
Counting Models of Linear-time Temporal Logic

Bernd Finkbeiner and Hazem Torfah

Reactive Systems Group
Saarland University

66123 Saarbrücken, Germany
{finkbeiner,torfah}@cs.uni-saarland.de

Abstract. We investigate the model counting problem for safety speci-
fications expressed in linear-time temporal logic (LTL). Model counting
has previously been studied for propositional logic; in planning, for exam-
ple, propositional model counting is used to compute the plan’s robust-
ness in an incomplete domain. Counting the models of an LTL formula
opens up new applications in verification and synthesis. We distinguish
word and tree models of an LTL formula. Word models are labeled se-
quences that satisfy the formula. Counting the number of word models
can be used in model checking to determine the number of errors in a
system. Tree models are labeled trees where every branch satisfies the
formula. Counting the number of tree models can be used in synthesis to
determine the number of implementations that satisfy a given formula.
We present algorithms for the word and tree model counting problems,
and compare these direct constructions to an indirect approach based on
encodings into propositional logic.

Keywords: Model counting, temporal logic, model checking, synthesis,
tree automata.

1 Introduction

Model counting, the problem of computing the number of solutions of a given
logical formula, is a useful generalization of satisfiability. Many probabilistic
inference problems, such as Bayesian net reasoning [13], and planning problems,
such as computing the robustness of plans in incomplete domains [14], can be
formulated as model counting problems of propositional logic. State-of-the-art
tools for propositional model counting include Relsat [1] and c2d [6].

In this paper, we study the model counting problem for safety specifications
expressed in linear-time temporal logic (LTL). LTL is the most commonly used
specification logic for reactive systems [15] and the standard input language for
model checking [2, 5] and synthesis tools [4, 3, 7]. Just like propositional model
counting generalizes SAT, LTL model counting introduces “quantitative” exten-
sions of model checking and synthesis. In model checking, model counting can
be used to determine not only the existence of computations that violate the
specification, but also the number of such violations. For example, in a commu-
nication system, where messages are lost (with some probability) on the channel,

2 B. Finkbeiner and H. Torfah

it is typically not necessary (or even possible) to guarantee a 100% correct trans-
mission. Instead, the number of executions that lead to a message loss is a good
indication for the quality of the implementation. In synthesis, model counting
can be used to determine not only the existence of an implementation that satis-
fies the specification, but also the number of such implementations. The number
of implementations of a specification is a helpful metric to understand how much
room for implementation choices is left by a given specification, and to estimate
the impact of new requirements on the remaining design space.

Formally, we distinguish two types of models of an LTL formula. A word
model of an LTL formula ϕ over a set of atomic propositions AP is a sequence
of valuations of AP such that the sequence satisfies ϕ. A tree model of an LTL
formula ϕ over a set of atomic propositions AP = I∪O, partitioned into inputs I
and outputs O, is a tree that branches according to the valuations of I and that is
labeled with valuations of O, such that every path of the tree satisfies ϕ. In order
to guarantee that the number of models is finite, we consider bounded models,
i.e., words of bounded length and trees of bounded depth. This is motivated by
applications like bounded model checking [2] and bounded synthesis [8], where we
look for small error paths and small implementations, respectively, by iteratively
increasing a bound on the size of the model.

Since both bounded model checking and bounded synthesis are based on
satisfiability checking, a natural idea to solve the model counting problem of
LTL is to reduce it to the propositional counting problem: for word models, this
can be done by introducing a copy of the atomic propositions for each position
of the word, for tree models, by introducing a copy of the atomic propositions for
each node in the tree. Unfortunately, however, this reduction quickly results in
intractable propositional problems. For word models, we need a linear number of
propositional variables in the bound, for tree models even an exponential number
of variables. This is critical, since propositional counting is #P-complete. Current
state-of-the-art model counters cannot handle more than approximately 1000-
10000 propositional variables [9]. This limit is exceeded easily, for example, by
a tree of depth 5. (Assuming 3 bits of input and a 3-bit encoding of the LTL
formula, we need approximately 100000 variables.)

In this paper, we present a model counting algorithm with much better per-
formance. For both word and tree models, the complexity of our algorithm is
linear in the bound. This improvement is obtained by dynamic programming:
we compute the number of models backwards, i.e., from the last position to the
first in the case of word models, and form the leaves to the root in the case
of tree models. We show that LTL formulas can be translated to word and tree
automata that have exactly one run for every model. The number of runs is then
computed by incrementally considering larger models and computing, for each
bound, the number of models that are accepted by runs starting in a specific
state.

Analyzing the complexity of this construction, it turns out that the dramatic
improvement in the complexity with respect to the bound does not come for free,
as our constructions are more expensive in the size of the formula, compared to

Counting Models of Linear-time Temporal Logic 3

the solution based on a reduction to propositional counting. In practice, however,
this is not a problem, because costs in relation to the size of the formula are much
more benign than costs in relation to the bound: typically, we are interested in
systems with large implementations, but small specifications.

Overview. After reviewing the necessary preliminaries in Section 2, we formally
define the model counting problem in Section 3. Counting algorithms for word
models and tree models are presented in Sections 4 and 5, respectively.

2 Preliminaries

Transition Systems. We represent models as labeled transition systems. For
a given finite set Υ of directions and a finite set Σ of labels, a Σ-labeled Υ -
transition system is a tuple S = (S, s0, τ, o), consisting of a finite set of states
S, an initial state s0 ∈ S, a transition function τ : S × Υ → S, and a labeling
function o : S → Σ.

A path in a labeled transition system is a sequence π : N→ S×Υ of states and
directions that follows the transition relation, i.e., for all i ∈ N if π(i) = (ti, ei)
then π(i + 1) = (ti+1, ei+1) where ti+1 ∈ τ(ti, ei). We call the path initial if it
starts with the initial state: π(0) = (t0, e) from some e ∈ Υ . We define the set
paths(S) as the set of all initial paths of S.

Specifications. We use linear-time temporal logic (LTL) [15], with the usual
temporal operators Next X, Until U , and the derived operators Eventually ♦
and Globally �. LTL formulas are defined over a set of atomic propositions
AP = I ∪ O, which is partitioned into a set I of input variables and a set O of
output variables. We denote the satisfaction of an LTL formula ϕ by an infinite
sequence σ : N→ 2AP of valuations of the atomic propositions by σ |= ϕ. A 2O-
labeled 2I -transition system S = (S, s0, τ, o) satisfies ϕ, if for all π ∈ paths(S)
the sequence σπ : i 7→ o(π(i)), where o(s, e) = (o(s) ∪ e), satisfies ϕ. In the
remainder of the paper, we assume that all considered LTL specifications express
safety properties. An infinite sequence σ : N→ 2AP violates a safety property iff
there is a prefix σ′ : [0, i] → 2AP of σ such that for all extensions σ̂ : N → 2AP,
σ′σ̂ 6|= ϕ. We call σ′ a bad prefix for ϕ.

Universal Safety Automata. A universal safety automaton is a tuple U =

(Q, q0, δ, Σ, Υ), where Q denotes a finite set of states, q0 ∈ Q denotes the initial
state, δ denotes a transition function, Σ a finite set of labels, and Υ a finite set
of directions. The transition function δ : Q × Σ × Υ → 2Q maps a state to the
set of successor states reachable via a label σ ∈ Σ and a direction υ ∈ Υ . A
run graph of the automaton on a Σ-labeled Υ -transition system S = (S, s0, τ, o)
is a directed graph G = (G,E) such that: The vertices G ⊆ Q × S, the pair
(q0, s0) ∈ G, and for each pair (q, s) ∈ G there is an edge to (q′, τ(s, υ)) for
υ ∈ Υ and for every q′ ∈ δ(q, o(s), υ). A transition system is accepted by the
automaton if it has a run graph in the automaton.

4 B. Finkbeiner and H. Torfah

b a b
e e e

b a b
e e

e

b a b
e e

e

Fig. 1. A base and two word models.

For each safety property expressed as an LTL formula ϕ, we can construct a
universal safety automaton that accepts exactly the sequences that satisfy ϕ. If
ϕ has length n, then the number of states of this universal safety automaton is
in 2O(n). (This can be done by translating ϕ into an automaton that recognizes
its bad prefixes, called fine bad prefix automaton in [12], and dualizing this
automaton.)

Bottom-up Tree Automata. Σ-labeled Υ -trees are trees where each node is
labeled with a label α ∈ Σ and has exactly one child for every direction υ ∈ Υ .
A bottom-up tree automaton is a tuple T = (T, TF , ∆0, ∆,Σ, Υ) defined over
Σ-labeled Υ -trees, where T is a finite set of states, TF ⊆ T denotes the set of
accepting states, an initial transition relation ∆0 ⊆ Σ × T that associates a leaf
node of the tree to a state of the automaton, according to the label α ∈ Σ of
the leaf node, and the transition relation ∆ ⊆ T |Υ | × Σ × T that determines
the state labeling of a node according to the label of the node and the state
labelings of the children nodes. A run of the automaton over a Σ-labeled Υ -tree
is a T -labeled Υ -tree. We say that a tree is accepted by the automaton if the
root of its run tree is in TF .

3 The Model Counting Problem

A model of an LTL formula is a finite transition system. Counting the number of
transition systems that satisfy a given LTL formula would not, however, be very
informative, because this number is either 0 or∞: if the formula is satisfiable, it
is satisfied by some ultimately periodic model, and each unrolling of the periodic
part results in a new transition system that satisfies the formula. We therefore
consider bounded models.

We distinguish two types of bounded models, word and tree models. A
k-word model of an LTL formula ϕ over AP = I ∪ O is a lasso sequence
π(0) . . . π(i − 1)(π(i), . . . π(k))ω ∈ (2O × 2I)ω for some i ∈ {0, ..., k}. We call
π⊥ = π(0) . . . π(k) ∈ (2O × 2I)k+1 the base of the model. Figure 1 shows two
word models and their base.

A k-tree model of an LTL formula ϕ is a 2O-labeled-2I -transition system
that forms a tree of depth k with additional loop-back transitions from the
leaves (for every leaf and every direction, there is an edge to some state on the
branch leading to the leaf). The tree without the loop-back transitions is the
base of the model. Figure 2 shows two tree models and their base.

Counting Models of Linear-time Temporal Logic 5

a

b c

e1 e2

a

b c

e1 e2

e1 e2 e2
e1

a

b c

e1 e2
e2

e1 e2e1

Fig. 2. A base and two tree models.

For an LTL formula ϕ and a bound k, the k-word (k-tree) counting problem
is to compute the number of k-word (k-tree) models of ϕ.

4 Counting Word Models

We start by introducing an algorithm for counting word models of safety LTL for-
mulas. In the next section we show how we can adapt the ideas of this algorithm
in order to count tree models. For a given bound k and a safety specification ϕ,
we construct a word automaton that accepts a finite sequence of size k if it is a
base for a word model of ϕ. We introduce an algorithm based on the automaton
that delivers the number of word models of ϕ.

4.1 An Automaton for Word Models

The following theorem shows that for each safety property expressed as an LTL
specification ϕ and a bound k, we can construct a word automaton that accepts
a word of maximum length k if it is a base of a word model of ϕ. In theorem 2
we show that the word automaton can be used to count the number of k-word
models for the specification ϕ. Our starting point is the representation of the
specification ϕ as a universal safety automaton. When a word model π satisfies
ϕ, then there is a run graph of the universal safety automaton on π. In the run
graph, every state s in π is mapped to a set of states in the universal automaton.
This set is the set of universal states visited by π in the state s. We refer to this
set as an annotation of s. Intuitively, our word automaton tries to reconstruct
a possible annotation for each state for a given base of a word model. The loop
in the word model corresponds to a suffix of the base. The annotation of this
suffix is a repeating annotation in the run graph of the word model. The word
automaton guesses the annotation of the loop-back state (the first state of the
suffix), and checks, traversing the base backwards, whether (1) a repetition of
the guessed annotation along the base is observed, and (2) an initial annotation
is reached after having traversed the whole base (an annotation containing the
initial state of the universal safety automaton). Since one base may correspond to
several word models, the automaton also keeps track of the number of repetitions
of the guessed annotation.

It remains to ensure that the automaton is unambiguous with respect to a
word model, i.e, that every base has at most a single accepted annotation for a

6 B. Finkbeiner and H. Torfah

0

1

2

3

c

a

b a

b
a
{0}

{0,2}
b

{1}

{1,3}
a
{2}

{0,2}
b

{3}

{1,3}

{0}

{0,2}

Fig. 3. On the left: a universal safety automaton; on the right: a base with two different
annotations. The annotation shown above the base corresponds to a run graph of the
universal automaton. The annotation shown below the base is the maximal annotation.

word model. So far, a single base might have multiple annotations. Such a situ-
ation is depicted in Figure 3. To prevent multiple annotations of the same base,
the automaton only allows maximal annotations: in addition to the “positive”
annotation, the automaton builds a “negative” annotation consisting of states
of the universal automaton that must not occur in the positive annotation. All
states that do not occur in the positive annotation must occur in the negative
annotation. Due to the determinism of the universal safety automaton, there is
only one maximal annotation for each word model over its base. Note that the
maximal annotation in Figure 3 (shown below the base) includes the alternative
annotation shown above the base. Also note that the maximal annotation fits
two different word models, the word model with the loop labeled abab and the
word model labeled ab.

Theorem 1. Given a universal safety automaton U = (Q, q0, δ, Σ, Υ) with n
states, and a bound k, we can construct a finite word automaton A# = (Q#, Q0#,
QF#, ∆,Σ, Υ) that accepts a sequence σ ∈ (Σ × Υ)k if σ−1 is the sequence of
labels of a base of a word model that is accepted by U . The number of states of
the automaton A# is in 2O(n).

Construction: We choose (2Q×{0, ..., k}×(2Q)n−1)×2Q×(2Q)n to be the state
space of the word automaton. A state ((C, c, C1, . . . , Cn−1),P,N0, . . . ,Nn−1) is
split into conjecture sets C, C1, . . . , Cn−1, which once chosen cannot be manipu-
lated by the transition relation, and tracking sets P,N0, . . . ,Nn−1, which keep
track of the possible state annotations for a given sequence π, starting from
the conjecture annotations. The conjecture C denotes a loop back annotation
reached in some state s on π when looping back to s. Given C, the idea is to
traverse π backwards and check whether this annotation is repeated in some
state s on π. If this is the case, we point to a possible word model with a loop
back to s. The counter c denotes the number of valid repetitions of C along π.
The conjectures C1, . . . , Cn−1 are used for the maximality check. As discussed
earlier, when we check a finite sequence in an inverse fashion, we may find more
than one valid annotation of the universal automaton for its states. To check
whether the annotation is maximal, we also compute for each state a set of neg-
ative universal states that are not allowed to be in a sequence state’s annotation.
For a state s in the sequence, a set Cj involves states that lead to a dead end

Counting Models of Linear-time Temporal Logic 7

in the automaton U in the j-th loop to s. Starting with N0 = ∅ we need to
loop at most n − 1 times to reach the largest set Cn−1 of all negative universal
states (the set is at most as large the set of universal states. In each loop this set
either increases or we will have reached a fix-point in which all negative states
are already included). An annotation is maximal if it contains all states that
are not in the negative set. An initial state is a conjecture state of the form
((C, 0, C1, . . . , Cn−1), C, ∅, C1, . . . , Cn−1) where C, C1, . . . , Cn−1 ⊆ 2Q.

The sets P,N0, . . . ,Nn−1 are computed via the transition relation ∆. Once
the automaton made a choice for an initial conjecture state ((C, 0, C1, . . . , Cn−1),
C, ∅, C1, . . . , Cn−1), ∆ becomes deterministic. For a symbol α ∈ Σ×Υ and a state
Λ# = ((C, c, C1, . . . , Cn−1),P,N0, . . . ,Nn−1) the transition relation computes a
state Λ′# = ∆(Λ#, α) = ((C, c′, C1, . . . , Cn−1),P ′,N ′0, . . . ,N ′n−1) as follows. The
set P ′ contains all the states of the universal automaton that lead to exactly
the set P via the transition with α, i.e., max{P ′ |

⋃
q∈P′

δ(q, α) = P}. If such

a set does not exist then there is no transition with α from this state. For the
sets of maximality check ∆ computes N ′i such that it contains all universal
states that may lead via α to a state in Ni or have no transition with σ, i.e.,
max{N ′ | ∀q′ ∈ N ′i . δ(q′, σ) = ∅ ∨ ∃q ∈ Ni. q ∈ δ(q′, σ)}.

A loop is found if the initial conjecture C is repeated i.e. C ⊆ P, and
the maximality check holds. The latter is true when all positive states are
in P, i.e., P = Nn−1, and for all j < n − 1, Nj = Cj+1, and a fix-point
for the set of negative states is reached, i.e., Cn−1 = Nn−1. In this case the
counter c is then incremented by one. A sequence is accepted if a state Λ# =
((C, c, C1, . . . , Cn−1),P,N0, . . . ,Nn−1) is reached after reading the last symbol
σ0, s.t., q0 ∈ P and c > 0.

The unambiguity of the automaton with respect to a word model follows
immediately from the maximality check and the determinism of the transition
relation after having chosen the initial state. ut

4.2 An Algorithm for Counting Word Models

Theorem 2. There is a procedure that counts the number of k-word models of
a safety specification expressed as an LTL formula ϕ in time linear in the bound
k and double-exponential in the length of ϕ.

Algorithm 1 describes a procedure for computing the number of word models of
bases accepted by the automaton. The algorithm computes for each state of the
automaton the number of bases of length i that are accepted in this state in the
i-th iteration (when this state is visited in the i-th step). Ω maps each accepting
state in the k-th iteration to the number of bases of length k that are accepted by
the automaton. For an accepting state q = ((C, c, C1, . . . , Cn−1),P,N0, . . . ,Nn−1),
a base accepted in this state has a loop annotation C and it is repeated c times.
Thus, each base accepted in q has c word models. The number of word models is
computed by summing up the number of word models in each accepting state.
The algorithm traverses the automaton k times, resulting in a complexity of

O(k).22
O(|ϕ|)

.

8 B. Finkbeiner and H. Torfah

Ω = {(q, 1)| q ∈ Q0#}
for (i := 0, i ≤ k, i++) do

for all q ∈ Ω do
for all σ ∈ Σ × Υ do
Ω(∆(q, σ)) + := Ω(q)

return
∑

q=((C,c,C1,...,Cn−1),P,N0,...,Nn−1)∈QF#

Ω(q) · c

Algorithm 1: Counting with A#.

5 Counting Tree Models

In this section, we introduce the counting algorithm for tree models. Our start-
ing point is again the universal safety automaton. Similar to the case of word
model counting, we guess a loop annotation and check whether the annotation
is repeated when exploring the tree from its leaves upwards. However, because
tree models are a composition of word models, we need to guess an annotation
for each branch of the tree (for each leaf). Furthermore, as described in Sec-
tion 2, a tree model must preserve the input structure of a transition system,
i.e., a tree model has loop-backs from each leaf for each direction. Therefore,
we have a conjecture annotation for each direction in each leaf. Traversing the
tree upwards we apply then the procedure of the word case with an additional
merging procedure that merges all the information received from the children in
their parent tree state.

The following theorem shows that for each safety property expressed as an
LTL specification ϕ and a bound k we can construct a bottom-up tree automa-
ton, that accepts a tree if it is a base for a tree model of ϕ. Theorem 4 shows
that this automaton can be used to count the number of k-tree models for the
specification ϕ.

Theorem 3. Given a universal safety automaton U = (Q, q0, δ, Σ, Υ) with n
states, and a bound k, we can construct a bottom-up tree automaton T# =
(Q#, QF#, ∆0, ∆,Σ, Υ) that accepts a Σ-labeled Υ -tree of depth k if it is a tree
base of a tree model that is accepted by U . The number of states of T# is double
exponential in n.

Construction: We choose ((2Q → {⊥}∪{0, . . . , k})×(2Q)n−1)×2Q×(2Q)n to
be the state space of T#. The universal safety automaton U has a unique anno-
tation for every tree model. A state ((f, C1, . . . , Cn−1),P,N0, . . . ,Nn−1) is again
split into a conjecture part f, C1, . . . , Cn−1 and a tracking part P,N0, . . . ,Nn−1.
The tracking sets assign a node of a tree with the set of its positive and negative
universal states. These annotations are reached from the conjecture sets of all
leaves that lead upwards to this node. The conjecture part differs from the word
case in the conjecture function f . The conjecture function is a partial function

Counting Models of Linear-time Temporal Logic 9

that maps an annotation to the number of expected repetitions along a branch
of the input tree. At leaf level, the function maps the guessed annotation C to
some number µ ∈ {0, ..., k}. Moving upwards in the tree the transition relation
counts down the number of repetitions of C. In each node of the input tree the
function f is a bookkeeping process for the repetitions of all the conjectures at
leaf level up to this node. A node annotation is maximal if P = Nn−1.

The sets P,N0, . . . ,Nn−1 are computed via the transition relations as follows.
For each leaf state s labeled with α ∈ Σ the initial transition relation ∆0 guesses
an annotation Cυi and sets C1υi , ..., C

n−1
υi for each direction υi ∈ Υ . It then uses the

transition relation ∆ to compute the state labeling of leaf state s by computing
∆(Λυ1# , . . . , Λ

υ|Υ |
, α) with Λυi# = ((fυi , C1υi , ..., C

n−1
υi), Cυi , ∅, C1υi , ..., C

n−1
υi), where

fυi is a singleton function that maps Cυi to some number µ ∈ {0, ..., k}.
The transition relation ∆ is deterministic. For states Λυ1# , . . . , Λ

υ|Υ |
with

Λυi# = ((fυi , C1υi , ..., C
n−1
υi),Pυi ,N 0

υi ,N
1
υi , ...,N

n−1
υi), and a label α ∈ Σ, the tran-

sition relation computes a state ∆(Λυ1# , . . . , Λ
υ|Υ |
, α) = Λ# = ((f, C1, ..., Cn−1),

P,N0,N1, ...,Nn−1) such that, Ci =
⋃
υi∈Υ

Ciυi . P is the largest set that leads via

the label α and direction υi to exactly the set Pυi , i.e., max{P |
⋃
q∈P

δ(q, α, υi) =

Pυi}. If such set does not exist then there is no transition for α from this state.

To compute such a set we compute for each Pυi a set P̃υi in the same fashion

as in the word case. We compute then the intersection
⋂
i

P̃υi and check whether

the latter condition holds. Each set Ni must contain all universal states that
may lead via α and direction υi to a state in N i

υi or have no transition with α
and υi, i.e., max{Ni | ∀q′ ∈ Ni. δ(q′, α, υi) = ∅ ∨ ∃q ∈ N i

υi . q ∈ δ(q
′, α, υi)}.

Thus, it is the union of all sets Ñυi that may lead to N i
υi and the set N6→ of

states that reach no state via α and any υi.
A new mapping f is also computed. The domain of f is the union of the

domains of all fυi . If some C is shared between two domains of functions fυi and
fυj , then we require that (fυi(C)) = (fυj (C)). If this condition is violated then
there is no transition for α from this state. For all C with fυi(C) = c, if C ⊆ P ,
for all j < n − 1, Nj = Cj+1, Cn−1 = Nn−1, and P = Nn−1, then a loop with
C is found and we assign f(C) = c − 1. Otherwise f(C) = fυi(C). If c ≤ 0 then
c − 1 = ⊥. A state ((f, C1, ..., Cn−1), P,N0,N1, ...,Nn−1) is accepting if q0 ∈ P
and for all C in the domain of f , f(C) = 0 (This means the guess of the number
of repetitions was correct). The progress of the transition relation is depicted in
Figure 4. The unambiguity of the tree automaton with respect to tree models
follows from the fact that for each tree there is exactly one maximal annotation
and from the determinism of the transition relation ∆. ut

5.1 An Algorithm for Counting Tree Models

Theorem 4. There is a procedure that counts the number of k-tree models of a
safety specification expressed as an LTL formula ϕ in time linear in the bound
k and triple-exponential in the length of ϕ.

10 B. Finkbeiner and H. Torfah

((f, C1, C2..., Cn−2, Cn−1),P,N0,N1, ...,Nn−1)

((fυi ,C
1
υi
,...,Cn−1

υi
),Pυi ,N

0
υi
,N1
υi
,...,Nn−1

υi
)

((fυi ,C
1
υi
,...,Cn−1

υi
),P̃υi ,Ñ

0
υi
,Ñ1
υi
,...,Ñn−1

υi
)

((fυj ,C
1
υj
,...,Cn−1

υj
),Pυj ,N

0
υj
,N1
υj
,...,Nn−1

υj
)

((fυj ,C
1
υj
,...,Cn−1

υj
),P̃υj ,Ñ

0
υj
,Ñ1
υj
,...,Ñn−1

υj
)

α

υi

α

υj

=?

=?

=?

=?

P
?

⊇ C∈ Dom(f)

Fig. 4. A transition of the tree automaton over trees with directions υi and υj . The
transition reads in this step a node labeled with α. The double lined states are the
state labelings of the children nodes in directions υi and υj .

Algorithm 2 describes a procedure for computing the number of tree models
of tree bases accepted by the automaton. The algorithm starts at the initial states
computed by ∆0. These states involve the initial conjectures for the number of
expected repetitions of an initial guessed annotation. Each initial state is mapped
via the function Θ to the number of expected repetitions of the initial annotation
(at this level the conjecture function is defined only over one annotation). We
track in each step every possible transition in ∆. A transition involves states
q0, ..., qυ−1 and a parent state q. Recall that a transition exists only if for all
the shared annotations in the domains of the conjecture functions f0, ...fΥ−1
of q0, ..., qυ−1, the number of expected remaining repetitions is identical (this
means that the initial guess was correct). For an annotation C shared among
the domains of conjecture functions (not necessary all of them), let c0, ...ch be
initial guesses for C (the number of loop backs of each leaf annotated with C).
The number of possible loop combinations from those leaves is

∏
i

ci. In the k-

th iteration each accepting state q′ of T# is mapped to a function Θ(q) that
defines for each annotation C in the domain of fq′ the number of possible loop
combinations for C in a tree accepted in q′. By multiplying all possible loop
combination for each defined annotation we get the number of tree models of
the tree accepted in q′. Finally, we sum up the results for all accepting states.
The automaton is traversed k times before obtaining the final result.

6 Discussion

We have studied the model counting problem for safety specifications expressed
in LTL. Counting word and tree models of LTL formulas opens up new “quanti-
tative” versions of the classic model checking and synthesis problems for reactive
systems: instead of just checking correctness and realizability, respectively, we

Counting Models of Linear-time Temporal Logic 11

Θ : Q# × 2Q → N
Q0# : initial states guessed by ∆0

Let q = (fq, C1q , Cn−1
q ,Pq,N 0

q , ...,Nn−1
q)

for all σ ∈ Σ do
for all q ∈ Q0# do

for all C ∈ Dom(fq) do
Θ(q, C) := fq(C)

for (i := 0, i ≤ k, i+ 1) do
for all (q0, q1, . . . , qΥ−1, σ, q) ∈ ∆ do

for all C ∈ Dom(fq) do
Θ(q, C)+ :=

∏
i

Θ(qi, C) /*only if C is defined for qi*/

return
∑

q∈QF#

∏
C∈2Q

Θ(q, C)

Algorithm 2: Counting with T#.

can now judge the severity of the error by counting the number of error paths,
and judge the specificity of the specification by counting the number of imple-
mentations.

While our algorithms are the first to specifically solve the model counting
problem for safety specifications expressed in LTL, obvious competitors are the
reduction to propositional model counting, as well as a direct enumeration of the
models. As discussed in the introduction, the reduction to propositional counting
is not a viable solution, because the reduction quickly leads to propositional
constraints with far more than the 1000-10000 variables that can be handled by
currently available model counters [9].

For k-word models, the complexity of our counting algorithm is double-
exponential in the length of the LTL formula and linear in k. If the complexity
in the formula were our main concern, we could do better better than this by
exhaustively enumerating all words of length k: checking whether a specific se-
quence satisfies an LTL formula can be done in polynomial time (or even in
NC [10]). However, the enumeration of all words takes exponential time in k,
which is, for reasonable values of k, impractical. For k-tree models, the situation
is similar: enumerating all trees would allow us to exploit inexpensive model
checking algorithms for finite trees [11], but would result in double-exponential
complexity in k, while our algorithm maintains linear complexity in k at the
price of triple-exponential complexity in the length of the formula.

In future work, we plan to extend the model counting algorithms to full LTL,
and to investigate the complexity for other fragments of LTL besides safety. The
high complexity in the length of the formula results from the necessity to mem-
orize information about each leaf of the tree. Fragments where this information

12 B. Finkbeiner and H. Torfah

is not needed, such as reachability properties, should therefore result in less
expensive model counting algorithms.

References

1. Bayardo, R.J., Schrag, R.: Using csp look-back techniques to solve real-world sat
instances. In: AAAI/IAAI. pp. 203–208 (1997)

2. Biere, A.: Bounded model checking. In: Handbook of Satisfiability, pp. 457–481.
IOS Press (2009)

3. Bloem, R.P., Gamauf, H.J., Hofferek, G., Könighofer, B., Könighofer, R.: Synthe-
sizing robust systems with RATSY. In: Association, O.P. (ed.) Proceedings First
Workshop on Synthesis (SYNT 2012). vol. 84, pp. 47 – 53. Electronic Proceedings
in Theoretical Computer Science (2012)

4. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.F.: Acacia+, a tool for LTL
synthesis. In: CAV. pp. 652–657 (2012)

5. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond (1992)

6. Darwiche, A.: New advances in compiling cnf into decomposable negation normal
form. In: In ECAI. pp. 328–332 (2004)

7. Ehlers, R.: Unbeast: Symbolic bounded synthesis. In: Proceedings of the 17th In-
ternational Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS). Lecture Notes in Computer Science, vol. 6605, pp. 272–275.
Springer-Verlag (2011)

8. Finkbeiner, B., Schewe, S.: Bounded synthesis. International Journal on Software
Tools for Technology Transfer 15(5-6), 519–539 (2013)

9. Gomes, C.P., Sabharwal, A., Selman, B.: Model counting. In: Biere, A., Heule,
M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in
Artificial Intelligence and Applications, vol. 185, pp. 633–654. IOS Press (2009),
http://dblp.uni-trier.de/db/series/faia/faia185.html#GomesSS09

10. Kuhtz, L., Finkbeiner, B.: LTL path checking is efficiently parallelizable. In: Al-
bers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.)
Proceedings of the 36th International Colloquium on Automata, Languages and
Programming (ICALP 2009), Part II. LNCS, vol. 5556, pp. 235–246. Springer
(2009)

11. Kuhtz, L., Finkbeiner, B.: Weak Kripke structures and LTL. In: Pro-
ceedings of the 22nd international conference on Concurrency theory.
pp. 419–433. CONCUR’11, Springer-Verlag, Berlin, Heidelberg (2011),
http://dl.acm.org/citation.cfm?id=2040235.2040272

12. Kupferman, O., Lampert, R.: On the construction of fine automata for safety
properties. In: ATVA. pp. 110–124 (2006)

13. Littman, M.L., Majercik, S.M., Pitassi, T.: Stochastic boolean satisfiability. Jour-
nal of Automated Reasoning 27, 2001 (2000)

14. Morwood, D., Bryce, D.: Evaluating temporal plans in incomplete domains. In:
AAAI (2012)

15. Pnueli, A.: The temporal logic of programs. In: Proceedings of the
18th Annual Symposium on Foundations of Computer Science. pp. 46–
57. SFCS ’77, IEEE Computer Society, Washington, DC, USA (1977),
http://dx.doi.org/10.1109/SFCS.1977.32

