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Abstract

Explainability is emerging as a key requirement for autonomous systems. While
many works have focused on what constitutes a valid explanation, few have con-
sidered formalizing explainability as a system property. In this work, we approach
this problem from the perspective of hyperproperties. We start with a combina-
tion of three prominent flavors of modal logic and show how they can be used
for specifying and verifying counterfactual explainability in multi-agent systems:
With Lewis’ counterfactuals, linear-time temporal logic, and a knowledge modal-
ity, we can reason about whether agents know why a specific observation occurs,
i.e., whether that observation is explainable to them. We use this logic to formal-
ize multiple notions of explainability on the system level. We then show how this
logic can be embedded into a hyperlogic. Notably, from this analysis we conclude
that the model-checking problem of our logic is decidable, which paves the way
for the automated verification of explainability requirements.

1 Introduction

The increase in system complexity and opaqueness perceived in recent years has been
answered by a plethora of techniques aimed at providing some sort of explanation for
observed system behavior [2, 9, 47, 53]. While this demonstrates a need for systems
to be explainable, there is no formal theory to specify different notions of explain-
ability and to algorithmically verify them. In this paper, we make the claim that
hyperproperties, and their respective logics, are an excellent basis for such a formal
theory of explainability. We start from previous theories for individual instances of
explanations [25, 26], which combine counterfactual and epistemic reasoning. Besides
extending them to system specifications, we add temporal reasoning to specify explain-
ability on the possibly infinite executions of multi-agent systems. We use modal



operators for these three reasoning dimensions to express explainability requirements
such as:
D(ﬁoﬁer% ( \/ Ko (A B)O—y, oﬁer))) ,
a,BeAtt(a)

which we simply term Internal Counterfactual Ezxplainability (ICE). Interpreted in a
hiring system where some agent a applies to get a job offer, ICE states that, whenever
agent a does not get the offer (i.e., atomic proposition offer does not hold), they know
that if they had applied with some (other) attribute values a, 8 € Att(a), they would
have gotten the offer. We call this notion internal because it depends only on actions
performed by agent a themselves. The formula for ICE uses operators from all three
modal logics that we fuse together: It uses the temporal operator [J to specify that
the requirement holds at every time point and it uses the knowledge operator X, to
express that agent a has knowledge about some counterfactual dependency expressed
with the counterfactual operator &—,. Later on, we will use this logic to formalize
other aspects of explainability, such as weak, external, and general explainability. We
will also see how these notions discriminate between — intuitively — explainable and
unexplainable systems in Section 3. This appeal to intuition is without alternative:
There is no universally correct definition of explainability [33] and much depends on
the context and the agents involved. The strength of our modal-logic approach is
exactly that it provides a flexible specification language that can be applied to varying
contexts and definitions, while retaining a general model-checking algorithm.

Double-fusions of the three modal logics we consider have been studied extensively:
Epistemic temporal logic has been used in security for information-flow control [4, 24],
counterfactual temporal logic for expressing causal dependencies in reactive sys-
tems [15, 18], and counterfactual epistemic logics to characterize notions of rationality
in game theory [49, 52]. Our work brings these diverse frameworks together based on
the viewpoint that explainability is an intended flow of information about counterfac-
tual dependencies. This interpretation stands in the tradition of a long line of works on
individual causal explanations [5, 22, 26, 37]. With this paper, we shift the focus away
from the question of what constitutes a valid individual explanation toward analyzing
the abstract epistemic properties that the global system needs to fulfill such that an
explanation is available to an agent whenever it is needed. In short, we do not analyze
explanations, but explainability.

Knowledge and Counterfactuals.

The logic we consider is an extension of epistemic temporal logic, in particular of
Linear Temporal Logic (LTL) with the knowledge modality K (KLTL). We extend
KLTL with counterfactual conditionals as defined by Lewis [36], which we interpret
on paths of a multi-agent system.

We illustrate the semantics of these two modal operators in Figure 1. The epistemic
formula K, ¢ is satisfied at a given position of a given trace if all traces that are
indistinguishable for agent a satisfy ¢ (cf. Subfigure 1a). Indistinguishability is defined
based on the observation-equivalence =q,) that compares the prefixes of two traces
with respect to the observations of agent a. The Lewisian counterfactual ¢ O—, 9,
on the other hand, informally has the following meaning: “If ¢ had been true then
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(a) Semantics of the epistemic operator Kq.  (b) Semantics of the counterfactual O— .

Fig. 1: Tllustrating the semantics of the statements K, ¢ and ¢ O—, 1 on a set of
traces. The statements are evaluated at the second position of the trace w, which is
framed by the black square. The epistemic operator K, (cf. Subfigure 1a) requires ¢ to
hold at the same position on all traces 7’ with an observation equivalent prefix, i.e.,
where m =q,) 7’ is satisfied. These positions are covered by the area with diagonal
lines (colored red). In contrast, the counterfactual G>—, (cf. Subfigure 1b) requires
that the trace closest to p that satisfies , which is in this case p;p, also satisfies
at the same position. This is marked by the area with crossed lines (colored red and
blue). <y is used in the illustration to denote, e.g., (pn,pr) € X4 A (pr, pn) ¢ 27,
which means that p,, is strictly more similar to p than py.

might also have been true”. More formally, the counterfactual formula has the following
semantics: it holds on a position 7 of a given trace if one of the closest traces that satisfy
@ at i also satisfies 1 at i. These semantics are illustrated in in Subfigure 1b, where
there is in fact a unique closest trace to p that satisfies ¢, which also satisfies 1, such
that the counterfactual formula holds. Closeness of traces is modeled through a binary
similarity relation 3/ that defines whether some trace is at least as similar to p as
another trace. Our approach is parametric for varying agent-specific similarity metrics,
such that ¥¢ depends on agent a. This, in particular, allows to model different internal
causal models for different agents. We follow Lewis’ formulation of counterfactuals
and do not assume that there is a unique closest execution for every antecedent in
a counterfactual, which is often termed the limit assumption and endorsed by the
competing counterfactual theory of Stalnaker [51]. It has been noted in previous work
that this assumption is easily violated when combining counterfactuals and temporal
logics [18].

The combination of knowledge and counterfactual operators gives a specification
like ICE the following semantics: it holds at a given position if there is a combination
of attribute values v and 3 such that on all traces p that are indistinguishable for
agent a, making the minimal changes to the trace such that a A 8 holds results in a
trace where agent a gets the offer. The nature of the minimal changes is defined by the

similarity relation 3¢, i.e., the internal causal model of agent a. Hence, ICE requires



that on any trace agent a knows about some counterfactual explanation a A g for the
outcome offer whenever this outcome does not happen.

Ezxpressivity and Model Checking.

For the logic of the combined three modal systems, we construct a translation function
that maps formulas to sentences in first-order logic of order with an equal-level pred-
icate (FO[<,E]) [19]. This logic allows to quantify over tuples of traces and positions
and hence it is a logic for hyperproperties [12]. Our translation serves two purposes.
On the one hand, it is a first result on the comparative expressiveness of this logic in
relation to other hyperlogics, i.e., it places our logic for explainability into the hierar-
chy of hyperlogics [13]. On the other hand, it proves that model-checking formulas in
this logic on finite-state multi-agent systems is decidable, and provides an algorithm
via the proposed encoding into FO[<,FE]. As far as we know, this is the first positive
decidability result for model-checking of arbitrarily nested temporal and counterfac-
tual operators, as our earlier study relegated counterfactuals to top-level operators [18].
Moreover, this previous work did not include knowledge operators which are necessary
for formalizing explainability.

Contributions.

In short, we make the following contributions.

® We define a combined logic of counterfactuals, knowledge and temporal modalities
on the executions of multi-agent systems. This is an extension of our earlier work
that did not consider knowledge operators [18].

® We formalize multiple notions of explainability in this logic, demonstrate prac-
tically how they distinguish explainable systems, and theoretically study their
entailment relations.

® We outline a model-checking algorithm for this logic on multi-agent systems with
a finite state-space. This algorithm relies on an encoding into the hyperlogic
FO[<,E], which also yields some first insights into the comparative expressiveness
of our presented logic.

2 Preliminaries

We recall some background on extended Kripke structures as models of multi-agent
systems and on temporal, epistemic, and hyper logics as specification languages.

2.1 Multi-Agent Systems

We consider Kripke structures as the fundamental model of temporal logic. A Kripke
structure K = (5, sg, A, AP, A) is a tuple, where S is a set of states, sg is the initial
state, A : S — 29 is a transition function such that A(s) # () for all states s € S,
AP is a set of atomic propositions, and A : S +— 24F is a function labeling states with
atomic propositions. We call K a finite Kripke structure if the set of states .S is finite.
A path p = p[0]p[l]... € S¥ of a Kripke structure K is an infinite sequence of states
such that the transition function is respected: p[i+ 1] € A(p[é]) for all i € N. The trace



7 = 7[0]7[1]... € (247)* on a path p is the sequence of corresponding state labels, i.e.,
we have 7[i] = A(p[i]) for all i € N. Let II(K) denote the set of traces on initial paths
starting in sg, i.e., on p such that p[0] = so. For some trace w, 7[0,n] € S* denotes
its prefix of length n 4+ 1. We can extend a Kripke structure X with an observation
map  : A — 24F to reason about the local observations of a set of agents A. For
some agent a € A, Q(a) describes the set of atomic propositions that are observable
to agent a. For some trace 7 of K, Q,(7) € (247)% are the partial observations of
a along the trace: Qq(m)[i] = 7[i] N Q(a). We say £ = (K, Q) is finite if K is finite.
The set of traces of £ = (K, Q) is denoted II(E) = II(K). The set of extended Kripke
structures that satisfy some logical formula ¢ is denoted by Mod(y).

2.2 Epistemic Temporal Logic

The basis of our logic is KLTL, which extends Linear Temporal Logic (LTL) [44] with
a knowledge modality [17]. The syntax of KLTL is defined by the following grammar:

pi=plpleVelOpleUp|Kep |07 9 |UT ¢,

where p € AP is an atomic proposition and a € A is an agent. Additionally, KLTL
includes the following derived operators: Boolean constants (true, false) and connec-
tives (V, —, ), and the temporal operator ‘Eventually’ (O = trueUy) as well as
its dual, ‘Globally’ (O = <> ). The semantics of a KLTL formula ¢ with respect
to an extended Kripke structure & = (K,Q), a trace # € II(K), and a position i is
defined by the following satisfaction relation:

E,mikEDp iff p e nli],

E,mikE—p ift &m0k p,

EmiEpi Vs iff EmiEEVE T iFE @,

EmiEQp iff £, mi+1E,

EmiEeiUpy f Jbk>i:EmkE W AVi<j<k:EmjF g,
E,miFEKyp iff vr' e I(K) : (Qa(m)]0,1] = Qu(7)]0,1]) = &, 7', i E .

Hence, an agent a has knowledge of some property ¢, expressed through X, (), iff this
property holds on all observation-equivalent prefixes of the same length. These seman-
tics of the knowledge modality K, correspond to the so-called synchronous perfect
recall semantics [27, 40], which means that agents gain knowledge through distin-
guishing prefixes of different length and based on divergence at any point in the past.
System-level satisfaction is based on a universal application of the trace semantics:
E = (K, Q) satisfies ¢, denoted by & E ¢, iff for all traces m € TI(K) : €, 7,0 E p. We
denote the set of KLTL formulas over some alphabet AP by Lxrrr(AP).

Past-operators

Since an explanation for some effect is usually found in its past, we use KLTL with
temporal past-operators. We define these operators as usual in the literature [38].



Given an extended Kripke structure £ = (K, ), an initial trace 7 € II(K), and a
position i, we define the semantics of the past-operators as follows:

EmiEQO ¢ iff i>0AE mi—1FEp,
EmiE iU o iff dk<i:EmEEw AVi>j>k:EmjE @ .

The ‘Before’ modality O~ refers to a previous time point, we define it such that it is
trivially false at the start of a given trace. The ‘Since’ operator U~ is a mirror image
of ‘Until’ (U): It requires that po was true at some earlier time point k, and that ¢,
holds on all time points in between. We also add the derived past operators ‘Once’
(O w = trueU™ ), as well as its dual, ‘Historically’ (O~ ¢ = -7 o).

3 In-Depth Example

We illustrate our approach for specifying explainability at the example of a simplified
hiring system consisting of two agents: Applicant and Recruiter. The high-level idea
is that, in every round, Recruiter chooses their preferred values for two attributes job
and gender, and Applicant chooses the attribute values with which they apply in that
round. Applicant gets an offer in some round if their attributes match Recruiter’s
preference. The hiring goes on infinitely, such that Applicant effectively models a
stream of applicants applying at the company. The difference between the explainable
and unexplainable version of the hiring system is that in the former, the preference
of Recruiter is observable to Applicant, while it is hidden in the latter, unexplainable
hiring system. Crucially, in both versions Applicant and Recruiter fix their attributes
concurrently, such that in the explainable hiring scenario Applicant only observes
Recruiter’s preference after the decision. This means that the outcomes Applicant
can enforce are the same in both scenarios, e.g., in neither scenario Applicant has a
strategy that ensures that they will eventually get an offer. What is different, however,
is that in the explainable hiring system Applicant gains knowledge on why exactly
they did not get the offer in some round, while in the unexplainable system Applicant
only knows that they should have done something differently.

3.1 Hiring System Model

To develop this hiring example more formally, consider the following Kripke struc-
ture K = (S, sg, A, AP, A) underlying both the explainable and unexplainable hiring
system. The set of states S is determined by the different values the attributes of
Applicant and Recruiter may have:

S = {(ajob,agen,rjob,rgen) | @job, Tjob € {accounting, sales, it}
A CLgenargen S {mvf}} U {30} )
where sq is a unique initial state. Since every round is effectively a new, closed hiring

process, the transition function A connects every state with itself and every other
state, i.e., A(s) = S for all s € S, so that the underlying graph is fully connected.



The set of atomic propositions resembles the attribute choices of the two agents.
For some agent z we define the corresponding attributes with the function Att™:

AttT (z) = {z, | v € {accounting, sales, m, f}} |
AP = Att*(a) U Att™ (r) U {offer} .

For the specifications we sometimes need both positive and negated atomic
propositions for attributes, which is covered by the function Att:

Att(z) = Attt () U {-p|p € Attt (2)} .

The labeling function A labels each state with the attributes picked by the agents,
and with offer if they are matching. The initial state is labeled with the empty set:

A(so) ={}, Al(z,y,v,w)) ={az,ay,rs, 7w} U{offer |z =vAy=w} .

The unexplainable hiring system U = (K, Q") differs from the explainable one
& = (K,Qf) only in the observation map. We have for an agent x € {a,r}:

O (z) = AP = Att™ (a) U Att™ (r) U {offer}, QY(z) = Att™(z) U {offer} .

Hence, in the explainable hiring system Applicant can observe the preferences of
Recruiter (retrospectively), while in the unexplainable hiring system this information
is hidden.

As discussed in Section 1 with reference to Figure 1, the semantics of counterfac-
tuals are defined with respect to a similarity relation ,, which — intuitively speaking
— encodes the minimal changes that are necessary to go from one trace to another,
based on the intenral model of agent a. We now give a concrete similarity relation for
the application scenario. Here, we only define a relation for Applicant as the proper-
ties we consider contain only counterfactuals indexed by a. A trace 7y is at least as
similar to the reference trace 7w at a given time point ¢ as some other trace mo from
the perspective of agent a, if the following formula holds at i, where pairs with the
trace variables m, 71, mo are used to refer to atomic propositions on a specific trace:

S(a)(m,m1,m2) = O ( A7) 5 (0.70) = ((0.7) # (py72) ) A

peEA

0 (A # pm) = (0.7) # (.72)))

peEA

where A = Att™(a) U Att™ (r). Detailed semantics of this relational property follow in
Section 4.2. In the formula, the ‘Historically’ operator (I~ is the past-time version of
the ‘Globally’ operator [J, which imposes a constraint on all previous time points in
a trace. Combined with the regular ‘Globally’ operator, the above formula expresses
that the specified requirement does not only hold in the future but also in the past.
Note that the past-operator’s detailed semantics are given in Section 4. The specified



requirement that is invariant in both past and future states that changes between
the reference trace m and the at least as similar trace m; also have to be present in
the less similar trace my. The changes between 7 and mo can be a proper superset of
the changes between m and 71, but it may also be that 7, and 75 are identical. Such
subset-based similarity has been applied in many notions of causality [14, 15, 25]. We
will see examples of tuples of traces that are in the similarity relation in the following.
Take note that formulas encoding the similarity relation are KLTL formulas over a
modified alphabet, i.e., the alphabet is AP x IT where II is a set of trace variables.
This is because the similarity relation needs to relate three traces with each other: it
is a hyperproperty [12].

3.2 Semantics of Explainability

To see how the explainability requirement specified by ICE (cf. Section 1) discriminates
between these two hiring systems, consider the following infinite trace m € K, which
is present in both systems:

™= {}{ait; af7rsalesarf}{}w .

The w-superscript indicates that this part of the trace is repeated infinitely often, i.e.,
in this case the trace ends up looping in the initial state. Let us now check whether
trace 7 satisfies the requirement posed by ICE. Hence, we now check the semantics that
we described abstractly in Section 1 with respect to Figure 1 for this specific trace m.
The ICE requirement states that at all positions where offer does not hold, the knowl-
edge predicate K, ((a A 8) O—, offer) has to hold for at least one pair of attributes
a, B € Att(a). By the semantics of K, this is the case if the counterfactual conditional
(a A B)O—, offer holds at this position on all traces that are indistinguishable for
Applicant (cf. Subfigure 1a). Now, consider the second position of m. Here, offer does
not hold. The set of traces with an observation equivalent prefix are all traces 7’ such
that Q,(7)[0,2] = Q4(7')[0,2]. For the unexplainable hiring system N we can now
show that, no matter which pair of attributes «, 8 and corresponding counterfactual
conditional (aAB) O—, offer we choose, there will always be an observation-equivalent
trace such that the counterfactual does not hold (cf. Subfigure 1b for the semantics
of the counterfactual conditional). For example, assume we pick the pair asqes and
ay, i.e., attributes for Applicant that match the preference of Recruiter on the second
position of trace 7. The counterfactual conditional (asqes A ay) O— 4 offer does in fact
hold on 7 at the second position, since there is the (unique) closest trace satisfying
Qsales N\ af that also satisfies offer, namely:

= {}{a5a1637 af,Tsales; T'f» Oﬁe’f‘}{}w .

However, there also exists an observation-equivalent trace such that the same coun-
terfactual conditional does not hold. This is a trace where Recruiter picks a different
preference at the second position. Since Recruiter’s preference is unobservable by



Applicant, this yields the following observation-equivalent trace

' = {}{ait7 af, Taccounting s Tf}{}w )

that does not satisfy (asazes Aay) O—, offer, since the (unique) closest trace satisfying
Gsales N\ Qf 1S:

" = {Hasates» af, T accounting, T {1

where offer does not hold at the second position. The crux now is that in the unexplain-
able system we can find such an observation-equivalent trace for any counterfactual
conditional in ICE’s formula, since the preference of Recruiter is not observable by
Applicant, and hence may be modified freely in observation-equivalent prefixes. In con-
trast, the same does not work in the explainable hiring system &£ since Applicant can
observe Recruiters preference and, hence, observation-equivalent traces are restricted
to have the same preferences picked by Recruiter as in 7. In particular, this means that
7'" is not an observation-equivalent trace with respect to 7 in the explainable system.

3.3 Flavors of Explainability

We have seen at the example of ICE how our logic uses the formalisms of counter-
factual, epistemic and temporal logic to express a certain explainability requirement.
Yet there are other conceivable notions of counterfactual explainability that can be
specified in this logic.

3.3.1 Weak Counterfactual Explainability

It may, for instance, not be necessary that Applicant knows the exact attributes which
would have resulted in an offer, but instead only that there were some attributes that
would have let to an offer. This is specified by the following formula:

O (ﬁoﬁer — K, ( \/ (a A ﬁ)) O—, offer ) ,

a,BeAtt(a)

which we term Weak Counterfactual Explainability (WCE). Based on the semantics of
the knowledge operator, it is easy to see that ICE is the strictly stronger requirement.
This yields the following proposition.

Proposition 1. ICE is strictly stronger than WCE, i.e., the models of ICE are a
strict subset of WCE’s models: Mod(ICE) C Mod(WCE).

3.3.2 External Counterfactual Explainability

Both ICE and WCE require that Applicant is by themselves able to bring about the
consequent of the counterfactual, and this is indeed the case in both the explainable
and unexplainable hiring system presented in Section 3.1. This can be used to for-
malize actionable counterfactual explanations [45], i.e., counterfactual explanations



that range over only attributes under the control of the agent receiving the explana-
tion. However, consider an alteration of the explainable hiring system where Applicant
cannot obtain the qualifications for accounting, while this may still be Recruiter’s
preference. Hence, formally we modify the state space to obtain the modified Kripke
structure K’ follows:

S" = {(ajobs Agen, Tjobs Tgen) | Tjob € {accounting, sales, it} A ajop € {sales, it}
N Qgen,Tgen € {maf}} U {50} :

The resulting hiring system & = (K',Q¢) does not satisfy ICE, as, e.g., none of
the counterfactuals in the formula hold at the second position of 7" as defined in
Section 3.2. This is because only Recruiter can induce the necessary change by chang-
ing their preference. Since Recruiter’s preference is observable to Applicant, it may
still be reasonable to include explanations that Applicant can deduce from these obser-
vations, but may be out of their control, i.e., external explanations. This yields the
following criterion which we term General Counterfactual Ezplainability (GCE), which
encompasses both internal and external explanations:

D(ﬁoﬁer—> ( \/ K, (A B)O—y, 0ﬁer))) ,

a,BEAtt(a,r)

where Att(a,r) = Att*(a) U Att*(r). Since the subformulas in the central disjunction
of GCE subsume the ones present in ICE, it is again easy to deduce that the former
is a strict relaxation of the latter. The strictness is witnessed by the modified hiring
system &’ discussed before.

Proposition 2. ICFE is strictly stronger than GCE.

In this section, we have seen how our logic allows to formalize certain intricacies
of different notions of explainability that pertain to questions such as: Does an agent
know which exact actions explain some observed outcome? And are these actions solely
under the control of the agent, or dependent on other agents, too? The logic provides
an ideal basis to formalize these intricacies and construct a taxonomy of explainability
that discriminates between, e.g., weak and internal explainability. In the following
sections we introduce more such notions of explainability based on our logic.

4 A Tri-Modal Logic for Explainability

We now outline the formal semantics of the logic. We will use the shorthand YLTL to
refer to the logic, which stands for whY Linear-time Temporal Logic. The structure of
the Y also represents that the logic is a fusion of three modal logics. First, we present
the syntax and semantics of YLTL. Afterward, we will study the model-checking prob-
lem of YLTL. We then outline a decision procedure for finite-state model checking
based on translating YLTL formulas into FO[<,FE].

10



4.1 Syntax

YLTL is an extension of KLTL with the original counterfactual operators [36] and
counterfactuals for non-total similarity relations [18]. This yields the following syntax
for our logic YLTL:

pu=p|l-@|leAp|Op|eUe|Kip| (KLTL)
O ¢|U ¢ (past-operators)
e e ¢ | eErap (counterfactuals)

where again p € AP is an atomic proposition and a € A is an agent. YLTL inherits
all of the derived operators of KLTL with past operators, as well as the counterfactual
operators ‘Might’ (¢ O—, ¥ = —(pO—4 ")), a dual to ‘Would’, and ‘Existential
Might’, a dual to ‘Universal Would’ (¢ &—, ¥ = ~(pE>, ).

We use Lewis’ counterfactuals as predicates for causal reasoning because they are
a common basis for a wide array of counterfactual causality definitions. While a more
refined notion of causal predicates may be desirable, the literature is still divided
on what refined notion generalizes to more than a few examples. Further, refined
notions, such as actual causality, can often be encoded with counterfactuals [18]. We,
therefore, hypothesize that an agent’s desired explanation can always be expressed by
Boolean combination of counterfactual dependencies with respect to the agent’s sim-
ilarity relation, which is covered by our logic. For instance, actual causality combines
counterfactual reasoning with a minimality criterion [25]. We can require minimality
of the counterfactual antecedent by enumerating all subformulas, i.e., for a specific
antecedent a A 8 we can extend the formula (a A 8) O—, offer in ICE to:

(a A B)O—, offer A =(aO—, offer) A =(B—, offer) .

4.2 Semantics

YLTL inherits the semantics of all shared operators from KLTL, such that we only need
to define the semantics of the past-operators and counterfactuals. Since the semantics
of counterfactuals rely on a similarity-based analysis, we need to extend the extended
Kripke structures of KLTL further to accommodate for the agent’s similarity relations.
Hence, the semantics of a YLTL formula is defined with respect to an similarity-
extended Kripke structure £T = (K,,Y). Here, ¥ denotes the similarity map ¥ :
A (I xTIIxII+— LxprL(AP x II)) which provides a relational KLTL formula
ranging over pairs of atomic propositions AP and trace variables II.

4.2.1 Similarity Map

The similarity map 3 defines the similarity relations of the different agents, each with
a (relational) KLTL formula. We first define the zipped trace z(my,m2,73) of three
traces T 23 € (247)% as follows for all i € N:

z(m1, ma, m3)[i] = {(a, 7)) € AP xII | a € my[i]} .

11



The zipped trace simply fuses the three traces together while enriching the atomic
propositions with the information on which trace they originate from. This now allows
us to evaluate the formula obtained from the similarity map on the zipped trace,
as a way to characterize the underlying similarity relation. We denote the similarity
relation of some agent a € A as X, and define it as:

Yo = {(m1,m2,m3) | 2(m1, 72, 73) E X(a)(m1,m2,m3)} .

Hence, three traces are related in the similarity relation of agent a if and only if their
zipped trace satisfies the formula specified by the similarity map for agent a. We require
the similarity relation to satisfy some assumptions, which we specify for the two place
relation X7 = {(m,m2) | (7,71, 7m2) € .} as in Lewis’ original work [36]. Crucially,
we allow X7 to be non-total like in our recent extension [18]. With this, we ensure that
subset-based similarity relations like the one described in Section 3 and used, e.g., for
actual causality [25], can be handled by our logic. We require X7 to be a preorder
with 7 as a minimum: V7' : (m,7’) € X7 — (7', 7m) € X7, i.e., if a trace is not at least
as far from 7 as 7 itself, it is not related to 7 in X7, and hence inaccessible. We can
also use the similarity relation to encode Lewis’ notion of inaccessibility by simply not
relating inaccessible traces, as we have relaxed it to a non-total relation which allows
such non-ordered pairs. In the following section we will outline the consequences this
relaxation has on the semantics of the counterfactual operators, and how to alleviate
these with two additional operators with modified semantics.

4.2.2 Counterfactuals

We can now proceed to specify the semantics of the counterfactual operators, for which
we apply a similarity-based analysis [36]. Lewis defines counterfactuals as variably
strict conditionals, which in multi-agent systems we interpret to mean that to hold on
a specific trace, the consequent needs to hold in the closest accessible traces satisfying
the antecedent. This now standard semantic treatment of counterfactuals in particular
means that they cannot be expressed by a universal modality combined with a condi-
tional, i.e., as Lewis argues, the semantics cannot be expressed with the usual universal
modal operator. In our setting, this means that their semantics cannot be modeled
with a knowledge operator and a conditional, i.e., K,(p1 — 2) is not equivalent to
10— @2. Instead we define these counterfactuals in accordance with Lewis’ origi-
nal modal treatment. This results in the following semantics for a similarity-extended
Kripke structure €T = (K,Q,¥), an initial trace 7 € II(K), and a position i:

EY miE 1O apa iff (1) VA € TI(K) : (m,7') € ST = EX 7' ik o1 V
(2) 37 e I(K) : (m, 7)) e DT ANET, 7' i E @1 A
v e I(K) : (7", 7') € BT — EY 7" i E (01 — p2) .
Condition (1) represents a vacuity condition such that the ‘Would’ counterfactual

holds on a trace 7 if there are no accessible traces where the antecedent ¢ holds. It
is easy to see how the quantification is restricted to traces that are related to 7 in the
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similarity relation, i.e., traces that are accessible from =, through the implication after
each universal quantifier and the conjunction after the existential quantifier. Condition
(2), in principle, encodes the idea that on all closest counterfactual traces where ¢
holds, ¢9 holds as well.

Infinite Chains of Closer Traces.

The complex nested quantification comes into play when there is no unique closest
trace for some antecedent, as illustrated in the following example with an infinitely
descending chain of progressively more similar traces.

Example 1. Consider the same similarity relation as used in the erample from
Section 3, where A = Att™(a) U Att™(r):

S(a)(m,m,m) = O (A7) # () = ((0,7) 4 (9,72) ) A

pEA

0 (A7) # (.m) = (0.7) # (. 72) )

peEA

and the trace {p}*. We are interested in the counterfactual (-OOP)O—a T, in a
structure that contains all traces over the alphabet {p}. In this situation, we have an
infinite chain of traces that satisfy (-0 p), i.e., {3, {pH}¥, {pH{p}H}¥, etc. Hence,
we cannot evaluate the consequent in a particular unique closest counterfactual trace,
but instead need to make use of Lewis’ elegant semantics for counterfactuals without
the so-called limit assumption: We are looking for an accessible threshold trace ©', such
that all at least as close traces ' that satisfy the antecedent also satisfy the consequent.

Figure 2 abstractly illustrates these semantics on infinite chains of closer traces.
In Subfigure 2a, we can see how the counterfactual ¢p[J—, 1 requires a continuous
chain of traces satisfying v as soon as we move up the similarity relation from traces
that satisfy —p to traces that satisfy ¢, starting from the reference trace w. This
is realized through the JV-quantifier alternation that requires a trace satisfying ¢
such that all closer traces satisfying ¢ also satisfy 1. In contrast, the counterfactual
o O—, ¥ requires for all traces satisfying ¢ at least one closer trace satisfying 1) — even
on infinite chains. This is realized through a V3-quantifier alternation and depicted in
Subfigure 2b.

Non-Total Similarity Relations.

Unlike in Lewis’ original account, we allow a similarity relation X7 of some agent a to
be non-total. As a consequence, Lewis’ original semantics yield some rather unintuitive
inferences [18], which we illustrate in the following example.

Example 2. Consider again the similarity relation as defined in Section 3 and recalled
in the previous Example and the trace m = {}*, with the counterfactual (pV q) =4 p,
in a structure that contains all traces over the alphabet {p,q}. We depict m and three
other traces with their comparative similarity in Subfigure 2c. The counterfactual is
satisfied by w, as we have the closest counterfactual trace p = {p}{}* as a witness for
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(b) Semantics of the counterfactual ¢ O—, . (c) Non-total similarity relation.

Fig. 2: Lewis’ original semantics for the counterfactuals [3—, and $—, are illustrated
in Subfigures 2a and 2a, respectively. Arrows and point depict traces that are ordered
in ascending similarity to m and p, respectively, according to the similarity relation
>s, - Subfigure 2c highlights problems when evaluating the counterfactual ¢ [—, ¢
in a non-total similarity relation. Here, circles represent full traces such as ¢ or =,
while arrows indicate that two traces are ordered by the similarity relation <y~. In
all subfigures, areas with diagonal lines (colored red) indicate that the covered traces
satisfy o, while crossed lines (colored red and blue) indicate that the traces satisfy 1.

the existential quantifier in Condition 2 of the semantics of (. However, this does
not match the intended semantics of the ‘Would’ counterfactual. The counterfactual
s supposed to express that the consequent p holds on all closest counterfactual traces.
However, there is the closest counterfactual trace o = {q}{}*“ that does not satisfy p.

The problem with Lewis’ original semantics in non-total similarity relations is
that the existential quantifier in Condition 2 implicitly also automatically quantifies
existentially over the unrelated chains of at least as similar traces in the similarity
relation. In Example 2, these (in this case finite, but in general possibly infinite) chains
are, on the one chain, the trace changing p and, on the other chain, the trace changing
q. These traces with single changes are incomparable with each other regarding their
similarity to the reference trace {}*, while the trace that changes both p and ¢ is
comparable to both of these traces that change only single atomic propositions (it is,
of course, less similar to {}* than both of the traces). However, since the trace with
the single changes already satisfy the antecedent of the counterfactual, they have to
be considered as possible threshold traces for Lewis’ criterion. However, the implicit
existential quantification allows the semantics to ignore whole chains (in this case
the chain with {g}{}*), which then do not need a threshold trace satisfying Lewis’
criterion.

In earlier work [18], we proposed an alternative counterfactual operator which we
include in YLTL. The operator is called ‘Universal Would’ counterfactual, because
the semantics are based on universal quantification over the chains of the similarity
relation as follows, again for a similarity-extended Kripke structure £¥ = (K, Q, X)),
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an initial trace m € II(K), and a position i:

EX miE piE=a o iff (1) Va €e(K): (7, 7)) €XTAET, 7'ikE @ —
(2) In" € I(K) : (7", 7") € ST AET, 7" i E 1 A
vr'” e TK) : (7", 7") € BT = &1 7" i E (o1 — @2) .

Intuitively, this operator lifts Lewis’ semantics of the ‘Would’ operator to non-total
similarity relations by applying it to every chain in the relation. This is achieved by
prepending the non-vacuous condition of Lewis’ definition for [}—, i.e., Condition 2,
with a universal quantification that effectively quantifies over chains of traces (Condi-
tion 1). The semantics of Lewis’ vacuity condition is then also directly captured by the
initial universal quantification and the implication, such that we do not need the same
disjunction as in Lewis’ definition for [}—. For every chain with at least one coun-
terfactual world not satisfying o1, the same requirement as posed by Lewis’ original
‘Would’ counterfactual has to hold: the threshold trace is 7" bound by the existential
quantifier, and this threshold trace has to be found on the same chain that the uni-
versally quantified 7’ is on. Consequently, there has to be a threshold trace on every
chain containing a trace that satisfies ¢ that is accessible from 7. Local vacuity is
still allowed, i.e., a whole chain without a single trace satisfying ¢; does not need a
closest trace satisfying ¢s.

Example 3. To see how this semantics fizes the problem raised in Example 2, con-
sider again the trace {}*, with the counterfactual (p V q)0—4p, in a structure that
contains all traces over the alphabet {p,q} and under the same similarity relation used
in Section 3 (with this new alphabet). The problem is that Lewis’ existential quantifier
allowed us to choose between the traces {p}{}* and {¢}{}* as a witnessing counterfac-
tual world. However, if we use the stronger ‘Universal Would’ operator (pV q) =4 p,
the universal quantifier requires us to find a witnessing counterfactual operator on
every chain. Since there is no at least as close trace ©" that satisfies p for the trace
{¢}{}¥, we have that (p V q)E—4p is not satisfied on the trace {}* in this scenario.
This is as desired, because p does not hold on all of the closest traces satisfying pV q.

4.2.3 Agent-Specific Similarity

A key feature of our counterfactuals is that their semantics are defined with respect
to a specific agent’s similarity relation. This represents that agents may have different
internal models about the causal workings of the system. For instance, in the hiring
system described in Section 3 it may be sensible that Applicant does not consider
counterfactual scenarios where their gender attribute is different from the actual trace.
An explanation based on such counterfactuals would not be actionable [45], and may
hence be undesired in many cases. Actionable explanations range only over actions and
attributes that are fully under control of the agent receiving the explanations, which
clearly is not the case for the gender attribute. Whether an antecedent is actionable or
not highly depends on the scenario and the agent at hand, which motivates our flexible
formalism of agent-specific similarity relations. With YLTL, such requirements can
then be encoded by making, e.g., the traces with a modified atomic proposition agen
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inaccessible from the reference trace in the similarity map X’ for agent a as follows:

Z’(a)(w, 71, 772) = E(a)(ﬂ-a 1, 71-2) ANO (agen; 77) x4 (agen; 771) A (agena 7T) And (agena 7T2>
N D(agenaﬂ—) <~ (agenaﬂ—l) A (agenaﬂ) <~ (agen77T2) .

Here, we use the previous similarity relation ¥(a)(m, 71, m2) defined in Section 3.1.
Recall that the idea of that relation was that the changes between the actual trace 7
and the closer trace m; are a subset of the changes between the actual trace m and the
farther trace mo. X/(a)(m, T, T2) now requires age, to be the same on all three traces,
which means traces of the system that change age, are not related, hence inaccessible.
This makes explainability specifications such as ICE harder to satisfy.

Yet, other agents such as Recruiter may still consider counterfactual traces where
the attribute age,, is modified, i.e., their similarity relation is ¥'(r) = X(a). As a result
we have that the explainable system & = (K, Q, ¥') where all atomic propositions are
observable by both agents does not satisfy ICE from the point of view of Applicant,
but does satisfy ECE, i.e., Eaternal Counterfactual Explainability, from the point of
view of Recruiter, where ECE is formalized as follows:

D(ﬁoﬁer% ( \/ K. (@A B)O—, oﬁer))) .

a,BEAtt(a)

Note that since both agents can observe the same atomic propositions, and hence X,
and K, are in principle interchangeable, this difference is completely due to the fact
that there are some «, 8 € Att(a) for every position ¢ such that the counterfactual
conditional (a A 8) O—, offer holds, while this is not the case for the counterfactual
(a A B) O—,. offer that refers to the similarity relation of Recruiter.

4.3 Model Checking

In this section, we develop an approach to automatically verify whether a given sys-
tem satisfies a YLTL specification. Our results apply to systems defined by finite
similarity-extended Kripke structures. Under this assumption, we can then show the
decidability of the YLTL model-checking problem by reducing it to model checking of
an equivalent formula in Extended Monadic First-Order Logic (FO[<,E]). This is a
decidable problem [13; 19], and we now outline this logic as a preliminary.

Extended Monadic First-Order Logic

FO[<,E] is the monadic first-order logic of order (FO[<]) extended with the equal-
level predicate E [19] for expressing hyperproperties [12], i.e., properties that relate
multiple executions of a system to one another. For a predefined set V' of first-order
variables, the syntax of FO[<,F] is defined by the following grammar:

pr=1[-p|eVe|dr
pu=Py(x) |z<y|lz=y|Exy) ,
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where p € AP is an atomic proposition and x,y € V are first-order variables. An
FO[<,E] formula is closed when all variables are bound by a quantifier. FO[<,E]
formulas are interpreted over a set of traces II. The first-order variables range over
the domain IT x N. The order < is now only interpreted over variables referring to the
same trace: <:= {((m,n1),(m,n2)) € (Il x N)? | n; < na}. The equal-level predicate
holds if two variables refer to the same position in (possibly) two different traces:
E == {((m,n),(m2,n)) € (Il x N)?}. The predicate P, encodes the truth-value of
atomic propositions: P, = {(m,n) | p € m[n])}. We say that a closed FO[<,E] formula
 is satisfied by an extended Kripke structure &£, denoted by £ F ¢, iff ¢ interpreted
over II(K) is true.

We now outline our result on YLTL model checking. This utilizes a translation func-
tion fo described in the proof of the following Lemma. The translation mirrors the idea
used to translate LTL into first-order logic defined in Kamp’s seminal theorem [30],
which we extend for the knowledge operator and the counterfactuals, and for this we
use the equal-level predicate provided by FO[<,E].

Lemma 1. For every YLTL formula ¢ there exists a formula in FO[<,E] ¢©' that
characterizes the same set of models, i.e., such that Mod(p) = Mod(¢').

Proof. The proof relies on a linear translation fo from YLTL to FO[<,E]. We will use
syntactic sugar for successors and minimal positions: succ(x,y) == x < y A—-Jz.x <
z < y and min(z) = —3Jy. succ(y,z). In the end, the FO[<,FE] formula proving our
claim is obtained from ¢ by

fo(p) == Vxg. min(zg) — fo(p,xg) . (1)

The FO[<,E] formula fo(p,xo) is constructed inductively based on the current sub-
formula of the YLTL formula ¢ (ranging over a set AP) and the current time-point of
interest encoded in the second argument, which is initially o but may change through
trace quantification from, e.g., epistemic operators. Recall that the first-order variables
of FO[<,E] are in fact tuples (m,n) € II x N of a trace variable and a position, let
us denote for some tuple x; = (m,n): 4|y = 7 and x¢|s = n for projecting to the
components of the tuple. Note that ¢ technically includes atomic propositions from the
set AP U (AP x II) since we also need to translate the KLTL formulas obtained from
the similarity map, which range over tuples of atomic propositions and trace variables.
These tuples from AP X II are unrelated to the first-order variables (w,n) € II x N
and become relevant only when translating counterfactual operators. We start with
the simpler cases, for which the construction of the FO[<,E] formula is as follows.

fo((p,m),21) = Bp((m,242))

fo(p, ) = Py(z¢)

fo(=ep, 1) = ~fo(p, 1)

fo(p1 Vo2, a1) = folpr,a1) V fo(p2, 24)
fo(Op,x¢) = 3z succ(zs, 1) A folp, x))
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fo(O™ w,xt) = Fx; . suce(zy , ) A fo(p,xy)
fole1Upa,x) = Axo > x4 fo(pa, a) A (V1. 20 < 21 < 29 — fo(p1,21))
Jo(p1 U™ @2, 2¢) = 3y <. fo(pa,x5) A (Voy.mp >y > 9 — fo(er,27))
fo(Ka ¢, 1) =Vao. E(ze,x) N (Vo 2y 2] <xe A xp <z ANE(x],2;) =
N Polal) & Poa)) = fo(p,xe)
pE(a)

The most involved formulas are obtained from translating the counterfactual opera-
tors. Note that the expression X (a)(x¢|1, 2|1, Ze|1), ) that appears throughout the
formulas simply denotes the KLTL formula characterizing the similarity relation of
agent a, where the parameters are in this case instantiated by the trace variables of
x¢ (twice) and of z.. This double instantiation results from encoding accessibility via
the similarity relation. The translation for the counterfactuals proceeds as follows.

fo(p10—a 92, 7¢) = (Vae. E(xe, ) A fo(E(a)(e]1, Tel1, ze|1), 2) — —fo(1,we))
V 3ze. E(ze, xt) A fo(X(a)(e]1, |1, Te|1), xe) A fo(pr, Te)
AVze.fo(E(a)(@i]1, Tel1, Telr), ©) = (folpr, ) — fo(p2,we))

fO(SDl E_>a @271'25) = (V$a.E($a,$t) /\fo(z(a)(xthaxthaxa‘1)71’t) /\fo((plaxa)
= Ave B(we, x4) A fo(3(a)(we]1, Telr, Tal1), 7)) A fo(p1, Te)
/\V:cc.fo(E(a)(xth,xc|1,xe\1),xt) - (fO(SDl»fUc) —>f0(Q0271'C))

Note that this function is well-defined only because we do not allow formulas from
the similarity map to themselves include counterfactuals. Otherwise, the translation
function could include a circular dependency where translating a counterfactual oper-
ator requires translating a similarity relation which in turn again requires translating
a counterfactual and so on.

In the end, the equivalence between fo(¢) and ¢ (cf. Equation 1) can be shown by
structural induction over . O

While Lemma 1 alone is just a statement about comparative expressiveness, it
also indirectly provides us with an algorithm that given a system as a finite Kripke
structure and a specification as a YLTL formula automatically verifies whether the
systems satisfies the formula. This is quite remarkable as previous results for model
checking logics that combine temporal operators and counterfactuals only considered
counterfactuals as top-level operators [18]. Compared to this work, we lose the ability
to express w-regular temporal properties, but gain the ability to nest counterfactuals
and temporal operators, and additionally include knowledge operators. While nesting
counterfactuals is mostly of theoretical interest, the additional knolwedge operators
are crucial for expressing explainability. To the best of our knowledge, we present
the first algorithm for model checking a logic that combines temporal operators and
counterfactuals arbitrarily.
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Theorem 1 (YLTL Model Checking). There is an algorithm that, given a finite
extended Kripke structure € and o YLTL formula @, checks whether € E .

Proof. In Lemma 1 we have shown that we can construct an equivalent FO[<,E]-
formula ¢’ for the YLTL formula ¢. Since FO[<,E] is strictly less expressive than
HyperQPTL (LTL with trace and propositional quantifiers) [13], and there is a model-
checking algorithm for HyperQPTL [46], the claim follows immediately. O

The existence of a model-checking algorithm is what makes our logic useful in
practice: Not only is it possible to express several notions of explainability, it is also
possible to automatically verify them. While an exact complexity analysis of model
checking YLTL is out of scope of this paper, it should be noted that the complexity of
the current encoding is non-elementary, with the tower of exponents scaling with the
number of nested counterfactuals and knowledge operators. However, this is not worse
than the complexity of model checking just knowledge and temporal operators [8].
Moreover, in practice, we are mostly concerned with formulas that have only a few
nested operators, as is the case for all of the explainability requirements formalized in
this work.

4.4 Side Result on the Expressiveness of KLTL

Besides providing an algorithm for model checking YLTL formulas, Lemma 1 also
includes a translation from KLTL to FO[<,E] that was loosely described earlier by
Hofmann [28]. This translation shows that FO[<,E] subsumes KLTL. We now outline
how we can combine this with a result from Bozzelli et al. [7] to show that KLTL is
strictly less expressive than FO[<,E]. For completeness, we also recall some results
regarding the comparative expressiveness of KLTL and HyperLTL (LTL with quantifi-
cation over traces), as well as HyperQPTL (HyperLTL with propositional quantifiers).
As a reference, the syntax of HyperQPTL is build according to the following grammar:

= 3m | Ve | Ipw | Yy | ¢

where p is a fresh atomic proposition and 7 is a trace variable. ¢’ is an LTL formula, i.e.,
build according to the grammar of KLTL (Section 2.2) without the knowledge operator
and past-time operators. The syntax of HyperLTL can be obtained by removing Vp. 1
and dp. 1 from the above grammar of HyperQPTL.

Previously, Bozzelli et al. [7] have shown that KLTL’s expressiveness is incompara-
ble to the expressiveness of HyperLTL. Rabe [46] showed that KLTL can be encoded in
HyperQPTL and Hofmann described that this encoding can be adapted for FO[<,E],
which we have confirmed in the proof of Lemma 1. Combined, these results mean that
KLTL lies strictly further down in the hierarchy of hyperlogics.

Theorem 2. FO[<,E] is strictly more expressive than KLTL.

Proof. Lemma 1 shows that FO[<,E] is at least as expressive as YLTL, and since
YLTL subsumes KLTL trivially, it follows that FO[<,E] is at least as expressive as
KLTL. It therefore only remains to show strictness. Strictness follows from previous
results: (1) the proof that KLTL does not subsume HyperLTL presented by Bozzelli et
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Fig. 3: KLTL’s exact place in the hierarchy of hyperlogics. The result of Theorem 2
is highlighted in bold.

al. [7] and (2) by the subsumption of HyperLTL through FO[<,E] shown by Coenen
et al. [13], as follows: (1) Bozzelli et al. provide the following HyperLTL formula that
cannot be expressed in KLTL:

o =37 37’ .pr U ((p,r A =pa ) AOO(px < pﬂ/)) .

The intuition behind their proof is that KLTL cannot compare two different traces at
an unbounded number of positions. We refer to the full version [6] of Bozzelli et al.’s
paper for the detailed proof. With (2), we know that there exists an FO[<,F] formula
©fo that is equivalent to wr. @y, is then not expressible in KLTL, which proves the
claimed strictness of the inclusion. O

5 Related Work

There is a long line of works on combining modal logics [11]. In this section we focus
only on works related to combinations of counterfactual, epistemic and temporal oper-
ators, which have been combined in pairs for a variety of applications. A connection
between knowledge and counterfactual dependencies in the situation calculus has been
drawn by Khan and Lespérance [31]. This has been extended to define explanations
for agent behavior [32], in particular accounting for theory-of-mind reasoning. Con-
trary to these works, we focus on explainability as a system property and provide an
approach for verification, but we also appeal to theory-of-mind reasoning with our
agent-specific similarity relations, which allow to model the internal mental states
of the agents. Knowledge and causality have been combined to reason about decep-
tive AI [48]. Counterfactuals and the knowledge modality have also been combined
to express hypothetical knowledge [23] and rationality [49, 52] in game theory. Liu
and Lorini [39] study modal logics for defining individual explanations for classifiers,
and Aguilera-Ventura et al. [1] have recently studied grounding similarity relations for
counterfactuals.

Besides counterfactual epistemic logics, our work also builds on a long line of
research into logics that reason about knowledge and time, which originated in the
analysis of distributed protocols [17, 34] and have been applied to a variety of appli-
cations such as information-flow security [4, 24, 41], as well as knowledge-based
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programs [42]. Counterfactual and temporal reasoning has been combined to reason
about temporal aspects of causality [10, 15, 20, 54].

Our work studies the epistemics of explainability and abstracts away from ques-
tions such as how to visualize explanations, and what explanations are relevant for a
human user in a given context. There is a variety of works that study these orthogo-
nal questions [9, 29, 33, 35, 43, 50]. Moreover, there are several works on generating
explanations for more complex system architectures [3, 16].

6 Conclusion & Outlook

We have studied a logic that combines the long-studied modal operators of counterfac-
tual, epistemic and temporal logics for specification and verification of explainability
requirements. We have demonstrated how the logic can be used to define the first
formal taxonomy of counterfactual explainability that encompasses the notions of
internal, external, general, and weak explainability. We believe this aspect of our study
can be spun much further by introducing additional features to the logic, for instance
minimality constraints on counterfactual antecedents [18], or by considering combina-
tions of counterfactual and probabilistic reasoning [54] as explanatory properties. As
another aspect, we have proven that the YLTL model-checking problem is decidable
for finite-state multi-agent systems. We plan on building on this result by develop-
ing practical model-checking tools for explainability requirements. On the theoretical
side, we have made first steps toward analyzing the expressivity of the combined logic
in relation to other hyperlogics. These are also, to the best of our knowledge, the first
results on model checking and expressivity of counterfactual operators when combined
arbitrarily with temporal operators. Building on these results, we have recently pro-
posed an approach for analyzing explainability and privacy tradeoffs in multi-agent
systems, which uses a second-order version of YLTL to enable quantification over
arbitrary counterfactual antecedents [21].
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