
Compositional Synthesis of Modular Systems∗

Bernd Finkbeiner and Noemi Passing

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
{finkbeiner,noemi.passing}@cispa.de

Abstract. Given the advances in reactive synthesis, it is a natural next
step to consider more complex multi-process systems. Distributed syn-
thesis, however, is not yet scalable. Compositional approaches can be a
game changer. Here, the challenge is to decompose a given specification
of the global system behavior into requirements on the individual pro-
cesses. In this paper, we introduce a compositional synthesis algorithm
that, for each process, constructs, in addition to the implementation, a
certificate that captures the necessary interface between the processes.
The certificates then allow for constructing separate requirements for the
individual processes. By bounding the size of the certificates, we can bias
the synthesis procedure towards solutions that are desirable in the sense
that the assumptions between the processes are small. Our experimental
results show that our approach is much faster than standard methods
for distributed synthesis as long as reasonably small certificates exist.

1 Introduction

In the last decade, there have been breakthroughs in terms of realistic applica-
tions and practical tools for reactive synthesis, demonstrating that concentrating
on what a system should do instead of how it should be done is feasible. A natural
next step is to consider complex multi-process systems. For distributed systems,
though, there are no scalable tools that are capable of automatically synthesizing
strategies from formal specifications for arbitrary system architectures.

For the scalability of verification algorithms, compositionality, i.e., breaking
down the verification of a complex system into several smaller tasks over individ-
ual components, has proven to be a key technique [21]. For synthesis, however,
developing compositional approaches is much more challenging: In practice, an
individual process can rarely guarantee the satisfaction of the specification alone.
Typically, there exist input sequences that prevent a process from satisfying the
specification. The other processes in the system then ensure that these sequences
are not produced. Thus, a process needs information about the strategies of the
other processes to be able to satisfy the specification. Hence, distributed synthe-
sis cannot easily be broken down into tasks over the individual processes.

∗This work was partially supported by the German Research Foundation (DFG)
as part of the Collaborative Research Center “Foundations of Perspicuous Software
Systems” (TRR 248, 389792660), and by the European Research Council (ERC) Grant
OSARES (No. 683300).

2 B. Finkbeiner and N. Passing

In this paper, we introduce a compositional synthesis algorithm address-
ing this problem by synthesizing additional guarantees on the behavior of every
process. These guarantees, the so-called certificates, then provide essential infor-
mation for the individual synthesis tasks: A strategy is only required to satisfy
the specification if the other processes do not deviate from their guaranteed be-
havior. This allows for considering a process independent of the other processes’
strategies. Our algorithm is an extension of bounded synthesis [14] that incor-
porates the search for certificates into the synthesis task for the strategies.

The benefits of synthesizing additional certificates are threefold. First, it
guides the synthesis procedure: Bounded synthesis searches for strategies up to a
given size. Beyond that, our algorithm introduces a bound on the size of the cer-
tificates. Hence, it bounds the size of the interface between the processes and thus
the size of the assumptions made by them. By starting with small bounds and
by only increasing them if the specification is unrealizable for the given bounds,
the algorithm restricts synthesis to search for solutions with small interfaces.

Second, the certificates increase the understandability of the synthesized so-
lution: It is challenging to recognize the interconnections in a distributed system.
The certificates capture which information a process needs about the behavior of
the other processes to be able to satisfy the specification, immediately encapsu-
lating the system’s interconnections. Furthermore, the certificates abstract from
behavior that is irrelevant for the satisfaction of the specification. This allows for
analyzing the strategies locally without considering the whole system’s behavior.

Third, synthesizing certificates enables modularity of the system: The strate-
gies only depend on the certificates of the other processes, not on their particular
strategies. As long as the processes do not deviate from their certificates, the
parallel composition of the strategies satisfies the specification. Hence, the cer-
tificates form a contract between the processes. After defining the contract, the
strategies can be exchanged safely with other ones that respect the contract.
Thus, strategies can be adapted flexibly without synthesizing a solution for the
whole system again if requirements that do not affect the contract change.

We introduce two representations of certificates, as LTL formulas and as la-
beled transition systems. We show soundness and completeness of our certifying
synthesis algorithm for both of them. Furthermore, we present a technique for
determining relevant processes for each process. This allows us to reduce the
number of certificates that a process has to consider to satisfy the specification
while maintaining soundness and completeness. Focusing on the representation
of certificates as transition systems, we present an algorithm for synthesizing
certificates that is based on a reduction to a SAT constraint system.

We implemented the algorithm and compared it to an extension [2] of the syn-
thesis tool BoSy [9] to distributed systems and to a compositional synthesis al-
gorithm based on dominant strategies [7]. The results clearly demonstrate the
advantage of synthesizing certificates: If solutions with a small interface between
the processes exist, our algorithm outperforms the other synthesis tools signifi-
cantly. Otherwise, the overhead of synthesizing additional guarantees is small.

Further details and all proofs are available in the full version of this paper [13].

Compositional Synthesis of Modular Systems 3

Related Work: There are several approaches to compositional synthesis for
monolithic systems [17,10,16,12,11]. As we are considering distributed systems,
we focus on distributed synthesis algorithms. Assume-guarantee synthesis [5] is
closest to our approach. There, each process provides a guarantee on its own be-
havior and makes an assumption on the behavior of the other processes. If there
is a strategy for each process that satisfies the specification under the hypothesis
that the other processes respect the assumption, and if its guarantee implies the
assumptions of the other processes, a solution for the whole system is found. In
contrast to our approach, most assume-guarantee synthesis algorithms [5,4,3,1]
either rely on the user to provide the assumptions or require that a strategy
profile on which the strategies can synchronize is constructed prior to synthesis.

A recent extension of assume-guarantee synthesis [19] algorithmically synthe-
sizes assume-guarantee contracts for each process. In contrast to our approach,
the guarantees do not necessarily imply the assumptions of the other processes.
Thus, the algorithm needs to iteratively refine assumptions and guarantees until
a valid contract is found. This iteration is circumvented in our algorithm since
only assumptions that are guaranteed by the other processes are used.

Using a weaker winning condition for synthesis, remorse-free dominance [6],
avoids the explicit construction of assumptions and guarantees [7]. The assump-
tions are implicit, but they do not always suffice. Thus, although a dependency
analysis of the specification allows for solutions for further, more interconnected
systems and specifications [12], compositional solutions do not always exist.

2 Running Example

In many modern factories, autonomous robots are a crucial component in the
production line. The correctness of their implementation is essential and there-
fore they are a natural target for synthesis. Consider a factory with two robots
that carry production parts from one machine to another. In the factory, there is
a crossing that is used by both robots. The robots are required to prevent a crash:
φsafe := ¬((at crossing1 ∧ go1)∧ (at crossing2 ∧ go2)), where at crossing i
is an input variable denoting that robot ri arrived at the crossing, and goi is
an output variable of robot ri denoting that ri moves ahead. Moreover, both
robots need to cross the intersection at some point in time after arriving there:
φcrossi := (at crossing i → goi). In addition to these requirements, both
robots have further objectives φaddi

that are specific to their area of application.
For instance, they may capture which machines have to be approached.

None of the robots can satisfy φsafe ∧ φcrossi alone: The crossing needs to
be entered eventually by ri but no matter when it is entered, rj might enter it
at the same time. Thus, strategies cannot be synthesized individually without
information on the other robot’s behavior. Due to φaddi

, the parallel composition
of the strategies can be large and complex. Hence, understanding why the overall
specification is met and recognizing the individual strategies is challenging.

If both robots commit to their behavior at crossings, a robot ri can satisfy
φsafe∧φcrossi individually since it is allowed to assume that the other robot does

4 B. Finkbeiner and N. Passing

not deviate from its guaranteed behavior, the so-called certificate. For instance,
if r2 commits to always giving priority to r1, entering the crossing regardless
of r2 satisfies φsafe ∧φcross1 for r1. If r1 guarantees to not block crossings, r2 can
satisfy φsafe ∧ φcross2 as well. Hence, if both robots can satisfy the whole part
of the specification that affects them, i.e., φi = φsafe ∧ φcrossi ∧ φaddi

, under
the assumption that the other robot sticks to its certificate, then the parallel
composition of their strategies satisfies the whole specification. Furthermore, we
then know that the robots do not interfere in any other situation. Thus, the
certificates provide insight in the required communication of the robots.

Moreover, when analyzing the strategy si of ri, only taking rj ’s certificate
into account abstracts away rj ’s behavior aside from crossings. This allows us
to focus on the relevant aspects of rj ’s behavior for ri, making it significantly
easier to understand why ri’s strategy satisfies φi. Lastly, the certificates form
a contract of safe behavior at crossings: If ri’s additional objectives change, it
suffices to synthesize a new strategy for ri. Provided ri does not change its
behavior at crossings, rj ’s strategy can be left unchanged.

3 Preliminaries

Notation. In the following, we denote the prefix of length t of an infinite word
σ = σ1σ2 · · · ∈ (2V)ω by σ..t := σ1 . . . σt. Moreover, for a set X and an infinite
word σ = σ1σ2 · · · ∈ (2V)ω, we define σ ∩X = (σ1 ∩X)(σ2 ∩X) · · · ∈ (2X)ω.

LTL. Linear-time temporal logic (LTL) [20] is a specification language for linear-
time properties. Let Σ be a finite set of atomic propositions and let a ∈ Σ. The
syntax of LTL is given by φ,ψ ::= a | ¬φ | φ ∨ ψ | φ ∧ ψ | φ | φU ψ. We
define φ = true U φ, and φ = ¬ ¬φ and use the standard semantics.
The language L(φ) of a formula φ is the set of infinite words that satisfy φ.
The atomic propositions in φ are denoted by prop(φ). We represent a formula
φ = ξ1 ∧ · · · ∧ ξk also by the set of its conjuncts, i.e., φ = {ξ1, . . . , ξk}.

Automata. A universal co-Büchi automaton A = (Q, q0, δ, F) over a finite al-
phabet Σ consists of a finite set of states Q, an initial state q0 ∈ Q, a transition
relation δ : Q × 2Σ × Q, and a set F ⊆ Q of rejecting states. For an infinite
word σ = σ0σ1 · · · ∈ (2Σ)ω, a run of σ on A is an infinite sequence q0q1 · · · ∈ Qω

of states with (qi, σi, qi+1) ∈ δ for all i ≥ 0. A run is accepting if it contains
only finitely many visits to rejecting states. A accepts a word σ if all runs of σ
on A are accepting. The language L(A) of A is the set of all accepted words.
An LTL specification φ can be translated into an equivalent universal co-Büchi
automaton Aφ, i.e., with L(φ) = L(Aφ), with a single exponential blow up [18].

Architectures. An architecture is a tuple A = (P, V, I, O), where P is a set
of processes consisting of the environment process env and a set of n system
processes P−= P \ {env}, V is a set of variables, I = ⟨I1, . . . , In⟩ assigns a set
Ij ⊆ V of input variables to each system process pj , and O = ⟨Oenv , O1, . . . On⟩

Compositional Synthesis of Modular Systems 5

assigns a set Oj ⊆ V of output variables to each process pj . For all pj , pk ∈ P−

with j ̸= k, we have Ij∩Oj = ∅ and Oj∩Ok = ∅. The variables Vj of pj ∈ P−are
its inputs and outputs, i.e., Vj = Ij∪Oj . The variables V of the whole system are
defined by V =

⋃
pj∈P−Vj . We define inp =

⋃
pj∈P−Ij and out =

⋃
pj∈P−Oj .

An architecture is called distributed if |P−| ≥ 2 and monolithic otherwise. In the
remainder of this paper, we assume that a distributed architecture is given.

Transition Systems. Given sets I and O of input and output variables, a Moore
transition system (TS) T = (T, t0, τ, o) consists of a finite set of states T , an
initial state t0, a transition function τ : T × 2I → T , and a labeling function
o : T → 2O. For an input sequence γ = γ0γ1 . . . ∈ (2I)ω, T produces a path
π = (t0, γ0 ∪ o(t0))(t1, γ1 ∪ o(t1)) . . . ∈ (T × 2I∪O)ω, where (tj , γj , tj+1) ∈ τ . The
projection of a path to the variables is called trace. The parallel composition of
two TS T1 = (T1, t

1
0, τ1, o1), T2 = (T2, t

2
0, τ2, o2), is a TS T1 || T2 = (T, t0, τ, o) with

T = T1×T2, t0 = (t10, t
2
0), τ((t, t

′), i)=(τ1(t, (i1∪o2(t′))∩I1), τ2(t′, (i2∪o1(t))∩I2)),
and o((t, t′)) = o1(t) ∪ o2(t′). A TS T1 = (T1, t

1
0, τ1, o1) over I and O1 simulates

T2 = (T2, t
2
0, τ2, o2) over I and O2 with O1 ⊆ O2, denoted T2 ⪯ T1, if there is a

simulation relation R : T2×T1 with (t20, t
1
0) ∈ R, ∀(t2, t1) ∈ R. o(t2)∩O1 = o(t1),

and ∀t′2 ∈ T2.∀i ∈ 2I . (τ2(t2, i) = t′2) → (∃t′1 ∈ T1. τ1(t1, i) = t′1 ∧ (t′2, t
′
1) ∈ R).

Strategies. We model a strategy si of pi ∈ P− as a Moore transition system Ti
over Ii and Oi. The trace produced by Ti on γ ∈ (2Ii)ω is called the computation
of si on γ, denoted comp(si, γ). For an LTL formula φ over V , si satisfies φ,
denoted si |= φ, if comp(s, γ) ∪ γ′ |= φ holds for all γ ∈ (2Ii)ω, γ′ ∈ (2V \Vi)ω.

Synthesis. For a specification φ, synthesis derives strategies s1, . . . , sn for the sys-
tem processes such that s1 || . . . || sn |= φ holds. If such strategies exist, φ is real-
izable in the architecture. Bounded synthesis [14] additionally bounds the size of
the strategies. The search for strategies is encoded into a constraint system that
is satisfiable if, and only if, φ is realizable for the bound. There are SMT, SAT,
QBF, and DQBF encodings for monolithic [8] and distributed [2] architectures.

4 Compositional Synthesis with Certificates

In this section, we describe a sound and complete compositional synthesis algo-
rithm for distributed systems. The main idea is to synthesize strategies for the
system processes individually. Hence, in contrast to classical distributed synthe-
sis, where strategies s1, . . . , sn are synthesized such that s1 || . . . || sn |= φ holds,
we require that si |= φi holds for all system processes pi ∈ P−. Here, φi is a
subformula of φ that, intuitively, captures the part of φ that affects pi. As long
as φi contains all parts of φ that restrict the behavior of si, the satisfaction of φ
by the parallel composition of all strategies is guaranteed. Computing specifica-
tion decompositions is not the main focus of this paper; in fact, our algorithm
can be used with any decomposition that fulfills the above requirement. There
is work on obtaining small subspecifications, e.g., [11], we, however, use an easy
decomposition algorithm in the remainder of this paper for simplicity:

6 B. Finkbeiner and N. Passing

Definition 1 (Specification Decomposition). Let φ = ξ1 ∧ · · · ∧ ξk be an
LTL formula. The decomposition of φ is a vector ⟨φ1, . . . , φn⟩ of LTL formulas
with φi = {ξj | ξj ∈ φ ∧ (prop(ξj) ∩Oi ̸= ∅ ∨ prop(ξj) ∩ out = ∅)}.

Intuitively, the subspecification φi contains all conjuncts of φ that contain
outputs of pi as well as all input-only conjuncts. In the remainder of this paper,
we assume that both prop(φ) ⊆ V and L(φ) ∈ (2V)ω hold for all specifications φ.
Then, every atomic proposition occurring in a formula φ is an input or output
of at least one system process and thus

∧
pi∈P−φi = φ holds.

Although we decompose the specification, a process pi usually cannot guar-
antee the satisfaction of φi alone; rather, it depends on the cooperation of the
other processes. For instance, robot r1 from Section 2 cannot guarantee that no
crash will occur when entering the crossing since r2 can enter it at the same point
in time. Thus, we additionally synthesize a guarantee on the behavior of each
process, the so-called certificate. The certificates then provide essential informa-
tion to the processes: If pi commits to a certificate, the other processes can rely
on pi’s strategy to not deviate from this behavior. In particular, the strategies
only need to satisfy the specification as long as the other processes stick to their
certificates. Thus, a process is not required to react to all behaviors of the other
processes but only to those that truly occur when the processes interact.

In this section, we represent the certificate of pi ∈ P− by an LTL formula ψi.
For instance, robot r2 may guarantee to always give priority to r1 at crossings,
yielding the certificate ψ2 = ((at crossing1∧at crossing2) → ¬go2). Since r1
can assume that r2 does not deviate from its certificate ψ2, a strategy for r1 that
enters crossings regardless of r2 satisfies φsafe ∧ φcross1 .

To ensure that pi does not deviate from its own certificate, we require its
strategy si to satisfy the LTL formula ψi describing it. To model that si only has
to satisfy its specification if the other processes stick to their certificates, it has
to satisfy Ψi → φi, where Ψi = {ψj | pj ∈ P−\{pi}}, i.e., Ψi is the conjunction of
the certificates of the other processes. Using this, we define certifying synthesis:

Definition 2 (Certifying Synthesis). Let φ be an LTL formula with decom-
position ⟨φ1, . . . , φn⟩. Certifying synthesis derives strategies s1, . . . , sn and LTL
certificates ψ1, . . . , ψn for the system processes such that si |= ψi ∧ (Ψi → φi)
holds for all pi ∈ P−, where Ψi = {ψj | pj ∈ P−\ {pi}}.

Classical distributed synthesis algorithms reason globally about the satisfac-
tion of the full specification by the parallel composition of the synthesized strate-
gies. Certifying synthesis, in contrast, reasons locally about the satisfaction of
the subspecifications for the individual processes, i.e., without considering the
parallel composition of the strategies. This greatly improves the understandabil-
ity of the correctness of synthesized solutions since we are able to consider the
strategies separately. Furthermore, local reasoning is still sound and complete:

Theorem 1 (Soundness and Completeness). Let φ be an LTL formula
and let S = ⟨s1, . . . , sn⟩ be a vector of strategies for the system processes. There
exists a vector Ψ = ⟨ψ1, . . . , ψn⟩ of LTL certificates such that (S, Ψ) is a solution
of certifying synthesis for φ if, and only if s1 || . . . || sn |= φ holds.

Compositional Synthesis of Modular Systems 7

Soundness of certifying synthesis follows from the fact that every system pro-
cess is required to satisfy its own certificate. Completeness is obtained since every
strategy can serve as its own certificate: Intuitively, if s1 || . . . || sn |= φ, then LTL
certificates that capture the exact behavior of the corresponding strategy satisfy
the requirements of certifying synthesis. The proof is given in [13].

Thus, certifying synthesis enables local reasoning and therefore better under-
standability of the solution as well as modularity of the system, while ensuring to
find correct solutions for all specifications that are realizable in the architecture.
Furthermore, the parallel composition of the strategies obtained with certifying
synthesis for a specification φ is a solution for the whole system.

5 Certifying Synthesis with Deterministic Certificates

There are several quality measures for certificates, for instance their size. We,
however, focus on certificates that are easy to synthesize: To determine whether a
strategy sticks to its own certificate, a check for language containment has to be
performed. Yet, efficient algorithms only exist for deterministic properties [23].
While certificates represented by LTL formulas are easily human-readable, they
can be nondeterministic. Thus, the ω-automaton representing the LTL certificate
needs to be determinized, yielding an exponential blowup in its size [22].

In this section, we introduce a representation of certificates that ensures
determinism to avoid the blowup. Note that while enforcing determinism might
yield larger certificates, it does not rule out any strategy that can be found
with nondeterministic certificates: Since strategies are per se deterministic, there
exists at least one deterministic certificate for them: The strategy itself.

We model the guaranteed behavior gi of a system process pi as a labeled
transition system T G

i , called guarantee transition system (GTS), over inputs Ii
and guarantee output variables OG

i ⊆ Oi. Only considering a subset of Oi as
output variables allows the certificate to abstract from outputs of pi whose valu-
ation is irrelevant for all other system processes. In the following, we assume the
guarantee output variables of pi to be both an output of pi and an input of some
other system process, i.e., OG

i := Oi ∩ inp. Intuitively, a variable v ∈ Oi \ OG
i

cannot be observed by any other process. Thus, a guarantee on its behavior
does not influence any other system process and hence it can be omitted. The
variables V G

i of the GTS of pi ∈ P− are then given by V G
i := Ii ∪OG

i .
In certifying synthesis, it is essential that a strategy only needs to satisfy the

specification if the other processes do not deviate from their certificates. In the
previous section, we used an implication in the local objective to model this.
When representing certificates as transition systems, we use valid histories to
determine whether a sequence matches the certificates of the other processes.

Definition 3 (Valid History). Let Gi be a set of guarantee transition systems.
A valid history of length t with respect to Gi is a finite sequence σ ∈ (2V)∗ of
length t, where for all gj ∈ Gi, σk ∩ OG

j = comp(gj , σ̂ ∩ Ij)k ∩ OG
j holds for all

points in time k with 1 ≤ k ≤ t and all infinite extensions σ̂ of σ. The set of all
valid histories of length t with respect to Gi is denoted by Ht

Gi
.

8 B. Finkbeiner and N. Passing

∅ {go2}

¬at crossing1

at crossing1

at crossing1

¬at crossing1

(a) Guarantee transition system for r2

{go1} ∅

¬go2 ∧ ¬at crossing1

¬go2 ∧
at crossing1

go2 ∧
at crossing1

go2 ∧ ¬at crossing1

go2 ∧ at crossing1

¬go2 ∧ at crossing1

go2 ∧
¬at crossing1

¬go2 ∧
¬at crossing1

(b) Strategy transition system for r1

Fig. 1: Strategy and GTS for robots r1 and r2 from Section 2, respectively. The
labels of the states denote the output of the TS in the respective state.

Intuitively, a valid history respecting a set Gi of guarantee transition systems
is a finite sequence that is a prefix of a computation of all GTS in Gi. Thus, a valid
history can be produced by the parallel composition of the GTS. Note that since
strategies cannot look into the future, a finite word satisfies the requirements of
a valid history either for all of its infinite extensions or for none of them.

As an example for valid histories, consider the manufacturing robots again.
Assume that r2 guarantees to always give priority to r1 at crossings and to move
forward if r1 is not at the crossing. A GTS g2 for r2 is depicted in Figure 1a.
Since r2 never outputs go2 if r1 is at the crossing (left state), the finite sequence
{at crossing1}{go2} is no valid history respecting g2. Since r2 outputs go2 oth-
erwise (right state), e.g., {at crossing2}{go2} is a valid history respecting g2.

We use valid histories to determine whether the other processes stick to their
certificates. Thus, intuitively, a strategy is required to satisfy the specification if
its computation is a valid history respecting the GTS of the other processes:

Definition 4 (Local Satisfaction). Let Gi be a set of guarantee transition
systems. A strategy si for pi ∈ P− locally satisfies an LTL formula φi with
respect to Gi, denoted si |=Gi

φi, if comp(si, γ)∪γ′ |= φi holds for all γ ∈ (2Ii)ω,
γ′ ∈ (2V \Vi)ω with comp(si, γ)..t ∪ γ′..t ∈ Ht

Gi
for all points in time t.

If r2, for instance, sticks to its guaranteed behavior g2 depicted in Figure 1a,
then r1 can enter crossings regardless of r2. Such a strategy s1 for r1 is shown
in Figure 1b. Since neither σ := {at crossing1}{go2} nor any finite sequence
containing σ is a valid history respecting g2, no transition for input go2 has to
be considered for local satisfaction when r1 is at the crossing (left state of s1).
Therefore, these transitions are depicted in gray. Analogously, no transition for
¬go2 has to be considered when r1 is not at the crossing (right state). The other
transitions match valid histories and thus they are taken into account. Since no
crash occurs when considering the black transitions only, s1 |={g2} φsafe holds.

Using local satisfaction, we now define certifying synthesis in the setting
where certificates are represented by labeled transition systems: Given an ar-
chitecture A and a specification φ, certifying synthesis for φ derives strategies
s1, . . . , sn and guarantee transition systems g1, . . . , gn for the system processes.

Compositional Synthesis of Modular Systems 9

For all pi ∈ P−, we require si to locally satisfy its specification with respect to
the guarantee transition systems of the other processes, i.e., si |=Gi

φi, where
Gi = {gj | pj ∈ P−\ {pi}}. To ensure that a strategy does not deviate from its
own certificate, gi is required to simulate si, i.e., si ⪯ gi needs to hold.

In the following, we show that solutions of certifying synthesis with LTL
certificates can be translated into solutions with GTS and vice versa. Given
a solution of certifying synthesis with GTS, the main idea is to construct LTL
certificates that capture the exact behavior of the GTS. For the formal certificate
translation and its proof of correctness, we refer to [13].

Lemma 1. Let φ be an LTL formula. Let S and G be vectors of strategies and
guarantee transition systems, respectively, for the system processes. If (S,G) is
a solution of certifying synthesis for φ, then there exists a vector Ψ of LTL cer-
tificates such that (S, Ψ) is a solution for certifying synthesis for φ as well.

Given a solution of certifying synthesis with LTL certificates, we can con-
struct GTS that match the strategies of the given solution. Then, these strate-
gies as well as the GTS form a solution of certifying synthesis with GTS. The
full construction and its proof of correctness is given in [13].

Lemma 2. Let φ be an LTL formula. Let S and Ψ be vectors of strategies and
LTL certificates, respectively, for the system processes. If (S, Ψ) is a solution of
certifying synthesis for φ, then there exists a vector G of guarantee transition
system such that (S,G) is a solution for certifying synthesis for φ as well.

Hence, we can translate solutions of certifying synthesis with LTL formulas
and with GTS into each other. Thus, we can reuse the results from Section 4,
in particular Theorem 1, and then soundness and completeness of certifying
synthesis with guarantee transition systems follows with Lemmas 1 and 2:

Theorem 2 (Soundness and Completeness with GTS). Let φ be an LTL
formula. Let S = ⟨s1, . . . , sn⟩ be a vector of strategies for the system processes.
Then, there exists a vector G of guarantee transition systems such that (S,G) is
a solution of certifying synthesis for φ if, and only if, s1 || . . . || sn |= φ holds.

Thus, similar to LTL certificates, certifying synthesis with GTS allows for
local reasoning and thus enables modularity of the system while it still ensures
that correct solutions for all realizable specifications are found. In particular, en-
forcing deterministic certificates does not rule out strategies that can be obtained
with either nondeterministic certificates or with classical distributed synthesis.

As an example of the whole synthesis procedure of a distributed system with
certifying synthesis and GTS, consider the manufacturing robots from Section 2.
For simplicity, suppose that the robots do not have individual additional require-
ments φaddi

. Hence, the full specification is given by φsafe ∧ φcross1 ∧ φcross2 .
Since goi is an output variable of robot ri, we obtain the subspecifications
φi = φsafe ∧ φcrossi . A solution of certifying synthesis is then given by the
strategies and GTS depicted in Figures 1 and 2. Note that s2 only locally satis-
fies φcross2 with respect to g1 when assuming that r1 is not immediately again

10 B. Finkbeiner and N. Passing

{go1} ∅

¬at crossing1

at crossing1

at crossing1

¬at crossing1

(a) Guarantee transition system for r1

∅ {go2}

go1 ∧ ¬at crossing1

go1 ∧
at crossing1

¬go1 ∧
at crossing1

¬go1 ∧ ¬at crossing1

¬go1 ∧ at crossing1

¬go1 ∧
¬at crossing1

go1 ∧
¬at crossing1

go1 ∧ at crossing1

(b) Strategy transition system for r2

Fig. 2: GTS and strategy for robots r1 and r2 from Section 2, respectively. The
labels of the states denote the output of the TS in the respective state.

at the intersection after crossing it. However, there are solutions with slightly
more complicated certificates that do not need this assumption. The parallel
composition of s1 and s2 yields a strategy that allows r1 to move forwards if it
is at the crossing and that allows r2 to move forwards otherwise.

6 Computing Relevant Processes

Both representations of certificates introduced in the last two sections consider
the certificates of all other system processes in the local objective of every system
process pi. This is not always necessary since in some cases φi is satisfiable by a
strategy for pi even if another process deviates from its guaranteed behavior.

In this section, we present an optimization of certifying synthesis that reduces
the number of considered certificates. We compute a set of relevant processes
Ri ⊆ P− \ {pi} for every pi ∈ P−. Certifying synthesis then only considers
the certificates of the relevant processes: For LTL certificates, it requires that
si |= ψi ∧ (ΨR

i → φi) holds, where ΨR
i = {ψj ∈ Ψ | pj ∈ Ri}. For GTS,

both si ⪯ gi and si |=GR
i
φi need to hold, where GR

i = {gj ∈ G | pj ∈ Ri}. Such
solutions of certifying synthesis are denoted by (S, Ψ)R and (S,G)R, respectively.

The construction of the relevant processes Ri has to ensure that certifying
synthesis is still sound and complete. In the following, we introduce a definition
of relevant processes that does so. It excludes processes from pi’s set of relevant
processes Ri whose output variables do not occur in the subspecification φi:

Definition 5 (Relevant Processes). Let φ be an LTL formula with decom-
position ⟨φ1, . . . , φn⟩. The relevant processes Ri ⊆ P−\ {pi} of system process
pi ∈ P− are given by Ri = {pj ∈ P−\ {pi} | Oj ∩ prop(φi) ̸= ∅}.

Intuitively, since Oj ∩ prop(φi) = ∅ holds for a process pj ∈ P− \ Ri with
i ̸= j, the subspecification φi does not restrict the satisfying valuations of the
output variables of pj . Thus, in particular, if a sequence satisfies φi, then it does
so for any valuations of the variables in Oj . Hence, the guaranteed behavior of pj
does not influence the satisfiability of φi and thus pi does not need to consider
it. The proof of the following theorem stating this property is given in [13].

Compositional Synthesis of Modular Systems 11

Theorem 3 (Correctness of Relevant Processes). Let φ be an LTL for-
mula. Let S = ⟨s1, . . . , sn⟩ be a vector of strategies for the system processes.

1. Let Ψ be a vector of LTL certificates. If (S, Ψ)R is a solution of certifying
synthesis for φ, then s1 || . . . || sn |= φ holds. If s1 || . . . || sn |= φ holds, then
there exists a vector Ψ ′ of LTL certificates and a vector S ′ of strategies such
that (S ′, Ψ ′)R is a solution of certifying synthesis for φ.

2. Let G be a vector of guarantee transition systems. If (S,G)R is a solution of
certifying synthesis for φ, then s1 || . . . || sn |= φ. If s1 || . . . || sn |= φ holds,
then there exists a vector G′ of guarantee transition systems and a vector S ′

of strategies such that (S ′,G′)R is a solution of certifying synthesis for φ.

Note that for certifying synthesis with relevant processes, we can only guar-
antee that for every vector of strategies ⟨s1, . . . , sn⟩ whose parallel composition
satisfies the specification, there exist some strategies that are a solution of certi-
fying synthesis. These strategies are not necessarily s1, . . . , sn: A strategy si may
make use of the certificate of a process pj outside of Ri. That is, it may violate
its specification φi on an input sequence that does not stick to gj although φi is
satisfiable for this input. Strategy si is not required to satisfy φi on this input,
a strategy that may only consider the certificates of the relevant processes, how-
ever, is. As long as the definition of relevant processes allows for finding some
solution of certifying synthesis, like the one introduced in this section does as a
result of Theorem 3, certifying synthesis is nevertheless sound and complete.

7 Synthesizing Certificates

In this section, we describe an algorithm for practically synthesizing strategies
and deterministic certificates represented by GTS. Our approach is based on
bounded synthesis [14] and bounds the size of the strategies and of the certificates.
This allows for producing size-optimal solutions in either terms of strategies or
certificates. Like for monolithic bounded synthesis [14,8], we encode the search
for a solution of certifying synthesis of a certain size into a SAT constraint
system. We reuse parts of the constraint system for monolithic systems.

An essential part of bounded synthesis is to determine whether a strategy
satisfies an LTL formula φi. To do so, we first construct the equivalent universal
co-Büchi automaton Ai with L(Ai) = L(φi). Then, we check whether Ai accepts
comp(si, γ) ∪ γ′ for all γ ∈ (2Ii)ω, γ′ ∈ (2V \Vi)ω, i.e., whether all runs of Ai in-
duced by comp(si, γ) ∪ γ′ contain only finitely many visits to rejecting states.
So far, we used local satisfaction to formalize that in compositional synthesis
with GTS a strategy only needs to satisfy its specification as long as the other
processes stick to their guarantees. That is, we changed the satisfaction condi-
tion. To reuse existing algorithms for bounded synthesis and, in particular, for
checking whether a strategy is winning, however, we incorporate this property of
certifying synthesis into the labeled transition system representing the strategy
instead. In fact, we utilize the following observation: A finite run of a universal
co-Büchi automaton can never visit a rejecting state infinitely often. Hence, by

12 B. Finkbeiner and N. Passing

ensuring that the automaton produces finite runs on all sequences that deviate
from a guarantee, checking whether a strategy satisfies a specification can still
be done by checking whether the runs of the corresponding automaton induced
by the computations of the strategy visit a rejecting state only finitely often.

Therefore, we represent strategies by incomplete transition systems in the
following. The domain of definition of their transition function is defined such
that the computation of a strategy is infinite if, and only if, the other processes
stick to their guarantees. To formalize this, we utilize valid histories:

Definition 6 (Local Strategy). A local strategy si for process pi ∈ P− with
respect to a set Gi of GTS is represented by a TS Ti = (T, t0, τ, o) with a partial
transition function τ : T×2Ii ⇀ T . The domain of definition of τ is defined such
that comp(si, γ) is infinite for γ ∈ (2Ii)ω if, and only if, there exists γ′ ∈ (2V \Vi)ω

such that comp(si, γ)..t ∪ γ′..t ∈ Ht
Gi

holds for all points in time t.

As an example, consider strategy s1 for robot r1 and guarantee transition sys-
tem g2 for robot r2, both depicted in Figure 1, again. From s1, we can construct
a local strategy s′1 for r1 with respect to g2 by eliminating the gray transitions.

We now define certifying synthesis with local strategies: Given a specifica-
tion φ, certifying synthesis derives GTS g1, . . . , gn and local strategies s1, . . . , sn
respecting these guarantees, such that for all pi ∈ P−, si ⪯ gi holds and all runs
of Ai induced by comp(si, γ)∪ γ′ contain finitely many visits to rejecting states
for all γ ∈ (2Ii)ω, γ′ ∈ (2V \Vi)ω, where Ai is a universal co-Büchi automaton
with L(Ai) = L(φi). Thus, we can reuse existing algorithms for checking satis-
faction of a formula in our certifying synthesis algorithm when synthesizing local
strategies instead of complete ones. Similar to monolithic bounded synthesis, we
construct a constraint system encoding the search for local strategies and GTS:

Theorem 4. Let A be an architecture, let φ be an LTL formula, and let B be
the size bounds. There is a SAT constraint system CA,φ,B such that (1) if CA,φ,B
is satisfiable, then φ is realizable in A, (2) if φ is realizable in A for the bounds B
and additionally prop(φi) ⊆ Vi holds for all pi ∈ P−, then CA,φ,B is satisfiable.

Intuitively, the constraint system CA,φ,B consists of n slightly adapted copies
of the SAT constraint system for monolithic systems [14,8] as well as additional
constraints that ensure that the synthesized local strategies correspond to the
synthesized guarantees and that they indeed fulfill the conditions of certifying
synthesis. The constraint system CA,φ,B is presented in [13].

Note that we build a single constraint system for the whole certifying synthe-
sis task. That is, the strategies and certificates of the individual processes are not
synthesized completely independently. This is one of the main differences of our
approach to the negotiation-based assume-guarantee synthesis algorithm [19].
While this prevents separate synthesis tasks and thus parallelizability, it elimi-
nates the need for a negotiation between the processes. Moreover, it allows for
completeness of the synthesis algorithm. Although the synthesis tasks are not
fully separated, the constraint system CA,φ,B is in most cases still significantly
smaller and easier to solve than the one of classical distributed synthesis.

Compositional Synthesis of Modular Systems 13

As indicated in Theorem 4, certifying synthesis with local strategies is not
complete in general: We can only ensure completeness if the satisfaction of each
subspecification solely depends on the variables that the corresponding process
can observe. This incompleteness is due to a slight difference in the satisfaction
of a specification with local strategies and local satisfaction with complete strate-
gies: The latter requires a strategy si to satisfy φi if all processes stick to their
guarantees. The former, in contrast, requires si to satisfy φi if all processes pro-
ducing observable outputs stick to their guarantees. Hence, if pi cannot observe
whether pj sticks to its guarantee, satisfaction with local strategies requires si
to satisfy φi even if pj deviates, while local satisfaction does not.

This slight change in definition is needed in order to incorporate the require-
ments of certifying synthesis into the transition system representing the strategy
and thus to be able to reuse existing bounded synthesis frameworks. Although
this advantage is at general completenesses expanse, we experienced that in prac-
tice many distributed systems, at least after rewriting the specification, indeed
satisfy the condition that is needed for completeness in our approximation of
certifying synthesis. In fact, all benchmarks described in Section 8 satisfy it.

8 Experimental Results

We have implemented certifying synthesis with local strategies and guarantee
transition systems. It expects an LTL formula and its decomposition as well as
the system architecture, and bounds on the sizes of the strategies and certificates
as input. Specification decomposition can easily be automated by, e.g., imple-
menting Definition 1. The implementation extends the synthesis tool BoSy [9] for
monolithic systems to certifying synthesis for distributed systems. In particular,
we extend and adapt BoSy’s SAT encoding [8] as described in [13].

We compare our implementation to two extensions of BoSy: One for dis-
tributed systems [2] and one for synthesizing individual dominant strategies, im-
plementing the compositional synthesis algorithm presented in [7]. The results
are shown in Table 1. We used the SMT encoding of distributed BoSy since the
other ones either cause memory errors on almost all benchmarks (SAT), or do
not support most of our architectures (QBF). Since the running times of the
underlying SMT solver vary immensely, we report on the average running time
of 10 runs. Synthesizing individual dominant strategies is incomplete and hence
we can only report on results for half of our benchmarks. We could not compare
our implementation to the iterative assume-guarantee synthesis tool Agnes [19],
since it currently does not support most of our architectures or specifications.

The first four benchmarks stem from the synthesis competition [15]. The latch
is parameterized in the number of bits, the generalized buffer in the number of
senders, the load balancer in the number of servers, and the shift benchmark
in the number of inputs. The fourth benchmark is a ripple-carry adder that
is parameterized in the number of bits and the last benchmark describes the
manufacturing robots from Section 2 and is parameterized in the size of the
objectives φaddi of the robots. The system architectures are given in [13].

14 B. Finkbeiner and N. Passing

Table 1: Experimental results on scalable benchmarks. Reported is the parameter
and the running time in seconds. We used a machine with a 3.1 GHz Dual-Core
Intel Core i5 processor and 16 GB of RAM, and a timeout of 60min. For dist.
BoSy, we use the SMT encoding and give the average runtime of 10 runs.

Benchmark Param. Cert. Synth. Dist. BoSy Dom. Strat.

n-ary Latch 2 0.89 41.26 4.75
3 0.91 TO 6.40
.
6 12.26 TO 13.89
7 105.69 TO 15.06

Generalized Buffer 1 1.20 6.59 5.23
2 2.72 3012.51 10.53
3 122.09 TO 961.60

Load Balancer 1 0.98 1.89 2.18
2 1.64 2.39 –

Shift 2 1.10 1.99 4.76
3 1.13 4.16 7.04
4 1.14 TO 11.13
.
7 9.01 TO 16.08
8 71.89 TO 19.38

Ripple-Carry Adder 1 0.878 1.83 –
2 2.09 36.84 –
3 106.45 TO –

Manufacturing Robots 2 1.10 2.45 –
4 1.18 2.43 –
6 1.67 3.20 –
8 2.88 5.67 –
10 48.83 221.16 –
12 1.44 TO –
.
42 373.90 TO –

For the latch, the generalized buffer, the ripple-carry adder, and the shift,
certifying synthesis clearly outperforms distributed BoSy. For many parameters,
BoSy does not terminate within 60min, while certifying synthesis solves the tasks
in less than 13s. For these benchmarks, a process does not need to know the
full behavior of the other processes. Hence, the certificates are notably smaller
than the strategies. A process of the ripple-carry adder, for instance, only needs
information about the carry bit of the previous process, the sum bit is irrelevant.

For the load balancer, in contrast, the certificates need to contain the full
behavior of the processes. Hence, the benefit of the compositional approach lies
solely in the specification decomposition. This advantage suffices to produce a
solution faster than distributed BoSy. Yet, for other benchmarks with full certifi-
cates, the overhead of synthesizing certificates dominates the benefit of specifi-

Compositional Synthesis of Modular Systems 15

cation decomposition for larger parameters, showcasing that certifying synthesis
is particularly beneficial if a small interface between the processes exists.

The manufacturing robot benchmark is designed such that the interface be-
tween the processes stays small for all parameters. Hence, it demonstrates the
advantage of abstracting from irrelevant behavior. Certifying synthesis clearly
outperforms distributed BoSy on all instances. The parameter corresponds to
the minimal solution size with distributed BoSy which does not directly corre-
spond to the solution size with certifying synthesis. Thus, the running times do
not grow in parallel. For more details on this benchmark we refer to [13].

Thus, certifying synthesis is extremely beneficial for specifications where
small certificates exist. This directly corresponds to the existence of a small
interface between the processes of the system. Hence, bounding the size of the
certificates indeed guides the synthesis procedure in finding solutions fast.

When synthesizing dominant strategies, the weaker winning condition poses
implicit assumptions on the behavior of the other processes. These assumptions
do not always suffice: There are no independent dominant strategies for the load
balancer, the ripple-carry adder, and the robots. While certifying synthesis per-
forms better for the generalized buffer, the slight overhead of synthesizing explicit
certificates becomes clear for the latch and the shift: For larger parameters, syn-
thesizing dominant strategies outperforms certifying synthesis. Yet, the implicit
assumptions do not encapsulate the required interface between the processes and
thus they do not increase the understandability of the system’s interconnections.

9 Conclusions

We have presented a synthesis algorithm that reduces the complexity of dis-
tributed synthesis by decomposing the synthesis task into smaller ones for the in-
dividual processes. To ensure completeness, the algorithm synthesizes additional
certificates that capture a certain behavior a process commits to. A process then
makes use of the certificates of the other processes by only requiring its strategy
to satisfy the specification if the other processes do not deviate from their cer-
tificates. Synthesizing additional certificates increases the understandability of
the system and the solution since the certificates capture the interconnections of
the processes and which agreements they have to establish. Moreover, the certifi-
cates form a contract between the processes: The synthesized strategies can be
substituted as long as the new strategy still complies with the contract, i.e., as
long as it does not deviate from the guaranteed behavior, enabling modularity.

We have introduced two representations of the certificates, as LTL formulas
and as labeled transition systems. Both ensure soundness and completeness of
the compositional certifying synthesis algorithm. For the latter representation,
we presented an encoding of the search for strategies and certificates into a SAT
constraint solving problem. Moreover, we have introduced a technique for reduc-
ing the number of certificates that a process needs to consider by determining
relevant processes. We have implemented the certifying synthesis algorithm and
compared it to two extensions of the synthesis tool BoSy to distributed systems.

16 B. Finkbeiner and N. Passing

The results clearly show the advantage of compositional approaches as well as
of guiding the synthesis procedure by bounding the size of the certificates: For
benchmarks where small interfaces between the processes exist, certifying synthe-
sis outperforms the other distributed synthesis tools significantly. If no solution
with small interfaces exist, the overhead of certifying synthesis is small.

References

1. Alur, R., Moarref, S., Topcu, U.: Pattern-Based Refinement of Assume-Guarantee
Specifications in Reactive Synthesis. In: TACAS (2015)

2. Baumeister, J.E.: Encodings of Bounded Synthesis for Distributed Systems. Bach-
elor’s Thesis, Saarland University (2017)

3. Bloem, R., Chatterjee, K., Jacobs, S., Könighofer, R.: Assume-Guarantee Synthesis
for Concurrent Reactive Programs with Partial Information. In: TACAS (2015)

4. Brenguier, R., Raskin, J., Sankur, O.: Assume-Admissible Synthesis. Acta Infor-
matica (2017)

5. Chatterjee, K., Henzinger, T.A.: Assume-Guarantee Synthesis. In: TACAS (2007)
6. Damm, W., Finkbeiner, B.: Does It Pay to Extend the Perimeter of a World

Model? In: FM (2011)
7. Damm, W., Finkbeiner, B.: Automatic Compositional Synthesis of Distributed

Systems. In: FM (2014)
8. Faymonville, P., Finkbeiner, B., Rabe, M.N., Tentrup, L.: Encodings of Bounded

Synthesis. In: TACAS (2017)
9. Faymonville, P., Finkbeiner, B., Tentrup, L.: BoSy: An Experimentation Frame-

work for Bounded Synthesis. In: CAV (2017)
10. Filiot, E., Jin, N., Raskin, J.: Compositional Algorithms for LTL Synthesis. In:

ATVA (2010)
11. Finkbeiner, B., Geier, G., Passing, N.: Specification Decomposition for Reactive

Synthesis. In: NFM (2021)
12. Finkbeiner, B., Passing, N.: Dependency-Based Compositional Synthesis. In:

ATVA (2020)
13. Finkbeiner, B., Passing, N.: Compositional Synthesis of Modular Systems (Full

Version). CoRR abs/2106.14783 (2021)
14. Finkbeiner, B., Schewe, S.: Bounded Synthesis. STTT (2013)
15. Jacobs, S., Bloem, R., Colange, M., Faymonville, P., Finkbeiner, B., Khalimov,

A., Klein, F., Luttenberger, M., Meyer, P.J., Michaud, T., Sakr, M., Sickert, S.,
Tentrup, L., Walker, A.: The 5th Reactive Synthesis Competition (SYNTCOMP
2018): Benchmarks, Participants & Results. CoRR abs/1904.07736 (2019)

16. Kugler, H., Segall, I.: Compositional Synthesis of Reactive Systems from Live Se-
quence Chart Specifications. In: TACAS (2009)

17. Kupferman, O., Piterman, N., Vardi, M.Y.: Safraless Compositional Synthesis. In:
CAV (2006)

18. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: FOCS (2005)
19. Majumdar, R., Mallik, K., Schmuck, A., Zufferey, D.: Assume-Guarantee Dis-

tributed Synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. (2020)
20. Pnueli, A.: The Temporal Logic of Programs. In: FOCS (1977)
21. de Roever, W.P., Langmaack, H., Pnueli, A. (eds.): Compositionality: The Signif-

icant Difference, COMPOS (1998)
22. Safra, S.: On the Complexity of omega-Automata. In: FOCS (1988)
23. Touati, H.J., Brayton, R.K., Kurshan, R.P.: Testing Language Containment for

omega-Automata Using BDD’s. Inf. Comput. (1995)

	Compositional Synthesis of Modular Systems

