Checking Finite Traces using Alternating
Automata

Bernd Finkbeiner and Henny Sipma,

Computer Science Department, Stanford University
Stanford, CA. 94305

Abstract

We present three algorithms to check at runtime whether a reactive program satisfies
a temporal specification, expressed by a future linear-time temporal logic formula.
The three methods are all based on alternating automata, but traverse the automa-
ton in different ways: depth-first, breadth-first, and backwards, respectively. All
three methods have been implemented and experimental results are presented. We
outline an extension to these algorithms that is applicable to LTL formulas contain-
ing both past and future operators.

1 Introduction

Software model checking is hard, and in the majority of cases infeasible. A
practical alternative might be to monitor the running program, and check on
the fly whether desired temporal properties hold. For safety properties one
can generate the automaton for the property and check the trace against the
automaton until a trace state is found that is not implied by the corresponding
automaton state, in which case a violation is found, or until the end of the trace
is reached, in which case the trace satisfies the property. Liveness properties,
of course, can never be falsified on a finite trace. However, one may wish to
get an impression to what extent eventualities are fulfilled in a finite trace.
In this paper we present three algorithms to check whether a finite trace
satisfies a temporal specification. All three algorithms are based on alternating
automata, but traverse the trace in different ways, appropriate for different

1 This research was supported in part by the National Science Foundation grant CCR-99-
00984-001, by ARO grant DAAG55-98-1-0471, by ARO/MURI grant DAAH04-96-1-0341,
by ARPA/Army contract DABT63-96-C-0096, and by ARPA/AirForce contracts F33615-
00-C-1693 and F33615-99-C-3014.

Preprint submitted to Elsevier Preprint 2 July 2001

situations. Having three algorithms based on the same automaton allows us
to easily vary the runtime characteristics without changing the semantics.

Checking of finite traces has received a growing attention recently. Ex-
amples include the commercial system Temporal Rover [Dru00], a tool that
allows LTL specifications to be embedded in C, C++, Java, Verilog and VHDL
programs. Runtime analysis algorithms have also been applied in guiding the
Java model checker Java PathFinder developed at NASA [Hav00]. The work
presented in this paper was inspired by [HR01,RHO01].

The rest of the paper is organized as follows. In Section 2 we present
our specification language of linear time temporal logic (LTL), alternating au-
tomata as an alternative representation of sets of sequences, and a linear trans-
lation of future LTL formulas into alternating automata. Section 3 describes
the three algorithms for checking traces: depth-first traversal, breadth-first
traversal, and backwards traversal. In Section 4 we propose a method to
collect statistics from traces related to the desired temporal property. Sec-
tion 5 extends the trace-checking algorithm to be applicable to formulas with
both future and past temporal operators. The implementation of the trace-
checking algorithms and the results of some experimental runs are presented
in Section 6.

2 Preliminaries

2.1 Specification Language: Linear Temporal Logic

The specification language we use in this paper is linear temporal logic. A
temporal formula is constructed out of state formulas, which can be either
propositional or first-order formulas, to which we apply the boolean connec-
tives and the temporal operators shown below.

Temporal formulas are interpreted over a model, which is an infinite se-
quence of states o : sg, $1,.... Given a model o, a state formula p and temporal
formulas ¢ and v, we present an inductive definition for the notion of a formula
¢ holding at a position j > 0 in o, denoted by (o, j) E ¢.

For a state formula:

(0,j) ep iff s; Ep, thatis, p holds on state s;.
For the boolean connectives:
(0,5) k@AY iff (0,7) k¢ and (0,)) E ¢
(o,7) eV i (0,7) Edor (o)) Y
(0,j) k=g iff (o)) Ko .

For the future temporal operators:

(0,j)) FO¢ M (0,j+1)Ed

(0,j) EO¢ iff (0,i) E¢ foralli>j
(0,J) EO 9 iff (0,i) k¢ for some i > j
(0,7) Uy iff (o,k) E) for some k > j,

and (o0,1) F ¢ for every i, j <i <k

(0,)) EdW Y iff (0,§) EdUY or (0,§) EOO .
For the past temporal operators:

(0,j))r@¢ iff j>0and (0,j—1) k¢
jE@¢ M j=0o0r(o,j—-1) k¢
) EEe iff (o,i)E¢forall0<i<j
NESG i (0,i) E¢ for some 0 <i<j
o,j)Ep Sy iff (o,

g,

Q

g,

(
(
(
(o, k) E 1 for some k < j,

and (0,1) k¢ for every i, k < i <j
(o,7) By iff (0,j)EdSor (o,j) EEP .

An infinite sequence of states o satisfies a temporal formula ¢, written o E ¢,
if (0,0) £ ¢. The set of all sequences that satisfy a formula ¢ is denoted by
L(p), the language of .

We say that a formula is a future (past) formula if it contains only state
formulas, boolean connectives and future (past) temporal operators. We say
that a formula is a general safety formula if it is of the form 7, for a past
formula .

2.2 Alternating Automata

Automata on infinite words [Tho90] are a convenient way to represent tem-
poral formulas. For every linear temporal formula there exists an automaton
on infinite words such that a sequence of states satisfies the temporal formula
if and only if it is accepted by the corresponding automaton. Thus to check
whether a trace satisfies a particular temporal formula, we can check whether
it is accepted by the corresponding alternating automaton.

Several types of automata on infinite words exist. Alternating automata
[Var96] are a generalization of nondeterministic automata and V-automata
[IMP87]. Nondeterministic automata have an existential flavor: a word is
accepted if it is accepted by some path through the automaton. V-automata,
on the other hand have a universal flavor: a word is accepted if it is accepted

by all paths through the automaton. Alternating automata combine the two
flavors by allowing choices along a path to be marked as either existential or
universal.

The advantage of using alternating automata to represent the language
accepted by a temporal formula is that the alternating automaton that accepts
the same language as the formula is linear in the size of the formula, while it
is worst-case exponential for nondeterministic or V-automata. Below we will
show a one-to-one mapping from the temporal formula to the automaton.

We briefly summarize our definition of alternating automata. A more

elaborate description of our version of alternating automata can be found in
[MS00].

Definition 1 (Alternating Automaton) An alternating automaton A is
defined recursively as follows:

A =€y empty automaton
| (v,6,f) single node
| AANA conjunction of two automata
| AVA disjunction of two automata

where v is a state formula, J is an alternating automaton expressing the next-
state relation, and f indicates whether the node is accepting (denoted by
acc), rejecting (denoted by rej), or final (denoted by fin). We require that the
automaton be finite.

The set of nodes of an alternating automaton A, denoted by N(A) is
formally defined as

N(ea) =0

N6, 1)) = (v,) UN()
N(AL A Ay) = N(A) UN(Ay)
N(A VvV Ay) = N(A) UN(Ay)

A path through a regular w-automaton is an infinite sequence of nodes. A
“path” through an alternating w-automaton is, in general, a directed acyclic

graph (dag).

Definition 2 (Run) Given an infinite sequence of states o : sg,$1,..., a
labeled dag (Vp,V, E, 1) with nodes V', root nodes V5 C V, edge function
E:V — 2V and a node labeling p1 : V' — N (A) is called a run of o in A if

one of the following holds:

A=eyu and Vo=0

A=n and sp Ev(n) and

there is a node m € Vj s.t. pu(m) =n and
(E(m),V,E) is a run of s;,5s,... in §(n)
(Vo, V,E) is a run in A; and

(Vo, V, E) is a run in A,

(Vb, V, E) is a run in A; or

(Vb, V, E) is a run in A,

A:Al/\AQ and

A:Al\/AQ and

Definition 3 (Accepting run) A run is accepting if every infinite path con-
tains infinitely many accepting nodes.

Definition 4 (Model) An infinite sequence of states o is a model of an al-
ternating automaton A if there exists an accepting run of o in A.

The set of models of an automaton A, also called the language of A, is
denoted by L(A).

2.8 Linear Temporal Logic: Future Formulas

It has been shown that for every LTL formula ¢ there exists an alternating
automaton A such that £(p) = L(A) and the size of A is linear in the size of
¢ [Var97]. In our construction of the automaton we assume that all negations
have been pushed in to the state level (a full set of rewrite rules to accomplish
this is given in [MP95]), that is, no temporal operator is in the scope of a
negation.

Given an LTL formula ¢, an alternating automaton A(¢p) is constructed as
follows [MS00].

For a state formula p:

A(p) = <p7 6A7.ﬁ”> :

AlpU 1) A(pWrp)
Fig. 1. Alternating automata for the temporal operators 1, <>, U, W
For temporal formulas ¢ and :
Al ny) = Alp) A A
AlpVvy) = Alp) VA

(¥)
(¥)

(
A(Oy) = (true, A(p), rej)
A@ey) = (true, A(Oyp), acc) A Alp)
A(O @) = (true, A(O @), reg) V Alp)
AlpU) = AW) V ({true, A(p U), rej) A Alp))
)

The constructions are illustrated in Figure 1.

3 Checking Traces

We present three algorithms to check whether a trace satisfies a temporal for-
mula. All are based on alternating automata, but make different optimizations
and are favored in different situations.

The first algorithm attempts to match the trace with the automaton by
recursively traversing the automaton in a depth-first manner. The second
algorithm attempts to match the trace with the automaton by traversing the
automaton in a breadth-first manner: for each element in the trace it creates

all possible successor states. The third algorithm traverses the trace and
automaton backwards, in which case no search has to be performed. This last
approach is essentially the same as reported by Rosu and Havelund in [RHO1].

In the three algorithms we assume that a trace consists of a finite sequence
of states and that we have some way of checking whether a state satisfies a
propositional or first-order formula.

3.1 Depth-first traversal

To check whether the trace satisfies a temporal formula, we first generate the
alternating automaton for the formula and then check the trace against the
automaton as follows:

CT(A; A Asg, trace,n) = CT(Ay, trace,n) A CT(As, trace, n)
CcT(A; V Ay, trace,n) = CcT(Ay, trace,n) V C¢T(As, trace, n)

ct((v, 9, f), trace,n) = trace[n] Ev A CT(6, trace,n + 1)

For finite traces with length ¢, we make the following modification to the
above algorithm:

ct((v, 6, f), trace,n) = tracen] Ev A CT(d, trace,sn+1) n</{

ct((v, 9, fin), trace,) = trace[n] Ev

ct((v, o, acc), trace, £) = true

({
({
({
ct((v, o, rej), trace, 0) = false

Thus a trace is accepted only if all its eventualities have been fulfilled. It is
somewhat harsh to reject a trace because its last state is not accepting. Indeed
the trace may have been cut off just before the eventuality would have been
fulfilled. In Section 4 we present an algorithm that keeps statistics about the
trace and returns a more informative answer than just acceptance or rejection.

The depth-first traversal algorithm is the easiest to implement as it follows
directly the structure of the alternating automaton as generated. Its main
disadvantage is that parts of the trace may be traversed multiple times (up to
¢ times where £ is the length of the trace). For example this occurs in checking
a formula of the form

OO

on a trace where ¢ is satisfied only at the last element of the trace. At each
state the algorithm will traverse the remainder of the trace to look for ¢.
Therefore this algorithm becomes prohibitively slow for long traces.

3.2 Breadth-first traversal

An alternative approach is to search for a run dag in a breadth-first manner,
which avoids multiple traversals. A run dag (V,,V, E,) can be represented
as a sequence of slices Sy, 51, ... where S; C V, and S; contains a dag node n
iff there is a path of length ¢ from some root node to n. This representation
is particularly useful for memoryless runs.

Definition 5 (Memoryless run) A run dag is called a memoryless run if
no automaton node occurs on two different dag nodes of the same slice.

Obviously not all runs are memoryless; however, given an arbitrary ac-
cepting run it is always possible to construct an accepting memoryless run on
the same sequence of states. For trace checking it is therefore sufficient to
compute memoryless runs. In the following we will call the set of automaton
nodes that label the elements of a slice S; the configuration C;. The existence
of a memoryless run for a trace can be checked by generating the set of pos-
sible configurations for each position of the trace. For the initial position this
set is given as follows:

0(€a) = {0}

0((v,6, f)) = {{{v.0, /)}}
B(A A As) = 0(A) ® 0(A)
(AL V As) = 0(A) U 0(A)

where ® denotes the crossproduct:

Ezample
The set of possible configurations for the initial position of the automaton for
a — bWe, shown in Figure 2 is given by

O(Aasiwe) = {{m}, {na}, {13, na}}
d

To check whether a trace satisfies an LTL formula ¢, the algorithm gener-
ates the alternating automaton A, for ¢ and initializes the configuration set
S =0(A,). Then for each element in the trace it executes the following steps:

for i:=1 to |trace| — 1
S =10
for each configuration C € S:
if state-satisfied(C, trace[i)):
add successors(C') to S’
S:=9

ny(acc) : true

Fig. 2. Alternating automaton for a — bWec

where state-satisfied(C, trace[i]) is true if for all nodes n: (v,eq4, f) in C
traceli] £ v

is valid. successors(C') returns the crossproduct of all successor sets of nodes
in C', that is

successors(C) = ® 6(6(n))
neC
The trace is accepted if at the last position some configuration is state-satisfied
and contains only accepting and final nodes.

This algorithm clearly traverses the trace only once. However it may have
to generate an exponential number of sets of nodes at each position in the
trace. We have found that for typical formulas the number of sets is relatively
small, however for larger formulas this may be a problem as is illustrated by
one of the examples presented in Section 5.

3.8 Reverse Traversal

The blow-up in the number of sets in the breadth-first traversal is caused by
nondeterminism in the formula. This can be avoided, as was pointed out by
Rosu and Havelund [RHO1] by traversing the trace backwards. In this case
traversal becomes deterministic and only one set of nodes has to be maintained
at each level.

The algorithm is very similar in structure to that of depth-first traversal
except that in this case we refer to previously computed values rather than
making a recursive call to the checking function:

V(A1 A Ay, trace,n) = V(Ay, trace,n) A V(As, trace,n)
V(A V Ay, trace,n) = V(Ay, trace,n) V V(Ay, trace, n)
V({(v,6, f), trace,n) = traceln] e v AV(9, trace,n + 1)

We initialize with the values for ¢, where ¢ is the length of the trace:
V(A; A Ay, trace, 0) = V(Ay, trace,) A V(Ay, trace, 0)
V(A V Ay, trace, 0) = V(Ay, trace, £) V V(As, trace, ()
V({v, 0, fin), trace,) = trace[l] v
\Y
V({v, 0, rej), trace,) = false

(v, 9, acc), trace, () = true

(
(
(
(

4 Collecting Statistics over Traces

Trace checking computes a Boolean value: true if the trace has an accepting
run, false otherwise. We now generalize the analysis to return a value from
some arbitrary lattice that expresses statistical information about the runs of
the trace. We assume that statistics are stored in a data type S with a meet
operation A, a join operation V, a bottom element 1, an operation initial that
returns for an automaton node n the initial statistic for a traversal starting in
n, and an operation update that returns, for a statistic and an automaton node
n the new statistic after the node n is traversed. Trace checking is a special
case, with A = A,V =V, L = false, initial(n) = true and update(S,n) = S.

4.1 Depth-first and reverse traversal

In a depth-first or reverse traversal statistics can be collected using the fol-
lowing definitions:

STAT(A; A Ay, trace,n) = STAT(A4, trace,n) A STAT(A,, trace, n)
STAT(A; V Ay, trace,n) = STAT(Ay, trace,n) V. STAT(A,, trace,n)
STAT((v, 0, f), trace,n) = if trace|n] E v

then update(STAT(0, trace,n + 1), (v, 0, f)) else L n</t
STAT((v, 0, fin), trace, £) = if trace[n] E v then initial({v,d, fin)) else L
STAT((v, 0, acc), trace, ¥) = initial((v, 0, acc))
STAT((v, 0, rej), trace, () = L

It may be of interest to collect statistics over all runs, including those
that end in rejecting nodes. In this case the last definition is replaced by the
following:

STAT((v, 0, rej), trace, £) = initial({v, §, rej))

A simple example application is to determine which subsets of the automa-
ton nodes are visited by runs of the trace. This information can be collected

10

with the following data type:

S — 92V

1 =0

Sl MSQ - SIUSQ

51A52 :{81U82|81651,82652}

initial(n) = {{n}}
update(S,n) = {sU{n} | s € S}

4.2 Breadth-first traversal

The gathering of statistical information in a depth-first or reverse traversal can
be seen as a labeling of each node in a run with a statistical summary of the
subgraph starting in that node. When statistics are collected in a breadth-
first traversal, the statistical information is associated with configurations,
summarizing the run up to the current slice. The initial set of annotated
configurations is defined as follows.

0(c.4) ={(®,T)}
0((v,0, 1)) = {{{{n.0, 1)}, update(T,(v,5, f)))}
(A AN Az) =0(A)) ® 6(Az)
O(A; vV As) = 0(A;) U 6(Ay)
® denotes the crossproduct:
{(C1,81), . (Cny S)} @ {{C1, 51D, -, (O Sad) =
{{GiuCy,SinS) |li=1...n,j=1...m}

The algorithm generates the alternating automaton 4, for ¢ and initializes
the configuration set as #(.A,). Then, for each element in the trace, it com-
putes the successors of the state-satisfied configurations. The successors of a
configuration are given as the following crossproduct:

successors ({C, S)) = ®/<;(5(n), S)

where "
klea, S) = {(0,5)}
k((v,0,) = {{{, 3, /)}, update(S, (v, 5, f)))}
k(AN Ay) = k(A) @ Kk(Ay)
k(A V As) = k(A1) U k(Ag)

11

5 Past temporal operators

The algorithms presented in the previous sections are applicable to LTL for-
mulas with future temporal operators only. It is relatively straightforward to
generalize the algorithms to include past temporal operators as well. In this
section we give an outline of the necessary extensions.

To define an alternating automaton for LTL formulas including past oper-

ators, we add a component ¢ to the definition of a node, such that a node is
defined as

(v,0,f,9)

where ¢ indicates whether the node is past (indicated by “<”) or future
(indicated by “—”). The definition of a run of such an alternating automaton
reflects the presence of past nodes as follows:

Definition 6 (Run) Given an infinite sequence of states o : sg, s1,..., and a
position j > 0, a labeled dag (V,V, E,) is called a run of o at position j if
one of the following holds:

A=¢€y and Vo=0
A=n and sp Ev(n) and
there is a node m € Vj s.t. p(m) = n and

((a) (E(m),V,E, pu)is arun of o in §(n)
at j + 1,if g(n) =—, or

(b) (E(m),V,E, pu)is a run of o in §(n)
at j — 1,if g(n) =« and j >0, or

(¢) E(m)=0if g(n) =+, f(n) = acc,
and 7 = 0.

(Vo,V, E) is a run in A; and

(Vo, V,E) is a run in A,

(Vo,V, E) is a run in A; or

(Vo,V, E) is a run in A,

A:Al/\AQ and

A:Al\/AQ and

Given an LTL formula ¢, an alternating automaton A(y) is constructed
as before, where all nodes constructed before are future nodes, and with the

12

Fig. 3. Alternating automaton for [J(p — & r)

following additions for the past operators:

A@ ¢) = (true, A(y), acc, <)

Aly) = (true, Alp), rej)

A@y) = (true, A(@y), acc, <) N Alyp)

AS) = (true, A(S), rej, <) V Alp)

AlpSv) = AW)V ((true, A(p S ¥), rej, =) N A(p))

Al By) = A@W)V ((true, Al B), acc, <) N A(p))
Ezample
For a causality formula ¢ : O(p — & r) with p, ¢, and r state formulas, the
automaton is shown in Figure 3. O

The depth-first algorithm can be extended to include past operators by
simply adding the following calls:
ct((v, o, f, <), trace,n) = trace[n] Ev A CT(d, trace,n —1) n >0
ct((v, 6, ace, <), trace, 0) = traceln] E v
ct((v, o, rej, <), trace, 0) = false
For the breadth-first algorithm the situation is more complicated. Slice S;
now contains all nodes that are reached from some root node on a path with

m future nodes and n past nodes such that m —n = i. Two modifications are
necessary in the computation of successors of a configuration C':

(i) A successor configuration C’' may contain nodes that are reached through
a past node in the successor configuration of C’. Such nodes must thus

13

be children of past nodes: past-children(A) =, cpn-(4y p(n) where

(ii) For all past nodes (v, ¢, f, <) in a successor configuration C’, the automa-
ton & must be satisfied in C. Let C' £ A denote that one of the following
holds:

A=ey

A=n and n e C

A=A ANAs and C e A, and C E A,
A=AV A, and CEA; or C EA,

Hence, the successor configurations are now computed as follows:

sucessors (C) = { €' € (@necrrnay #(3(n) ® Plpast-children(A)))
| foralln’ € C"NPN(A).CEd(n) }
where P denotes the power set. The configuration set is initialized as
initial(0(A,) ® P(past-children(A)))

where initial(S) returns exactly those configurations in S that do not contain
any rejecting past nodes. The trace is accepted if at the last position some
configuration is state-satisfied and does not contain any rejecting future nodes.

6 Implementation and Experiments

The algorithms were implemented in Java, making use of existing software
modules for expression parsing, propositional simplification and generation
of alternating automata available in the STeP (Stanford Temporal Prover)
system [BBC'00]. The size of the programs implementing the three trace
checking algorithms are 75, 190, and 80 lines of code respectively. No attempts
were made to optimize the code except for caching of successor sets in the
breadth-first algorithm (which resulted in a speed-up of a factor 5) and caching
of results in the reverse traversal algorithms.

The three algorithms were applied to the following three temporal formu-

14

trace length | depth-first breadth-first reverse traversal
1000 1733 78 23
2000 8402 54 27
3000 21940 76 36
4000 44185 99 44
5000 76899 123 55

Fig. 4. Running times in milliseconds for checking (] & 2

trace length | depth-first breadth-first reverse traversal
1000 40 82 24
2000 79 52 27
3000 112 73 36
4000 222 94 45
5000 247 117 56

Fig. 5. Running times in milliseconds for checking (1 a

las:
p1: 002
p2: 0O a
e3: 00 = —ald (al (ma U a)))

For all formulas traces were generated randomly consisting of 10% a’s, 40%
b’s, 25% ¢’s, and 25 % d’s. For ¢; a “z” was added to the end of the trace and
for ¢35 and 3 an “a” was added to the end to ensure satisfaction for easier
comparison. The running times are presented in Tables 1, 2, 3. The program
was run on a Sony VAIO laptop with an 850 MHz Pentium III processor,

running Redhat Linux v7.0 and Sun JDK1.3.1.

The results confirm our expectations. Indeed the depth-first algorithm
performs poorly on the formula [< z, while the two other algorithms can
deal with this case easily. When eventualities are fulfilled reasonably quickly,
as is the case with [1 & a (as roughly every tenth trace element is an “a”), the
performance of the depth-first algorithm is comparable with the other two.
For large formulas, such as (b — -a U (a U (—a U a))), the breadth-
first algorithm performs considerably worse than the other two, due to the

15

trace length | depth-first breadth-first reverse traversal
1000 45 876 48
2000 87 1660 96
3000 185 2377 138
4000 217 3244 181
5000 298 4034 225

Fig. 6. Running times in milliseconds for checking [1(b — —a U (a U (—a U a)))

large number of sets to maintain at each position in the trace. Again here
eventualities are fulfilled relatively quickly and therefore the performance of
the depth-first algorithm is comparable to that of the reverse traversal.

Based on these, very preliminary, results, it is clear that all three algo-
rithms have their utility. Reverse traversal is always the preferred choice if it
is possible. However, in many situations, especially online monitoring, this is
not an option. In that case depth-first checking is feasible if waiting times are
not too long (and there are no disjunctions in eventualities), especially if one
wants to gather statistics on these waiting times. For long waiting times or
in the presence of disjunctions on eventualities, and relatively small formulas
breadth-first is preferred.

Acknowledgements

We thank Klaus Havelund and Grigore Rosu for bringing the topic of checking
finite traces to our attention at the NASA/RIACS workshop on Validation
and Verification, December 2000, and Grigore for his discussion on various
approaches.

References

[BBCT00] N.S. Bjorner, A. Browne, M. Colén, B. Finkbeiner, Z. Manna, H.B.
Sipma, and T.E. Uribe. Verifying temporal properties of reactive
systems: A STeP tutorial. Formal Methods in System Design, 16(3):227—
270, June 2000.

[Dru00] D. Drusinsky. The Temporal Rover and the ATG Rover. In K. Havelund,
J. Penix, and W. Visser, editors, SPIN Model Checking and Software
Verification, 7'h International SPIN Workshop, vol. 1885 of LNCS, pages
323-330. Springer-Verlag, 2000.

[Hav00] K. Havelund. Using runtime analysis to guide model checking of java
programs. In K. Havelund, J. Penix, and W. Visser, editors, SPIN Model

16

Checking and Software Verification, 7th International SPIN Workshop,
vol. 1885 of LNCS, pages 245-264. Springer-Verlag, 2000.

[HRO1] K. Havelund and G. Rosu. Testing linear temporal logic formula on finite
execution traces. 2001. Submitted for publication.

[MP87] Z. Manna and A. Pnueli. Specification and verification of concurrent
programs by V-automata. In B. Baniegbal, H. Barringer, and A. Pnueli,
editors, Temporal Logic in Specification, number 398 in LNCS, pages 124-
164. Springer-Verlag, Berlin, 1987. Also in Proc. 14th ACM Symp. Princ.
of Prog. Lang., Munich, Germany, pp. 1-12, January 1987.

[MP95] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems:
Safety. Springer-Verlag, New York, 1995.

[MS00] Z. Manna and H.B. Sipma. Alternating the temporal picture for safety.
In U. Montanari, J.D. Rolim, and E. Welzl, editors, Proc. 27th Intl.

Collogq. Aut. Lang. Prog., vol. 1853, pages 429-450, Geneva, Switzerland,
July 2000. Springer-Verlag.

[RHO1] G. Rosu and K. Havelund. Synthesizing dynamic programming

algorithms from linear temporal logic formulae. 2001. Submitted for
publication.

[Tho90] W. Thomas. Automata on infinite objects. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, vol. B, pages 133—
191. Elsevier Science Publishers (North-Holland), 1990.

[Var96] M.Y. Vardi. An automata-theoretic approach to linear temporal logic. In
F. Moller and G. Birtwistle, editors, Logics for Concurrency. Structure

versus Automata, vol. 1043 of LNCS, pages 238-266. Springer-Verlag,
1996.

[Var97] M.Y. Vardi. Alternating automata: Checking truth and validity for
temporal logics. In Proc. of the 14" Intl. Conference on Automated
Deduction, vol. 1249 of LNCS. Springer-Verlag, July 1997.

17

