
DE GRUYTER OLDENBOURG it – Information Technology 2014; 56(6): 273–279

Special Issue

Bernd Finkbeiner* and Markus N. Rabe

The linear-hyper-branching spectrum
of temporal logics
Abstract: The family of temporal logics has recently been
extended with logics for the specification of hyperproper-
ties, such as noninterference or observational determin-
ism.Hyperproperties relatemultiple computation paths of
a system by requiring that they satisfy a certain relation-
ship, such as an identical valuation of the low-security
outputs. Unlike classic temporal logics like LTL or CTL*,
which refer to one computation path at a time, temporal
logics for hyperproperties like HyperLTL and HyperCTL*
can express such relationships by explicitly quantifying
over multiple computation paths simultaneously. In this
paper, we study the extended spectrum of temporal log-
ics by relating the new logics to the linear-branching spec-
trum of process equivalences.

Keywords: Specification, temporal logics, hyperproper-
ties, information flow.

ACM CCS: Theory of computation→ Logic→ Modal and
temporal logics

DOI 10.1515/itit-2014-1067
Received June 17, 2014; revised October 10, 2014; accepted Octo-
ber 20, 2014

1 Introduction
A hyperproperty [5] is a property of the behavior of a sys-
tem that relates multiple computation paths. In com-
puter security, hyperproperties have gained prominence
as a formal framework for the specification of confiden-
tiality and integrity. Prominent examples of hyperprop-
erties are information-flow security policies like noninter-
ference [10], which requires that all pairs of computations
that result from different secrets produce the same exter-
nally visible output as long as the inputs are the same.
Noninterference thus does not forbid any particular com-

*Corresponding author: Bernd Finkbeiner, Universität des
Saarlandes, Saarbrücken, e-mail: finkbeiner@cs.uni-saarland.de
Markus N. Rabe: Universität des Saarlandes, Saarbrücken

putation, but instead characterizes combinations of com-
putations that may be present in the same system.

The study of hyperproperties as a class of temporal
properties is a fairly new research direction. The stan-
dard spectrum of the temporal specification logics ranges
from linear-time temporal logic (LTL) [13] to the computa-
tion tree logic CTL∗ [8] and its sublogic CTL [4]. LTL is the
standard logic to describe linear-time properties, or prop-
erties of individual paths, such as invariants (“" > # is
true forever”) or response properties (“event $ is always
followed by event %”). CTL∗ adds existential and univer-
sal quantification over paths and can therefore describe
branching-time properties, such as the existence of paths
(“there is a path where event $ occurs”). Relationships be-
tween multiple paths can, however, neither be expressed
in LTL, which implicitly quantifies over a single path, nor
in CTL*, which explicitly quantifies over the paths in a sys-
tem but can, again, only refer to a single path at a time.

HyperLTL and HyperCTL∗ [6] are two recent additions
to the family of temporal logics that address this seman-
tic limitation. HyperLTL is an extension of LTL where the
propositions can stipulate relationships between multi-
ple computation paths. A HyperLTL formula consists of
a quantifier prefix, in which several path variables are in-
troduced by existential or universal quantifiers, and an
LTL formula, in which these path variables are used to in-
dicate for each atomic proposition a specific path inwhich
it is to be evaluated. Analogously, HyperCTL∗ is an exten-
sion of CTL∗ with path variables, where the path quan-
tifiers may not only occur at the beginning of the for-
mula, but also in the scope of temporal and boolean opera-
tors. Simultaneous quantification overmultiple paths sub-
sumes [6] other modalities, such as the knowledge modal-
ity of epistemic temporal logic [9] and the hidemodality of
SecLTL [7].

HyperLTL and HyperCTL∗ are well-suited as specifica-
tion languages for model checking tools, i. e., tools that
check automatically whether a finite-state system satis-
fies a given property. Like for the standard temporal log-
ics, the model checking problem is decidable for Hyper-
LTL and HyperCTL∗; while the logics allow, in general, for
the specification of properties with expensive, even non-

Authenticated | rabe@react.uni-saarland.de author's copy
Download Date | 12/6/14 12:58 PM

274 | B. Finkbeiner and M. N. Rabe, The linear-hyper-branching spectrum of temporal logics DE GRUYTER OLDENBOURG

elementary, model checking problems,many properties of
interest can be verified much easier. For example, model
checking noninterference is NLOGSPACE in the size of the
system, and thus in the same complexity class as the veri-
fication of LTL properties [6].

The linear-branching spectrum of temporal logics has
been studied extensively since the 1980s [4, 12, 13]. The
spectrum classifies temporal logics by the proccess equiv-
alences [16] they induce. The induced process equivalence
of a given logic is the equivalence that distinguishes two
processes exactly if there exists a formula in the logic that
is satisfied by oneprocess but not by the other.Trace equiv-
alence is the standard process equivalence of the linear-
time view and bisimulation is the standard process equiv-
alence of the branching-time view. Two processes are trace
equivalent if their sets of traces are the same; they are
bisimilar if they additionally have the same branching
structure, i. e., if there exists a relation between their states
that ensures that for every pair of related states, every
transition from one state can be simulated by a transition
from the other state such that the successors are related
again. The induced process equivalences provide justifi-
cation for the classification of LTL and CTL/CTL* as lin-
ear andbranching-time logics, because the equivalence in-
duced by LTL is trace equivalence, and, likewise, the pro-
cess equivalence inducedbyCTLandCTL∗ is bisimulation.

The recent extension of the temporal logics to hyper-
properties compels us to revisit this classification. Is Hy-
perLTL still a linear-time logic, despite its ability to relate
multiple paths? How do the two extensions to the expres-
siveness of LTL, to branching-time properties in CTL∗ and
to hyperproperties inHyperLTL, relate to each other?What
is gained by the combination of the two types of proper-
ties in HyperCTL∗? To develop some intuition about these
questions, consider the following example system consist-

p1

p2 0

1p3

p3 1

0p2

p2 0

1p3

p3 1

0p2

p2 0

1p3 1p3

p3 1

p1

p1

0p2

1p3

0p2

11p3

p1

1p3

0p2

1p3

0p2

p2 0

p3 1

p1

Figure 1: Execution trees of the example program under two different scheduler models. The node labels indicate the process to be
executed; the labels next to nodes indicate the output. Branchings marked with thick edges represent the secret input. Other branchings
represent scheduling choices. Fading edges represent scheduling choices omitted in this diagram. The left computation tree results from
a scheduler model that allows the scheduler to pick in every step the process to execute next. The right tree results from a scheduler model
where the scheduler must commit in advance to an ordering of the processes.

ing of three processes, where a boolean input is stored by
process 1, while processes 2 and 3 write a constant output.
Let us assume that input is a secret that must not be ob-
servable in the output.

Process 1: x := input(); // boolean secret
Process 2: output(0);
Process 3: output(1);

We analyze the system under two different scheduler mod-
els. Suppose first that the scheduler chooses in each step
which process is to be executed next. This situation is de-
picted on the left in Figure 1. The resulting system is inse-
cure, because, in cases where process 1 goes first, the sub-
sequent decisions of the scheduler may depend on the se-
cret. For example, it may schedule process 2 before pro-
cess 3 if the secret is “0”, and the other way around if
the secret is “1”. This situation can be detected by a Hy-
perLTL formula that requires that all paths have the same
output. This property is violated, because there is a path
with output “0-1” and an observably different path with
output “1-0”. Suppose now that we fix the problem with
a scheduler that must commit in advance to the order in
which the processes are to be executed. This situation is
depicted on the right in Figure 1. The secret is safe now,
because the scheduling decision happens prior to the exe-
cution of process 1 and is thus independent of the input re-
ceived by process 1. The HyperLTL formula we used to de-
tect the problem with the previous scheduler model, how-
ever, still (incorrectly) classifies the execution tree as inse-
cure. This is not just a problem with the specific formula
we chose for this example. In this article, we show that the
process equivalence induced by HyperLTL is trace equiva-
lence, like for LTL. Since the two execution trees have the
same set of traces, this implies that no HyperLTL formula
can distinguish the two execution trees. The requirement

Authenticated | rabe@react.uni-saarland.de author's copy
Download Date | 12/6/14 12:58 PM

DE GRUYTER OLDENBOURG B. Finkbeiner and M.N. Rabe, The linear-hyper-branching spectrum of temporal logics | 275

linear-branching

LTL

!
HyperLTL

! CTL∗

!

HyperCTL∗!

hy
pe

r

Figure 2: Linear-hyper-branching spectrum of temporal logics.

that the outputs may depend on the scheduling decisions,
but not on the secret, is a branching-time property: it is
only the paths of the subtrees that are rooted in some state
where process 1 is about to be executed, not all paths in
the execution tree, thatmust have the sameoutputs.While
this property cannot be expressed in HyperLTL, it can be
expressed inHyperCTL∗. The process equivalence induced
by HyperCTL∗ is bisimulation, like for CTL∗.

Since the differences in expressiveness between
LTL and HyperLTL, and likewise between CTL∗ and
HyperCTL∗, are not reflected in the linear-branching
spectrum, the extended spectrum of temporal logics
consists of two dimensions, as depicted in Figure 2. The
linear-branching dimension organizes the logics accord-
ing to the induced process equivalence and therefore puts
LTL and HyperLTL, and CTL∗ and HyperCTL∗ into the
same group. The hyper dimension classifies the logics ac-
cording to their expressiveness with respect to properties
that relate multiple paths, which separates HyperLTL and
HyperCTL∗ from LTL and CTL∗.

The remainder of the paper is structured as follows.
After a review of basic definitions in Section 2, we traverse
the spectrum of temporal logics from linear time in Sec-
tion 3 to branching time in Section 4. In Section 3,weprove
that HyperLTL is strictly more expressive than LTL (LTL
cannot express observational determinism), but induces,
like LTL, trace equivalence. In Section 4 we prove the cor-
responding result that HyperCTL∗ is strictly more expres-
sive than CTL∗, but induces, like CTL∗, bisimulation. We
discuss other temporal logics in Section 5.

2 System model, paths, traces
AKripke structure is a tuple& = (', (0,),AP, *) consisting
of a set of states ', an initial state (0, a transition function) : ' → 2", a set of atomic propositions AP, and a labeling
function * : ' → 2AP. We require that each state has a suc-
cessor, that is)(() ≠ 0, to ensure that every execution of
a Kripke structure can always be continued to infinity.

A path of a Kripke structure is an infinite sequence(0(1 . . . ∈ '# such that (0 is the initial state of & and

($+1 ∈)(($) for all . ∈ ℕ. By Paths(&, () and Paths∗(&, ()
we denote the set of all paths of & starting in state (∈ '
and the set of their suffixes, respectively.

A trace of a path 0 = (0(1 . . . is a sequence of labels1011 . . .with 1$ = *(($) for all . ∈ ℕ.Tr(&, () (andTr∗(&, ())
is the set of all (suffixes of) traces of paths of a Kripke struc-
ture& starting in state (.
3 Linear-time temporal logics
We begin our discussion of the temporal logics on the
linear-time end of the spectrum.

LTL
LTL specifies properties of single traces such as “event $ is
always followed by event %”, whichwould be ($ ⇒ %)
in LTL syntax. LTL is generated by the following grammar:3 ::= $ | ¬3 | 3 ∧ 3 | 3 | 3 U 3
where $ is an atomic proposition, ¬ and ∧ have the usual
meaning, denotes next, and U is the until operator. We
also consider the usual derived Boolean operators and the
derived temporal operators eventually 3 ≡ trueU3 and
globally 3 ≡ ¬ ¬3.

LTL is interpreted over traces: 6 78 $ iff $ ∈ 6(0); and6 78 3 iff 6[1,∞] 78 3; and 6 78 31U32 iff∃. ≥ 0 : 6[.,∞] 7832 ∧ ∀0 ≤ > < . : 6[>,∞] 78 31. Boolean operators have
the usual semantics.

Observational determinism [14, 17] is a secrecy prop-
erty that is satisfied if the observable output of a system
is a deterministic function of its public input, i. e., there
is no pair of traces with the same public input but observ-
ably different output. Alur et al. [1] showed that observa-
tional determinism is not a regular tree property which im-
plies that observational determinism cannot be expressed
in LTL. This fact can also be shown by the following di-
rect argument. Suppose that there is an LTL formula3 that
expresses observational determinism. The set of traces ?
that satisfy the formula cannot be the full set of traces
(with respect to some non-empty set of atomic proposi-
tions), because in that case all Kripke structureswould sat-
isfy the property. We pick a trace not in ? and consider
a Kripke structure that only allows this trace. Since this
Kripke structure only has a single trace, it obviously satis-
fies observational determinism; but since that trace is not
in?, it violates 3, contradicting our assumption that 3 ex-
presses observational determinism.

Authenticated | rabe@react.uni-saarland.de author's copy
Download Date | 12/6/14 12:58 PM

276 | B. Finkbeiner and M. N. Rabe, The linear-hyper-branching spectrum of temporal logics DE GRUYTER OLDENBOURG

HyperLTL
HyperLTL [6] extends LTL with trace quantifiers, which
allow us to relate multiple traces. Observational
determinism, for example, can be expressed as fol-
lows: ∀@.∀@%. (A& = A&!) 8⇒ (B& = B&!), where A is
the set of public inputs andB is the set of observations.

Formally, the formulas of HyperLTL are generated by
the following grammar with initial symbol C:C ::= ∃@.C | ∃@.3 | ¬C3 ::= $& | ¬3 | 3 ∨ 3 | 3 | 3 U 3
That is, HyperLTL formulas start with a quantifier prefix
consisting of at least one quantifier and continue with
a subformula of Boolean and temporal operators. Univer-
sal quantification is definedas∀@.3 ≡ ¬∃@.¬3 and∀@.C ≡¬∃@.¬C.

The semantics of HyperLTL is given via trace assign-
ments. Given a set of names E and a Kripke structure&, a trace assignment Π is a partial function Π : E →
Tr∗(&, (0). As usual, we define the update to functions:Π[@ G→ 6](@) = 6 and Π[@ G→ 6](@%) = Π(@%) for @ ≠ @%.
The H-th element in a trace 6 is denoted 6(H) and the H-th
suffix of a trace 6 = $0$1 . . . , written 6[H,∞], is defined as
the trace $', $'+1 . . . starting from the H-th label in 6. We
lift the suffix operation on traces to assignments and de-
fineΠ[.,∞](@) := Π(@)[.,∞].

Given a Kripke structure &, the validity of HyperLTL
formulas is then defined as follows:Π 78(∃@. 3 iff ∃6 ∈ Tr(&, (0) : Π[@ G→ 6] 78(3Π 78($& iff $ ∈ Π(@)(0)Π 78(¬3 iff Π ̸78(3Π 78(31 ∨ 32 iff Π 78(31 orΠ 78 32Π 78(3 iff Π[1,∞] 78(3Π 78(31 U 32 iff ∃. ≥ 0 : Π[.,∞] 78(32 and∀0 ≤ > < . : Π[>,∞] 78(31
Validity on states of a Kripke structure &, written (78(3, is then defined as Π0 78 3, where Π0 is the empty as-
signment. A Kripke structure& = (', (0,),AP, *) satisfies
a HyperLTL formula 3, denoted with& 78 3, iff (0 78(3.
Induced process equivalence
A logic induces an equivalence relation on Kripke struc-
tures that distinguishes two Kripke structures if and only
if there is a formula in the logic that is satisfied by one of
the two Kripke structures, but not by the other. A process
equivalence on the linear-time end of the spectrum [16]
is trace equivalence. Two Kripke structures & and &% are
called trace equivalent if Tr(&, (0) = Tr(&%, (%0).

LTL is a linear-time logic, because it induces trace
equivalence. Given that LTL is a sublogic of HyperLTL, it
is clear that its induced equivalence is at least as fine as
trace equivalence. HyperLTL also cannot distinguishmore
than trace equivalence, because its semantics refers to the
system only in terms of the set of traces starting from the
initial state.

Theorem 1. HyperLTL induces trace equivalence.

Just like LTL, HyperLTL is thus a linear-time logic. This ob-
servation is helpful to understand the expressiveness of
the logic. For example, we can immediately conclude that
there is no HyperLTL formula that distinguishes the two
scheduler models from the introduction, because the cor-
responding Kripke structures shown in Figure 1 are trace
equivalent.

4 Branching-time temporal logics
Two Kripke structures may differ in their branching struc-
ture even if the set of traces is the same. Linear-time logics
cannot distinguish such Kripke structures. This is a limita-
tion, because the branching structure indicateswhen non-
deterministic choices are made. The branching-time log-
ics CTL, CTL∗, and HyperCTL∗ use path quantifiers to dis-
tinguish Kripke structures with different branching struc-
tures.

CTL/CTL∗
CTL∗ is generated by the following grammar of state for-
mulasΦ and path formulas 3:Φ ::= $ | ¬Φ |Φ ∧ Φ | A3 | E33 ::=Φ | ¬3 | 3 ∧ 3 | 3 | 3 U 3
Again, we consider the usual derived Boolean and tempo-
ral operators. CTL is the sublogic of CTL∗ where every tem-
poral operator is immediately preceded by a path quan-
tifier. CTL∗ state formulas Φ are interpreted over states
and path formulas 3 are interpreted over paths of a given
Kripke structure and thus have access to more informa-
tion than LTL formulas. For a given Kripke structure & =(', (0,),AP,*) and a state (∈ ', we define (78(A 3 iff∀J ∈ Paths(&, () : J 78 3 and symmetrically (78(E3 iff∃J ∈ Paths(&, () : J 78 3. The semantics of temporal op-
erators for paths corresponds to their interpretation over
traces in LTL.

CTL and CTL∗ can distinguish trace-equivalent Kripke
structures that differ in their branching structure. For ex-

Authenticated | rabe@react.uni-saarland.de author's copy
Download Date | 12/6/14 12:58 PM

DE GRUYTER OLDENBOURG B. Finkbeiner and M. N. Rabe, The linear-hyper-branching spectrum of temporal logics | 277

ample, the CTL formula A (E $) ∧ E % distinguishes
the following pair of Kripke structures:

s0 :

a b

s0 :

a b

CTL and CTL∗ cannot, however, express observational de-
terminism, despite their ability to quantify over paths.
In the previous section, we showed that there is no LTL
formula that expresses observational determinism; we
generalize the argument to CTL∗ as follows. Consider
a family of observationally deterministic Kripke structures&1,&2, . . . , where each&$ consists of a single branch from
the initial state that only has one label $ at step .:

Ki : Kj : K∗ :

s0 :

s1 :

...

si : a

...

...

s′0 :

s′1 :

...

...

s′j : a

...

t0 :

t1 :

...

ti : a

...

...

t′1 :

...

...

t′j : a

...

All members of this family trivially satisfy observational
determinism.We pick a pair&$ and&) with . ≠ > of Kripke
structures such that (1 and (%1 satisfy the same subformulas
of 3. (We can treat path formulas as state formulas as each
path uniquely corresponds to a certain state.) Such a pair
of Kripke structures must exist as 3 has finitely many sub-
formulas and the family of Kripke structures is infinite. We
“merge”& and&% into one Kripke structure&∗, such that
they share only the initial state as depicted above. By con-
struction, states (1, (%1, 61, and 6%1 all fulfill the same sub-
formulas. Both, 60 and (0, have the same label (i. e. none)
and all their successors satisfy the same subformulas of3.
Hence, they also satisfy the same subformulas of3. In par-
ticular &∗ satisfies 3 but not observational determinism,
which contradicts the assumption.

HyperCTL∗
Extending the path quantifiers of CTL∗ by path variables
leads to the logic HyperCTL∗, which subsumes both Hy-
perLTL and CTL∗. The formulas of HyperCTL∗ are gener-
ated by the following grammar:3 ::= $& | ¬3 | 3 ∨ 3 | 3 | 3 U 3 | ∃@. 3

We require that temporal operators only occur inside the
scope of path quantifiers.

The semantics of HyperCTL∗ is given in terms of as-
signments of variables to paths, which are defined analo-
gous to trace assignments. Given a Kripke structure& and
a special name K ∈ E, the validity of HyperCTL∗ formulas
is defined as follows:Π 78($& iff $ ∈ *(Π(@)(0))Π 78(¬3 iff Π ̸78(3Π 78(31 ∨ 32 iff Π 78(31 orΠ 78 32Π 78(3 iff Π[1,∞] 78(3Π 78(31 U 32 iff ∃. ≥ 0 : Π[.,∞] 78(32 and∀0 ≤ > < . : Π[>,∞] 78(31Π 78(∃@. 3 iff ∃J ∈ Paths(&,Π(K)(0)) :Π[@ G→ J, K G→ J] 78(3
The variable K denotes the path most recently added to Π
(i. e., closest in scope to @). For the empty assignmentΠ ={}, we define Π(K)(0) to yield the initial state. Validity on
states of a Kripke structure &, written (78(3, is defined
as {} 78 3. A Kripke structure& = (', (0,),AP, *) satisfies
a HyperCTL∗ formula 3, denoted with& 78 3, iff (0 78(3.
Induced process equivalence
Since CTL∗ induces bisimulation [2] and is a sublogic of
HyperCTL∗, the induced equivalence of HyperCTL∗ must
be at least as fine as bisimulation. A bisimulation for
a pair of Kripke structures & = (', (0,),AP,*) and &% =('%, (%0,)%,AP%, *%) is an equivalence relationN ⊆ '×'% on
their states, such that it holds for all pairs ((, (%) ∈ N that*(() = *%((%) and for all successors 6 ∈)(() of (, there ex-
ists a successor 6% ∈)%((%) of (% such that (6, 6%) ∈ N, and
vice versa. Two Kripke structures& = (', (0,),AP,*) and&% = ('%, (%0,)%,AP%, *%) are called bisimulation equivalent
(or bisimilar), iff there exists a bisimulationN ⊆ '× '% and((0, (%0) ∈ N.

Before we show that the equivalence induced by
HyperCTL∗ is not finer than bisimulation, we need to lift
bisimulation to paths andpath assignments. In the follow-
ing, let& and&% be Kripke two structures. A pair of pathsJ ∈ Paths∗(&, (0) andJ% ∈ Paths∗(&%, (%0)withJ = (0(1 . . .
andJ% = (%0(%1 . . . is called bisimilar, writtenJ ∼ J%, if there
is a bisimulation ∼ on the states of & and &% such that() ∼ (%) for all > ∈ ℕ. A pair of path assignmentsΠ : E →
Paths∗(&, (0) andΠ% :E→ Paths∗(&%, (%0) is called bisim-
ilar, writtenΠ ∼ Π%, if they bind the same set of variables,Π−1(Paths∗(&, (0)) =Π%−1(Paths∗(&%, (%0)) =E, and for all@ ∈ E it holds Π(@) ∼ Π%(@). In the special case of two
empty path assignments, the path assignments are bisim-
ilar iff the initial states are bisimilar.

Authenticated | rabe@react.uni-saarland.de author's copy
Download Date | 12/6/14 12:58 PM

278 | B. Finkbeiner and M.N. Rabe, The linear-hyper-branching spectrum of temporal logics DE GRUYTER OLDENBOURG

We show by induction on the formula structure that
a HyperCTL∗ formula has the same value in all bisimi-
lar path assignments. This implies that HyperCTL∗ can-
not distinguish two bisimilar Kripke structures, because
the empty assignments {} are bisimilar for all bisimilar
Kripke structures. Bisimilar path assignments satisfy, by
definition, the same atomic propositions.The path quanti-
fier ∃@.3 selects a new path starting in the state Π(K)(0)
andΠ%(K)(0), respectively. Because these states are bisim-
ilar, there is a pair of bisimilar paths starting in these
states [2, Lemma 7.5]. Hence, the path assignmentsΠ[@→J] andΠ%[@ → J%] are again bisimilar and, by induction
hypothesis, ∃@.3 has the same value in Π[@ → J] 78 3
and Π%[@ → J%] 78 3. For the temporal operators and
U, we note that suffixes from identical positions of bisim-
ilar paths are bisimilar again; hence, suffixes of bisimilar
path assignments are bisimilar again. Therefore, by induc-
tion hypothesis, 3, and likewise 31 U 32, has the same
value in bisimilar path assignments.

Theorem 2. HyperCTL∗ induces bisimulation.
Since bisimulation is strictly finer than trace equiva-
lence, HyperCTL∗ is thus the strictly more expressive
logic. For example, the two scheduler models discussed
in the introduction, which cannot be distinguished by Hy-
perLTL, can be distinguished by the HyperCTL∗ formula∀@. (p1 8⇒ ∀@%.∀@%%. (R&! = R&!!)), where R is the
output. The formula expresses a condition on the states
where the nondeterministic choice of interest is resolved,
i. e., where Process 1 is to be executed next: for each of
these states, it quantifies over pairs of paths starting in this
state. Since each such paths corresponds to a choice of the
secret, we require the paths to be pairwise observationally
equivalent.

5 Related temporal logics
The quantification over paths inHyperLTL andHyperCTL∗
subsumes other extensions of temporal logic with opera-
tors for knowledge and information flow. Epistemic tem-
poral logic [9, 15] is often used to specify information-flow
security policies [3]. The logic refers tomultiple agents that
differ in their observational power, given as an equiva-
lence relation on the states. The knowledge modality &$3
expresses that agent . knows 3. With perfect recall seman-
tics, this means that all paths that are, for agent ., observ-
ably equivalent up to the current step, satisfy formula 3.

HyperLTL subsumes epistemic temporal logic [6]. Since
epistemic temporal logic includes LTL as a sublogic, it thus
also induces trace equivalenceand is therefore, likeHyper-
LTL, an example of a linear-time temporal logic for hyper-
properties.

Another temporal logic for the specification of hyper-
properties is SecLTL [7]. SecLTL extends LTL with the hide
operator H+,,3, which specifies that the secret that is
introduced by the current branching of the set of propo-
sitions S is not observable in the propositions B until
the condition 3 becomes true. SecLTL is subsumed by
HyperCTL∗ [6]. It can, for example, express the branching-
time property from the introduction, that the paths of sub-
trees that are rooted in some state where process 1 is about
to be executed must have the same outputs: (p1 8⇒
H0,{.}false).
6 Conclusions
The debate about the relative benefits of linear-time vs.
branching-time frameworks goes back to the 1980s. While
it has been argued that the linear-time view suffices to
specify the correct functionality of a system [12], many re-
searchers have pointed out that the branching-time frame-
work is semantically more expressive. A key insight, at-
tributed by Robin Milner to Carl-Adam Petri, is that “infor-
mation enters a non-deterministic process in finite quan-
tities throughout time”, and that the branching-time view
allows us to observe “in which states, and in what ways”
this happens [11]. We need branching time, thus, to ob-
serve the introduction of information in a nondeterministic
system.

With hyperproperties, the debate continues in a sec-
ond dimension. The expressiveness added by hyperprop-
erties differs from the expressivness added by branching-
time properties. Hyperproperties allow us to track the flow
of information in the system. In particular, we can specify
under which circumstances information becomes visible
on specific output variables.

While branching andhyperproperties are thus already
useful individually, it is the combination in a logic like
HyperCTL∗ that allows us to track information all the way
from the point of entry, via some nondeterministic choice,
to the point of exit through some externally observable
variable.

Authenticated | rabe@react.uni-saarland.de author's copy
Download Date | 12/6/14 12:58 PM

DE GRUYTER OLDENBOURG B. Finkbeiner and M.N. Rabe, The linear-hyper-branching spectrum of temporal logics | 279

References
1. R. Alur, P. Černý, and S. Zdancewic. Preserving secrecy under

refinement. In Proc. of ICALP’06, pages 107–118, 2006.
2. C. Baier and J. P. Katoen. Principles of model checking. The MIT

Press, 2008.
3. M. Balliu, M. Dam, and G. Le Guernic. Epistemic temporal logic

for information flow security. In Proc. of PLAS’11, 2011.
4. E. M. Clarke and E. A. Emerson. Design and synthesis of syn-

chronization skeletons using branching-time temporal logic. In
Logic of Programs, pages 52–71. Springer, 1982.

5. M. R. Clarkson and F. B. Schneider. Hyperproperties. J. of Com-
puter Security, 18(6):1157–1210, 2010.

6. M. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski,
M. N. Rabe, and C. Sánchez. Temporal logics for hyperprop-
erties. In Proc. of POST, 2014.

7. R. Dimitrova, B. Finkbeiner, M. Kovács, M. N. Rabe, and
H. Seidl. Model checking inf. flow in reactive systems. In Proc.
of VMCAI’12, pages 169–185, 2012.

8. E. A. Emerson and J. Y. Halpern. “Sometimes” and “not never”
revisited: on branching versus linear time temporal logic.
JACM, 33:151–178, 1986.

9. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning
About Knowledge. MIT Press, 1995.

10. J. A. Goguen and J. Meseguer. Security policies and security
models. In IEEE Symp. on Security and Privacy, pages 11–20,
1982.

11. R. Milner. What is a process?, September 2009. http://www.cs.
rice.edu/~vardi/papers/milner09.pdf.

12. S. Nain and M. Y. Vardi. Branching vs. linear time: Semantical
perspective. In Proc. of ATVA, volume 4762 of LNCS, pages 19–
34. Springer Verlag, 2007.

13. A. Pnueli. The temporal logic of programs. In Proc. of FOCS’77,
pages 46–57, 1977.

14. A. W. Roscoe. CSP and determinism in security modelling. In
Proc. of the IEEE Symp. on Security and Privacy, pages 114–127.
IEEE Computer Society Press, 1995.

15. R. van der Meyden and N. V. Shilov. Model checking knowledge
and time in systems with perfect recall. In FSTTCS, volume 1738
of LNCS, pages 432–445. Springer, 1999.

16. R. J. van Glabbeek. The linear time – branching time spectrum.
In Proceedings of CONCUR, volume 458 of LNCS, pages 278–
297. Springer Verlag, 1990.

17. S. Zdancewic and A. C. Myers. Observational determinism for
concurrent program security. In Proc. of CSFW’03, 2003.

Bionotes
Prof. Bernd Finkbeiner, Ph.D.
Universität des Saarlandes,
66123 Saarbrücken, Germany
finkbeiner@cs.uni-saarland.de

Bernd Finkbeiner studied Computer Science at Technische Univer-
sität München (Diplom 1996), the University of Delaware (M.Sc.
1995), and Stanford University (Ph.D. 2002). Since 2002, he is
a Professor for Computer Science at Saarland University. His re-
search interests are the specification and automatic verification and
synthesis of reactive systems.

Markus N. Rabe
Universität des Saarlandes, Fachrichtung
Informatik, 66123 Saarbrücken, Germany
rabe@react.uni-saarland.de

Markus N. Rabe studied Computer Science at Saarland University
(B.Sc. 2008, M.Sc. 2009). Since 2010, he is a Ph.D. student in Com-
puter Science at Saarland University. His research interests are
the specification and algorithmic verification of security-relevant
systems and of probabilistic systems.

Authenticated | rabe@react.uni-saarland.de author's copy
Download Date | 12/6/14 12:58 PM

http://www.cs.rice.edu/~vardi/papers/milner09.pdf
http://www.cs.rice.edu/~vardi/papers/milner09.pdf

	The linear-hyper-branching spectrum of temporal logics
	1 Introduction
	2 System model, paths, traces
	3 Linear-time temporal logics
	4 Branching-time temporal logics
	5 Related temporal logics
	6 Conclusions

