional synthesis approach is only successful if a solution exists that acts on
just a finite amount of information. The two limitations severely reduce the ap-
plicability of the synthesis method. Most specifications contain a combination of
safety and liveness properties (cf. [23]). While it is possible to effectively approxi-
mate liveness properties through bounded liveness properties (cf. [20]), which are
safety properties, the converse is not true. Likewise, most distributed systems of
interest are reactive in the sense that they maintain an ongoing interaction with
the external environment. As a result, they do not conform to the limitation
that they only act on a finite amount of information. For example, a communi-
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Fig. 1: The prefix distinguishability of the sequence transmission protocol as NFA
in (a). The NFA representing the information class for output bout is shown in
(b), where (c) is a hyper implementation of the receiver on information classes.

cation protocol receives a new piece of information in each message and is hence
required to transmit an unbounded amount of information.

In this paper, we overcome both limitations with a new method for informa-
tion flow guided synthesis that handles both safety properties and specifications
of tasks that require the communication of an unbounded amount of informa-
tion. In order to reason about safety, we consider finite prefixes of external inputs
rather than infinite sequences. The key idea is to collect sets of finite sequences
of the same length into information classes. Such an information class refers to a
specific point in time (corresponding to the length of its traces) and identifies the
information that is needed at this point in time to avoid a violation of the safety
property. We then only require that the number of information classes is finite
at each point in time, while the total number of information classes over the
infinitely many prefixes of an execution may well be infinite. This allows us to
handle situations where again and again some information must be transmitted
in a potentially infinite loop.

2 Running Example: Sequence Transmission

Our running example is a distributed system that implements sequence trans-
mission. The system consists of two components, the transmitter t and the re-
ceiver r. At every time step, the transmitter observes the current input bit bin
from the external environment, the transmitter can communicate via cb with
the receiver, and the receiver controls the output bout. To implement a sequence
transmission protocol, the receiver must output the value of the input bit one
time step after it is received by the transmitter. We can state this specification
using the LTL formula (bin ↔ bout) for the receiver, and assume the trans-
mitter specification to be true. In this example, compositional synthesis is only
possible with assumptions about the communication between the components.
We utilize an information-flow assumption for compositional synthesis specified
in the HyperLTL formula ∀π∀π′.(cbπ ↔ cbπ′ )U(binπ

↮ binπ′ ∧ cbπ ↮ cbπ′ ).
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The formula states that on any pair of traces π and π′ of an implementation,
the communication bit cb on both traces must be equivalent until there is a
difference on the input bit bin as well as a difference on the communication bit
cb. This implies that whenever the receiver must distinguish two input traces,
it will observe a difference on its local inputs, namely bin. A nondeterministic
finite automaton (NFA) accepting all finite traces that must be distinguished
at the same time point is depicted in Figure 1a. In the course of this paper,
we show that, for safety properties, the distinguishability requirement yields an
information-flow assumption specified over finite traces. Based on the assump-
tion, we heuristically build information classes over finite traces, such that all
finite traces in the same class do not need to be distinguished. Figure 1b shows
an NFA for one of the two information classes. It accepts all finite traces that
have ¬bin in the last step. On all these traces, the output ¬bout is correct. For
this example, there is only one other information class, namely the finite traces
with bin in the last step. We use the information classes to synthesize a hyper
implementation for the receiver, depicted in Figure 1c. A hyper implementation
receives the current information classes, which are c and c′ on the transitions, as
input, and outputs the local outputs of the component. Whenever c is the input,
the correct output for all traces in c must be set by the receiver. Note that,
in this example, c and c′ cannot occur together as there is no common output
for bin ∧ ¬bin. The hyper implementation is correct for all transmitter imple-
mentations. After synthesizing both hyper implementations, for the transmitter
and the receiver, we compose and decompose them to obtain local implemen-
tations. Throughout this paper, we first define the prefix distinguishability and
prefix information-flow assumption. We then build assume and guarantee speci-
fications that, based on the information classes, guarantee the correctness of the
hyper implementations, and finally, we show how to construct the local solutions
to complete the synthesis procedure.

3 Preliminaries

Architectures. In this paper, we consider distributed architectures with two com-
ponents: p and q. Such architectures are given as tuple (Ip, Iq, Op, Oq, Oe), where
Ip, Iq, Op, Oq, and Oe are all subsets of the set V of boolean variables. Op and Oq

are the sets of output variables of p and q. We denote by Oe the output variables
of the uncontrollable external environment. We refer to Oe also as the external
inputs of the system. Op, Oq and Oe form a partition of V. Finally, Ip and Iq are
the input variables of components p and q, respectively. The inputs and outputs
are disjoint, i.e., Ip ∩ Op = ∅ and Iq ∩ Oq = ∅. Each of the inputs Ip and Iq of
the components is either an output of the environment or an output of the other
component, i.e., Ip ⊆ Oq ∪Oe and Iq ⊆ Op ∪Oe. For a set V ⊆ V, every subset
V ′ ⊆ V defines a valuation of V , where the variables in V ′ have value true and
the variables in V \ V ′ have value false.

Implementations. For a set of atomic propositions AP divided into inputs I
and outputs O, with I ∩ O = ∅, a 2O-labeled 2I -transition system is a 4-tuple
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(T, t0, τ, o), where T is a set of states, t0 ∈ T is an initial state, τ : T ×2I → T is
a transition function, and o : T → 2O is a labeling function. An implementation
of an architecture (Ip, Iq, Op, Oq, Oe) is a pair (Tp, Tq), consisting of Tp, a 2Op -
labeled 2Ip transition system Tp, and Tq, a 2Oq -labeled 2Iq transition system
Tq. The composition T = Tp||Tq of the two transition systems (T p, tp0, τ

p, op)
and (T q, tq0, τ

q, oq) is the 2Op∪Oq -labeled 2Oe-transition system (T, t0, τ, o), where
T = T p × T q, t0 = (tp0, t

q
0), τ((t

p, tq), x) = (τp(tp, (x ∪ oq(tq)) ∩ Ip), τ
q(tq, (x ∪

op(tp)) ∩ Iq)), o(tp, tq) = op(tp) ∪ oq(tq), where x ∈ 2Oe .

Specifications. The specifications are defined over the variables V. For a set
V ⊆ V of variables, a trace over V is an infinite sequence x0x1x2 . . . ∈ (2V )ω of
valuations of V . A specification over V is a set φ ⊆ (2V)ω of traces over V. Two
traces over disjoint sets V, V ′ ⊂ V can be combined by forming the union of their
valuations at each position, i.e., x0x1x2 . . .⊔ y0y1y2 . . . = (x0 ∪ y0)(x1 ∪ y1)(x2 ∪
y2) . . .. Likewise, the projection of a trace onto a set of variables V ′ ⊆ V is
formed by intersecting the valuations with V ′ at each position: x0x1x2 . . . ↓V ′=
(x0 ∩ V ′)(x1 ∩ V ′)(x2 ∩ V ′) . . .. For a trace π we use π[n] to access the set
on π at time step n, and π[n . . .m] for the interval of π from index n to m.
Our specification language is linear-time temporal logic (LTL) [31] with the set
V of variables serving as the atomic propositions. We use the usual Boolean
operations, the temporal operators Next , Until U , Globally , and Eventually
, and the semantic evaluation of (finite) traces π with π ⊨ φ. LTL formulas can

be represented by nondeterministic Büchi automata (NBAs) with an exponential
blow-up. A finite trace π ∈ (2V)∗ is a bad prefix of an LTL formula φ if π ⊭ φ and
π ·π′ ⊭ φ for all π′ ∈ (2V)ω. An LTL formula is a safety formula if every violation
has a bad prefix. Specifications over architectures are conjunctions φp∧φq of two
LTL formulas, where φp is defined over Op ∪ Oe, i.e., φp relates outputs of the
component p to the outputs of the environment, and φq is defined over Oq ∪Oe.
We call these specifications the local specifications of the component. An initial
run T (i0, i1, . . .) = t0t1 . . . ∈ Tω for an infinite sequence of inputs i0, i1 . . . ∈ 2Oe

is an infinite sequence of states produced by the transition function such that
ti = τ(ti−1, ii−1) for all i ∈ N and t0 is the initial state. The set of traces
Traces(T ) of an implementation T = (T p, T q) is then defined as all (o(t0) ∪
i0)(o(t1)∪i1) . . . ∈ (2V)ω where T (ioi1 . . .) = t0t1 . . . for some ioi1i2 . . . ∈ (2Oe)ω.
An implementation satisfies a specification φ if the traces of the implementation
are contained in the specification, i.e., Traces(T p, T q) ⊆ φ. Given an architecture
and a specification φ, the synthesis problem is to find an implementation T =
(Tp, Tq) that satisfies φ. We say that a specification φ is realizable in a given
architecture if such an implementation exists, and unrealizable if not.

Automata. A non-deterministic automaton A is a tuple (Σ,Q, qo, δ, F ) where Σ
is the input alphabet, Q is a set of states, qo is the initial state, δ : Q × Σ →
2Q is a transition function, and F is a set of accepting states. For an input
word σ0σ1 . . . σk ∈ Σk, a finite word automaton (NFA) F accepts a finite run
q0q1 . . . qk ∈ Qk where qi ∈ δ(qi−1, σi−1), if qk ∈ F . A Büchi automaton (NBA)
A accepts all infinite runs q0q1 . . . ∈ Qω that visit states in F infinitely often. An
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automaton is deterministic if the transition function δ is injective. The language
of an automaton A is the set of its accepting runs, and is denoted by L(A).

Hyperproperties. Information-flow assumptions are hyperproperties. A hyper-

property over V is a setH ⊆ 2(2
V)ω of sets of traces over V [9]. An implementation

(Tp, Tq) satisfies the hyperproperty H iff the set of its traces is an element of H,
i.e., Traces(Tp, Tq) ∈ H. A convenient specification language for hyperproperties
is the temporal logic HyperLTL [8], which extends LTL with trace quantifica-
tion, i.e., ∀π.φ and ∃π.φ. In HyperLTL, atomic propositions are indexed by
a trace variables, which make expressing properties like “ψ must hold on all
traces”possible, expressed by ∀π. ψ . Dually, one can express that “there exists a
trace on which ψ holds”, denoted by ∃π. ψ . Sometimes, a hyperproperty can be
expressed as a binary relation on traces. A relation R ⊆ (2V)ω × (2V)ω of pairs
of traces defines the hyperproperty H, where a set T of traces is an element of H
iff for all pairs π, π′ ∈ T of traces in T it holds that (π, π′) ∈ R. We call a hyper-
property defined in this way a 2-hyperproperty. In HyperLTL, 2-hyperproperties
are expressed as formulas with two universal quantifiers and no existential quan-
tifiers. A 2-hyperproperty can equivalently be represented as a set of infinite se-
quences over the product alphabet V2: we can represent a given 2-hyperproperty
R ⊆ Vω × Vω, by R′ = {(σ0, σ′

0)(σ1, σ
′
1) . . . | (σ0σ1 . . . , σ′

0σ
′
1 . . .) ∈ R}. This rep-

resentation is convenient for the use of automata to recognize 2-hyperproperties.

4 Prefix Information Flow

As argued in [17], identifying information flow between the components is cru-
cial for distributed synthesis, because the specification may require a compo-
nent’s actions to depend on external inputs that are not directly observable by
the component. To react to the external inputs correctly, at least the relevant
information must be transferred to the component. The fundamental concept
to identify when a component requires information transfer is captured by a
distinguishability relation on sequences of environment outputs. We recall the
definition of distinguishability for a component p from [17]:

Definition 1 (Trace distinguishability [17]). Let φp be an LTL specification
of p. The corresponding trace distinguishability relation is defined as

τp = {(πe, π′
e) ∈(2Oe)ω × (2Oe)ω |

∀πp ∈ (2Op)ω. πe ⊔ πp ⊭ φp or π′
e ⊔ πp ⊭ φp}

The trace distinguishability relation is defined w.r.t. pairs of infinite traces,
where each trace records all outputs of the environment, building up all the
information that is presented to the system. Two traces are related iff there
exists no infinite trace of p’s outputs that satisfies the specification for both (en-
vironment) input traces. For example, the traces in the sequence transmission
protocol are related by τr if they differ on bin at least once. We now turn the dis-
tinguishability relation into an assumption for the component. On traces related
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by τp, the component must observe a difference in its local inputs, namely the
set Ip. The relation itself only considers infinite traces over all variables that are
not outputs of the single component, independent of the architecture. Therefore,
the information-flow assumption (IFA) built from the distinguishability relation
enforces that on all related (environment input) traces, there is a difference on
the component’s input:

Definition 2 (Trace information-flow assumption [17]). Let τp be the
trace distinguishability relation for p. The information flow assumption Ip is the
2-hyperproperty defined by the relation

RIp
= {(π, π′) ∈ (2V)ω × (2V)ω | if (π↓Oe

, π′↓Oe
) ∈ τp then π↓Ip ̸= π′↓Ip}

The trace information-flow assumption is necessary for a component p; ev-
ery implementation of the distributed system will satisfy the information-flow
assumption from [17]. In its generality, this definition specifies that the values
of the local inputs to p have to be different at some time point, without an ex-
plicit or implicit deadline. This is critical in two ways: On the one hand, liveness
specifications, as in the example bin ↔ bout, will never determine an explicit
point in time where the information must be present. On the other hand, safety
specifications always include a fixed deadline for the reaction of the component,
which, if the information is not present, cannot be met. This deadline, how-
ever, is not accounted for in the information-flow assumption, and an algorithm
cannot rely on availability of the information during synthesis.

In [17] we solve the liveness issue by introducing a time-bounded information-
flow assumption. The time bound acts as a placeholder for the exact time point
of information flow. The locally synthesized receiver must then be correct for all
such possible time points. Because of the arbitrary deadline, the assumptions
cannot suffice to find a solution for a safety specification of the receiver either;
they are too weak. We solve this issue by restricting the attention to safety
specifications. Consider, for example, the safety property φr = (bin ↔ bout)
of our running example. To satisfy this property, the receiver r must observe the
value of bin on its local inputs in exactly one time step, otherwise, it cannot react
to bin in time. With this observation, we can state a stronger distinguishability
relation over pairs of finite traces.

Definition 3 (Prefix distinguishability). Let φp be the safety specification
for component p. The prefix distinguishability relation is defined as

ρφp
= {(π, π′) ∈ (2Oe)m×(2Oe)m,m ∈ N | ∀πp ∈ (2Op)m.

π ⊔ πp ⊭m φp or π′ ⊔ πp ⊭m φp

and ∀n ∈N, n < m. ∃π′
p ∈ (2Op)n.

π[0 . . . n] ⊔ π′
p ⊨n φp and π′[0 . . . n] ⊔ π′

p ⊨n φp}

The first condition states that, for the two related input traces of length m,
the specification is violated for all possible output sequences for p of the same
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length. The second condition enforces that m is the first position at which the
trace pair must be distinguished, i.e., for all previous positions of the traces,
there exists a common output sequence that satisfies the specification on both
traces. Every violation of a safety specification has a minimal bad prefix [11],
and hence every violation that originates in the indistinguishability of two traces
is captured by Definition 3. For liveness specifications, no two traces are related
by this definition: One can inductively reason that for every (π, π′) ∈ τφp

this
pair of traces is not in ρφp

, i.e., (π, π′) /∈ ρφp
, since for every chosen m, one can

find an output trace of p that violates the formula after time point m.
Prefix distinguishability is the core concept of our synthesis method. We now

show that we can build an automaton that accepts a pair of finite environment
output traces iff they are related. We say that an automaton A recognizes a
relation R if L(A) = R.

Theorem 1. For a component p with specification φp, there exists a non-de-
terministic finite automaton with a doubly exponential number of states in the
length of φp that recognizes the prefix distinguishability relation ρφp

.

Proof. We construct a non-deterministic finite automaton (NFA) F that accepts
precisely all pairs of traces over (2Oe)m× (2Oe)m, where m ∈ N, that are related
by ρφp

. Let φ′
p be the formula φp where all atomic propositions a ∈ AP are

renamed to a′, and let V ′ be a set containing a copy v′ of every variable v ∈ V.
We build the NBA B = Aφp

× Aφ′
p
, where Aφp

and Aφ′ are constructed with
a standard LTL-to-NBA translation respectively, and the operator × builds the
product of two NBAs. B now accepts all tuples of traces that each satisfy φp.
Let C be the NBA that restricts the transition relation of B s.t. edges are only
present if the output variables of p are equal

∧
o∈Op

o ↔ o′ holds, enforcing
that both traces agree on the output while satisfying the specification. We now
existentially project to the set Oe ∪ O′

e to build D, whose alphabet does not
contain the component’s outputs. To accept the pairs of traces that do not satisfy
the formula, we negate D, denoted by D̄. In the last step of the construction, we
transform the NBA D̄ to an NFA F using the emptiness per state construction
of [3]. This yields an NFA that accepts the prefix distinguishability relation.
The size of the automaton is doubly exponential in the size of the formula. The
first exponent stems from the LTL to NBA construction, and the second from
negating the automaton F .

Similar to Definition 2, we now turn the safety distinguishability relation
into an information-flow assumption that must be guaranteed by the component
that observes the respective environment output. The assumptions include spe-
cific information-flow deadlines for pairs of traces at which the component must
observe the information at the latest. The information-flow assumption, again,
is a 2-hyperproperty enforcing that pairs of traces that are related by the prefix
distinguishability relation have an observable difference for the component.

Definition 4 (Prefix information-flow assumptions). Let ρφp
be the pre-

fix distinguishability relation for p. The corresponding prefix information flow
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assumption Pp is the 2-hyperproperty defined by the relation

RPp
= {(π, π′) ∈ (2V)ω × (2V)ω | if ∃m ∈ N s.t. (π[0 . . .m], π′[0 . . .m]]) ∈ ρφp

then π↓Ip [0 . . .m− 1] ̸= π′↓Ip [0 . . .m− 1]}

On all finite trace pairs in the prefix distinguishability relation ρφp , there
must be a difference on Ip before the deadline m. Restricting the observable
difference to happen before the deadline m is crucial for the receiving com-
ponent. Whereas the prefix distinguishability relation relates finite traces, the
prefix information-flow assumption is a hyperproperty over infinite traces. Un-
surprisingly, every implementation of a distributed system satisfying safety LTL
specifications satisfies the corresponding prefix information-flow assumption.

Lemma 1. The prefix information-flow assumption is necessary for safety LTL
specifications.

Proof. Assume that there exists an implementation (Tp, Tq) satisfying the safety
LTL specifications φp and φq but not Pp and Pq. Since Pp is not satisfied, there
exists a pair of traces π, π′ such that (π↓Oe [0 . . .m], π′↓Oe [0 . . .m]) ∈ ρφp and
π↓Ip [0 . . .m + 1] = π′↓Ip [0 . . .m + 1]. The deterministic system must therefore
choose the same output for the timestep m + 1 since the inputs are the same.
This contradicts the assumption: either π[0 . . .m+1] or π′[0 . . .m+1] is a min-
imal bad prefix since, otherwise, the traces would not be related by the prefix
distinguishability relation.

We are now ready to return to the sequence transmission example. The prefix
distinguishability automaton for (bin ↔ bout) is depicted in Figure 1a. The
automaton accepts a 2-hyperproperty whose alphabet is a pair of valuations of
bin. Note that the communication bit from t to r is not restricted by the pre-
fix distinguishability. The automaton terminates whenever a sequence of inputs
must be distinguished. For example, starting in the initial state, the input words
bin on π and ¬bin on π′ lead immediately to an accepting state; these finite
traces need to be distinguished. However, if bin is equivalent on both traces, the
automaton stays in the initial non-accepting state. By abuse of notation, we use
Xp for Xφp

, e.g., ρp for ρφp
, if φp is clear from context.

The automata for the prefix distinguishability and the prefix information-
flow assumption can be very complex; even if two traces are different at point n,
it can be decided at position n +m if the difference of the inputs results in a
necessary information flow, and the automaton might need to store the observed
difference during all m intermediate steps. We evaluate the size of the prefix dis-
tinguishability automaton empirically in Section 7. With the prefix information-
flow assumption, we could construct a hyperproperty synthesis problem similar
to [17]. In practice, however, synthesis from hyperproperties is largely infeasible,
because it hardly scales to more than a few system states [16]. In the follow-
ing, we show that this problem can be avoided by reducing the compositional
synthesis problem to the much more practical synthesis from trace properties.
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5 Unbounded Communication in Distributed Systems

Computing the information flow between the components in a distributed sys-
tem, as shown in Section 4, is the first step for compositional synthesis. In the
second and more complex step, the synthesis procedure needs to guarantee (1)
that the component that observes the information actually transmits the infor-
mation, and (2) that the component requiring the information correctly assumes
the reception. We construct an assume specification, which ensures that the com-
ponent correctly assumes the information flow, and a guarantee specification,
which enforces the correct transmission of information.

5.1 Receiving Information

A component cannot realize its specification only based on its local observations;
it needs to assume that the required information is transmitted during execution.
The prefix information-flow assumption is one class of necessary assumptions,
i.e., every transmitter implementation must satisfy it, and the hyperproperty
can be assumed without losing potential solutions. In many cases, this assump-
tion is also sufficient; if the receiver assumes this exact information flow, the
local synthesis problem is realizable. During synthesis, we do not know what ac-
tual information the component currently has. The synthesis procedure only has
partial information of all environment outputs. Which information is actually
transmitted at which time point is finally decided by the synthesis process of the
transmitter. However, the receiver’s implementation must be correct for every
possible information in every step. We, therefore, collect all traces at a position
that do not need to be distinguished by component p at time n, i.e., there exists
a prefix of p’s outputs that works on all traces.

Definition 5 (Prefix information class). Let ρp be the prefix distinguisha-
bility relation for p. The information class of a trace π at position n ∈ N is the
set of traces [π]np = (2Oe)n\{π′ ∈ (2Oe)n | (π, π′) ∈ ρp}

We now construct a trace property that, given an information class cn, en-
forces that the output by the component is correct for all traces in the informa-
tion class cn. This property specifies exactly one step of outputs, namely n+ 1.
Since we consider safety LTL properties, it is sufficient to incrementally specify
the outputs according to the satisfaction of the LTL formula.

Definition 6 (Information class specification). Let φp be the LTL spec-
ification for component p, n ∈ N, and let cn be a prefix information class at
position n− 1. The information class specification Cn

p ⊆ (2V\Oq )ω is defined as

Cn
p = {πe ⊔ πo | πe ∈ (2V\Op)n, πo ∈ (2Op)n

s.t. ∀π′
e ∈ cn−1.π

′
e[0 . . . n] ⊔ πo[0 . . . n] ⊨n φp}.

The output traces in Cn
p need to be correct for every environment output

trace that is in the information class. Here, if an environment output trace is
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not in the information class, we do not restrict any behavior. We now introduce
a crucial assumption: That the number of information classes over all time steps
is bounded. In general, this is not necessary: one can distinguish every trace from
every other trace, such that the information classes increase in every time step.
However, if the number of information classes is bounded, we present an effec-
tive heuristic for constructing them on the prefix distinguishability assumption
in Section 5.1. Each information class c (which is now not parametric in the
time point) is then a set of finite traces (2Oe)⋆, which is exactly the set of traces
in each step that do not need to be distinguished by a component. Consider,
for example, the sequence transmission specification φ = (bin ↔ bout). The
information classes w.r.t. Definition 5 are all traces that are equal on the envi-
ronment outputs up to time-point n−1. This builds infinitely many information
flow classes. It is, however, possible to reduce the information classes to a finite
representation. In our example, it is sufficient to check for the previous position
of the traces: all finite traces that are equal at n − 1 do not need to be distin-
guished. This yields two information classes, one for bin at the previous step and
one for ¬bin at the previous step. The NFA accepting one of them is depicted
in Figure 1b. With the assumption that we are given a finite set of information
classes as subsets of (2Oe)∗, we are able to build an assume specification, which
assumes that information classes are received if necessary, and can react to any
possible consistent sequence of information classes. The information classes C
are now part of the alphabet for the input traces and we use c for refering to a
specific information class and as an atomic proposition.

Definition 7 (Assume specification). Let φp be the component specification
and C be the finite set of information classes, where each c ∈ C is a subset of
(2Oe)∗. The trace property A ⊆ (C ∪ 2Op)ω is defined as

AC
p = {πC ∪ πo | πC ∈ Cω, πo ∈(2Op)ω,∀n ∈ N.∀c ∈ πC [n− 1].

∀πe[0 . . . n− 1] ∈ c. if πc is consistent, then πe ⊔ πo[0 . . . n] ⊨n φp},

where a finite prefix πC ∈ Cn is consistent if it holds that for all 0 ≤ m < n, all
finite traces in πe[0 . . .m] have a prefix in πe[0 . . .m− 1].

The assume specification collects, for a sequence of information classes, all
component outputs that are correct for all environment outputs in this infor-
mation class. The consistency of input traces specifies the correct reveal of in-
formation classes. It cannot be the case that a trace that was distinguishable
from the current trace in step n−1 is indistinguishable in n. Note that a correct
transmitter will implement only consistent traces. Let’s assume we are given the
information classes C = {c, c′} for the sequence transmission problem, where
c = ({bin}, {¬bin})∗{bin} and c′ = ({bin}, {¬bin})∗{¬bin}. These classes suffice
to implement the receiver: whenever the trace over Cn ends in c, the receiver has
to respond with bout and it should respond with ¬bout whenever the trace ends
in c′. Each information class c can be split into the information classes cn by
fixing the length of the traces to n.
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Lemma 2. Let Cp be the finite set of information classes for component p. Every
implementation satisfying the assume specification AC

p also satisfies the informa-
tion class specification Cn

p for all n ∈ N and c ∈ Cp.

This lemma follows directly from the definition of the assume specification:
It collects all information class specifications for the given set of information
classes. Note that correctness is only specified for the set of information classes,
not the information flow assumption. If the information classes are not total, in
the sense that all distinguished traces are in one of the classes, then the receiver
is not correct for all implementations of the sender.

5.2 Transmitting Information

While a transmitter has to satisfy its local specification, it must also guarantee
that the information flow that the receiver relies on is transmitted in time. In
general, this is, again, a hyperproperty synthesis problem: The combination of
the local specification of q and the prefix information-flow assumption of p is
the 2-hyperproperty that the implementation of q needs to satisfy. However, we
propose a framework for more involved (incomplete) trace property synthesis
algorithms, potentially speeding up the transmitter synthesis significantly. In
contrast to the receiver, the transmitter of information can choose the synthesis
strategy; As long as the transmitter satisfies the information-flow assumption,
the receiver will assume this implementation as feasible and can react to the
information flow correctly during composition. We specify a class of trace prop-
erties s.t. each element specifies a subset of the implementations that satisfy a
correct transmitter.

Definition 8 (Guarantee specification). Let p and q be components and
Iφp be the IFA for φp. The set Gρp ⊆ (2Iq∪Oq )ω is a guarantee specification if
all 2Oq -labeled 2Iq -transition systems that satisfy G also satisfy Ip.

The first crucial difference between the guarantee specification and the as-
sume specification in Definition 7 is that the transmitter must guarantee a dif-
ference on the traces in ρp whereas the receiver can only assume to observe a
difference whenever ρp relates two traces. Additionally, the guarantee specifi-
cation can specify a subset of implementations of all possible transmitters. We
show this difference in the following example: Consider our running example
specification φ = (bin ↔ bout). One of the (infinitely) many guarantee spec-
ifications can be the set of traces specified by the LTL formula (bin ↔ ¬cb),
which enforces that every bin is communicated to the receiver by setting cb to
false.

It remains to show that we can construct guarantee specifications for prefix
information-flow assumptions effectively. We will highlight two useful guarantee
specifications, one that is implemented in our prototype and one that utilizes the
information classes. We begin with the full-information specification. It forces
the transmitter to send, if possible, all information and therefore reduces the
distributed synthesis problem to monolithic synthesis. This concept was already
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presented in [32] where it was called adequate connectivity and later extended
by Gastin et al. [21].

Definition 9 (Full-information specification). Let p and q be components,
and f : Oe ∩ Iq → Oq ∩ Ip be a bijection. The full-information specifciation for
q is the trace property

Fp = {πe ⊔ πo | πe ∈ (2Oe∩Iq )ω, πp ∈ (2Oq∩Ip)ω,∀v ∈ (Oe ∩ Iq),
either ∀n ∈ N.v ∈ πe[n] iff f(v) ∈ πo[n+ 1]

or ∀n ∈ N.v ∈ πe[n] iff f(v) /∈ πo[n+ 1]}

This specification forces the sender to assign exactly one value of a communi-
cation variable to every input variable. This choice must hold for every point in
time and can not be changed, ensuring that every input combination is uniquely
represented by the communication variables. The full-information specification
is a guarantee specification for every possible information-flow assumption. Since
every input bit is guaranteed to be transmitted, every different input trace can
be distinguished, not only the ones required to be distinguished by the prefix
distinguishability relation. The full-information specification is a sufficient con-
dition for realizing the sender; if there is an implementation for satisfying F,
then this implementation is a correct sender. It is not a necessary specification,
the sender might be able to encode the inputs to a smaller set of communication
variables. The second guarantee specification is based on the information classes.

Definition 10 (Information Class Guarantee). Let C′
p be the finite set of

information classes of p projected to the inputs of q, s.t. the information classes
c ∈ C′

p are subsets of (2Oe∩Iq )∗. Let furthermore f : C → 2Oq∩Ip be a bijection.

The information class guarantee ICq ⊆ (2(Oe∩Iq)∪(Oq∩Ip)))ω is defined as

ICq = {πe ∪ πo | πe ∈ (2Oe∩Iq )ω,πo ∈ (2Oq∩Ip)ω,∀n ∈ N,∀c ∈ C′
p

if πe[0 . . . n] ∈ c then f(c) ∈ πo[n+ 1]}.

The specification tracks, for an environment output trace πe, the current
information class. Whenever the finite trace is in an information class c, the
transmitter must set the combination of its outputs to the values as specified
by the bijection f . The receiver p can therefore observe c by decoding the out-
puts of q on Oq ∩ Ip. Similar to the assume specification, the correctness of the
information class guarantee depends on the information classes:

Lemma 3. If a set of information classes C is sufficient to synthesize φp then
ICq is a guarantee specification for φp.

If providing the information classes at every step is not sufficient for syn-
thesis, then either the specification is unrealizable or at least one information
class falsely contains two traces that need to be distinguished. The assume and
guarantee specifications in Section 5 build the foundation for synthesizing local
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components that satisfy the local specification and the information-flow assump-
tion. In most distributed systems, however, components are not solely receivers
nor transmitters, but both simultaneously. We now define local implementations
that are correct w.r.t. information classes, called safety hyper implementations.

5.3 Safety Hyper Implementations

Hyper implementations were introduced in [17] specifying local implementations
of a distributed system that are correct for all possible implementations of all
other components. The hyper implementations observe all inputs of the envi-
ronment but are forced to react to them only if necessary, without restricting
the possible solution space of other components. For example, the implemen-
tation of the receiver r in the sequence transmission protocol is a 2Or -labeled
2Ir -transition system, but any locally synthesized solution for r must react to
inputs only observed by t. We use the information classes of Definition 5 to
specify and synthesize a different approach to hyper implementations. Recall
that we assume a bounded number of information classes C.

Definition 11 (Safety hyper implementation). Let p and q be components,
e be the environment, and Cp be a set of information classes. A safety hyper
implementation Hp of p is a 2Op-labelled Cp ∪ 2Ip-transition system.

The safety hyper implementation branches over the information classes and
the local inputs to p and reacts with local outputs. The safety hyper implementa-
tion of our running example is depicted in Figure 1c. Compared to (non-safety)
hyper implementations in [17], the safety hyper implementations do not con-
tain a special input variable t that signalizes the reception of information. This
deadline is explicitly present in the prefix distinguishability relation and can be
computed on the automaton representing the prefix distinguishability relation.
Since we consider safety properties, there always exists a pre-determined time
frame between the environment input and the necessary reception of the infor-
mation - a fact that we utilize heavily during hyper implementation construction.
We now formalize when a safety hyper implementation is correct.

Definition 12 (Correctness of safety hyper implementation). Let p, q,
and e be the components of a distributed system and the environment, and φp,
φq be the local specifications. A safety hyper implementation Hp is correct if it
implements Aφp

and some Gφq
.

Correct hyper implementations of p are compatible with all correct imple-
mentations of q, i.e., all possible sequences of information provided by some
transmitter, and implement one solution to the information-flow assumption
of q. Since assume and guarantee specifications are trace properties, we can syn-
thesize safety hyper implementations with trace property synthesis algorithms
once the Büchi automata for the specifications are constructed.
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Fig. 2: The steps in the algorithm for compositional synthesis with prefix infor-
mation flow assumptions.

6 Synthesis with Prefix Information Flow Assumptions

In this section, we present algorithms for generating assume and guarantee spec-
ifications, the synthesis of hyper implementations, and obtaining the solutions
for each component. Combined, this builds our compositional synthesis approach
with information-flow assumptions for distributed systems.

6.1 Automata for Assume and Guarantee Specifications

The first step in our synthesis approach is to construct the assume specification
which builds on a finite set of information classes. According to Definition 5, there
is, in theory, an unbounded number of information classes. Our Algorithm 1
therefore iteratively builds automata that accept, for each prefix length, one
information class. Given the automaton for the prefix distinguishability relation
over Σφ×Σφ′ , the function identicalAPs returns an automaton Aid that accepts
exactly one input trace over the alphabet Σφ at each time step. This is achieved
by choosing one explicit proposition combination for each edge in the automaton.

Algorithm 1: Information Classes

1 let informationClasses(Aρ):=
2 let Ac = Aρ

3 let Aid = identicalAPs(Aρ)
4 let result = ∅
5 while L(Aid) ̸= ∅ do

6 result.add(allTraces(Aid ∩ Ac))

7 Ac = Aρ ∩ Aid

8 Aid = identicalAPs(Ac)
9 return result

On this automaton, the func-
tion call allTraces(Aid ∩ Ac) col-
lects all traces that do not need to
be distinguished from Aid. These
are the traces in the negation of
the prefix distinguishability rela-
tion that are related to Aid. The
function allTraces can be com-
puted by renaming the primed
propositions on the edges of the
automaton. This concludes the
computation of the first informa-
tion class. The algorithm continues by removingAid from the prefix distinguisha-
bility automaton and computing the next information class until the current
automaton for the prefix distinguishability relation is empty.

Algorithm 1 yields, if it terminates, n finite automata Fc where all traces
in each Fc do not need to be distinguished. This implies that there exists a
common output combination for each time-step that is correct for each trace
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in the automaton. We now show a construction for the assume specification
in Definition 7.

Construction 1. We first transform the n finite automata F1, . . . ,Fn for the
information classes, as obtained as the result of Algorithm 1, to the respective
information class specification (see Definition 6). For each automaton, we build
the intersection of the goal automaton Aφ and Fi. The resulting automaton
accepts all traces in the information class with outputs as specified by φ. This
yields an NBA B that only accepts a subset of all input traces. We lift it to an
automaton for the information class specification by unionizing all input and
output combinations that do not occur on Fi, which is Atrue\B, where Atrue

is the automaton accepting all input and output combinations. After performing
this construction for all n information class automata, the intersection of all of
them accepts the assume specification.

We use this automaton for the local synthesis of each component. The local
specification is implicitly satisfied by the hyper implementation of the assume
specification since it is encoded in the construction. We now show how to con-
struct the full information specification in Definition 9.

Construction 2. Let I = Iq ∩Oe be the inputs observed by q and O = Oq ∩ Ip.
We assume that |I| ≤ |O| since we can only transmit all information if we have
at least as many communication variables as environment output variables. Let
f : I → O be a bijection that maps input variables to output variables. We
construct the LTL formula φ =

∧
i∈I (i ↔ f(i)) ∨ (i ↔ ¬f(i)). This

formula enforces that, for every i ∈ I, either the value of i is copied to f(i) at
every point in time, or the negation of i’s value is copied to f(i) at every point.
The corresponding automaton whose language is a full-information specification
is Aφ, obtained by a standard LTL to NBA translation.

Together with a guarantee specification, the hyper implementation satisfies
its own local specification and the guarantee of the other component.

6.2 Compositional Synthesis

The last step in the compositional synthesis algorithm is the composition and
decomposition of the hyper implementations. After this process, we obtain the
local implementations of the components and therefore the implementation of
the distributed system. During composition and decomposition, we need to re-
place the information class variables with the actual locally received input. The
composition collects all environment and component outputs, as well as the in-
formation classes for both components. This includes unreachable states, namely
combinations of information classes and environment outputs that are impossi-
ble (the finite environment output trace is not in the information class). We
eliminate these states in Definition 14. The composition is defined as follows:

Definition 13 (Composition). Let p, q be components and Hp = (T p, tpo, τ
p,

op) and Hq = (T q, tq0, τ
q, oq) be their respective safety hyper implementations.
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The composition H = Hp||Hq is a 2Op∪Oq -labeled 2Oe ∪Cp∪Cq-transition system
(T, tp, τ, o), where T = T p × T q, t0 = (tp0, t

q
0), o((t

p, tq)) = op(tp) ∪ oq(tp), and

τ((tp, tq), x) = τp(tp, (x ∪ oq(tq)) ∩ (Ip ∪ Cp)), τ q(tq, (x ∪ op(tp)) ∩ (Iq ∪ Cq))

The state space is the cross product of the hyper implementations and the
labeling function is the union of the local hyper implementation’s outputs. The
transition function ensures that the global inputs over 2Oe ∪ Cp ∪ Cq are sepa-
rated into the inputs of the respective hyper implementations, namely Cp ∪ Ip
and Cq ∪ Iq. For every state in the cross-product, the composition branches for
every environment output and information class to a local state of a component.
Some of these states are unreachable. For our running example, the composition
includes a transition with ¬bin, c′, even though the trace with ¬bin in the last
step cannot be in c′. We now filter states according to consistency. We consider
H(x) as the hyper implementation H terminating in x.

Definition 14 (Filter). Let H = (T, t0, τ, o) be the composition of the 2Op-
labeled 2Cp∪Ip-transition system Hp and the 2Oq -labeled 2Cq∪Iq -transition system
Hq. The consistent composition of Hp and Hq is the hyper implementation H′ =
(T ′, t′0, τ

′, o′), with T ′ = T , t′0 = t0, o
′ = o, and

τ ′((tp, tq), x) =

{
τ((tp, tq), x) if ∀c ∈ x.H(tp, tq) ⊆ L(Fc)
∅ else

A finite trace π of length n over 2Oe ∪ Cp ∪ Cq is impossible to reach if c is
in π[n] but π ↓Oe is not in the information class represented by c. Computing if
a state is unreachable includes language inclusion of the subsystem terminating
in the state and the automaton of the information class. However, an algorithm
that enforces consistency can monitor the current information class of a state
during a forward traversal of the composed hyper implementations. In the next
and final step, the decomposition then projects the composition to only the
observable outputs of a component. For some input combinations, this yields a
set of reachable states, of which we choose one for the decomposition. In essence,
all these states are viable successors for the current input combination.

Definition 15 (Decomposition). Let H = (T, tp, τ, o) be the consistent com-
position of the 2Op-labeled 2Cp∪Ip-transition system Hp and the 2Oq -labeled 2Cq∪Iq -
transition system Hq. Furthermore, let min be a function returning the minimal
element for a subset of T w.r.t. some total ordering over the states of T . The
decomposition H|p is a 2Op-labelled 2Ip-transition system (T p, tp0, τ

p, op) where
T p = T , tp0 = t0, o

p((tp, tq)) = o((tp, tq)) ∩Op, and

τp(t, x) = min{t′ | ∃y ∈ 2(Oe∪Cp)\Ip .t′ = τ(t, x ∪ y)}

The full compositional synthesis algorithm is shown in Figure 2. Given the
two local specifications, the first step is computing the prefix distinguishability
NFAs. Based on those, the assume specifications and guarantee specifications
for both components are constructed and build the inputs to the local synthesis
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procedures. Note that the guarantee specification can be any strategy that im-
plements the information flow assumption, e.g., any scheduling paradigm. After
intersecting the two automata, the components must satisfy the assume and the
guarantee specification together, which is achieved by trace property synthesis
on the intersection of the automata. The problem is unrealizable if either the
prefix information-flow assumption is not sufficient for synthesis (there could be
necessary behavioral assumptions), or not all information can be communicated
to the receiver. After composition, consistency, and decomposition, the algorithm
terminates with two local implementations that, together, implement a correct
distributed system:

Corollary 1. Let p and q be components with local specifications φp and φq. The
distributed system implementation returned by the algorithm depicted in Figure 2
satisfies the local specifications.

7 Experiments

We implemented the compositional synthesis algorithm described so far in our
prototype called FlowSy. The implementation builds on the popular infinite
word automaton manipulation tool spot [13] for translation, conversion, and
emptiness checking of NBAs. FlowSy implements the support for the finite au-
tomata, the construction of prefix distinguishability in Construction 4, the con-
struction of the information classes in Algorithm 1, and building automata for
the assume specification in Construction 1 and full information specification
Construction 2. The synthesis of the hyper implementations is performed by
converting the Büchi automata to deterministic parity games and solving them
with the solver oink [12]. We report on two research questions, (1) how do the
prefix distinguishability automaton and the information classes scale w.r.t. for-
mula size and information flow over time and (2) how does FlowSy compare
to the existing bounded synthesis approach for distributed system HyperBosy
presented in [16]. Note that, at the time of evaluation, HyperBosy was the only
tool for distributed synthesis that we were able to compare against. A compari-
son with the existing information flow guided synthesis algorithm with bounded
communication in [17] is infeasible since the supported languages of input spec-
ifications are disjoint. All experiments are run on a 2.8 GHz processor with 16
GB RAM, the timeout was 600 seconds, and the results are shown in Table 1.

Benchmarks. The benchmarks scale in 3 different dimensions: the number of
independent variables, time-steps in between information reception and corre-
sponding output, and combinatorics over input and output variables. The first
one is independent communication of n input variables in sequence transmission.
This parametric version of the running example has n conjuncted subformulas
of the form (i ↔ o). For the delay benchmark, the number of variables is
constant, but the number of time steps between input and output is increased,
i.e., the formulas have the form (i ↔ n o). The last two benchmarks build
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Table 1: This table summarizes the experimental results. The Benchmark and
Parameter columns specify the current instance. The columns |φ|, |ρ|, and |C|
give the size of the formula, the number of states in the prefix distinguishability
automaton, and the number of information classes, respectively. The last two
columns report the running time of FlowSy and BosyHyper in seconds.

Benchmark Par. |φ| |ρ| |C| FlowSy BosyHyper

Delay 1 5 4 2 1.74 0.97

2 6 8 2 1.87 TO

3 7 16 2 1.84 TO

4 8 32 2 1.94 TO

5 9 64 2 2.36 TO

Sequence Transmission 1 5 4 2 1.83 1.42

2 11 6 4 5.28 TO

3 16 10 8 36.81 TO

Conjunctions 1 5 4 2 3.18 0.92

2 9 4 4 4.35 91.80

3 13 4 8 9.20 TO

4 17 4 16 TO TO

Disjunctions 1 5 4 2 3.25 6.26

2 9 4 4 5.63 60.08

3 13 4 8 12.14 TO

4 17 4 16 TO TO

Boolean combinations over the inputs. The conjunctions benchmark enforces
that the conjunctions over the inputs are mirrored in the outputs. Disjunctions
is constructed in the same way but with disjunctions in between variables. For-
mulas are (i1 ∧ i1 ∧ . . .↔ o1 ∧ o2 ∧ . . .) and (i1 ∨ i1 ∨ . . .↔ o1 ∨ o2 ∨ . . .).

Scaling. FlowSy primarily scales in the number of computed information classes.
Most interestingly, for benchmark delay, the number of information classes is con-
stantly 2, even though the size of the prefix distinguishability automaton grows
exponentially. Independent of the length of the current trace, the automaton for
the information class checks that the current position is equal to the position n
steps earlier. This can indeed be represented by two information classes. For syn-
thesizing the conjunction and disjunction benchmarks, the situation is reversed.
Even though the prefix distinguishability automaton is constant, the number of
information classes grows exponentially in the parameter, collecting all possi-
ble combinations of input variables. For the sequence transmission benchmark,
all reported values scale with the input parameter, which leads to an expected
increase of the running time until the timeout at step 4 (not included in Table 1).

Comparison to BosyHyper. FlowSy clearly outscales BosyHyper. Most in-
terestingly, the delay benchmark shows the almost constant running time for
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FlowSy. Since the number of information classes stays the same, the synthesis
of the hyperproperties only scales for transmitting the information. BosyHy-
per must store all values for all n steps during synthesis, which immediately
increases the search space to an infeasible size. For the benchmarks conjunction
and disjunction, one can observe that, although the information classes scale
exponentially, the running time of FlowSy is significantly faster than that of
BosyHyper, which is already at 91 seconds for parameter 2. In summary, the
compositionality of FlowSy is always beneficial for the synthesis process and it
saves on the execution time dramatically when the complex communication in
the distributed system can be reduced to a small number of information classes.

8 Related Work

Compositional synthesis for monolithic systems, i.e., architectures with one com-
ponent and the environment, is a well-studied field in reactive synthesis, for ex-
ample in [14,18,24,26] and most recently in [1]. In multi-component systems with
partial observation, compositionality has the potential to improve algorithms sig-
nificantly, for example in reactive controller synthesis [2, 22]. Assume-guarantee
synthesis adheres to the same synthesis paradigm as our approach: the local
components infer assumptions over the other components to achieve the local
goals [4,6]. The assumptions are trace properties, restricting the behavior of the
components which often is not necessary. If the assumptions are not sufficient,
i.e., too weak to locally guarantee the specification, the assumption can be it-
eratively refined [29]. Another approach is weakening the acceptance condition
to dominance [10] or certificates that specify partial behavior of the components
in an iterative fashion [19]. In our previous work on information flow guided
synthesis [17], we have introduced the concept of compositional synthesis with
information-flow assumptions. The work presented in the paper overcomes the
two major limitations of this original approach, namely the limitation to liveness
(or, more precisely, co-safety properties) and the limitation to specifications that
can be realized by acting only on a a finite amount of information.

9 Conclusion

We have presented a new method for the compositional synthesis of distributed
systems from temporal specifications. Our method is the first approach to handle
situations where the required amount of information is unbounded. While the
information-flow assumptions are hyperproperties, we have shown that standard
efficient synthesis methods for trace properties can be utilized for the construc-
tion of the components. In future work, we plan to study the integration of the
information-flow assumptions computed by our approach with the assumptions
on the functional behavior of the components generated by techniques from be-
havioral assume-guarantee synthesis [4,6]. Such an integration will allow for the
synthesis of systems where the components collaborate both on the distribution
and on the processing of the distributed information.
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