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Abstract. Web-based workflow management systems, like EasyChair,
HealthVault, Ebay, or Amazon, often deal with confidential information
such as the identity of reviewers, health data, or credit card numbers.
Because the number of participants in the workflow is in principle un-
bounded, it is difficult to describe the information flow policy of such
systems in specification languages that are limited to a fixed number of
agents. We introduce a first-order version of HyperLTL, which allows us
to express information flow requirements in workflows with arbitrarily
many agents. We present a bounded model checking technique that re-
duces the violation of the information flow policy to the satisfiability of a
first-order formula. We furthermore identify conditions under which the
resulting satisfiability problem is guaranteed to be decidable.

1 Introduction

Web-based workflow management systems allow diverse groups of users to col-
laborate efficiently on complex tasks. For example, conference management sys-
tems like EasyChair let authors, reviewers, and program committees collaborate
on the organization of a scientific conference; health management systems like
HealthVault let family members, doctors, and other health care providers col-
laborate on the management of a patient’s care; shopping sites like Amazon
or Ebay let merchants, customers, as well as various other agents responsible
for payment, customer service, and shipping, collaborate on the purchase and
delivery of products.

Since the information maintained in such systems is often confidential, the
workflows must carefully manage who has access to what information in a par-
ticular stage of the workflow. For example, in a conference management system,
PC members must declare conflicts of interest, and they should only see reviews
of papers where no conflict exists. Authors eventually get access to reviews of
their papers, but only when the process has reached the official notification stage,
and without identifying information about the reviewers.

It is difficult to characterize the legitimate information flow in such systems
with standard notions of secrecy. Classic information flow policies are often too
strong. For example, noninterference [12] requires that the PC member cannot



observe any difference when classified input, such as the reviews of papers where
the PC member has a conflict of interest, is removed. This strong requirement
is typically violated, because another PC member might, for example, nondeter-
ministically post a message in a discussion about a paper where they both have
no conflict. Weaker information flow policies, on the other hand, often turn out
too weak. Nondeducibility [19], for example, only requires that an agent cannot
deduce, i.e., conclusively determine, the classified information. The problem is
that a piece of information is considered nondeducible already if, in the entire
space of potential behaviors, there exists some other explanation. In reality, how-
ever, not all agents exhibit the full set of potentially possible behaviors, and an
actual agent might be able to deduce far more than expected (cf. [15]).

Temporal logics for the specification of information flow [10] are an important
step forward, because they make it possible to customize the secrecy properties.
HyperLTL [7] is the linear-time representative of this class of logics. As an ex-
tension of linear-time temporal logic (LTL), HyperLTL can describe the precise
circumstances under which a particular information flow policy must hold. While
standard linear or branching-time logics, like LTL or CTL∗, can only reason
about the observations at a single computation trace at a time, and can thus, by
themselves, not specify information flow, HyperLTL formulas use trace quanti-
fiers and trace variables to simultaneously refer to multiple traces. For example,
HyperLTL can directly express information flow properties like “for any pair of
traces π, π′, if the low-security observer sees the same inputs on π and π′, then
the low-security observer must also see the same outputs on π and π′”. The key
limitation of HyperLTL for the specification of workflows is that it is a proposi-
tional logic. It is, hence, impossible to specify the information flow in workflows
unless the number of agents is fixed a-priori. In this paper, we overcome this
limitation.

We introduce a framework for the specification and verification of secrecy in
workflows with arbitrarily many agents. Our framework consists of a workflow
description language, a specification language, and a verification method. Our
workflow description language gives a precise description of the behavior of work-
flow management systems with an arbitrary number of agents. Figure 1 shows
a simple example workflow of a conference management system. The workflow
manipulates several relations over the unbounded domain of agents, that each
characterize a particular relationship between the agents: for example, a pair
(x, p) in Conf indicates that PC member x has declared a conflict with paper
p, a triple (x, y, p) in Comm indicates that PC member x has received from
PC member y a message about paper p. As a specification language for the in-
formation flow policies in such workflows, we introduce a first-order version of
HyperLTL. We extend HyperLTL with first-order quantifiers, allowing the for-
mulas to refer to an arbitrary number of agents. We show that the new logic
can be used to specify precise assumptions on the behavior of the agents, such
as causality : while a nondeterministic agent can take any action, the actions
of a causal agent can only reveal information the agent has actually observed.
Restricting the behaviors of the agents to the causal behavior allows us to quan-
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(1) forall x, p. may true → Conf+= (x, p)
% PC members declare conflicts of interest

(2) forall x, p. may ¬Conf(x, p) → A+= (x, p)
% PC chair makes paper assignments taking into account the conflicts

(3) forall x, p, r. A(x, p) ∧Oracle(p, r) → Read+= (x, p, r)
% PC members without conflicts read reviews

(4) forall y, x, p. may A(x, p) ∧A(y, p) → Comm+= (x, y, p)
% PC discussion among members assigned to the same paper

Fig. 1. Example workflow from a conference management system.

tify universally over the actions of the agents, as in classic notions of secrecy
like noninterference, and, at the same time, eliminate the false positives of these
notions. Finally, we introduce a verification method, which translates the ver-
ification problem of workflows with arbitrarily many agents and specifications
in first-order HyperLTL to the satisfiability problem of first-order logic. While
first-order logic is in general undecidable, we identify conditions under which
the satisfiability problem for the particular formulas in the verification of the
workflows is guaranteed to be decidable.

2 Workflows with Arbitrarily Many Agents

Symbolic Transition Systems. As the formal setting for the specification
and verification of our workflows, we chose symbolic transition systems, where
the states are defined as the valuations of a set of first-order predicates P. The
initial states and the transitions between states are described symbolically using
an assertion logic over P. For the purpose of describing workflows, we use first-
order predicate logic (PL) with equality as the assertion language.

A symbolic transition system S = (P, Θ,∆) consists of a set of predicates P,
an initial condition Θ, and a transition relation ∆. The initial condition Θ is
given as a formula of the assertion language over the predicates P. The transition
relation ∆(P1, . . . , Pk;P

′
1, . . . , P

′
k) is given as a formula over the predicates P =

{P1, . . . , Pk}, which indicate the interpretation of the predicates in the present
state, and the set of primed predicates P ′ = {P ′

1, . . . , P
′
k}, which indicate the

interpretation of the predicates in the next state.
Let U be some arbitrary universe. In the case of the workflows, U is the set

of agents participating in the workflow. Let Pn denote the set of predicates with
arity n. A state s :

⋃
n≥0 Pn × Un → B is then an evaluation of the predicates

over U . A trace is an infinite sequence of states s0, s1, . . . such that (1) s0 satisfies
Θ (initiation), and (2) for each i ≥ 0, the transition relation ∆ is satisfied by the
consecutive states si and si+1, where the predicates in P are evaluated according
to si and the predicates in P ′ are evaluated according to si+1. We denote the
set of all traces of a transition system S as Traces(S).

The Workflow Language. We define a language to specify workflows. A work-
flow is structured into multiple blocks. Each block specifies the behaviour of a
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group of agents. A block is made of several statements which add (or remove)
specific tuples from a given relation depending on a guard clause.

p ::= block; p | ϵ // workflow program
block ::= forall x0, . . . , xk.{stmts}

| forall x0, . . . , xk. may {stmts} // block
stmts ::= θ → R+= (t1, . . . , tn); stmts

| θ → R−= (t1, . . . , tn); stmts
| ϵ // updates

t ::= xj | c // terms

Here, terms t1, . . . , tn are either agent variables x0, . . . , xk or constant values c, R
denotes a predicate symbol, and θ is a guard clause that needs to be met before
performing the update. If the guard is not met, no update occurs. Guards can
be arbitrary formulas from first-order predicate logic (PL). The set of predicate
symbols contains a special symbol Oracle denoting the environment input. In
order to specify deterministic/nondeterministic behaviour, we use two different
kinds of statements. In a normal block, all agents execute the block, i.e., the
listed sequence of guarded updates. In a may block, only a subset of tuples of
agents may decide to execute the block. Note that guarded remove to a predicate
R of the form θ → R−= (t0, . . . , tn) can be simulated by a guarded addition to
a fresh predicate R′. For that, we define: R(t0, . . . , tn)∧¬θ → R′+=(t0, . . . , tn)
and subsequently, replace uses of R with uses of R′.

Semantics. In the following, we give a semantics for workflow w = b1 . . . bT as a
transition system. The set of variables then consists of the universe U of agents
participating in the workflow, together with a finite set of relations or predicates
over U . In order to control the transitions between system states, we require one
predicate Choicei for the i-th may statement to control the subset of tuples of
agents choosing to execute the statement. Furthermore, let Count0, . . . ,CountT
denote a sequence of boolean flags indicating the current program point. Itera-
tion of the workflow from 0 to T is expressed by the formula ΦCount given by:

CountT → (Count′T ∧
∧

l′ ̸=T ¬Count′l′) ∧
∧T−1

l=0 Countl → (Count′l+1∧
∧

l′ ̸=l+1 ¬Count
′
l′)

Initially, all predicates are false, except for the designated relation Oracle that
provides input data to the workflow and the relations Choicei that provide the
agent behaviour. Moreover, all flags Countl, but Count0 are false. An execu-
tion of the workflow program then is completely determined by the initial value
of Oracle together with the choices of the agents as provided by the relations
Choicei. W.l.o.g., we assume that within a statement, every relation R is updated
at most once. For every k-ary relation R and program point l, we construct a for-
mula ΦR,l(y1, . . . , yk) using free variables y1, . . . , yk, so that R(y1, . . . , yk) holds
after execution of block bl iff ΦR,l(y1, . . . , yk) holds before the execution of bl.
The transition relation is defined by the conjunction of ΦCount together with the
conjunction over all formulas∧T−1

l=0 Countl → ∀y1, . . . , yk. R′(y1, . . . , yk) ↔ ΦR,l(y1, . . . , yk) ∧
∀y1, . . . , yk.CountT → R′(y1, . . . , yk) ↔ R(y1, . . . , yk)
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where R′ denotes the value of R after the transition. Thus, we assume that after
the last step, the workflow stutters, i.e., the last state is repeated indefinitely.
For defining the formulas ΦR,l(y1, . . . , yk), consider a block bl of the form:

forall x0, . . . , xm {
θ1 → R1 += (t11, . . . , t1k1);
. . .
θr → Rr += (tr1, . . . , trkr );

}

Then for j = 1, . . . , r, ΦRj ,l(y1, . . . , yk) is ΦRj ,l(y1, . . . , yk) ∨ ∃x0, . . . , xm. θ̄j ∧
(y1 = tj1) ∧ . . . ∧ (ykj = tjkj ), where θ̄j is obtained from θj by replacing every
literal Ri(s1, . . . , ski) with the corresponding formula ΦRi,l(s1, . . . , ski). For all
other predicates R, ΦR,l(y1, . . . , yk) ≡ ΦR,l(y1, . . . , yk). If bl is the n-th may
block and of the form:

forall x0, . . . , xm may {
θ1 → R1 += (t11, . . . , t1k1);
. . .
θr → Rr += (tr1, . . . , trkr );

}

we proceed analogously, but add the choice relation Choicen(x0, . . . , xm) as an
additional condition to the θj . Thus for j = 1, . . . , r, ΦRj ,l(y1, . . . , yk) is given
by:

ΦRj ,l(y1, . . . , yk)∨∃x1, . . . , xk. θ̄j∧Choicen(x0, . . . , xm)∧(y1 = tj1)∧. . .∧(ykj = tjkj )

where θ̄j is obtained from θj by replacing every literal Ri(s1, . . . , ski) with the
corresponding formula ΦRi,l(s1, . . . , ski). For all other predicates R,
ΦR,l(y1, . . . , yk) ≡ ΦR,l(y1, . . . , yk).

We remark that, by successive substitution of the formulas ΦR,l, we obtain
for every prefix of the workflow of length l and for every predicate R, a formula
Φ̄R,l which expresses the value of R in terms of the predicates at program start
and the predicates Choicei only.

Example 1. Consider a variation of the conference management workflow given
in the introduction, where a set of all PC members that do not have a conflict
with any paper is collected.

(s1) forall x, p may true → Conf += (x, p)
(s2) forall x, p ¬Conf(x, p) → S += (x)

Then for (s1), Φ̄Conf,1(x, p) ≡ Φ̄Conf,2(x, p) is given by ∃x1, p1. Choice1(x1, p1)∧
(x1 = x) ∧ (p1 = p), which is equivalent to Choice1(x, p). Accordingly for (s2),
Φ̄S,2 is given by: ∃x2, p2. ¬Φ̄Conf,1(x2, p2) ∧ (x2 = x) which can be simplified to
∃p2. ¬Φ̄Conf,1(x, p2). Altogether, we obtain:

Φ̄Conf,2(x, p) ≡ Choice1(x, p)
Φ̄S,2(x) ≡ ∃p2. ¬Choice1(x, p2)
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Example 2. Consider the workflow (WF1), shown in Fig. 1 in the introduction.
Within this workflow, every statement updates exactly one predicate, and each
predicate Conf, A, Read and Comm is updated only once. Accordingly, we can
drop the extra index t and write Φ̄Conf, Φ̄A, Φ̄Read, Φ̄Comm for the corresponding
predicates after their respective updates. We have:

Φ̄Conf(y1, y2) ≡ Choice1(y1, y2)
Φ̄A(y1, y2) ≡ ¬Choice1(y1, y2) ∧ Choice2(y1, y2)
Φ̄Read(y1, y2, y3) ≡ ¬Choice1(y1, y2) ∧ Choice2(y1, y2) ∧Oracle(y2, y3)
Φ̄Comm(y1, y2, y3) ≡ ¬Choice1(y1, y3) ∧ Choice2(y1, y3) ∧

¬Choice1(y2, y3) ∧ Choice2(y2, y3) ∧ Choice3(y2, y1, y3)

⊓⊔

3 Specifying Secrecy with First-Order HyperLTL

HyperLTL [7] is a recent extension of linear-time temporal logic (LTL) with trace
variables and trace quantifiers. HyperLTL can express noninterference and other
information flow policies by relating multiple traces, which are each identified
by a separate trace variable. Since HyperLTL was introduced as a propositional
logic, it cannot express properties about systems with an arbitrary number of
agents. We now present first-order HyperLTL, which extends propositional Hy-
perLTL with first-order quantifiers. In the following, we will refer to first-order
HyperLTL simply as HyperLTL.

HyperLTL syntax. Let P be a set of predicates, V be a set of first-order
variables, and Π be a set of trace variables. We call the set PΠ = {Pπ | P ∈
P, π ∈ Π} the set of indexed predicates. Our logic builds on the assertion lan-
guage used in the description of the symbolic transition systems. In the case of
the workflows, this is first-order predicate logic (PL) with equality. The atomic
formulas of HyperLTL are formulas of the assertion language over the indexed
predicates PΠ and the variables V. HyperLTL formulas are then generated by
the following grammar (with initial symbol ψ):

ψ ::= ∃π. ψ | ∃π. φ | ¬ψ
φ ::= Ψ | ¬φ | φ ∧ φ | ∃x. φ | φ | φ U φ,

where Ψ is an atomic formula, π ∈ Π is a trace variable, and x ∈ V is a first-order
variable. HyperLTL formulas thus start with a prefix of trace quantifiers consist-
ing of at least one quantifier and then continue with a subformula that contains
only first-order quantifiers, no trace quantifiers. Universal trace quantification
is defined as ∀π.φ ≡ ¬∃π.¬φ. U and are the usual Until and Next modali-
ties from LTL. We also consider the usual derived Boolean operators and the
derived temporal operators Eventually φ ≡ true U φ, Globally φ ≡ ¬ ¬φ,
and Weak Until φ W ψ ≡ φ U ψ ∨ φ.
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HyperLTL semantics. The semantics of a HyperLTL formula ψ is given with
respect to a set of traces T , an evaluation α : V → U of the first-order variables,
and an evaluation β : Π → T of the trace variables. Let σ(n) denote the n-th
element in a trace σ, and let σ[n,∞] = σ(n)σ(n + 1) . . . denote the n-th suffix
of σ. We lift the suffix operation from traces to trace assignments and define
β[n,∞](σ) := β(σ)[n,∞]. The update of an evaluation of the first-order or trace
variables is defined as follows: γ[x 7→ a](x) = a and γ[x 7→ a](y) = γ(x) for
x ̸= y. The satisfaction of a HyperLTL formula ψ, denoted by α, β |=T ψ, is
then defined as follows:

α, β |=T ∃π. ψ iff ∃t ∈ T . α, β[π 7→ t] |=T ψ,
α, β |=T ¬ψ iff α, β ̸|=T ψ,
α, β |=T Ψ iff α, δ |= Ψ,
α, β |=T φ1 ∧ φ2 iff α, β |=T φ1 and α, β |=T φ2,
α, β |=T ∃x. φ iff ∃a ∈ U. α[x 7→ a], β |=T φ,
α, β |=T φ iff α, β[1,∞] |=T φ,
α, β |=T φ1 U φ2 iff ∃i ≥ 0 : α, β[i,∞] |=T φ2 and

∀0 ≤ j < i : α, β[j,∞] |=T φ1,

where ψ,φ1, and φ2 are HyperLTL formulas, Ψ is an atomic formula, and
α, δ |= Ψ denotes the satisfaction of the formula Ψ of the assertion logic in
the valuation α of the first-order variables and the interpretation δ of the in-
dexed predicates. The interpretation δ(Pπ) of an indexed predicate Pπ is defined
as the interpretation δ(Pπ) = β(π)(0)(P ) of P provided by the first state of
the trace assigned to π. A formula without free first-order and trace variables
is called closed. A closed formula ψ is satisfied by a transition system S, de-
noted by S |= ψ, iff α, β |=T ψ for the empty assignments α and β and the set
T = Traces(S) of traces of the transition system. HyperLTL formulas in which
all trace quantifiers are universal are called universal formulas. In the remainder
of the paper, we will only consider universal formulas. This fragment contains
many information flow properties of practical interest.

Noninterference. Secrecy properties like noninterference are based on a clas-
sification of the inputs and outputs of a system into either low, meaning not
confidential, or high, meaning highly confidential. A system has the noninterfer-
ence property [12] if in any pair of traces where the low inputs are the same,
the low outputs are the same as well, regardless of the high inputs. When we
are interested in the noninterference property of a single agent, it is possible
to model the low and high inputs and the low and high outputs of the system
(as seen by the agent) using separate predicates, for example, as Il, Ih, Ol, Oh,
respectively. Noninterference can then be expressed as the HyperLTL formula

∀π.∀π′. (Il,π ↔ Il,π′) → (Ol,π ↔ Ol,π′),

which states that all traces π and π′ that have the same low input Il at all times,
must also have the same low output Ol at all times.

In a workflow, the inputs or outputs of different agents may be collected in the
same predicate. In the conference management example from the introduction,
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the low outputs observed by a PC member x consist of the pairs (x, p, r) for
some paper p in the Read relation and, additionally, of the tuples (x, y, p) for
some PC member y and a paper p in the Comm relation. The low input provided
by agent x is given by the tuples of the Choice predicates that begin with x.
Additionally, the system has high input in the form of the Oracle predicate.

Generalizing from the example, we assume there is one or more predicates of
the form Ol(x, y⃗), modeling low output observed by the agents from the system,
and one or more predicates of the form Il(x, y⃗) modeling low inputs provided by
the agents to the system. An output is observable by agent x whenever x occurs
in the first position of the tuple. Likewise, an input is controllable by agent x
whenever x occurs in the first position of the tuple. The remaining components
of the tuple are denoted by the vector y⃗ = y1, y2, . . .. Noninterference is then
expressed as the HyperLTL formula

∀π, π′.∀x. (∀y⃗ . Il,π(x, y⃗) ↔ Il,π′(x, y⃗)) → (∀y⃗. Ol,π(x, y⃗) ↔ Ol,π′(x, y⃗))

which states that, for all agents x, if the low input provided by agent x on traces
π and π′ is the same, then the low output read by x on π and π′ must be the
same as well.

Declassification. Declassification [18] becomes necessary when the function-
ality of the system makes it unavoidable that some information is leaked. In
the conference management example, a PC member x is supposed to read the
reviews of the papers assigned to x. This is legitimate as long as x has not de-
clared a conflict of interest with those papers. We assume that, in addition to
the input and output predicates, there is a declassification condition D(x, y⃗),
which indicates that agent x is allowed to learn about the high input Ih(x, y⃗).
Noninterference with Declassification is then expressed as the HyperLTL formula

∀π, π′.∀x. (∀y⃗. Il,π(x, y⃗) ↔ Il,π′(x, y⃗) ∧ (D(x, y⃗) → (Ih,π(x, y⃗) ↔ Ih,π′(x, y⃗))))
→ (∀y⃗. (Ol,π(x, y⃗) ↔ Ol,π′(x, y⃗))),

which expresses that on all pairs of traces where the low inputs are the same
and, additionally, the high inputs are the same whenever the declassification
condition is true, the low outputs must be the same.

Example 3. In the conference management example, we specify the information
flow policy that an agent should not receive information regarding papers where
a conflict of interest has been declared as a noninterference property:

∀π, π′.∀x. (∀y⃗.
∧3
i=1(Choicei,π(x, y⃗) ↔ Choicei,π′(x, y⃗)) ∧

(∀p, r. (¬Confπ(x, p) ∧ ¬Confπ′(x, p)) → (Oracleπ(p, r) ↔ Oracleπ′(p, r)))) →
(∀p, r. (Readπ(x, p, r) ↔ Readπ′(x, p, r)) ∧ (∀y, p. Commπ(x, y, p) ↔ Commπ′(x, y, p)))

⊓⊔

Causality assumptions on agents. In the workflow from Fig. 1, it is easy to
see that no PC member can directly read the reviews of papers where a conflict
of interest has been declared: the PC member can only read a review if the PC
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member was assigned to the paper, which, in turn, can only happen if no conflict
of interest was declared. It is much more difficult to rule out an indirect flow
of information via a message sent by another PC member. So far, neither the
description of the workflow, nor the HyperLTL specification would prevent other
PC members to add such messages to Comm. To rule out messages that would
leak information about papers where a PC member has a conflict, we must make
assumptions about the possible behaviors of the other agents.

Stubborn agents. A radical restriction on the behavior of the other agents is
to require that they always, stubbornly, produce the same input, independently
of their own observations. We assume that the input is represented by one or
more predicates of the form I(x, y⃗), where an input is controllable by agent x
whenever x occurs in the first position of the tuple. The requirement for traces
π, π′ that all agents are stubborn can be specified by the HyperLTL formula:

∀x. (∀y⃗. Iπ(x, y⃗) ↔ Iπ′(x, y⃗)).

Causal agents. A more natural restriction on the behavior of the other agents is
to require that they act causally, i.e., they only provide different inputs if they,
themselves, have previously observed different outputs. The causality of agents
w.r.t. traces π, π′ can be described by the HyperLTL formula:

∀x. (∀y⃗. Iπ(x, y⃗) ↔ Iπ′(x, y⃗)) W (∃y⃗. Oπ(x, y⃗) ̸↔ Oπ′(x, y⃗))

which states that, for all agents x the inputs provided on two traces are the same
until a difference in the outputs observed by x occurs.

Example 4. In the conference management example, stubbornness for traces
π, π′ can be specified as the HyperLTL formula ∀x. (∀y. Choice1,π(x, y) ↔
Choice1,π′(x, y) ∧ . . .). The requirement of causality for π, π′ is specified as the
HyperLTL formula

∀x. (∀y. Choice1,π(x, y) ↔ Choice1,π′(x, y) ∧ . . .) W
((∃p, r. Readπ(x, p, r) ̸↔ Readπ′(x, p, r)) ∨ (∃y, p. Commπ(x, y, p) ̸↔ Commπ′(x, y, p))).

⊓⊔

Combining the agent assumptions with the specification of noninterference
(and possibly declassification), we obtain a formula of the form

∀π1, . . . , πn. φcausal → φ,

where φcausal describes the agent assumption on all pairs of paths in π1, . . . , πn.

4 Verifying Secrecy

We now present a bounded model checking method for symbolic transition sys-
tems and HyperLTL specifications. The approach reduces the violation of a Hy-
perLTL formula on the prefix of a trace of a given symbolic transition system to
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the satisfiability of a formula of the assertion language. For workflows, it suffices
to consider prefixes of bounded length, because the workflow terminates (and
then stutters forever) after a fixed number of steps. Since the assertion language
in the description of the workflows is first-order predicate logic, satisfiability of
the resulting formula is not necessarily decidable. We return to this issue in
Section 5, where we identify conditions under which decidability is guaranteed.

Bounded Satisfaction. Bounded model checking is based on a restricted no-
tion of HyperLTL satisfaction where only trace prefixes of length n, for some
fixed bound n, are considered. Let T be a set of traces, α : V → U an evaluation
of the first-order variables, and β : Π → T an evaluation of the trace variables.
The n-bounded satisfaction of a HyperLTL formula ψ, denoted by α, β |=nT ψ, is
then defined as follows:

α, β |=nT ∃π. ψ iff ∃t ∈ T . α, β[π 7→ t] |=nT ψ,
α, β |=nT ¬ψ iff α, β ̸|=nT ψ,
α, β |=nT Ψ iff α, δ |= Ψ,
α, β |=nT φ1 ∧ φ2 iff α, β |=nT φ1 and α, β |=nT φ2,
α, β |=nT ∃x. φ iff ∃a ∈ U. α[x 7→ a], β |=nT φ,
α, β |=nT φ iff α, β[1,∞] |=n−1

T φ, for n > 0,
α, β |=0

T φ iff α, β |=T φ,

α, β |=nT φ1 U φ2 iff ∃i ≥ 0 : α, β[i,∞] |=n−iT φ2 and

∀0 ≤ j < i : α, β[j,∞] |=n−jT φ1, for n > 0,
α, β |=0

T φ1 U φ2 iff α, β[i,∞] |=0
T φ2,

where ψ,φ, φ1, and φ2 are HyperLTL formulas, Ψ is an atomic formula, and
δ(Pπ) = β(π)(0)(P ). A closed formula ψ is n-bounded satisfied by a transition
system S, denoted by S |=n ψ, iff α, β |=nT ψ for the empty assignments α and
β and the set T = Traces(S) of traces of the transition system.

For workflows, satisfaction and bounded satisfaction coincide.

Theorem 1. Let S be the transition system representing a workflow with n
blocks. For all HyperLTL formulas ψ, it holds that S |= ψ iff S |=n ψ.

Bounded Model Checking. We now translate a transition system S and a
given universal HyperLTL formula for a given bound n into a formula ΨS,¬ψ
of the assertion language such that ΨS,¬ψ is satisfiable iff S ̸|=n ψ. Since ψ is
universal, its negation is of the form ∃π1, . . . , πk. φ, where φ does not contain any
more trace quantifiers. Let the set of predicates P be given as P = {P1, . . . , Pm}.
In ΨnS,¬ψ, we use for every predicate Pi several copies Pi,π,l, one per trace variable
π ∈ {π1, . . . , πk} and position l, 0 ≤ l ≤ n. The formula ΨnS,¬ψ = JSKn ∧ JφKn0 is
a conjunction of two formulas of the assertion language, the unfolding JSKn of
the transition system S and the unfolding JφKn0 of the HyperLTL formula φ.

For a symbolic transition system S and a bound n ≥ 0, the unfolding JSKn
is defined as follows:

JSKn =
∧

π∈{π1,...,πk}

Θ(P1,π,0, . . . Pm,π,0)∧
n−1∧
l=0

∆(P1,π,l, . . . , Pk,π,l;P1,π,l+1, . . . , Pm,π,l+1)
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For a HyperLTL formula φ without trace quantifiers and a bound n ≥ 0, the
unfolding JφKnl is defined as follows:

J¬φKnl = ¬JφKnl ,
JΨKnl = Ψl,
Jφ1 ∧ φ2Knl = Jφ1Knl ∧ Jφ2Knl ,
J∃x. φKnl = ∃x. JφKnl ,
J φKnl = JφKn−1

l+1 for n > 0,
J φK0l = JφK0l ,
Jφ1 U φ2Knl = Jφ2Knl ∨ (Jφ1Knl ∧ Jφ1 U φ2Kn−1

l+1 ) for n > 0,
Jφ1 U φ2K0l = Jφ2K0l

where φ,φ1, and φ2 are HyperLTL formulas, Ψ is a formula of the assertion
language over indexed predicates Pi,π and Ψl is the same formula with all occur-
rences of an indexed predicate Pi,π replaced by the predicate Pi,π,l.

Theorem 2. For a symbolic transition system S, a universal HyperLTL formu-
las ψ, and a bound n ≥ 0, it holds that S |=n ψ iff ΨnS,¬ψ is unsatisfiable.

Combining Theorems 1 and 2, we obtain the corollary that bounded model
checking is a complete verification technique for workflows.

Corollary 1. Let S be the transition system representing a workflow with T
blocks. For all HyperLTL formulas ψ, it holds that S |= ψ iff ΨTS,¬ψ is unsatisfi-
able. ⊓⊔

5 Decidability

We now identify cases where the satisfiability of the predicate logic formulas
constructed by the verification method of the previous section are decidable. For
background on PL and decidable subclasses, we refer to the textbook [6].

Theorem 3. Consider a workflow consisting of T blocks where all agents are
stubborn, and every predicate R encountered by the workflow after l blocks, is
characterized by a quantifier-free formula Φ̄R,l. Assume that ∀π1, . . . , πr. φstubborn →
φ denotes a HyperLTL formula where Ψ ′ ≡ J¬φKT0 is a Bernays-Schönfinkel for-
mula, i.e., the prenex form of Ψ ′ has a quantifier sequence of the form ∃∗∀∗.
Then it is decidable whether ∀π1, . . . , πr. φstubborn → φ holds.

Proof. For every predicate R, let Φ̄R,πj ,l denote the formula which characterizes
Rπj ,l, i.e., the value of R after l blocks along the execution of πj . The formula
Φ̄R,πj ,l is obtained from Φ̄R,l by replacing the occurrences of Choicei,Oracle
with Choicei,πj

and Oracleπj
, respectively. Let Ψ̄ ′ denote the formula obtained

from Ψ ′ by first replacing every occurrence of a literal Rπj ,l(s1, . . . , sk) with
Φ̄R,πj ,l(s1, . . . , sk). As all agents are stubborn, the predicates Choicei,πj

are
equivalent for j = 1, . . . , r. Accordingly, we may replace all Choicei,πj (s1, . . . , sk)
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with Choicei,π1
(s1, . . . , sk). The resulting formula is still a Bernays-Schönfinkel

formula. It is unsatisfiable iff ∀π1, . . . , πr. φstubborn → φ is universally true. Satis-
fiability of Ψ̄ ′, however, is decidable — which thus implies the the theorem. ⊓⊔

Theorem 3 can be extended also to more general classes of workflows, given
that the predicates Rπj ,l occur only positively or only negatively in Ψ ′. Non-
interference, however, amounts to stating that (under certain conditions) no dis-
tinction is observable between some Rπj ,l and Rπj′ ,l. Logically, indistinguishabil-
ity is expressed by equivalence, which thus results in both positive and negative
occurrences of the predicates in question.

Theorem 4. Consider a workflow consisting of T blocks where all agents are
causal, and every predicate R encountered by the workflow after l blocks, is char-
acterized by a quantifierfree formula Φ̄R,l. Assume that ∀π1, . . . , πr. φcausal → φ
is a temporal formula where the prenex form of Ψ ′ ≡ J¬φKT0 is purely existential.
Then it is decidable whether ∀π1, . . . , πr. φcausal → φ holds.

Proof. The argument for causal agents is somewhat more complicated and ac-
cordingly leads to decidability only for a smaller fragment of HyperLTL formulas.
Removal of the temporal operators and skolemization of the formula φcausal de-
scribing causality yields a conjunction of clauses of form (∗): S(x, f1(x), . . . , fr(x))∨
Choicei,πj1

(x, z)∨¬Choicei,πj
(x, z) or S(x, f1(x), . . . , fr(x))∨¬Choicei,πj2

(x, z)∨
Choicei,πj (x, z), for j1, j2 < j, where the disjunction S refers to predicates which
depend on Choicei′, predicates for i′ < i only. In order to perform ordered res-
olution, we put an ordering upon predicates so that Choicei,πj receives a higher
priority than Choicei′,πj′ if i′ < i or, if i = i′, j′ < j. Moreover all predicates
in S have lower priorities than the Choice predicates. Accordingly, the highest
priority literal in each clause of φcausal contains all free variables of the clause.

Let us first consider the case r = 2. Then resolution of two clauses with a
positive and negative occurrence of the same highest-priority literal will result
in a tautology and therefore is useless. As in the proof of Theorem 3, let Ψ̄ ′

denote the formula obtained from Ψ ′ by replacing each occurrence of a predicate
Rπj ,l(s1, . . . , sk) with the formulas Φ̄R,πj ,l(s1, . . . , sk) (j = 1, 2). According to
our assumption on Ψ ′, the clauses obtained from Ψ̄ ′ are all ground. Resolution
of such a clause with a clause of φcausal for some Choicei,π2

will again return
a ground formula. By substituting the semantic formulas Φ̄R,πj ,l we obtain a
set of new ground clauses, this time, however, with occurrences of predicates
Choicei′,πj′ , i

′ < i, only. As a consequence, for every i, there is a bounded number
of new clauses derivable by means of clauses from φcausal with highest priority
predicate Choicei,π2

. Altogether, we therefore obtain only a bounded number of
ground clauses which are derivable by means of ordered resolution. Hence, it is
decidable whether a contradiction is derivable or not. This concludes the proof.

The argument for r > 2 is similar, only that resolution of any two such
clauses originating from φcausal with j1 ̸= j2 upon the literal Choicei,πj

(x, z)) will
again result in a clause of the given form. In particular, no further literals are
introduced. Therefore, saturation of φcausal by ordered resolution will eventually
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terminate. Then the argument for termination proceeds analogously to the case
r = 2 where φcausal is replaced with the saturation of φcausal. ⊓⊔

Theorem 4 can be extended to formulas φ where Ψ̄ ′ obtained from J¬φKT0 is a
Bernays-Schönfinkel formula at least in restricted cases.

Consider the clauses of the form (∗) as obtained from φcausal after skolemiza-
tion. In case that the disjunction S is empty, we call the corresponding clause
simple, otherwise complex. Now assume that complex clauses from the saturation
of φcausal are always resolved with clauses (originating from the skolemization of
Ψ̄ ′) upon a ground literal. Then the same argument as in the proof of Theorem 4
applies to show that saturation by resolution will eventually terminate.

6 Completing the Conference Management Example

We now complete the verification of our running example, that no PC member
learns about the reviews of a paper for which he has declared a conflict. As
already discussed in Section 3, it is easy to see that no PC member can directly
read the reviews of papers where a conflict of interest has been declared. To
prove the noninterference property in Example 3, it remains to show that the
communication received from the other agents is the same on two traces π and
π′ whenever the Oracle for the papers with a conflict are the same on π and π′.

For both stubborn and causal agents, the predicates Confπ(x, p) and Aπ(y, p)
coincide with their counterparts in π′. Furthermore, for stubborn agents, the
Choice predicates do not depend on the execution paths. As the predicates
Commπ and Commπ′ only depend on Choice predicates, the equivalence in the
conclusion is trivially true. Hence, the property holds under the assumption that
the agents are stubborn.

The situation is different for causal agents. The causality assumption φcausal

(given in Section 3) states that the other PC members only send different com-
munications if there was a different observation on the two traces. Since causal-
ity already implies that Choice1 and Choice2 are equal on all paths, this can be
omitted from the antecendent of the requirement. The negation of the remaining
property is then given by the following formula:

∃π, π′. φcausal ∧ ∀x. (∀y, p. Choice3(x, y, p) ↔ Choice3(x, y, p)∧
(∀p, r. (¬Confπ(x, p) ∧ ¬Confπ′(x, p)) → Oracleπ(p, r) ↔ Oracleπ′(p, r))) ∧
(∃y, p. Commπ(x, y, p) ̸↔ Commπ′(x, y, p))

Due to the causality assumption, when we unroll W and replace Read with its
semantics formula Φ̄Read, we obtain that Choice1 and Choice2 are always equal
and Choice3 could differ on π and π′ if there is a difference in the oracle.

φ̄causal = ∀x, p. Choice1,π(x, p) ↔ Choice1,π′(x, p) ∧ ∀x, p. Choice2,π(x, p) ↔ Choice2,π′(x, p) ∧
∀x, y, p, r. (Oracleπ(p, r) ↔ Oracleπ′(p, r)) → (Choice3,π(x, y, p) ↔ Choice3,π′(x, y, p))

Since in our example, the relation Comm is only assigned once, the operator is
unrolled to a large disjunction that is false everywhere before the last step, since
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Comm is empty on both paths. By unrolling ¬Ψ and subsequently simplifying
the formula with the causal equalities for Choice1 and Choice2, we obtain:

¬Ψ̄ = ∃π, π′.φ̄causal ∧ ∃x.(∀p, r. Choice1,π(x, p) ∨Oracleπ(p, r) ↔ Oracleπ′(p, r)) ∧
∃y, p′. Choice3,π(y, x, p′) ̸↔ Choice3,π′(y, x, p′)

Note that all literals Choice3,π(y, x, p
′),Choice3,π′(y, x, p′) contain existentially

quantified variables only. Therefore, the assumptions of (the extension of) The-
orem 4 are met. For the given formula, no contradiction can be derived. Instead,
a model can be constructed as follows:

U = {x, y, p1, p2, r},
Oracleπ = {(p1, r)} Oracleπ′ = ∅
Choice1,π = {(x, p1)} Choice1,π′ = {(x, p1)},
Choice2,π = {(x, p2), (y, p1), (y, p2)} Choice2,π′ = {(x, p2), (y, p1), (y, p2)},
Choice3,π = {(y, x, p1)} Choice3,π′ = ∅

Suppose the PC member x who has a conflict with paper p is assigned to a
paper q where he does not have a conflict, and another PC member y, who does
not have a conflict with either paper, is assigned to both p and q. Then y can
communicate with x and therefore leak the review on paper p to x.

To repair the problem, we let the PC chair remove the assignment of PC
member y to paper q in such situations. Let (WF2) be (WF1) with the new line
(2a) added in-between lines (2) and (3):

(2a) forall x, y, p, q. Conf(x, p) ∧ ¬Conf(y, p) ∧A(x, q) ∧A(y, q) → A−= (y, q)
% PC chair removes assignments that might cause leaks

For the resulting workflow (WF2), we obtain a new formula Φ̄A′ , which in
turn affects the formulas Φ̄Read and Φ̄Comm for Read and Comm:

Φ̄A′(y, q) = ¬Choice1(y, q) ∧ Choice2(y, q)∧
∀x, p. (Choice1(x, q) ∨ ¬Choice2(x, q) ∨ ¬Choice1(x, p) ∨ Choice1(y, p))

The resulting formula after substitution of the semantics formulas and sim-
plification is similar to ¬Ψ̄ , but adds two conjunctions with the ∀-clause of Φ̄A′

instantiated for (x, p′) and (y, p′) on both sides of the inequivalence. The result-
ing formula is a Bernays-Schönfinkel formula where again the decision procedure
of Theorem 4 can be applied. That procedure now derives a contradiction. Intu-
itively, the reason is that on both paths, x has declared a conflict with p1. Since
y is assigned to p1, x and y cannot be assigned jointly to the same paper. Thus,
both sides of the inequivalence collapse to false — implying that for (WF2) re-
quirement (2) is satisfied and thus (WF2) is indeed noninterferent. ⊓⊔

7 Related Work

There is a vast body of work on information flow policies and associated verifica-
tion techniques. We mention Goguen and Meseguer’s seminal work on noninter-
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ference [12], Zdancewic and Myer’s observational determinism [20], Sutherland’s
nondeducability [19], and Halpern and O’Neill’s secrecy maintenance [13] as rep-
resentative examples. See Kanav et al. [15] for a recent overview with a detailed
discussion of the most relevant notions for the verification of workflows. Our
approach is based on the temporal logic HyperLTL [7]. HyperLTL has been
applied in the verification of hardware systems, such as an Ethernet controller
with 20000 latches [11]. Other logical approaches to information flow control
include SecLTL [8], the polyadic modal µ-calculus [2] and the epistemic tempo-
ral logics [9]. While standard linear-time temporal logic has been extended with
first-order quantifiers [16], our first-order extension of HyperLTL is the first tem-
poral logic for the specification of information flow in systems with arbitrarily
many agents. In terms of practical verification efforts, there has been a lot of
recent interest in proving secrecy in web-based workflow management systems.
For example, for the ConfiChair conference management system it was proven
that the system provider cannot learn the contents of papers [3]. For CoCon,
another conference management system, it was proven that various groups of
users, such as authors, reviewers, and PC members cannot deduce certain con-
tent, such as reviews, unless certain declassification triggers, such as being a PC
member without a conflict of interest, are met [15]. For the verification of an
eHealth system, Bhardwaj and Prasad [5] assume that all agents are known at
analysis time. Based on this information, the authors construct a dedicated se-
curity lattice and then apply techniques from universal information flow [14, 1].
Our verification method is based on a reduction to the satisfiability problem of
first-order predicate logic. First-order logic has many applications in verification.
Most related, perhaps, is recent work on the verification of software defined net-
works [4, 17]. There, a network controller is translated into a first order formula
and either a theorem prover or an SMT-solver is used to determine properties
of the topology so that the controller satisfies a given invariant.

8 Conclusion

We have presented a formalization of fine-grained security properties for work-
flow systems with an unbounded number of agents. HyperLTL is the first ap-
proach to specify hyperproperties for systems without a fixed set of agents. For
the verification of HyperLTL formulas, we have provided a bounded model check-
ing algorithm that translates the problem of verifying such a property for a given
workflow to the satisfiability of first-order predicate logic. We have also provided
a non-trivial fragment of properties and workflows so that the corresponding de-
cision problem is decidable. As an example we considered noninterference for a
simple workflow of a conference management system. Unexpectedly, our method
exhibited a subtle form of indirect information flow. We also indicated how that
deficiency can be cured. All corresponding proving took place within our benev-
olent fragments. Various problems remain for future work. Further decidable
fragments are of major concern. Also, our work should be extended to more
complex and thus more expressive forms of workflows.
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