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Abstract. Trace properties, which are sets of execution traces, are often
used to analyze systems, but their expressiveness is limited. Clarkson and
Schneider defined hyperproperties as a generalization of trace properties
to sets of sets of traces. Typical applications of hyperproperties are found
in information flow security. We introduce an analogous definition of
concurrent hyperproperties, by generalizing traces to concurrent traces,
which we define as partially ordered multisets. We take Petri nets as the
basic semantic model. Concurrent traces are formalized via causal nets.
To check concurrent hyperproperties, we define may and must testing of
sets of concurrent traces in the style of DeNicola and Hennessy, using the
parallel composition of Petri nets. In our approach, we thus distinguish
nondeterministic and concurrent behavior. We discuss examples where
concurrent hyperproperties are needed.

Keywords: Hyperproperties, concurrent traces, Petri nets, may and must test-
ing.

1 Introduction

Among the most fundamental debates in the theory of concurrency is the distinc-
tion between interleaving semantics in the style of Milner [17] and Hoare [13], and
partial-order (or true concurrency) semantics following the work of Petri [21],
Mazurkiewicz [15], and Winskel [27]. In interleaving semantics, concurrency is
reduced to its sequential nondeterministic simulation; in partial-order semantics,
concurrency is modeled as causal independence.

In this paper, we revisit this classic debate in the modern setting of hyper-
properties. Clarkson and Schneider defined hyperproperties as a generalization
of trace properties, which are sets of traces, to sets of sets of traces [4]. Hy-
perproperties are a powerful class of linear-time properties that can express
many notions related to information flow, symmetry, robustness, and causality.
A typical example is noninterference [8], which is one of the most well-studied
information-flow security policies. Noninterference requires that for all compu-
tations and for all sequences of actions of a high-security agent A, the resulting
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Fig. 1. Three example systems given as Petri nets.

observations made by a low-security observer B are identical to Bs observations
that would result without As actions. While trace properties express proper-
ties of individual executions, hyperproperties express properties of sets of traces.
This makes it possible to relate different executions, for example by requiring
that certain observations are the same, without necessarily restricting the events
on individual executions.

Since hyperproperties refer to traces, they are, at least in principle, immedi-
ately applicable to concurrent systems with interleaving semantics. However, the
interleaving semantics leads to a fundamental problem, which we will illustrate
with a sequence of example systems given as the Petri nets shown in Fig. 1. We
employ the usual graphical representation of Petri nets: circles represent places
and boxes represent transitions that are connected to places via directed arcs.
In our setting, transitions are labeled by action symbols like h1 and h2. Black
dots represent tokens, which represent the current points of activity. The simul-
taneous presence of several tokens models concurrent activities. The dynamic
behavior of a Petri net is modeled by its token game that defines how tokens
can move inside the net. A transition is enabled if all places connected to it
with an ingoing arc carry a token. Firing the transition moves these tokens to
the places connected to it with an outgoing arc. Branching from a place models
nondeterministic choice, whereas branching from a transition models the start
of a concurrent execution. As an example, consider the net NC shown on the
right in Fig. 1. From the initial place p0, there is a nondeterministic choice be-
tween the transitions labeled with h1 and h2. Firing transition h1 concurrently
enables the transitions labeled with l1 and l2, whereas firing transition h2 en-
ables in place p13 the nondeterministic choice between the transitions l1 and l2.
For more details on Petri nets we refer to Section 3.

For a start, consider the system NA shown on the left in Fig. 1. We are
interested in the secrecy property that the system’s low-security behavior, as
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Fig. 2. Left : The three maximal runs ρ1, ρ2 and ρ3 of NC from Fig. 1, resulting by re-
solving every nondeterministic choice in NC , and their corresponding concurrent traces
π1, π2 and π3. Right : A sequential test Tseq for the concurrent hyperproperty that ev-
ery pair of concurrent traces π and π′ must agree on the occurrence and sequential
ordering of the low-security events l1 and l2. In the test, the events l1 and l2 refer to
π and l′1 and l′2 to π′. The place marked with the symbol X notifies a successful test.
Below is a concurrent test Tcon for the weaker concurrent hyperproperty that every
pair of concurrent traces π and π′ must agree on the occurrence of the low-security
events l1 and l2, but not on their sequential ordering. For instance, each each l1 must
be matched by l′1 before the next l1 can occur, but l2 may occur in between l1 and l′1.

observable in the low-security events l1 and l2, is not affected by the high-security
events h1 and h2. Our system is secure. This is captured by the hyperproperty
that all traces must agree on the occurrences and the ordering of l1 and l2, and
indeed, the system has only two traces, h1 · l1 · l2 and h2 · l1 · l2, which, when
projected to {l1, l2}, both result in the same sequence l1 ·l2 of low-security events.

Next, consider system NB shown in the middle in Fig. 1. Informally, the
system is still secure in the sense that an observer who sees only l1 and l2
cannot distinguish the situation where h1 has occurred from the situation where
h2 has occurred. However, our previous hyperproperty is violated. The system
has four traces: h1 · l1, h1 · l2, h2 · l1, and h2 · l2, which, when projected to {l1, l2},
result in two different traces, l1 and l2. This issue is due to the nondeterministic
choice between l1 and l2, and can be addressed with possibilistic information-flow
properties like generalized noninterference [16]. Generalized noninterference is
weaker than normal noninterference: it requires that for every pair of traces π, π′

there exists another trace π′′, such that (1) π′′ agrees with π on the low-security
events {l1, l2} and (2) π′′ agrees with π′ on the high-security events {h1, h2}.
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Generalized noninterference is satisfied in NB . For example, for π = h1 · l1 and
π′ = h2 · l2, there exists π′′ = h2 · l1, which agrees with π on {l1, l2} and with π′

on {h1, h2}.
Finally, consider the concurrent system NC shown on the right in Fig. 1. With

the interpretation of concurrency as nondeterministic interleaving, the system
has the four traces h1 · l1 · l2, h1 · l2 · l1, h2 · l1 · l2, and h2 · l2 · l1. Generalized
noninterference is satisfied. However, the system is clearly not secure, because
h1 causes concurrent behavior, while h2 causes sequential behavior. In a concur-
rent setting, this difference could be recognized by an attacker, who might, for
example, synchronize with the system on a particular ordering, such as l1 · l2.
In a trace that begins with h1, this will always work, while in traces that begin
with h2, the attacker might observe a deadlock when the system performs the
order l2 · l1.

In the security literature, this phenomenon has lead to the study of branching-
time information-flow properties based on various notions of (bi-)simulation
(cf. [3]). Often, however, such equivalences are too fine-grained, because they
expose the point in time when an internal decision is made. Linear-time prop-
erties, and, hence, hyperproperties abstract from such implementation details.
Can hyperproperties nevertheless recognize the difference between concurrent
and sequential behavior?

In this paper, we propose concurrent hyperproperties as a positive answer to
this question. Hyperproperties are based on the partial-order interpretation of
concurrency. We stick to Clarkson and Schneider’s definition of hyperproperties
as sets of sets of traces, but generalize traces to concurrent traces, which we
define as partially ordered multisets (pomsets). Figure 2 shows the three maxi-
mal runs ρ1, ρ2 and ρ3 of system NC and their corresponding concurrent traces.
In a run, every nondeterministic choice has been resolved, but concurrent ex-
ecutions remain visible, like the concurrency of the transitions labeled with l1
and l2 in ρ1. The concurrency of run ρ1 is reflected in the partial order of the
concurrent trace π1. Note that NC has four traces under the interleaving seman-
tics (corresponding to the two nondeterministic choices and the two possible
interleavings) but only three concurrent traces, because the concurrent execu-
tion is not resolved by nondeterminism. Since the concurrency is still present in
the concurrent traces, a concurrent hyperproperty can distinguish nondetermin-
ism from concurrency. Continuing our example, we can now specify secrecy in
concurrent systems like NC as the concurrent hyperproperty where every pair
of concurrent traces agrees on the occurrence and ordering of the low-security
events. Our example system clearly violates this requirement.

In the paper, we give a formal definition of concurrent hyperproperties and
then provide an explicit mechanism for describing concurrent hyperproperties.
We base this mechanism the concept of testing processes due to DeNicola and
Hennessy [5,11]. There the interaction of a (nondeterministic) process and a
user is explicitly formalized using a synchronous parallel composition. The user
is formalized by a test, which is a process with some states marked as a success.
It is defined when a process may pass a test and when it must pass a test. We
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transfer the concept of testing to concurrent traces. A concurrent hyperproperty
is given as a test that has interactions with multiple concurrent runs. The test is
successful for a given set of concurrent traces if it succeeds for all combinations
of concurrent traces from the set.

For our example, such a test Tseq is shown on the right in Fig. 2. It can
interact with any two of the runs ρ1, ρ2, ρ3 corresponding to any two of the traces
π1, π2, π3 of NC . The interaction is via parallel composition that synchronizes
on all transitions with the same label. To this end, the first run under test keeps
the original labels l1 and l2, whereas the second run uses primed copies l′1 and l′2
of these labels. Thus Tseq allows for both possible orderings (l1 then l2, and l2
then l1) in the first trace and enforces that the second trace exhibits the same
order. When Tseq is applied to the runs of the concurrent system NC shown on
the left of Fig. 2, it turns out that they may not pass this test, for instance, when
ρ1 and ρ′3, i.e., ρ3 with primed labels, are tested for the sequence l1 · l′1 · l2 · l′2,
this leads to a deadlock after l1. This shows that the concurrent system NC does
not satisfy the concurrent hyperproperty. We will examine this in more detail in
Section 5.

The test Tcon checks a weaker concurrent hyperproperty, namely that each
occurrence of l1 is matched by an occurrence of l′1 before the next occurrence of
l1, and similarly for l2 and l′2, but l2 may occur in between l1 and l′1. When Tcon

is applied to any two of the runs ρ1, ρ2, ρ3 shown on the left of Fig. 2, it turns
out that they must pass this test. This shows that the concurrent system NC
satisfies this weaker concurrent hyperproperty. For more details see Section 5.

Our paper is organized as follows. In Section 2 we define the notion of concur-
rent hyperproperties and give examples of ascending sophistication. In Section 3
we recall the basic concepts from Petri nets that we take as our semantic model
of concurrent systems. In particular, we define concurrent runs and the parallel
composition of nets. In Section 4 we adapt the concept of testing developed by
DeNicola and Hennessy to the setting of Petri nets. In Section 5 we discuss how
various examples of concurrent hyperproperties can be tested. In Section 6 we
briefly discuss the decidability of universal must testing and establish an unde-
cidability result for universal may testing. In Section 7 we conclude the paper.

Dedication. We dedicate our paper to Jifeng He on the occasion of his 80th
birthday. Jifeng has made many contributions to formalizing and relating differ-
ent semantic models of computing, as exemplified in his book ‘Unifying Theories
of Programming’ with Tony Hoare [12]. Out of this work grew also Jifeng’s in-
terest in testing [1,25,26], the concept that we employ for hyperproperties in
this paper, although in an abstract setting of testing processes as introduced
by DeNicola and Hennessy. The second author has very pleasant memories of
the close cooperation with Jifeng within the EU Basic Research Action ProCoS
(Provably Correct Systems) during the period 1989–1995 [10], and of various
scientific meetings, in particular in Oxford, Oldenburg, and Shanghai.



6 B. Finkbeiner and E.-R. Olderog

2 Concurrent Hyperproperties

Clarkson and Schneider defined hyperproperties as a generalization of trace prop-
erties, which are sets of traces, to sets of sets of traces [4]. To give an analo-
gous definition of concurrent hyperproperties, we generalize traces to concurrent
traces, which we define as partially ordered multisets (pomsets).

Let Σ be a set of labels. A Σ-labeled partially ordered set is a triple (X,<
, `) where < is an irreflexive partial order on a set X and ` : X → Σ is a
labeling function. Two such sets (X,<, `) and (X ′, <′, `′) are isomorphic if there
exists a bijective mapping f : X → X ′ such that f(x) < f(y) ⇔ x < y and
`′(f(x)) = `(x). A partially ordered multiset (pomset) over Σ is an isomorphy
class of Σ-labeled partial ordered sets, denoted as [(X,<, `)]. A totally ordered
multiset (tomset) is a pomset where < is a total order [23].

We then refer to tomsets over Σ as traces and pomsets over Σ as concurrent
traces. A trace property is a set of traces; a hyperproperty is a set of sets of traces.
Analogously, a concurrent trace property is a set of concurrent traces, and a set
of sets of concurrent traces is a concurrent hyperproperty. We denote with T(Σ)
the set of all concurrent traces over Σ.

Example 1. A simple information flow policy for a concurrent system is to forbid
any dependency of a low-security event labeled l (for low) on a high-security
event labeled h (for high). Let Σ = {l, h}. The policy can be expressed as the
concurrent trace property

T1 = { [(X,<, `)] ∈ T(Σ) | ∀x, y ∈ X.x < y ⇒ `(x) 6= h ∨ `(y) 6= l}.

Example 2. Consider the hyperproperty that every pair of concurrent traces
agrees on the occurrence of the low-security events, independent on any other
event. Let Σlow be the set of low-security events. The requirement can then be
formalized as the following concurrent hyperproperty H1:

H1 = { T ⊆ T(Σ) | ∀ [(X,<, `)], [(X ′, <′, `′)] ∈ T.
∃ bijection f : Xlow → X ′

low .∀x ∈ Xlow . `
′(f(x)) = `(x) }

where Xlow = {x ∈ X | `(x) ∈ Σlow} and X ′
low = {x ∈ X ′ | `′(x) ∈ Σlow}.

In the introduction, we discussed the concurrent hyperproperty that every
pair of concurrent traces agrees both on the occurrence and the ordering of
the low-security events. This requirement can be formalized as the following
concurrent hyperproperty H2:

H2 = { T ⊆ T(Σ) | ∀ [(X,<, `)], [(X ′, <′, `′)] ∈ T.
∃ bijection f : Xlow → X ′

low .

( ∀x ∈ Xlow . `
′(f(x)) = `(x)

∧ ∀x, y ∈ Xlow . f(x) <′ f(y)⇔ x < y ) }

Example 3. As a final example, we adapt the notion of generalized noninterfer-
ence (GNI) [16] to concurrent traces. We identify the events as low-security and
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high-security: Σ = Σlow ∪Σhigh . The policy then requires that for every pair of
concurrent traces there exists a third concurrent trace that agrees with the first
trace on the low-security events and with the second trace on the high-security
events. Unlike the trace-based version discussed in the introduction, this version
of GNI distinguishes nondeterminism from concurrency; in the example system
NC shown on the right in Fig. 1, GNI on traces is satisfied, but GNI on concur-
rent traces is violated. GNI on concurrent traces is expressed by the following
concurrent hyperproperty H3:

H3 = { T ⊆ T(Σ) | ∀ [(X,<, `)], [(X ′, <′, `′)] ∈ T.
∃[(X ′′, <′′, `′′)] ∈ T. Flow ∧Ghigh}

where
Flow ≡ ∃ bijection f : Xlow → X ′′

low .

( ∀x ∈ Xlow . `
′′(f(x)) = `(x)

∧ ∀x, y ∈ Xlow . f(x) <′′ f(y)⇔ x < y ),

Ghigh ≡ ∃ bijection g : X ′
high → X ′′

high .

( ∀x ∈ X ′
high . `

′′(g(x)) = `′(x)

∧ ∀x, y ∈ X ′
high . g(x) <′′ g(y)⇔ x <′ y ),

Xlow = {x ∈ X | `(x) ∈ Σlow},

X ′′
low = {x ∈ X ′′ | `′′(x) ∈ Σlow},

X ′
high = {x ∈ X ′ | `′(x) ∈ Σhigh},

X ′′
high = {x ∈ X ′′ | `′′(x) ∈ Σhigh}.

3 Petri Nets

As a model for concurrent systems we take Petri nets because they distinguish
the fundamental concepts of causal dependency, nondeterministic choice, and
concurrency explicitly. We consider here safe Petri nets [24], with the transitions
labeled by actions which serve as synchronization points in a parallel composition
of such nets. We use the notation from [19], which is inspired by [9]. A Petri net
or simply net is a structure N = (A,P l,—→,M0), where

1. A is a finite communication alphabet with τ 6∈ A,
2. Pl is a possibly infinite set of places,
3. —→ ⊆ Pnf (Pl) × (A ∪ { τ }) × Pnf (Pl) is the transition relation,
4. M0 ∈ Pnf (Pl) is the initial marking.

We let p, q, r range over Pl. The notation Pnf (Pl) stands for the set of all non-
empty, finite subsets of Pl. An element (I, u, O) ∈ —→ with I,O ∈ Pnf (Pl)
and u ∈ A ∪ {τ} is called a transition (labeled with the action u) and written as

I
u

——→ O.
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For a transition t = I
u

——→ O its preset or input is given by pre(t) = I, its
postset or output by post(t) = O, and its action by act(t) = u. The letter τ is
intended to model an internal action.

In the graphical representation of a net N = (A, Pl, —→, M0) we mention
the alphabet A separately and display the components Pl, —→ and M0 as
usual. Places p ∈ Pl are represented as circles © with the name p outside and
transitions

t = {p1, . . . , pm}
u

——→ {q1, . . . , qn}

as boxes u carrying the label u inside and connected via directed arcs to the

places in pre(t) and post(t):

p1 · · · pm

u

q1 · · · qn

Since pre(t) and post(t) need not be disjoint, some of the outgoing arcs of u may

actually point back to places in pre(t) and thus introduce cycles. Graphically, we
employ then double-headed arrows between u and the places in pre(t)∩post(t).
The initial marking M0 is represented by putting a token • into the circle of each
p ∈ M0.

Starting from the initial marking, the firing of transitions creates new mark-
ings M ∈ Pnf (Pl), which represent the global states of a Petri net. Formally, a
transition t is enabled at a marking M if pre(t) ⊆M . Firing such a transition t
at M yields the successor marking M ′ = (M − pre(t)) ∪ post(t). We write then
M [t〉M ′. We assume here that ∪ is a disjoint union, which is satisfied if the net
is contact-free, i.e., if for all t ∈ T and all reachable markings M

pre(t) ⊆M ⇒ post(t) ⊆ (Pl −M) ∪ pre(t).

The set of reachable markings of a net N is defined by

reach(N) = {M | ∃n ∈ N.∃ t1, . . . , tn ∈ T. M0[t1〉M1[t2〉 . . . [tn〉Mn = M}.

For n = 0 inside this set, it is understood that M0 = M holds, so M0 ∈ reach(N).
In the present setting, all reachable markings are non-empty, finite sets of places.
Such Petri nets are called safe or 1-bounded because every reachable marking
contains at most one token per place. In general place/transition nets, the reach-
able markings can be multisets representing multiple tokens per place.

3.1 Causal Nets and Runs

Concurrent computations of a net can be described by causal nets [21,24]. Infor-
mally, a causal net is an acyclic net where all choices have been resolved. It can
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be seen as a net-theoretic way of defining a partial order among the occurrences
of transitions in a net to represent their causal dependency.

We need more notation for a net N = (A, Pl, —→, M0). For a place p ∈
Pl its preset is defined by pre(p) = {t ∈ —→ | p ∈ post(t) } and its postset by
post(p) = {t ∈ —→ | p ∈ pre(t) }. The flow relation FN ⊆ Pl × Pl on the
places of N is given by

p FN q if ∃ t ∈—→ . p ∈ pre(t) and q ∈ post(t).

FN is well-founded if there are no infinite backward chains

· · · p3 FN p2 FN p1.

A causal net is a net N = ( A, Pl, —→, M0) such that

(1) all places are unbranched, i.e., ∀p ∈ Pl . |pre(p)| ≤ 1 and |post(p)| ≤ 1,
(2) the flow relation FN is well-founded, and
(3) the initial marking consists of all places without an ingoing arc, i.e.,

M0 = {p ∈ Pl | pre(p) = ∅}.

By condition (1), there are no choices in N. Condition (2) implies that the
transitive closure of FN is irreflexive. Thus a causal net N is acyclic, so each
transition occurs only once. Conditions (1)–(3) ensure that there are no super-
fluous places and transitions in causal nets: every transition can fire and every
place is contained in some reachable marking. Also, every causal net is safe.

Following Petri’s intuition, causal nets should describe the concurrent com-
putations of a net. Thus we explain how causal nets relate to ordinary (safe)
nets. To this end, we use the following notion of embedding.

Let N1 = (A1, Pl1, —→1, M01) be a causal net and N2 = (A2, Pl2, —→2,
M02) be a safe net, where M01 and M02 denote the initial markings of N1 and
N2 , respectively. N1 is a causal net of N2 if A1 = A2 and there exists a mapping
f : Pl1 —→ Pl2, which is extended elementwise to subsets X ⊆ Pl1 by putting
f(X) = {f(p) ∈ Pl2 | p ∈ X}, such that the following holds:

1. f(M01) = M02,
2. ∀ M ∈ reach(N1 ). f ↓ M, the restriction of f to M ⊆ Pl1, is injective,
3. ∀ t ∈ —→1 . (f(pre(t)), act(t), f(post(t))) ∈ —→2 ,

The mapping f is called an embedding of N1 into N2 . Note that f distributes
over the flow relation:

∀ p, q ∈ Pl1 . (p FN1
q ⇒ f(p) FN2

f(q).

In net theory, the pair (N1 , f) is called a process of N2 [21,2]. We call it a
(concurrent) run of N2 and use the (possibly decorated) letter ρ for runs. A run
ρ = (N1 , f) of N2 is called maximal if

∀ p ∈ Pl1 . (∃ q ∈ Pl2 . f(p) FN2
q ⇒ ∃ p′ ∈ Pl1 . p FN1

p′),

so the run ρ cannot stop at a place p if there is an extension possible at the
corresponding place f(p) in N2 .
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3.2 Causal Nets Corresponding to Concurrent Traces

A causal net N corresponds to the concurrent trace (pomset) [(X,<, `)], where

– X = —→, the set of transitions of N ,
– < is the transitive closure of the immediate causal successor relation <m

between transitions: t1 <m t2 holds for t1, t2 ∈—→ if post(t1)∩pre(t2) 6= ∅,
– `(t) = act(t) for every t ∈—→.

The irreflexive partial order t1 < t2 expresses that transition t2 can occur only
after transition t1 has happened, so t2 causally depends on t1. If for transitions
t1 6= t2 neither t1 < t2 nor t2 < t1 holds, t1 and t2 are causally independent
and can occur concurrently. Graphically, we represent these pomsets by showing
each transition t labeled with `(t) = u as a box u and connecting these boxes

with arcs representing the immediate causal successor relation <m (see Fig. 2).
Also, vice versa, if a concurrent trace [(X,<, `)] is given, it is easy to construct

a causal net N corresponding to the trace in the above sense. One just has to
add the missing places to turn the trace into a causal net.

3.3 Parallel Composition

Petri nets with disjoint sets of places, but possibly overlapping communication
alphabets can be composed in parallel. Thereby transitions with different ac-
tions are performed asynchronously, whereas transitions with the same action
synchronize. For Ni = (Ai, Pli, —→i, M0i), i = 1,2, with Pl1 ∩ Pl2 = ∅ their
parallel composition is defined as follows:

N1 ‖N2 = (A1 ∪A2, P l1 ∪ Pl2,—→,M01 ∪M02),

where

—→ = { (I, u,O) ∈—→1 ∪—→2 | u /∈ A1 ∩A2 } (asynchrony)

∪ { (I1 ∪ I2, a, O1 ∪O2) | a ∈ A1 ∩A2 and (synchrony)
(I1, a, O1) ∈—→1 and (I2, a, O2) ∈—→2 }.

Note that actions labeled with the internal action τ never synchronize because
τ does not appear in any communication alphabet Ai.

Up to bijective renaming of places, the parallel composition of nets is com-
mutative and associative, i.e., for all nets N1,N2,N3:

N1 || N2 = N2 || N1,

N1 || (N2 || N3) = (N1 || N2) || N3.

4 Testing

The idea of testing processes is due to De Nicola and Hennessy [5,11]. There the
interaction of a (nondeterministic) process and a user is explicitly formalized us-
ing a synchronous parallel composition. The user is formalized by a test, which is
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a process with some states marked as a success. The authors distinguish between
two options: a process may or must pass a test. A process P may pass a test T
if in some maximal parallel computation with P , synchronizing on transitions
with the same label, the test T reaches a success state. A process P must pass
a test T if in all such computations the test T reaches a success state.

We transfer this notion of testing to Petri nets. A test is a Petri net, extended
by a distinguished set X ⊆ Pl of successful places: T= (A,P l,X,—→,M0). In
the graphical notation, we mark each place of this subset by the symbol X.

To perform a test T on a given Petri net N, we consider the parallel com-
position N‖T. A run ρ = (NR , f) of N‖T is deadlock free if it is infinite, and
it terminates successfully if it is finite and all places of T inside the parallel
composition without causal successor are marked with X. A net N may pass a
test T if there exists a maximal run of N‖T which is deadlock free or termi-
nates successfully. A net N must pass a test T if all maximal runs of N‖T are
deadlock free or terminate successfully.

To check a hyperproperty relating k concurrent traces on a system repre-
sented by a net N0 , we investigate maximal runs ρi = (Ni , fi) with i = 1, · · · , k
of N0 , where the causal nets Ni correspond to the concurrent traces of the hy-
perproperty, except that in Ni we relabel every action u of N0 into ui. We will
test the parallel composition N1 ‖ · · · ‖Nk . The purpose of this relabeling is to
have nets N1 , . . . ,Nk that do not synchronize in this composition. To represent
the hyperproperty, we suitably quantify existentially or universally over these k
runs of N0 and thus arrive at the following possibilities of testing:

Q1 ρ1, · · · ,Qk ρk. N1 ‖ · · · ‖Nk m pass T,

where Qi ∈ {∃,∀} and m ∈ {may, must}. T uses the subscripted labels of the
form u1, . . . , uk to synchronize with the actions in N1 , . . . ,Nk .

We also use primed copies like u′ and u′′ instead of subscripts. For example,
for k = 2, we use one causal net N having the original actions of N0 and one
causal N′ with every action u of N0 relabled into a primed copy u′. Then the
above pattern specializes to

Q ρ.Q′ ρ′. N‖N′ m pass T,

where Q,Q′ ∈ {∃,∀} and m ∈ {may, must}. Whereas N and N′ have no common
actions to synchronize on, the test Twill synchronize with N and N′ via common
(unprimed and primed) actions, thereby checking the hyperproperty. Note that
the explicit quantifiers refer to runs of the system N0 under test. Once these runs
are fixed, may and must corresponds to existential and universal quantification
over runs originating from the test.

5 Examples

We examine concurrent trace properties and concurrent hyperproperties for ex-
amples of concurrent systems. First consider the two Petri nets shown in Fig. 3.
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N1 :

p1

p2

q0

q1 q2

q3

l

h1 h2

l1 l1

N2 :

p1

p2

q0

q1 q2

q3

l

h1 h2

l1 l2

Fig. 3. Left : Petri net N1 consists of two concurrent subnets, one performs only the
low-security action l and the other has a choice starting with different high-security
actions h1 and h2, but then performing the same low-security action l1, no matter
whether h1 or h2 was chosen. Right : Petri net N2 looks identical to N1 , but there is a
subtle difference: the subnet on the right-hand side performs either l1 or l2 depending
on the previous choice of h1 or h2, respectively.

The net N1 consists of two concurrent subnets, one performs the low-security
action l and the other has a choice starting with different high-security actions
h1 and h2, but then both branches perform the same low-security action l1.
The net N2 has the same structure, except that the choice in the subnet on the
right-hand side is now between performing action l1 or action l2 depending on
the previous choice of the high-security actions h1 or h2, respectively. Note that
due to the choices, each of the nets N1 and N2 have two maximal runs, one with
actions h1 and one with action h2.

Let us check the trace property whether the low-security action l1 can occur
after l, independent of the high-security actions h1 and h2, To this end, we use
the following test T:

T:
s0

l

s1

l1 X

s2 .

This test is applied to each run of N1 and N2 , respectively. We have

∀ρ. N1, ρ must pass T,

because T terminates successfully for each of the two maximal runs, independent
of the choice of h1 or h2. Here N1, ρ denotes the net of the run ρ of N1 .

For N2 the test T is less successful. Let N2, h1
and N2, h2

be the nets for
the two maximal runs of N2 , depending on whether h1 or h2 is initially chosen.
Then the parallel composition with T yields the results shown in Fig. 4. Note
that synchronization is enforced on the common actions l and l1, whereas h1
and h2 can occur asynchronously. In N2, h1

‖ T, the test terminates successfully,
whereas N2, h2

‖ T ends in a deadlock. Thus

∀ρ. N2, ρ may pass T,

but it is not the case that ∀ρ. N2, ρ must pass T. Here N2, ρ denotes the net of
the run ρ of N2 .
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N2, h1
‖T:

p1 s0 q0

l h1

p2

s1 q1

l1

X

s2 q3

N2, h2
‖T:

p1 s0 q0

l h2

p2 s1 q2

Fig. 4. Testing the two maximal runs of N2 . In the middle, the places s0, s1, s2 of test
T in the parallel composition with these two runs are shown. Left : In N2, h1

‖T, the
test terminates successfully in s2. Right : However, N2, h2

‖T ends in a deadlock, i.e.,
in places without X.

5.1 Testing the Concurrent Hyperproperties H1 and H2

Next we turn to Section 1 and consider the three runs shown in Fig. 2 stemming
from system NC in Fig. 1. First we check with the sequential test Tseq of Fig. 2
the concurrent hyperproperty whether every pair of concurrent traces π and π′

agrees on the occurrence and ordering of the low-security events l1 and l2. This
is property H2 in Example 2. Fig. 5 shows the outcomes of testing ρ1 and ρ′3.
We conclude that ρ1 ‖ ρ′3 may pass Tseq . More general, let N and N′ be the
nets of two runs ρ and ρ′ corresponding to two traces π and π′, respectively.
If at least one of ρ and ρ′ is instantiated with the concurrent run ρ1, we have
N‖N′ may pass Tseq , otherwise N‖N′ may not pass Tseq . Summarizing, we
have

∃ ρ, ρ′.N‖N′ may pass Tseq

and even

∀ ρ. ∃ ρ′.N‖N′ may pass Tseq

because we can instantiate ρ′ with ρ1, but not ∀ ρ, ρ′ .N‖N′ may pass Tseq .
However, no must property holds for two concurrent traces and the test Tseq .
This shows that the system NC in Fig. 1 does not satisfy the concurrent hyper-
property H2.

Now we check with concurrent test Tcon of Fig. 2 the weaker concurrent
hyperproperty whether every pair of concurrent traces π and π′ agrees on the
occurrence of the low-security events l1 and l2, i.e., each each l1 must be matched
by l′1, but l2 may occur in between, and vice versa for l2 and l′2 and a possibly
intervening l1. This is property H1 in Example 2. Fig. 6 shows the outcomes of
testing ρ1 and ρ3. We conclude that ρ1 ‖ ρ3 must pass Tcon . Indeed, we have

∀ ρ, ρ′ .N‖N′ must pass Tcon .
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ρ1 : ρ′3 :

p11 p12

Tseq :

X

s0

Xs0

Xs0

p13

p21

p22 p24

p32

h1 h′
2

l1

l2 l′2

l′1

ρ1 : ρ′3 :

p11 p12

Tseq :

X

s0

s1

p13

p21

h1 h′
2

l1

Fig. 5. Testing a concurrent hyperproperty with Tseq . We consider the two maximal
runs of the parallel composition ρ1 ‖Tseq ‖ ρ′3. Left : Here at first the alternative starting
with l2 of the test Tseq is chosen. This runs terminates successful. Right : Here at first
the alternative starting with l1 of Tseq is chosen. This runs ends in a deadlock because
ρ3 engages first in l2.

This shows that the system NC in Fig. 1 satisfies the concurrent hyperproperty
H1.

5.2 Testing the Concurrent Properties T1 and H3

Consider the concurrent trace property T1 of Example 1 for a net N, where a
low-security event l must not depend on a high-security event h. We check this
by requiring that

N must pass Thl

for the following test Thl :

l

X

h X h

This test can terminate successfully after any (possibly empty) sequence of low-
security events l. However, once a high-security event h occurs, the test termi-
nates successfully only after any (possibly empty) sequence of further h events.
Any low-security event l occurring after the first h will lead to a deadlock since
the test does not offer any further synchronization on l.

Finally, we consider the concurrent hyperproperty H3 of generalized nonin-
terference of Example 3. As low-security events we take l1, l2 ∈ Σlow and as
high-security events h1, h2 ∈ Σhigh . The property is checked by requiring that

∀ ρ, ρ′. ∃ρ′′. N‖N′‖N′′ must pass Tgni

for the test Tgni shown in Fig. 7.
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ρ1 : ρ′3 :

p11 p12

Tcon :

X

s02

X s02

X

s01

X s01

p13

p21

p22 p24

p32

h1 h′
2

l1

l2 l′2

l′1

Fig. 6. Testing a concurrent hyperproperty with Tcon . We consider the unique maximal
run of the parallel composition ρ1 ‖Tcon ‖ ρ′3. This run terminates successfully because
both concurrent components of the test end in a place marked with X.

Tgni :

τ τ

l1 X l2

l′′1 l′′2

hh h h

h′
1 X h′

2

h′′
1 h′′

2

ll l l

Fig. 7. Test Tgni

In the two universally quantified runs ρ and ρ′, this test uses labels l1, l2, h1, h2
in the net N of run ρ and copies l′1, l

′
2, h

′
1, h

′
2 in the net N′ of ρ′. Likewise, in the

existentially quantified run ρ′′, the test uses labels l′′1 , l
′′
2 , h

′′
1 , h

′′
2 in the net N′′ of

ρ′′.

Note that the test Tgni has an initial choice between the two internal τ ac-
tions, but the conjunction in H3 is modeled by must testing, which requires that
for each run ρ and ρ′ both branches terminate with a success. In the left branch,
the test is successful if it terminates when the low-security events l1, l2 are
matched by corresponding events l′′1 , l

′′
2 , so that Flow holds. The three transitions

labeled h are shorthands for the occurrence of any event h1, h2, l
′
1, l

′
2, h

′
1, h

′
2, h

′′
1 , h

′′
2

that may intervene in this branch without any effect. In the right branch, the test
is successful if it terminates when the high-security events h′1, h

′
2 are matched by

corresponding events h′′1 , h
′′
2 , so that Ghigh holds. The three transitions labeled l

are shorthands for the occurrence of any event l1, l2, h1, h2, l
′
1, l

′
2, l

′′
1 , l

′′
2 that may

intervene in this branch without any effect.
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τ τ

fu u 1

a

a a b

b 3 a 2

v fv 1

b

a b

a

3 a 2

b a

Fig. 8. Petri net NI simulating the input I of the PCP

6 Decidability

Universal must testing of a net N0 of the form

(∗) ∀ ρ1, · · · ,∀ ρk. N1 ‖ · · · ‖Nk must pass T,

can be decided because their falsification is a reachability problem. Indeed, the
negation of (∗) means that there exist k runs of N0 that composed in parallel with
Tyield a finite net in which there exist places of Twithout causal successor that
are not marked with X. Instead of referring to k runs of N0 we can equivalently
refer to k copies N0, 1 , . . . ,N0, k of N0 , with suitably renamed action labels, and
check the net N = N0, 1 ‖ · · · ‖N0, k ‖ T, with —→ as its transition relation and
PlT as the set of places inside T, for the following property:

∃M ∈ reach(N). ∃ p ∈M ∩ PlT. p 6∈ X ∧ ¬∃ t ∈ —→. t is enabled at M.

This is a reachability problem for Petri nets, which is decidable [14]. Since we
consider safe Petri nets, this reachablity is PSPACE-complete [6].

By contrast, universal may testing quickly gets undecidable.

Theorem 1. Universal may testing is undecidable for tests with two maximal
runs.

Proof. We reduce the falsification of the Post Correspondence Problem (PCP) [22]
to universal may testing using a test with two maximal runs. 2

We present the proof idea for the PCP over the alphabet {a, b}. As an input,
consider the set

I = ((u1, v1), (u2, v2), (u3, v3)),
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of pairs of subwords, where

u1 = ab, v1 = bb, u2 = a, v2 = aba, u3 = baa, v3 = aa.

The PCP with this input is solvable by the correspondence (2, 3, 1, 3) because

u2u3u1u3 = a b a a a b b a a = v2v3v1v3.

The PCP input I is simulated by the Petri net NI shown in Fig. 8. It consists

v′

u

τ τ

1,X

a′

1,X

b′

1,Xa b

fu

X

fv ′

a,X

1′

a,X

2′

a,X1 2

a,X 3 fu

X3′

fv ′

Fig. 9. Test TPCP for checking whether two runs of N do not simulate a correspon-
dence of the PCP. The left branch ends in the place without X if the runs produce
letter by letter the same word, the right branch ends in the place without X if the runs
have chosen the same sequence of indices.

of two branches that are selected by an initial choice between two internal ac-
tions. For distinguishing them in a test, the left branch starts with a transition
labeled with u and the right branch with a transition labeled with v. Afterwards,
their tokens reside in their center places from where they can nondeterministi-
cally choose which of the words ui or vi for i ∈ {1, 2, 3} to perform next. For
example, the left branch simulates the subword u1 = ab by the sequence of ac-
tions 1, a, and b, after which the token is again on the center place so that the
next choice can be performed. After any finite number of choices each branch
may stop its activity by performing the transition labeled with fu or fv , respec-
tively.

In general, the PCP with input I simulated by a net NI of the form above
has no correspondence if and only if

∀ ρ, ρ′ . ρ ‖ ρ′ may pass TPCP

for the test TPCP shown in Fig. 9.
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u

2

a

3

b

a

a

1

a

b

3

b

a

a

fu

v′

2′

a′

b′

a′

3′

a′

a′

1′

b′

b′

3′

a′

a′

fv ′

Fig. 10. Maximal
runs of N simulating
the correspondence
(2, 3, 1, 3).

By contraposition, if the PCP has a correspondence,
there exist maximal runs ρ and ρ′ of NI with nets N

and N′ such that the two maximal runs in N‖N′ ‖TPCP

stemming from the two branches in TPCP are not sucess-
ful, i.e., each branch ends in the unique place that is not
marked by X.

The left branch of TPCP ends in the place without X
if ρ and ρ′ produce letter by letter the same word. Here
the transitions labeled with unprimed symbols refer to ρ
and transitions labeled with primed symbols refer to ρ′.
The initial transitions labeled with u and v′ ensure that
the unprimed symbols refer to the left part of NI simulat-
ing the u-part and that the primed symbols refer to (the
primed version of) right part of NI simulating the v-part
of the proposed correspondence. Since the correspondence
is finite, this branch of the test ends in the place without
X after performing fu and fv ′.

The right branch of TPCP ends in the place without X
if ρ and ρ′ have chosen the same sequence of indices 1, 2, 3
in producing the common word. Note that this branch
checks the same runs ρ and ρ′ than the left branch because
ρ and ρ′ are fixed initially.

There is one technical detail. Whereas the runs ρ and
ρ′ have no symbols in common because ρ uses only un-
primed symbols and ρ′ only primed versions of the sym-
bols, the test TPCP synchronizes in the parallel compo-
sition with N ‖N′ on all its symbols except τ , i.e., on
a, b, a′, b′, u, v′, fu, fv ′, 1, 2, 3, 1′, 2′, 3′. To avoid unintended
deadlocks we have to enable the left branch of TPCP to
be able to synchronize at every place marked with 1 with
any transition lableled with 1, 2, 3, 1′, 2′ or 3′, and vice
versa, the right branch of TPCP to be able to synchronize
at every place marked with a with any transition lableled
with a, b, a′, b′, u or v′. To enhance visibility, we dropped
the loop transitions attached to these places allowing for
these synchronizations.

For the example input I, Fig. 10 shows two maxi-
mal runs of NI , one with the original symbols and one
with primed symbols, that simulate the correspondence
(2,3,1,3) and cause the test TPCP to end for each branch
in the place that is not marked X.
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7 Conclusion

We introduced the notion of concurrent hyperproperties as sets of sets of con-
current traces. This extends classical hyperproperties, which are sets of sets of
traces. For analyzing concurrent hyperproperties, we used Petri nets as the un-
derlying semantic model of concurrency. The analysis was performed by adapt-
ing may and must testing originally developed by DeNicola and Hennessy to our
setting. Several examples illuminated the details of our approach.

As future work we envisage the introduction of suitable logics for specifying
concurrent hyperproperties, extending HyperLTL for hyperproperties on traces
(see [7] for an overview). A starting point could be event structure logic [18,20].
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