
Che
king Finite Tra
es using AlternatingAutomataBernd Finkbeiner and Henny SipmaComputer S
ien
e Department, Stanford UniversityStanford, CA. 94305Abstra
tWe present three algorithms to
he
k at runtime whether a rea
tive program satis�esa temporal spe
i�
ation, expressed by a future linear-time temporal logi
 formula.The three methods are all based on alternating automata, but traverse the automa-ton in di�erent ways: depth-�rst, breadth-�rst, and ba
kwards, respe
tively. Allthree methods have been implemented and experimental results are presented. Weoutline an extension to these algorithms that is appli
able to ltl formulas
ontain-ing both past and future operators.1 Introdu
tionSoftware model
he
king is hard, and in the majority of
ases infeasible. Apra
ti
al alternative might be to monitor the running program, and
he
k onthe
y whether desired temporal properties hold. For safety properties one
an generate the automaton for the property and
he
k the tra
e against theautomaton until a tra
e state is found that is not implied by the
orrespondingautomaton state, in whi
h
ase a violation is found, or until the end of the tra
eis rea
hed, in whi
h
ase the tra
e satis�es the property. Liveness properties,of
ourse,
an never be falsi�ed on a �nite tra
e. However, one may wish toget an impression to what extent eventualities are ful�lled in a �nite tra
e.In this paper we present three algorithms to
he
k whether a �nite tra
esatis�es a temporal spe
i�
ation. All three algorithms are based on alternatingautomata, but traverse the tra
e in di�erent ways, appropriate for di�erent1 This resear
h was supported in part by the National S
ien
e Foundation grant CCR-99-00984-001, by ARO grant DAAG55-98-1-0471, by ARO/MURI grant DAAH04-96-1-0341,by ARPA/Army
ontra
t DABT63-96-C-0096, and by ARPA/AirFor
e
ontra
ts F33615-00-C-1693 and F33615-99-C-3014.Preprint submitted to Elsevier Preprint 2 July 2001

situations. Having three algorithms based on the same automaton allows usto easily vary the runtime
hara
teristi
s without
hanging the semanti
s.Che
king of �nite tra
es has re
eived a growing attention re
ently. Ex-amples in
lude the
ommer
ial system Temporal Rover [Dru00℄, a tool thatallows ltl spe
i�
ations to be embedded in C, C++, Java, Verilog and VHDLprograms. Runtime analysis algorithms have also been applied in guiding theJava model
he
ker Java PathFinder developed at NASA [Hav00℄. The workpresented in this paper was inspired by [HR01,RH01℄.The rest of the paper is organized as follows. In Se
tion 2 we presentour spe
i�
ation language of linear time temporal logi
 (ltl), alternating au-tomata as an alternative representation of sets of sequen
es, and a linear trans-lation of future ltl formulas into alternating automata. Se
tion 3 des
ribesthe three algorithms for
he
king tra
es: depth-�rst traversal, breadth-�rsttraversal, and ba
kwards traversal. In Se
tion 4 we propose a method to
olle
t statisti
s from tra
es related to the desired temporal property. Se
-tion 5 extends the tra
e-
he
king algorithm to be appli
able to formulas withboth future and past temporal operators. The implementation of the tra
e-
he
king algorithms and the results of some experimental runs are presentedin Se
tion 6.2 Preliminaries2.1 Spe
i�
ation Language: Linear Temporal Logi
The spe
i�
ation language we use in this paper is linear temporal logi
. Atemporal formula is
onstru
ted out of state formulas, whi
h
an be eitherpropositional or �rst-order formulas, to whi
h we apply the boolean
onne
-tives and the temporal operators shown below.Temporal formulas are interpreted over a model, whi
h is an in�nite se-quen
e of states � : s0; s1; : : :. Given a model �, a state formula p and temporalformulas ' and , we present an indu
tive de�nition for the notion of a formula' holding at a position j � 0 in �, denoted by (�; j) q '.For a state formula:(�; j) q p i� sj q p; that is, p holds on state sj.For the boolean
onne
tives:(�; j) q � ^ i� (�; j) q � and (�; j) q (�; j) q � _ i� (�; j) q � or (�; j) q (�; j) q :� i� (�; j) 6 q � :2

For the future temporal operators:(�; j) q 2 � i� (�; j + 1) q �(�; j) q 0 � i� (�; i) q � for all i � j(�; j) q 1 � i� (�; i) q � for some i � j(�; j) q � U i� (�; k) q for some k � j,and (�; i) q � for every i, j � i < k(�; j) q �W i� (�; j) q � U or (�; j) q 0 � :For the past temporal operators:(�; j) q � � i� j > 0 and (�; j � 1) q �(�; j) q 2� � i� j = 0 or (�; j � 1) q �(�; j) q ` � i� (�; i) q � for all 0 � i � j(�; j) q Q � i� (�; i) q � for some 0 � i � j(�; j) q � S i� (�; k) q for some k � j,and (�; i) q � for every i, k < i � j(�; j) q � B i� (�; j) q � S or (�; j) q ` � :An in�nite sequen
e of states � satis�es a temporal formula �, written � q �,if (�; 0) q �. The set of all sequen
es that satisfy a formula ' is denoted byL('), the language of '.We say that a formula is a future (past) formula if it
ontains only stateformulas, boolean
onne
tives and future (past) temporal operators. We saythat a formula is a general safety formula if it is of the form 0 ', for a pastformula '.2.2 Alternating AutomataAutomata on in�nite words [Tho90℄ are a
onvenient way to represent tem-poral formulas. For every linear temporal formula there exists an automatonon in�nite words su
h that a sequen
e of states satis�es the temporal formulaif and only if it is a

epted by the
orresponding automaton. Thus to
he
kwhether a tra
e satis�es a parti
ular temporal formula, we
an
he
k whetherit is a

epted by the
orresponding alternating automaton.Several types of automata on in�nite words exist. Alternating automata[Var96℄ are a generalization of nondeterministi
 automata and 8-automata[MP87℄. Nondeterministi
 automata have an existential
avor: a word isa

epted if it is a

epted by some path through the automaton. 8-automata,on the other hand have a universal
avor: a word is a

epted if it is a

epted3

by all paths through the automaton. Alternating automata
ombine the two
avors by allowing
hoi
es along a path to be marked as either existential oruniversal.The advantage of using alternating automata to represent the languagea

epted by a temporal formula is that the alternating automaton that a

eptsthe same language as the formula is linear in the size of the formula, while itis worst-
ase exponential for nondeterministi
 or 8-automata. Below we willshow a one-to-one mapping from the temporal formula to the automaton.We brie
y summarize our de�nition of alternating automata. A moreelaborate des
ription of our version of alternating automata
an be found in[MS00℄.De�nition 1 (Alternating Automaton) An alternating automaton A isde�ned re
ursively as follows:A ::= �A empty automatonj h�; Æ; fi single nodej A ^ A
onjun
tion of two automataj A _ A disjun
tion of two automatawhere � is a state formula, Æ is an alternating automaton expressing the next-state relation, and f indi
ates whether the node is a

epting (denoted bya

), reje
ting (denoted by rej), or �nal (denoted by �n). We require that theautomaton be �nite.The set of nodes of an alternating automaton A, denoted by N (A) isformally de�ned as N (�A) = ;N (h�; Æ; fi) = h�; Æ; fi [N (Æ)N (A1 ^ A2) = N (A1) [N (A2)N (A1 _ A2) = N (A1) [N (A2)A path through a regular !-automaton is an in�nite sequen
e of nodes. A\path" through an alternating !-automaton is, in general, a dire
ted a
y
li
graph (dag).De�nition 2 (Run) Given an in�nite sequen
e of states � : s0; s1; : : :, alabeled dag hV0; V; E; �i with nodes V , root nodes V0 � V , edge fun
tionE : V ! 2V , and a node labeling � : V ! N (A) is
alled a run of � in A if4

one of the following holds:A = �A and V0 = ;A = n and s0 q �(n) andthere is a node m 2 V0 s.t. �(m) = n andhE(m); V; Ei is a run of s1; s2; : : : in Æ(n)A = A1 ^ A2 and hV0; V; Ei is a run in A1 andhV0; V; Ei is a run in A2A = A1 _ A2 and hV0; V; Ei is a run in A1 orhV0; V; Ei is a run in A2De�nition 3 (A

epting run) A run is a

epting if every in�nite path
on-tains in�nitely many a

epting nodes.De�nition 4 (Model) An in�nite sequen
e of states � is a model of an al-ternating automaton A if there exists an a

epting run of � in A.The set of models of an automaton A, also
alled the language of A, isdenoted by L(A).
2.3 Linear Temporal Logi
: Future FormulasIt has been shown that for every ltl formula ' there exists an alternatingautomaton A su
h that L(') = L(A) and the size of A is linear in the size of' [Var97℄. In our
onstru
tion of the automaton we assume that all negationshave been pushed in to the state level (a full set of rewrite rules to a

omplishthis is given in [MP95℄), that is, no temporal operator is in the s
ope of anegation.Given an ltl formula ', an alternating automaton A(') is
onstru
ted asfollows [MS00℄.For a state formula p: A(p) = hp; �A; �ni :5

(a

) true A(')A(0 ') (rej) true A(')A(1 ')
A() A(') (rej) trueA(' U)

A() A(') (a

) trueA('W)Fig. 1. Alternating automata for the temporal operators 0 , 1 , U , WFor temporal formulas ' and :A(' ^) = A(') ^ A()A(' _) = A(') _ A()A(2 ') = htrue;A('); rejiA(0 ') = htrue;A(0 '); a

i ^ A(')A(1 ') = htrue;A(1 '); reji _ A(')A(' U) = A() _ (htrue;A(' U); reji ^ A('))A('W) = A() _ (htrue;A('W); a

i ^ A('))The
onstru
tions are illustrated in Figure 1.3 Che
king Tra
esWe present three algorithms to
he
k whether a tra
e satis�es a temporal for-mula. All are based on alternating automata, but make di�erent optimizationsand are favored in di�erent situations.The �rst algorithm attempts to mat
h the tra
e with the automaton byre
ursively traversing the automaton in a depth-�rst manner. The se
ondalgorithm attempts to mat
h the tra
e with the automaton by traversing theautomaton in a breadth-�rst manner: for ea
h element in the tra
e it
reates6

all possible su

essor states. The third algorithm traverses the tra
e andautomaton ba
kwards, in whi
h
ase no sear
h has to be performed. This lastapproa
h is essentially the same as reported by Rosu and Havelund in [RH01℄.In the three algorithms we assume that a tra
e
onsists of a �nite sequen
eof states and that we have some way of
he
king whether a state satis�es apropositional or �rst-order formula.3.1 Depth-�rst traversalTo
he
k whether the tra
e satis�es a temporal formula, we �rst generate thealternating automaton for the formula and then
he
k the tra
e against theautomaton as follows:
t(A1 ^ A2; tra
e; n) =
t(A1; tra
e; n) ^
t(A2; tra
e; n)
t(A1 _ A2; tra
e; n) =
t(A1; tra
e; n) _
t(A2; tra
e; n)
t(h�; Æ; fi; tra
e; n) = tra
e[n℄ q � ^
t(Æ; tra
e; n+ 1)For �nite tra
es with length `, we make the following modi�
ation to theabove algorithm:
t(h�; Æ; fi; tra
e; n) = tra
e[n℄ q � ^
t(Æ; tra
e; n+ 1) n < `
t(h�; Æ; �ni; tra
e; `) = tra
e[n℄ q �
t(h�; Æ; a

i; tra
e; `) = true
t(h�; Æ; reji; tra
e; `) = falseThus a tra
e is a

epted only if all its eventualities have been ful�lled. It issomewhat harsh to reje
t a tra
e be
ause its last state is not a

epting. Indeedthe tra
e may have been
ut o� just before the eventuality would have beenful�lled. In Se
tion 4 we present an algorithm that keeps statisti
s about thetra
e and returns a more informative answer than just a

eptan
e or reje
tion.The depth-�rst traversal algorithm is the easiest to implement as it followsdire
tly the stru
ture of the alternating automaton as generated. Its maindisadvantage is that parts of the tra
e may be traversed multiple times (up to` times where ` is the length of the tra
e). For example this o

urs in
he
kinga formula of the form 0 1 'on a tra
e where ' is satis�ed only at the last element of the tra
e. At ea
hstate the algorithm will traverse the remainder of the tra
e to look for '.Therefore this algorithm be
omes prohibitively slow for long tra
es.7

3.2 Breadth-�rst traversalAn alternative approa
h is to sear
h for a run dag in a breadth-�rst manner,whi
h avoids multiple traversals. A run dag hV0; V; E; �i
an be representedas a sequen
e of sli
es S0; S1; : : : where Si � V , and Si
ontains a dag node ni� there is a path of length i from some root node to n. This representationis parti
ularly useful for memoryless runs.De�nition 5 (Memoryless run) A run dag is
alled a memoryless run ifno automaton node o

urs on two di�erent dag nodes of the same sli
e.Obviously not all runs are memoryless; however, given an arbitrary a
-
epting run it is always possible to
onstru
t an a

epting memoryless run onthe same sequen
e of states. For tra
e
he
king it is therefore suÆ
ient to
ompute memoryless runs. In the following we will
all the set of automatonnodes that label the elements of a sli
e Si the
on�guration Ci. The existen
eof a memoryless run for a tra
e
an be
he
ked by generating the set of pos-sible
on�gurations for ea
h position of the tra
e. For the initial position thisset is given as follows: �(�A) = f;g�(h�; Æ; fi) = ffh�; Æ; figg�(A1 ^ A2) = �(A1)
 �(A2)�(A1 _ A2) = �(A1) [�(A2)where
 denotes the
rossprodu
t:fS1; : : : ; Sng
 fT1; : : : ; Tmg = fSi [Tj j i = 1 : : : n; j = 1 : : :mgExampleThe set of possible
on�gurations for the initial position of the automaton fora! bW
, shown in Figure 2 is given by�(Aa!bW
) = ffn1g ; fn2g ; fn3; n4gg 0To
he
k whether a tra
e satis�es an ltl formula ', the algorithm gener-ates the alternating automaton A' for ' and initializes the
on�guration setS = �(A'). Then for ea
h element in the tra
e it exe
utes the following steps:for i := 1 to jtra
ej � 1S 0 := ;for ea
h
onfiguration C 2 S:if state-satis�ed(C; tra
e[i℄):add su

essors(C) to S'S := S 0 8

n1 : :a n2 :
 n3 : b n4(a

) : true
A(a! bW
))A(bW
)

Fig. 2. Alternating automaton for a! bW
where state-satis�ed(C; tra
e[i℄) is true if for all nodes n : h�; �A; fi in Ctra
e[i℄ q �is valid. su

essors(C) returns the
rossprodu
t of all su

essor sets of nodesin C, that is su

essors(C) =On2C �(Æ(n))The tra
e is a

epted if at the last position some
on�guration is state-satis�edand
ontains only a

epting and �nal nodes.This algorithm
learly traverses the tra
e only on
e. However it may haveto generate an exponential number of sets of nodes at ea
h position in thetra
e. We have found that for typi
al formulas the number of sets is relativelysmall, however for larger formulas this may be a problem as is illustrated byone of the examples presented in Se
tion 5.3.3 Reverse TraversalThe blow-up in the number of sets in the breadth-�rst traversal is
aused bynondeterminism in the formula. This
an be avoided, as was pointed out byRosu and Havelund [RH01℄ by traversing the tra
e ba
kwards. In this
asetraversal be
omes deterministi
 and only one set of nodes has to be maintainedat ea
h level.The algorithm is very similar in stru
ture to that of depth-�rst traversalex
ept that in this
ase we refer to previously
omputed values rather thanmaking a re
ursive
all to the
he
king fun
tion:V(A1 ^ A2; tra
e; n) = V(A1; tra
e; n) ^ V(A2; tra
e; n)V(A1 _ A2; tra
e; n) = V(A1; tra
e; n) _ V(A2; tra
e; n)V(h�; Æ; fi; tra
e; n) = tra
e[n℄ q � ^ V(Æ; tra
e; n+ 1)9

We initialize with the values for `, where ` is the length of the tra
e:V(A1 ^ A2; tra
e; `) = V(A1; tra
e; `) ^ V(A2; tra
e; `)V(A1 _ A2; tra
e; `) = V(A1; tra
e; `) _ V(A2; tra
e; `)V(h�; Æ; �ni; tra
e; `) = tra
e[`℄ q �V(h�; Æ; a

i; tra
e; `) = trueV(h�; Æ; reji; tra
e; `) = false4 Colle
ting Statisti
s over Tra
esTra
e
he
king
omputes a Boolean value: true if the tra
e has an a

eptingrun, false otherwise. We now generalize the analysis to return a value fromsome arbitrary latti
e that expresses statisti
al information about the runs ofthe tra
e. We assume that statisti
s are stored in a data type S with a meetoperation ^, a join operation _, a bottom element ?, an operation initial thatreturns for an automaton node n the initial statisti
 for a traversal starting inn, and an operation update that returns, for a statisti
 and an automaton noden the new statisti
 after the node n is traversed. Tra
e
he
king is a spe
ial
ase, with ^ = ^;_ = _, ? = false, initial(n) = true and update(S; n) = S.4.1 Depth-�rst and reverse traversalIn a depth-�rst or reverse traversal statisti
s
an be
olle
ted using the fol-lowing de�nitions:stat(A1 ^ A2; tra
e; n) = stat(A1; tra
e; n) ^ stat(A2; tra
e; n)stat(A1 _ A2; tra
e; n) = stat(A1; tra
e; n) _ stat(A2; tra
e; n)stat(h�; Æ; fi; tra
e; n) = if tra
e[n℄ q �then update(stat(Æ; tra
e; n+ 1); h�; Æ; fi) else ? n < `stat(h�; Æ; �ni; tra
e; `) = if tra
e[n℄ q � then initial(h�; Æ; �ni) else ?stat(h�; Æ; a

i; tra
e; `) = initial(h�; Æ; a

i)stat(h�; Æ; reji; tra
e; `) = ?It may be of interest to
olle
t statisti
s over all runs, in
luding thosethat end in reje
ting nodes. In this
ase the last de�nition is repla
ed by thefollowing: stat(h�; Æ; reji; tra
e; `) = initial(h�; Æ; reji)A simple example appli
ation is to determine whi
h subsets of the automa-ton nodes are visited by runs of the tra
e. This information
an be
olle
ted10

with the following data type:S = 22N (A)? = ;S1 _ S2 = S1 [S2S1 ^ S2 = fs1 [s2 j s1 2 S1; s2 2 S2ginitial(n) = ffnggupdate(S; n) = fs [fng j s 2 Sg4.2 Breadth-�rst traversalThe gathering of statisti
al information in a depth-�rst or reverse traversal
anbe seen as a labeling of ea
h node in a run with a statisti
al summary of thesubgraph starting in that node. When statisti
s are
olle
ted in a breadth-�rst traversal, the statisti
al information is asso
iated with
on�gurations,summarizing the run up to the
urrent sli
e. The initial set of annotated
on�gurations is de�ned as follows.�(�A) = fh;;>ig�(h�; Æ; fi) = fhfh�; Æ; fig ; update(>; h�; Æ; fi)ig�(A1 ^ A2) = �(A1)
 �(A2)�(A1 _ A2) = �(A1) [�(A2)
 denotes the
rossprodu
t:fhC1; S1i; : : : ; hCn; Snig
 fhC 01; S 01i; : : : ; hC 0m; S 0mig =�hCi [C 0j; Si ^ S 0ji j i = 1 : : : n; j = 1 : : :m	The algorithm generates the alternating automaton A' for ' and initializesthe
on�guration set as �(A'). Then, for ea
h element in the tra
e, it
om-putes the su

essors of the state-satis�ed
on�gurations. The su

essors of a
on�guration are given as the following
rossprodu
t:su

essors (hC; Si) =On2C �(Æ(n); S)where �(�A; S) = fh;; Sig�(h�; Æ; fi) = fhfh�; Æ; fig ; update(S; h�; Æ; fi)ig�(A1 ^ A2) = �(A1)
 �(A2)�(A1 _ A2) = �(A1) [�(A2)11

5 Past temporal operatorsThe algorithms presented in the previous se
tions are appli
able to ltl for-mulas with future temporal operators only. It is relatively straightforward togeneralize the algorithms to in
lude past temporal operators as well. In thisse
tion we give an outline of the ne
essary extensions.To de�ne an alternating automaton for ltl formulas in
luding past oper-ators, we add a
omponent g to the de�nition of a node, su
h that a node isde�ned as h�; Æ; f; giwhere g indi
ates whether the node is past (indi
ated by \ ") or future(indi
ated by \!"). The de�nition of a run of su
h an alternating automatonre
e
ts the presen
e of past nodes as follows:De�nition 6 (Run) Given an in�nite sequen
e of states � : s0; s1; : : :, and aposition j � 0, a labeled dag hV0; V; E; �i is
alled a run of � at position j ifone of the following holds:A = �A and V0 = ;A = n and s0 q �(n) andthere is a node m 2 V0 s.t. �(m) = n and8>>>>>>>>>>>><>>>>>>>>>>>>:
(a) hE(m); V; E; �i is a run of � in Æ(n)at j + 1; if g(n) =!; or(b) hE(m); V; E; �i is a run of � in Æ(n)at j � 1; if g(n) = and j > 0; or(
) E(m) = ; if g(n) = , f(n) = a

;and j = 0:A = A1 ^ A2 and hV0; V; Ei is a run in A1 andhV0; V; Ei is a run in A2A = A1 _ A2 and hV0; V; Ei is a run in A1 orhV0; V; Ei is a run in A2Given an ltl formula ', an alternating automaton A(') is
onstru
tedas before, where all nodes
onstru
ted before are future nodes, and with the12

n0(+;!) : truen1(+;!) : :pn2(�;) : true n3(+;!) : r
A(0 (p! Q r))A(p! Q r))A(Q r)

Fig. 3. Alternating automaton for 0 (p! Q r)following additions for the past operators:A(2� ') = htrue;A('); a

; iA(� ') = htrue;A('); rej; iA(` ') = htrue;A(` '); a

; i ^ A(')A(Q ') = htrue;A(Q '); rej; i _ A(')A(' S) = A() _ (htrue;A(' S); rej; i ^ A('))A(' B) = A() _ (htrue;A(' B); a

; i ^ A('))ExampleFor a
ausality formula ' : 0 (p ! Q r) with p, q, and r state formulas, theautomaton is shown in Figure 3. 0The depth-�rst algorithm
an be extended to in
lude past operators bysimply adding the following
alls:
t(h�; Æ; f; i; tra
e; n) = tra
e[n℄ q � ^
t(Æ; tra
e; n� 1) n > 0
t(h�; Æ; a

; i; tra
e; 0) = tra
e[n℄ q �
t(h�; Æ; rej; i; tra
e; 0) = falseFor the breadth-�rst algorithm the situation is more
ompli
ated. Sli
e Sinow
ontains all nodes that are rea
hed from some root node on a path withm future nodes and n past nodes su
h that m�n = i. Two modi�
ations arene
essary in the
omputation of su

essors of a
on�guration C:(i) A su

essor
on�guration C 0 may
ontain nodes that are rea
hed througha past node in the su

essor
on�guration of C 0. Su
h nodes must thus13

be
hildren of past nodes: past-
hildren(A) = Sn2PN (A) �(n) where�(�A) = ;�(h�; Æ; fi) = fh�; Æ; fig�(A1 ^ A2) = �(A1) [�(A2)�(A1 _ A2) = �(A1) [�(A2)(ii) For all past nodes h�; Æ; f; i in a su

essor
on�guration C 0, the automa-ton Æ must be satis�ed in C. Let C q A denote that one of the followingholds: A = �AA = n and n 2 CA = A1 ^ A2 and C q A1 and C q A2A = A1 _ A2 and C q A1 or C q A2Hen
e, the su

essor
on�gurations are now
omputed as follows:su

essors (C) = f C 0 2 (Nn2C\FN (A) �(Æ(n))
 P(past-
hildren(A)))j for all n0 2 C 0 \ PN (A) : C q Æ(n0) gwhere P denotes the power set. The
on�guration set is initialized asinitial(�(A')
 P(past-
hildren(A)))where initial(S) returns exa
tly those
on�gurations in S that do not
ontainany reje
ting past nodes. The tra
e is a

epted if at the last position some
on�guration is state-satis�ed and does not
ontain any reje
ting future nodes.6 Implementation and ExperimentsThe algorithms were implemented in Java, making use of existing softwaremodules for expression parsing, propositional simpli�
ation and generationof alternating automata available in the STeP (Stanford Temporal Prover)system [BBC+00℄. The size of the programs implementing the three tra
e
he
king algorithms are 75, 190, and 80 lines of
ode respe
tively. No attemptswere made to optimize the
ode ex
ept for
a
hing of su

essor sets in thebreadth-�rst algorithm (whi
h resulted in a speed-up of a fa
tor 5) and
a
hingof results in the reverse traversal algorithms.The three algorithms were applied to the following three temporal formu-14

tra
e length depth-�rst breadth-�rst reverse traversal1000 1733 78 232000 8402 54 273000 21940 76 364000 44185 99 445000 76899 123 55Fig. 4. Running times in millise
onds for
he
king 0 1 ztra
e length depth-�rst breadth-�rst reverse traversal1000 40 82 242000 79 52 273000 112 73 364000 222 94 455000 247 117 56Fig. 5. Running times in millise
onds for
he
king 0 1 alas: '1 : 0 1 z'2 : 0 1 a'3 : 0 (b ! :a U (a U (:a U a)))For all formulas tra
es were generated randomly
onsisting of 10% a's, 40%b's, 25%
's, and 25 % d's. For '1 a \z" was added to the end of the tra
e andfor '2 and '3 an \a" was added to the end to ensure satisfa
tion for easier
omparison. The running times are presented in Tables 1, 2, 3. The programwas run on a Sony VAIO laptop with an 850 MHz Pentium III pro
essor,running Redhat Linux v7.0 and Sun JDK1.3.1.The results
on�rm our expe
tations. Indeed the depth-�rst algorithmperforms poorly on the formula 0 1 z, while the two other algorithms
andeal with this
ase easily. When eventualities are ful�lled reasonably qui
kly,as is the
ase with 0 1 a (as roughly every tenth tra
e element is an \a"), theperforman
e of the depth-�rst algorithm is
omparable with the other two.For large formulas, su
h as 0 (b ! :a U (a U (:a U a))), the breadth-�rst algorithm performs
onsiderably worse than the other two, due to the15

tra
e length depth-�rst breadth-�rst reverse traversal1000 45 876 482000 87 1660 963000 185 2377 1384000 217 3244 1815000 298 4034 225Fig. 6. Running times in millise
onds for
he
king 0 (b ! :a U (a U (:a U a)))large number of sets to maintain at ea
h position in the tra
e. Again hereeventualities are ful�lled relatively qui
kly and therefore the performan
e ofthe depth-�rst algorithm is
omparable to that of the reverse traversal.Based on these, very preliminary, results, it is
lear that all three algo-rithms have their utility. Reverse traversal is always the preferred
hoi
e if itis possible. However, in many situations, espe
ially online monitoring, this isnot an option. In that
ase depth-�rst
he
king is feasible if waiting times arenot too long (and there are no disjun
tions in eventualities), espe
ially if onewants to gather statisti
s on these waiting times. For long waiting times orin the presen
e of disjun
tions on eventualities, and relatively small formulasbreadth-�rst is preferred.A
knowledgementsWe thank Klaus Havelund and Grigore Rosu for bringing the topi
 of
he
king�nite tra
es to our attention at the NASA/RIACS workshop on Validationand Veri�
ation, De
ember 2000, and Grigore for his dis
ussion on variousapproa
hes.Referen
es[BBC+00℄ N.S. Bj�rner, A. Browne, M. Col�on, B. Finkbeiner, Z. Manna, H.B.Sipma, and T.E. Uribe. Verifying temporal properties of rea
tivesystems: A STeP tutorial. Formal Methods in System Design, 16(3):227{270, June 2000.[Dru00℄ D. Drusinsky. The Temporal Rover and the ATG Rover. In K. Havelund,J. Penix, and W. Visser, editors, SPIN Model Che
king and SoftwareVeri�
ation, 7th International SPIN Workshop, vol. 1885 of LNCS, pages323{330. Springer-Verlag, 2000.[Hav00℄ K. Havelund. Using runtime analysis to guide model
he
king of javaprograms. In K. Havelund, J. Penix, and W. Visser, editors, SPIN Model16

Che
king and Software Veri�
ation, 7th International SPIN Workshop,vol. 1885 of LNCS, pages 245{264. Springer-Verlag, 2000.[HR01℄ K. Havelund and G. Rosu. Testing linear temporal logi
 formula on �niteexe
ution tra
es. 2001. Submitted for publi
ation.[MP87℄ Z. Manna and A. Pnueli. Spe
i�
ation and veri�
ation of
on
urrentprograms by 8-automata. In B. Banieqbal, H. Barringer, and A. Pnueli,editors, Temporal Logi
 in Spe
i�
ation, number 398 in LNCS, pages 124{164. Springer-Verlag, Berlin, 1987. Also in Pro
. 14th ACM Symp. Prin
.of Prog. Lang., Muni
h, Germany, pp. 1{12, January 1987.[MP95℄ Z. Manna and A. Pnueli. Temporal Veri�
ation of Rea
tive Systems:Safety. Springer-Verlag, New York, 1995.[MS00℄ Z. Manna and H.B. Sipma. Alternating the temporal pi
ture for safety.In U. Montanari, J.D. Rolim, and E. Welzl, editors, Pro
. 27th Intl.Colloq. Aut. Lang. Prog., vol. 1853, pages 429{450, Geneva, Switzerland,July 2000. Springer-Verlag.[RH01℄ G. Rosu and K. Havelund. Synthesizing dynami
 programmingalgorithms from linear temporal logi
 formulae. 2001. Submitted forpubli
ation.[Tho90℄ W. Thomas. Automata on in�nite obje
ts. In J. van Leeuwen,editor, Handbook of Theoreti
al Computer S
ien
e, vol. B, pages 133{191. Elsevier S
ien
e Publishers (North-Holland), 1990.[Var96℄ M.Y. Vardi. An automata-theoreti
 approa
h to linear temporal logi
. InF. Moller and G. Birtwistle, editors, Logi
s for Con
urren
y. Stru
tureversus Automata, vol. 1043 of LNCS, pages 238{266. Springer-Verlag,1996.[Var97℄ M.Y. Vardi. Alternating automata: Che
king truth and validity fortemporal logi
s. In Pro
. of the 14th Intl. Conferen
e on AutomatedDedu
tion, vol. 1249 of LNCS. Springer-Verlag, July 1997.

17

