
Dependency-based Compositional Synthesis!

Bernd Finkbeiner and Noemi Passing

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
{finkbeiner, noemi.passing}@cispa.saarland

Abstract. Despite many recent advances, reactive synthesis is still not
really a practical technique. The grand challenge is to scale from small
transition systems, where synthesis performs well, to complex multi-
component designs. Compositional methods, such as the construction
of dominant strategies for individual components, reduce the complexity
significantly, but are usually not applicable without extensively rewriting
the specification. In this paper, we present a refinement of compositional
synthesis that does not require such an intervention. Our algorithm de-
composes the system into a sequence of components, such that every
component has a strategy that is dominant, i.e., performs at least as
good as any possible alternative, provided that the preceding components
follow their (already synthesized) strategies. The decomposition of the
system is based on a dependency analysis, for which we provide semantic
and syntactic techniques. We establish the soundness and completeness
of the approach and report on encouraging experimental results.

1 Introduction

Compositionality breaks the analysis of a complex system into several smaller
tasks over individual components. It has long been recognized as the key tech-
nique that makes a “significant difference” [16] for the scalability of verification
algorithms. In synthesis, it has proven much harder to develop successful com-
positional techniques. In a nutshell, synthesis corresponds to finding a winning
strategy for the system in a game against its environment. In compositional
synthesis, the system player controls an individual component, the environment
player all remaining components [9]. In practice, however, a winning strategy
rarely exists for an individual component, because the specification can usually
only be satisfied if several components collaborate.

Remorsefree dominance [3], a weaker notion than winning, accounts for such
situations. Intuitively, a dominant strategy is allowed to violate the specification
as long as no other strategy would have satisfied it in the same situation. In
other words, if the violation is the fault of the environment, we do not blame
the component. Looking for strategies that are dominant, rather than winning,
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allows us to find strategies that do not necessarily satisfy the specification for
all input sequences, but satisfy the specification for sequences that are realis-
tic in the sense that they might actually occur in a system that is built from
components that all do their best to satisfy the specification.

For safety specifications, it was shown that dominance is a compositional
notion: the composition of two dominant strategies is again dominant. Further-
more, if a winning strategy exists, then all dominant strategies are winning. This
directly leads to a compositional synthesis approach that synthesizes individual
dominant strategies [4]. In general, however, there is no guarantee that a dom-
inant strategy exists. Often, a component A depends on the well-behavior of
another component B in the sense that A needs to anticipate some future action
of B. In such situations, there is no dominant strategy for A alone since the
decision which strategy is best for A depends on the specific strategy for B.

In this paper, we address this problem with an incremental synthesis ap-
proach. Like in standard compositional synthesis, we split the system into com-
ponents. However, we do not try to find dominant strategies for each component
individually. Rather, we proceed in an incremental fashion such that each com-
ponent can already assume a particular strategy for the previously synthesized
components. We call the order, in which the components are constructed, the
synthesis order. Instead of requiring the existence of dominant strategies for all
components, we only require the existence of a dominant strategy under the as-
sumption of the previous strategies. Similar to standard compositional synthesis,
this approach reduces the complexity of synthesis by decomposing the system;
additionally, it overcomes the problem that dominant strategies generally do not
exist for all components without relying on other strategies.

The key question now is how to find the synthesis order. We propose two
methods that offer different trade-offs between precision and computational cost.
The first method is based on a semantic dependency analysis of the output vari-
ables of the system. We build equivalence classes of variables based on cyclic
dependencies, which then form the components of the system. The synthesis
order is defined on the dependencies between the components, resolving depen-
dencies that prevent the existence of dominant strategies. The second method is
based on a syntactic analysis of the specification, which conservatively overap-
proximates the semantic dependencies.

We have implemented a prototype of the incremental synthesis algorithm and
compare it to the state-of-the-art synthesis tool BoSy [6] on scalable benchmarks.
The results are very encouraging: our algorithm clearly outperforms classical
synthesis for larger systems.

Proofs and the benchmark specifications are provided in the full version [8].

Related Work. Kupferman et al. introduce a safraless compositional syn-
thesis algorithm transforming the synthesis problem into an emptiness check on
Büchi tree automata [13]. Kugler and Segall introduce two compositional algo-
rithms for synthesis from Live Sequence Charts specifications [12]. Yet, neither
of them is sound and complete. While they briefly describe a sound and complete
extension of their algorithms, they did not implement it. Filiot et al. introduce
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a compositional synthesis algorithm for LTL specifications [7] based on the com-
position of safety games. Moreover, they introduce a non-complete heuristic for
dropping conjuncts of the specification. All of the above approaches search for
winning strategies and thus fail if cooperation between the components is needed.

The notion of remorsefree dominance was first introduced in the setting of
reactive synthesis by Damm and Finkbeiner [3]. They introduce a compositional
synthesis algorithm for safety properties based on dominant strategies [4].

In the setting of controller synthesis, Baier et al. present an algorithm that
incrementally synthesizes so-called most general controllers and builds their par-
allel composition in order to synthesize the next one [1]. In contrast to our ap-
proach, they do not decompose the system in separate components. Incremental
synthesis is only used to handle cascades of objectives in an online fashion.

2 Motivating Example

In safety-critical systems such as self-driving cars, correctness of the implemen-
tation with respect to a given specification is crucial. Hence, they are an obvious
target for synthesis. However, a self-driving car consists of several components
that interact with each other, leading to enormous state spaces when synthe-
sized together. While a compositional approach may reduce the complexity, in
most scenarios there are neither winning nor dominant strategies for the sepa-
rate components. Consider a specification for a gearing unit and an acceleration
unit of a self-driving car. The latter one is required to decelerate before curves
and to not accelerate in curves. To prevent traffic jams, the car is required to
accelerate eventually if no curve is ahead. In order to safe fuel, it should not
always accelerate or decelerate. This can be specified in LTL as follows:

ϕacc = (curve ahead → dec) ∧ (in curve → ¬acc) ∧ keep

∧ ((¬in curve ∧ ¬curve ahead) → acc) ∧ ¬(acc ∧ dec)

∧ ¬(acc ∧ keep) ∧ ¬(dec ∧ keep) ∧ (acc ∨ dec ∨ keep),

where curve ahead and in curve are input variables denoting whether a curve
is ahead or whether the car is in a curve, respectively. The output variables are
acc and dec, denoting acceleration and deceleration, and keep, denoting that the
current speed is kept. Note that ϕacc is only realizable if we assume that a curve
is not followed by another one with only one step in between infinitely often.

The gearing unit can choose between two gears. It is required to use the
smaller gear when the car is accelerating and the higher gear if the car reaches
a steady speed after accelerating. This can be specified in LTL as follows, where
geari are output variables denoting whether the first or the second gear is used:

ϕgear = ((acc ∧ acc) → gear1 ) ∧ ((acc ∧ keep) → gear2 )

∧ ¬(gear1 ∧ gear2 ) ∧ (gear1 ∨ gear2 ).

When synthesizing a strategy s for the acceleration unit, it does not suffice
to consider only ϕacc since s affects the gearing unit. Yet, there is clearly no
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winning strategy for ϕcar := ϕacc ∧ϕgear when considering the acceleration unit
separately. There is no dominant strategy either: As long as the car accelerates
after a curve, the conjunct ((¬in curve ∧¬curve ahead) → acc) is satisfied.
If the gearing unit does not react correctly, ϕcar is violated. Yet, an alternative
strategy for the acceleration unit that accelerates at a different point in time at
which the gearing unit reacts correctly, satisfies ϕcar . Thus, neither a composi-
tional approach using winning strategies, nor one using dominant strategies, is
able to synthesize strategies for the components of the self-driving car.

However, the lack of a dominant strategy for the acceleration unit is only due
to the uncertainty whether the gearing unit will comply with the acceleration
strategy. The only dominant strategy for the gearing unit is to react correctly to
the change of speed. Hence, providing this knowledge to the acceleration unit by
synthesizing the strategy for the gearing unit beforehand and making it available,
yields a dominant and even winning strategy for the acceleration unit. Thus,
synthesizing the components incrementally instead of compositionally allows for
separate strategies even if there is a dependency between the components.

3 Preliminaries

LTL. Linear-time temporal logic (LTL) is a specification language for linear-
time properties. Let Σ be a finite set of atomic propositions and let a ∈ Σ. The
syntax of LTL is given by ϕ,ψ ::= a | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ | ϕU ψ | ϕWψ.
We define the abbreviations true := a∨¬a, false := ¬true, ϕ = true U ϕ, and
ϕ = ¬ ¬ϕ as usual and use the standard semantics. The language L(ϕ) of a

formula ϕ is the set of infinite words that satisfy ϕ.

Automata. Given a finite alphabet Σ, a universal co-Büchi automaton is a tuple
A = (Q, q0, δ, F ), where Q is a finite set of states, q0 ∈ Q is the initial state,
δ : Q × 2Σ × Q is a transition relation, and F ⊆ Q is a set of rejecting states.
Given an infinite word σ = σ0σ1 · · · ∈ (2Σ)ω, a run of σ on A is an infinite
sequence q0q1 · · · ∈ Qω of states where (qi,σi, qi+1) ∈ δ holds for all i ≥ 0. A run
is called accepting if it contains only finitely many rejecting states. A accepts a
word σ if all runs of σ on A are accepting. The language L(A) of A is the set of
all accepted words. An LTL specification ϕ can be translated into an equivalent
universal co-Büchi automaton Aϕ with a single exponential blow up [14].

Decomposition. A decomposition is a partitioning of the system into components.
A component p is defined by its input variables inp(p) ⊆ (inp ∪ out) and output
variables out(p) ⊆ out with inp(p)∩out(p) = ∅, where inp and out are the input
and output variables of the system and V = inp ∪ out . The output variables of
components are pairwise disjoint and their union is equivalent to out . The imple-
mentation order defines the communication interface between the components.
It assigns a rank rankimpl(p) to every component p. If rankimpl(p) < rankimpl(p

′),
then p′ sees the valuations of the variables in inp(p′) ∩ out(p) one step in ad-
vance, i.e., it is able to directly react to them, modeling knowledge about these
variables in the whole system. The implementation order is not necessarily total.
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Strategies. A strategy is a function s : (2inp(p))∗ → 2out(p) that maps a history
of inputs of a component p to outputs. We model strategies as Moore machines
T = (T, t0, τ, o) with a finite set of states T , an initial state t0, a transition
function τ : T × 2inp(p) → T , and an output function o : T → 2out(p) that is is
independent of the input. Given an input sequence γ = γ0γ1 . . . ∈ (2V \out(p))ω,
T produces a path π = (t0, γ0∪o(t0, γ0))(t1, γ1∪o(t1, γ1)) . . . ∈ (T×2V )ω, where
τ(tj , ij) = tj+1. The projection of a path to the variables is called trace. The
trace produced by T on γ is called the computation of strategy s represented
by T on γ, denoted comp(s, γ). A strategy s is winning for ϕ if comp(s, γ) |= ϕ
for all γ ∈ (2inp)ω. A strategy s is dominated by a strategy t for ϕ if for all
γ ∈ (2V \out(p))ω with comp(s, γ) |= ϕ, comp(t, γ) |= ϕ holds as well. A strategy
is dominant if it dominates every other strategy. A specification ϕ is called
admissible if there exists a dominant strategy for ϕ.

Bounded Synthesis. Given a specification, synthesis derives an implementation
that is correct by construction. Bounded synthesis [10] additionally requires a
bound b ∈ N on the size of the implementation as input. It produces size-optimal
strategies. The search for a strategy satisfying the specification is encoded into a
constraint system. If it is unsatisfiable, then the specification is unrealizable for
the given size bound. Otherwise, the solution defines a winning strategy. There
exist SMT [10] as well as SAT, QBF, and DQBF [5] encodings.

4 Synthesis of Dominant Strategies

In our incremental synthesis approach, we seek for dominant strategies, rather
than for winning ones. To synthesize dominant strategies, we construct a univer-
sal co-Büchi automaton Adom

ϕ for a specification ϕ that accepts exactly the com-
putations of dominant strategies following the ideas in [3,4]. As for the universal
co-Büchi automaton Aϕ with L(Aϕ) = L(ϕ), the size of Adom

ϕ is exponential

in the length of ϕ [4]. In bounded synthesis, the automaton Adom
ϕ is then used

instead of Aϕ to derive dominant strategies.
Since we synthesize independent components compositionally, dominance of

the parallel composition of dominant strategies is crucial for both soundness and
completeness. Yet, in contrast to winning strategies, the parallel composition of
dominant strategies is not guaranteed to be dominant in general. Consider a
system with components p1 and p2 that send each other messages m1 and m2,
and the specification ϕ = m1 ∧ m2. For p1, it is dominant to wait for m2

before sending m1 since this strategy only violates m1 if m2 is violated as
well. Analogously, it is dominant for p2 to wait for m1 before sending m2. The
parallel composition of these strategies, however, never sends any message. It
violates ϕ in every situation while there are strategies that are winning for ϕ.
Nevertheless, dominant strategies are compositional for safety specifications:

Theorem 1 ([4]). Let ϕ be a safety property and let s1 and s2 be strategies for
components p1 and p2. If s1 is dominant for ϕ and p1 and s2 is dominant for ϕ
and p2, then the parallel composition s1 || s2 is dominant for ϕ and p1 || p2.
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Algorithm 1: Incremental Synthesis

Input: specification ϕ, array C of arrays of k components ordered by <syn

Output: strategies s1, . . . , sk such that s1 || . . . || sk is dominant for ϕ
array[k] strategies
strategy assumedStrategies
for i = 1 to C.length() by 1 do

strategy addForLayer
for j = 1 to C[i].length() by 1 do

synthesize strategy s for C[i][j] such that (assumedStrategies || s) is
dominant for ϕ

int component = C[i][j].getLabel()
strategies[component] = s
addForLayer = addForLayer || s

assumedStrategies = assumedStrategies || addForLayer

We extend this result to specifications where only a single component affects
the liveness part. Intuitively, then a violation of the liveness part can always
be lead back to the single component affecting it, contradicting the assumption
that its strategy is dominant.

Theorem 2. Let ϕ be a property where only output variables of component p1
affect the liveness part of ϕ, and let s1 and s2 be two strategies for components
p1 and p2, respectively. If s1 is dominant for ϕ and p1 and s2 is dominant for
ϕ and p2, then the parallel composition s1 || s2 is dominant for ϕ and p1 || p2.

To lift compositional synthesis to real-world settings where strategies have
to rely on the fact that other components will not maliciously violate the speci-
fication, we circumvent the need for the existence dominant strategies for every
component in the following sections: We model the assumption that other com-
ponents behave in a dominant fashion by synthesizing strategies incrementally.

5 Incremental Synthesis

In this section, we introduce a synthesis algorithm based on dominant strategies,
where, in contrast to compositional synthesis, the components are not necessarily
synthesized independently but one after another. The strategies that are already
synthesized provide further information to the one under consideration.

For the self-driving car from Section 2, for instance, there is no dominant
strategy for the acceleration unit. However, when provided with a dominant gear-
ing strategy, there is even a winning strategy for the acceleration unit. Therefore,
synthesizing strategies for the components incrementally, rather than composi-
tionally, allows us to synthesize a strategy for the self-driving car.

The incremental synthesis algorithm is described in Algorithm 1. Besides a
specification ϕ, it expects an array of arrays of components that are ordered by
the synthesis order <syn as input. The synthesis order assigns a rank ranksyn(pi)
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to every component pi. Strategies for components with lower ranks are synthe-
sized before strategies for components with higher ranks. Strategies for compo-
nents with the same rank are synthesized compositionally. Thus, to guarantee
soundness, the synthesis order has to ensure that either ϕ is a safety property,
or that at most one of these components affects the liveness part of ϕ.

First, we synthesize dominant strategies s1, . . . , si for the components with
the lowest rank in the synthesis order. Then, we synthesize dominant strategies
si+1, . . . , sj for the components with the next rank under the assumption of the
parallel composition of s1, . . . , si, denoted s1 || . . . || si. Particularly, we seek for
strategies such that s1 || . . . || si || si+ℓ is dominant for ϕ and p1 || . . . || pi || pi+ℓ,
where 1 ≤ ℓ ≤ j − i. We continue until strategies for all components have
been synthesized. The soundness follows directly from the construction of the
algorithm as well as Theorems 1 and 2.

Theorem 3 (Soundness). Let ϕ be a specification and let s1, . . . , sk be the
strategies produced by the incremental synthesis algorithm. Then s1 || . . . || sk is
dominant for ϕ. If ϕ is realizable, then s1 || . . . || sk is winning.

The success of incremental synthesis relies heavily on the choice of compo-
nents. Clearly, it succeeds if compositional synthesis does. Otherwise, the syn-
thesis order has to guarantee admissibility of every component when provided
with the strategies of components with a lower rank. In this regard, it is crucial
that the parallel composition of the components with the same rank is dominant.
Thus, we introduce techniques for component selection inducing a synthesis or-
der that ensure completeness of incremental synthesis in the following sections.

6 Semantic Component Selection

The component selection algorithm introduced in this section is based on de-
pendencies between the output variables of the system. It directly induces a
synthesis order ensuring completeness of incremental synthesis.

We require specifications to be of the form (ϕA
1 ∧ · · ·∧ϕA

n ) → (ϕG
1 ∧ · · ·∧ϕG

m),
where the conjuncts are conjunction-free in negation normal form. When seeking
for dominant strategies, assumptions can be treated as conjuncts as long as the
system is not able to satisfy the specification by violating the assumptions. Since
it is a modeling flaw if the assumptions can be violated by the system, we assume
specifications to be of the form (ϕA

1 ∧ · · ·∧ϕA
n )∧ (ϕG

1 ∧ · · ·∧ϕG
m) in the following.

First, we introduce an algorithm for component selection that ensures com-
pleteness of incremental synthesis in the absence of input variables. Afterwards,
we extend it to achieve completeness in general. The algorithm identifies equiva-
lence classes of variables based on dependencies between them. These equivalence
classes then build the components. Intuitively, a variable u depends on the cur-
rent or future valuation of a variable v if changing the valuation of u yields a
violation of the specification ϕ that can be fixed by changing the valuation of v
at the same point in time or at a strictly later point in time, respectively. The
change of the valuation of v needs to be necessary for the satisfaction of ϕ in
the sense that not changing it would not yield a satisfaction of ϕ.
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Definition 1 (Minimal Satisfying Changeset). Let ϕ be a specification, let
γ ∈ (2inp)ω, π ∈ (2out)ω be sequences such that γ ∪ π ∕|= ϕ, let u ∈ out and let
i be a position. For sets P ⊆ out \ {u}, F ⊆ out, let ΠP,F be the set of output

sequences πP,F ∈ (2out)ω such that πP,F
j = πj for all j < i and

– ∀v ∈ P. v ∈ πP,F
i ↔ v ∕∈ πi and ∀v ∈ V \ P. v ∈ πP,F

i ↔ v ∈ πi, and

– ∀v ∈ F. ∃j > i. v ∈ πP,F
j ↔ v ∕∈ πj and ∀v ∈ V \F. ∀j > i. v ∈ πP,F

j ↔ v ∈ πj.

If there is a sequence πP,F ∈ ΠP,F, such that γ ∪ πP,F |= ϕ and for all P ′ ⊂ P ,
F ′ ⊂ F , we have γ ∪ πP ′,F ′ ∕|= ϕ for all πP ′,F ′ ∈ ΠP ′,F ′

, then (P, F ) is called
minimal satisfying changeset with respect to ϕ, γ, π, i.

Definition 2 (Semantic Dependencies). Let ϕ be a specification, let u ∈ out.
Let η, η′ ∈ (2V )∗ be sequences of length i + 1 such that u ∈ η′i ↔ u ∕∈ ηi,
∀v ∈ V \ {u}. v ∈ η′i ↔ v ∈ ηi, and ∀j < i. η′j = ηj. If there are γ ∈ (2inp)ω,

γπ ∈ (2out)ω with γ0 . . . γi = η∩ inp, γπ0 . . . γπi = η∩out, and γ ∪ γπ |= ϕ, then

– u depends on (P, F ) for P ⊆ out \ {u}, F ⊆ out if there is γπ
′ ∈ (2out)ω

with γπ
′
0 . . . γπ

′
i = η′ ∩ out and γπj = γπ

′
j for all j > i such that γ ∪ γπ

′ ∕|= ϕ
and (P, F ) is a minimal satisfying changeset w.r.t. ϕ, γ, γπ

′, i. We say that
u depends semantically on the current or future valuation of v, if there are
P , F such that u depends on (P, F ) and v ∈ P or v ∈ F , respectively.

– u depends on the input, if for all γπ
′′ ∈ (2out)ω with γπ

′′
0 . . . γπ

′′
i = η′ ∩ out,

we have γ ∪ γπ
′′ ∕|= ϕ, while there are γ′ ∈ (2inp)ω,

γ′π′′ ∈ (2out)ω with

γ′
0 . . . γ

′
i = η ∩ inp and

γ′π′′
0 . . . γ′π′′

i = η′ ∩ out such that γ′ ∪
γ′π′′ |= ϕ.

The specification of the self-driving car induces, for instance, a present de-
pendency from acc to dec: Let γ = ∅ω, η = {gear1 , dec}, η′ = {gear1 , dec, acc}.
For γπ = {gear1 , dec}{gear2}ω, γ ∪ γπ clearly satisfies ϕcar . In contrast, for

γπ
′ = {gear1 , dec, acc}{gear2}ω, γ ∪ γπ

′ ∕|= ϕcar since mutual exclusion of acc
and dec is violated. For P = {dec}, F = ∅, (P, F ) is a minimal satisfying change-
set w.r.t. ϕ, γ, γπ

′, i. Thus, acc depends on the current valuation of dec.
If a variable u depends on the future valuation of some variable v, a strategy

for umost likely has to predict the future, preventing the existence of a dominant
strategy for u. In our setting, strategies cannot react directly to an input. Thus,
present dependencies may prevent admissibility as well. Yet, the implementation
order resolves a present dependency from u to v if rankimpl(v) < rankimpl(u):
Then, the valuation of v is known to u one step in advance and thus a strategy
for u does not have to predict the future. Hence, if u neither depends on the
input, nor on the future valuation of some v ∈ out , nor on its current valuation
if rankimpl(u) ≤ rankimpl(v), then the specification is admissible for u.

To show this formally, we construct a dominant strategy for u. It maximizes
the set of input sequences for which there is an output sequence that satisfies
the specification. In general, this strategy is not dominant since these output
sequences may not be computable by a strategy. Yet, this can only be the case if
a strategy needs to predict the valuations of variables outside its control and this
need is exactly what is captured by semantic present and future dependencies.
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Theorem 4. Let ϕ be a specification and let O ⊆ out. If for all u ∈ O, u neither
depends semantically on the future valuation of v, nor on the current valuation
of v if rankimpl(u) ≤ rankimpl(v) for all v ∈ V \ O, nor on the input, then ϕ is
admissible for the component p with out(p) = O.

We build a dependency graph in order to identify the components of the sys-
tem. The vertices represent the variables and edges denote semantic dependencies
between them. Formally, the Semantic Dependency Graph Dsem

ϕ = (Vϕ, E
sem
ϕ )

of ϕ is given by Vϕ = V and Esem
ϕ = Esem

ϕ,p ∪ Esem
ϕ,f ∪ Esem

ϕ,i , where (u, v) ∈ Esem
ϕ,p

if u depends on the current valuation of v ∈ out , (u, v) ∈ Esem
ϕ,f if u depends on

the future valuation of v ∈ out , and (u, v) ∈ Esem
ϕ,i if u depends on v ∈ inp.

To identify the components, we proceed in three steps. First, we eliminate
vertices representing input variables since they are not part of the components.
Second, we resolve present dependencies. Since future dependencies subsume
present ones, we remove (u, v) from Esem

ϕ,p if (u, v) ∈ Esem
ϕ,f . Then, we resolve

present dependencies by refining the implementation order: If (u, v) ∈ Esem
ϕ,p , we

add rankimpl(v) < rankimpl(u) and remove (u, v) from Esem
ϕ,p . This is only possible

if the implementation order does not become contradictory. In particular, at most
one present dependency between u and v can be resolved in this way. Third, we
identify the strongly connected components C := {C1, . . . , Ck} of Dsem

ϕ . They
define the decomposition of the system: We obtain k components p1, . . . , pk with
out(pi) = Ci for 1 ≤ i ≤ k. Thus, the number of strongly connected components
should be maximized when resolving present dependencies in step two.

The dependency graph induces the synthesis order : Let Ci ⊆ C be the set of
strongly connected components that do not have any direct predecessor when
removing C0∪· · ·∪Ci−1 from Dsem

ϕ . For all Cn ∈ C0, ranksyn(pn) = 1. For Cn ∈ Ci,

Cm ∈ Cj, ranksyn(pn) < ranksyn(pm) if i > j and ranksyn(pn) > ranksyn(pm) if
i < j. If i = j, ranksyn(pn) = ranksyn(pm) if ϕ is a safety property or only one
of the components affects the liveness part of ϕ. Otherwise, choose an ordering,
i.e., either ranksyn(pn) < ranksyn(pm) or ranksyn(pm) < ranksyn(pn).

For the specification of the self-driving car, we obtain the semantic depen-
dency graph shown in Figure 1a. It induces three components p1, p2, p3 with
out(p1) = {gear1}, out(p2) = {gear2}, and out(p3) = {acc, dec, keep}. When
adding rankimpl(gear2 ) < rankimpl(gear1 ) to the implementation order, we ob-
tain ranksyn(p1 ) < ranksyn(p2 ) < ranksyn(p3 ) and thus p1 <syn p2 <syn p3.

Incremental synthesis with the semantic component selection algorithm is
complete for specifications that do not contain dependencies to input variables:
By construction, a component p ∈ C0 has no unresolved semantic dependencies
to variables outside of p. Thus, by Theorem 4, ϕ is admissible. Moreover, by
the incremental synthesis algorithm as well as Theorems 1 and 2, for every
component p ∈ Ci, the parallel composition of the strategies of components p′

with ranksyn(p
′) < ranksyn(p) is dominant. Thus, by construction, there is a

dominant strategy for C0 ∪ · · · ∪ Ci as well.

Lemma 1. Let ϕ be a specification. If for all u ∈ out, u does not depend se-
mantically on the input, then incremental synthesis yields strategies for all com-
ponents and the synthesis order induced by the component selection algorithm.
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(b) Syntactic Dependency Graph

Fig. 1: Semantic and Syntactic Dependency Graphs for the self-driving car.
Dashed edges denote present dependencies, solid ones future dependencies. Gray
boxes denote induced components. In (b), blue edges are obtained by transitiv-
ity, orange ones by derivation, and green ones by transitivity after derivation.
For the sake of readability, not all transitive and derived edges are displayed.

Since semantic dependencies to input variables cannot be resolved, admissi-
bility is not guaranteed in general. Yet, if the specification is realizable, admis-
sibility of completely independent components follows: If p does not depend on
the input, admissibility of ϕ follows directly with Lemma 1. Otherwise, ϕ can
only be non-admissible for p if a strategy has to predict the valuation of an in-
put variable. Since p is completely independent of other components, a different
valuation of an output variable outside of p cannot affect the need to predict
input variables. But then a strategy for the whole system has to predict inputs
as well, yielding a contradiction.

Theorem 5. Let ϕ be a specification, let p be a component such that for all p′,
ranksyn(p

′) ≤ ranksyn(p), and for all u ∈ out(p), u neither depends semantically
on the future valuation of v ∈ out \ out(p), nor on its current valuation if
rankimpl(u) ≤ rankimpl(v). If ϕ is realizable, then ϕ is admissible for p.

Thus, when encountering a component for which ϕ is not admissible in in-
cremental synthesis, we can directly deduce non-realizability of ϕ if there is no
component with a higher rank in the synthesis order. Yet, this does not hold in
general. Consider ϕ = a∨(( b) ↔ ( i)), where i is an input variable and both
a and b are output variables. Since a depends on b while b does not depend on
a, a strategy for b has to be synthesized first. Yet, there is no dominant strategy
for b since it has to predict the future valuation of i, while there is a dominant
strategy for the whole system, namely the one that sets a in the first step.

Thus, we combine a component for which ϕ is not admissible with a direct
successor in the synthesis order until either ϕ is admissible or only a single
component is left. With this extension, the completeness of incremental synthesis
follows directly from Lemma 1 and Theorem 5.

Theorem 6 (Completeness). Let ϕ be a specification. If ϕ is realizable, in-
cremental synthesis yields strategies for all components and the synthesis order
induced by the extended semantic component selection algorithm.
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7 Syntactic Analysis

While analyzing semantic dependencies for component selection ensures com-
pleteness of incremental synthesis, computing the dependencies is hard. In par-
ticular, the semantic definition of dependencies is a hyperproperty [2], i.e., a
property relating multiple execution traces, with quantifier alternation. To de-
termine the present and future dependencies between variables more efficiently,
we introduce a dependency definition based on the syntax of the LTL formula.

Definition 3 (Syntactic Dependencies). Let ϕ be an LTL formula in nega-
tion normal form. Let T (ϕ) be the syntax tree of ϕ, where is considered to
be a separate operator. Let q be a node of T (ϕ) with child q′, if q is a unary
operator, and left child q′ and right child q′′, if q is a binary operator. We assign

a set Dq ∈ 22
V ×N×B

to each node q of T (ϕ) as follows:

– if q is a leaf, then q = u ∈ V and Dq = {{(u, 0, false)}},
– if q = ¬, then Dq = Dq′ ,
– if q = ∧, then Dq = Dq′ ∪Dq′′ ,
– if q = ∨, then Dq =

!
M∈Dq′

!
M ′∈Dq′′

{M ∪M ′},
– if q = , then Dq =

!
M∈Dq′

{{(u, x+ 1, y) | (u, x, y) ∈ M}},
– if q = , then Dq = Dq′∪

!
M∈Dq′

{{(u, x, true)} | (u, x, y) ∈ M},

– if q = , then Dq = Dq′∪
"!

M∈Dq′
{(u, x, true),(u, x, false) | (u, x, y) ∈ M}

#

– if q = , then Dq =
!

M∈Dq′
{{(u, x, true)} | (u, x, y) ∈ M},

– if q = U or q = W, then

Dq =
$

M∈Dq′

$

M ′∈Dq′′

{M ∪M ′}

∪
$

M∈Dq′

$

M ′∈Dq′′

$

(u,x,y)∈M

{{(u, x, true)} ∪M ′}

∪

%
&

'
$

M ′∈Dq′′

{(u, x, true),(u, x, false) | (u, x, y) ∈ M ′}

(
)

*

Let q be the root node of T (ϕ) and let (u, x, y), (v, x′, y′) ∈ M for some M ∈ Dq,
u, v ∈ V , x, x′ ∈ N, and y, y′ ∈ B with (u, x, y) ∕= (v, x′, y′). Then u depends
syntactically on the current valuation of v, if u ∕= v and either y = y′ = false
and x = x′, or y = true and y′ = false and x ≤ x′, or y = false and y′ = true
and x ≥ x′, or y = y′ = true. Furthermore, u depends syntactically on the
future valuation of v, if either y′ = true, or y′ = false and x < x′. The offset of
the future dependency is ∞ in the former case and x′ − x in the latter case.

For (u, x, y), x denotes the number of -operators under which u occurs
and y denotes whether u occurs under an unbounded temporal operator. Since
the specification is in negation normal form, negation only occurs in front of
variables and thus does not influence the dependencies. Disjunction introduces
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dependencies between the disjuncts ψ and ψ′ since the satisfaction of ψ affects
the need of satisfaction of ψ′ and vice versa. A conjunct, however, has to be
satisfied irrespective of other conjuncts and thus conjunction does not intro-
duce dependencies. Analogously, ψ introduces future dependencies between
the variables in ψ, while ψ does not. Adding triples with both true and false
is necessary for the -operator in order to obtain future dependencies from a
variable to itself also if ψ contains only a single variable, e.g., for u. For ψ U ψ′

and ψWψ′, there are dependencies between ψ and ψ′ as well as future dependen-
cies between the variables in ψ′ analogously to disjunction and the -operator.
Furthermore, there are future dependencies from ψ′ to ψ since whether or not ψ
is satisfied in the future affects the need of satisfaction of ψ′ in the current step.
The -operator takes a special position. Although including , changing the
valuation of a variable at a single position does not yield a violation of ψ and
thus there is no semantic dependency. Hence, ψ does not introduce syntactic
dependencies between the variables in ψ either.

For the specification of the self-driving car from Section 2, we annotate, for
instance, node q representing the -operator of the conjunct ¬(acc∧dec) with
Dq = {{(acc, 0, false), (dec, 0, false)}, {(acc, 0, true)}, {(dec, 0, true)}}, yielding
a syntactic present dependency from acc to dec and vice versa. For the node q
representing the -operator of ((acc∧ acc) → gear1 ), we obtain amongst
others {(acc, 0, false), (acc, 1, false), (gear1 , 2, false)} ∈ Dq, yielding future de-
pendencies from acc to acc with offset 1 and to gear1 with offsets 1 and 2.

As long as semantic dependencies do not range over several conjuncts, every
semantic dependency is captured by a syntactic one as well: If there is a semantic
dependency from u to v and if ϕ does not contain any conjunction, u and v occur
in the same set M ∈ Dq, where q is the root node of T (ϕ), by construction. With
structural induction on ϕ, it thus follows that every semantic dependency has a
syntactic counterpart.

Lemma 2. Let ϕ be an LTL formula in negation normal form that does not
contain any conjunction. Let u, v ∈ V be variables. If u depends semantically on
the current or future valuation of v, then u depends syntactically on the current
or future valuation of v, respectively, as well.

Yet, the above definition of syntactic dependencies does not capture all se-
mantic dependencies in general. Particularly, semantic dependencies ranging over
several conjuncts cannot be detected. To capture all dependencies, we build the
syntactic dependency graph analogously to the semantic one, additionally anno-
tating future dependency edges with their offsets. We build the transitive closure
over output variables: Let u, v ∈ out and let there be u1, . . . , uj ∈ out for some
j ≥ 1 with (u, u1) ∈ Esyn

ϕ , (uj , v) ∈ Esyn
ϕ , and (ui, ui+1) ∈ Esyn

ϕ for all 1 ≤ i < j.
If all these edges are present dependency edges, then (u, v) ∈ Esyn

ϕ,p . Otherwise,
(u, v) ∈ Esyn

ϕ,f . If there are connecting edges for u and v containing a future de-
pendency cycle, the offset of the transitive edge is ∞. Otherwise, it is the sum of
the offsets of the connecting edges. To capture the synergy of dependencies, let
u, v, w ∈ V be variables with u,w ∈ out and u ∕= v or u ∕= w. Let (u,w) ∈ Esyn

ϕ,f

with offset x and (v, w) ∈ Esyn
ϕ,f with offset y. If x ∕= ∞ and y ∕= ∞, then, if
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x = y, add (u, v) and (v, u) to Esyn
ϕ,p , and if x < y or x > y, add (v, u) or (u, v)

to Esyn
ϕ,f with offset y − x or x− y, respectively. If x = ∞, add both (u, v), (v, u)

to Esyn
ϕ,p and Esyn

ϕ,f with offset ∞. Build the transitive closure again.
The resulting syntactic dependency graph for the self-driving car is shown in

Figure 1b. Unlike the semantic one, it contains outgoing dependencies from input
variables. While such dependencies are not relevant for component selection
and thus are not defined in the semantic algorithm, they are needed to derive
dependencies to input variables with the syntactic technique.

After the derivation of further dependencies in the dependency graph, every
semantic dependency has a syntactic counterpart, even if it ranges over sev-
eral conjuncts. Intuitively, the derivation of a minimal satisfying changeset for a
semantic dependency induces several separate semantic present and future de-
pendencies that only affect single conjuncts of the specification. With Lemma 2,
the claim follows by induction on the number of these separate dependencies.

Theorem 7. Let ϕ be an LTL formula and let u, v ∈ out. If (u, v) ∈ Esem
ϕ,p , then

(u, v) ∈ Esyn
ϕ,p . If (u, v) ∈ Esem

ϕ,f , then (u, v) ∈ Esyn
ϕ,f . If u depends semantically on

the input, then there are variables w ∈ out, w′ ∈ inp such that (w,w′) ∈ Esyn
ϕ .

Thus, since semantic dependencies have a syntactic counterpart, complete-
ness of incremental synthesis using syntactic dependency analysis for selecting
components follows directly with Theorem 6. However, the syntactic analysis
is a conservative overapproximation of the semantic dependencies. This can be
easily seen when comparing the semantic and syntactic dependency graphs for
the self-driving car shown in Figure 1. For instance, there is a syntactic future
dependency from acc to in curve while there is no such semantic dependency.
In particular, the derivation rules are blamable for the overapproximation.

8 Specification Simplification

In this section, we identify conjuncts that are not relevant for the component p
under consideration to reduce the size of the specification. In general, leaving
out conjuncts is not sound since the missing conjuncts may invalidate admissibil-
ity of the specification [4]. However, non-admissible components cannot become
admissible by leaving out conjuncts that do not refer to output variables of p:

Theorem 8 ([4]). Let ϕ be an LTL formula over V \ out(p) and let ψ be an
LTL formula over V . If ψ is admissible, then ϕ ∧ ψ is admissible as well.

Yet, an admissible component may become non-admissible. For instance,
consider the specification ϕ = (a ↔ i) ∧ i, where i is an input variable
and a is an output variable. While always outputting a is a dominant strategy
for ϕ, leaving out i yields non-admissibility of ϕ since a dominant strategy for
a needs to predict i. A conjunct that does not contain variables on which the
component under consideration depends, however, can be eliminated since its
satisfaction does not influence the admissibility of the specification for p:
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Theorem 9. Let ϕ be an LTL formula such that ϕ = ψ ∧ ψ′, where ψ is an
LTL formula over V ′ ⊆ V \ out(p) not containing assumption conjuncts and
ψ′ is an LTL formula over V . If for all u ∈ out(p) and v ∈ out \ out(p), u
neither depends on the future valuation of v, nor on the present valuation of v
if rankimpl(u) ≤ rankimpl(v), and if ϕ is realizable for the whole system, then ψ′

is admissible for p if, and only if, ϕ is admissible for p.

If ψ′ is admissible, admissibility of ϕ follows since the truth value of ψ is
solely determined by the input of p. Otherwise, a strategy for p has to predict
the input. Since p is independent of all other components, ϕ can only be realizable
if ψ restricts the input behavior, contradicting the assumption that it does not
contain assumption conjuncts. This directly leads to the following observation:

Corollary 1. Let ϕ = ψ ∧ψ′ be an LTL formula inducing two components p, p′

with ranksyn(p) = ranksyn(p
′) for either the semantic or the syntactic technique,

where ψ and ψ′ range over V \ out(p′) and V \ out(p), respectively. If ϕ is
realizable, then there are winning strategies for p and p′ for ψ and ψ′, respectively.

Moreover, in incremental synthesis the strategies of components with a lower
rank in the synthesis order are provided to the component p under consideration.
Hence, if these strategies are winning for a conjunct, it may be eliminated from
the specification for p since its satisfaction is already guaranteed.

Theorem 10. Let ϕ,ψ be LTL formulas over V . Let s′ be the parallel composi-
tion of the strategies for the components pi with ranksyn(pi) < ranksyn(p). If s

′

is winning for ϕ, then there is a strategy s such that s′ || s is dominant for ψ if,
and only if, there is a strategy s such that s′ || s is dominant for ϕ ∧ ψ.

9 Experimental Results

We implemented a prototype of the incremental synthesis algorithm. It expects
an LTL specification as well as a decomposition of the system and a synthesis or-
der as input. Our prototype extends the state-of-the-art synthesis tool BoSy [6]
to the synthesis of dominant strategies. Furthermore, it converts the synthe-
sized strategy from the Aiger-circuit produced by our extension of BoSy to an
equivalent LTL formula that is added to the specification of the next component.

We compare our prototype to BoSy on four scalable benchmarks. The re-
sults are presented in Table 1. The first two benchmarks stem from the reactive
synthesis competition (SYNTCOMP 2018) [11]. The latch is parameterized in
the number of bits and the Generalized Buffer in the number of receivers. For
the n-ary latch, both the semantic and the syntactic component selection algo-
rithms identify n separate components, one for each bit of the latch. For the
Generalized Buffer, both techniques identify two components, one for the com-
munication with the senders and one for the communication with the receivers.
After simplifying the specification using Theorem 9, we are able to synthesize
separate winning strategies for the components for both benchmarks, making use
of Corollary 1. The incremental synthesis approach clearly outperforms BoSy’s
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Table 1: Experimental results on scalable benchmarks. Reported is the parameter
and the time in seconds. We used a machine with a 3.1 GHz Dual-Core Intel
Core i5 processor and 16 GB of RAM, and a timeout of 60 minutes.

Benchmark Parameter BoSy Incremental Synthesis

n-ary Latch 2 2.61 4.76
3 3.66 6.58
4 11.55 8.74
5 TO 10.98
. . . . . . . . .
1104 TO 3599.04

Generalized Buffer 1 37.04 5.08
2 TO 6.21
3 TO 66.03

Sensors 2 1.99 6.08
3 2.31 8.79
4 6.99 11.73
5 92.79 16.99
6 TO 43.50
7 TO 2293.85

Robot Fleet 2 2.49 6.25
3 TO 10.51
4 TO 269.09

classical bounded synthesis approach for the Generalized Buffer in all cases. For
the n-ary latch, the advantage becomes clear from n = 4 on.

Furthermore, we consider a benchmark describing n sensors and a managing
unit that requests and collects sensor data. The semantic component selection
technique identifies n separate components for the sensors as well as a component
for the managing unit that depends on the other components. For this decom-
position, the incremental synthesis approach outperforms BoSy for n ≥ 5. The
syntactic technique, however, does not identify the separability of the sensors
from the managing unit due to the overapproximation in the derivation rules.

Lastly, we consider a benchmark describing a fleet of n robots that must
not collide with a further robot crossing their way. Both the semantic and the
syntactic technique identify n separate components for the robots in the fleet as
well as a component for the further robot depending on the former components.
Our prototype outperforms BoSy from n ≥ 3 on. It still terminates in less than
5 minutes when BoSy is not able to synthesize a strategy within 60 minutes.

10 Conclusions

We have presented an incremental synthesis algorithm that reduces the complex-
ity of synthesis by decomposing large systems. Furthermore, it is, unlike com-
positional approaches, applicable if the components depend on the strategies of
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other components. We have introduced two techniques to select the components,
one based on a semantic dependency analysis of the output variables and one
based on a syntactic analysis of the specification. Both induce a synthesis order
that guarantees soundness and completeness of incremental synthesis. Moreover,
we have presented rules for reducing the size of the specification for the compo-
nents. We have implemented a prototype of the algorithm and compared it to
a state-of-the-art synthesis tool. Our experiments clearly demonstrates the ad-
vantage of incremental synthesis over classical synthesis for large systems. The
prototype uses a bounded synthesis approach. However, the incremental synthe-
sis algorithm applies to other synthesis approaches, e.g., explicit approaches as
implemented in the state-of-the-art tool Strix [15], as well if they are extended
with the possibility of synthesizing dominant strategies.

References
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