Synthesizing Skeletons for Reactive Systems*

Bernd Finkbeiner and Hazem Torfah

Saarland University

Abstract. We present an analysis technique for temporal specifications
of reactive systems that identifies, on the level of individual system out-
puts over time, which parts of the implementation are determined by the
specification, and which parts are still open. This information is repre-
sented in the form of a labeled transition system, which we call skeleton.
Each state of the skeleton is labeled with a three-valued assignment to
the output variables: each output can be true, false, or open, where true
or false means that the value must be true or false, respectively, and open
means that either value is still possible. We present algorithms for the
verification of skeletons and for the learning-based synthesis of skeletons
from specifications in linear-time temporal logic (LTL). The algorithm
returns a skeleton that satisfies the given LTL specification in time poly-
nomial in the size of the minimal skeleton. Our new analysis technique
can be used to recognize and repair specifications that underspecify crit-
ical situations. The technique thus complements existing methods for
the recognition and repair of overspecifications via the identification of
unrealizable cores.

1 Introduction

The great advantage of synthesis is that it constructs an implementation auto-
matically from a specification — no programming required. The great disadvan-
tage of synthesis is that the synthesized implementation is only as good as its
specification, and writing good specifications is extremely difficult.

Roughly speaking, there are two fundamental errors that can happen when
writing a specification. The first type of error is to overspecify the system such
that actually no implementation exists anymore. This type of error can be found
by a synthesis algorithm (it fails!), and synthesis tools commonly assist in the
repair of such errors by identifying an unrealizable core of the specification (cf. [1,
11,12]). The second type of error is to underspecify the system such that not all
implementations that satisfy the specification actually perform as intended. This
type of error is much harder to detect. The synthesis succeeds, and even if we
convince ourselves that the synthesis tool has actually chosen an implementation
that performs as intended, there is no guarantee that this will again be the
case when a new implementation is synthesized from the same or an extended
specification.

* This work was partially funded by the European Research Council (ERC) Grant
OSARES (No. 683300) and by the Deutsche Telekom Foundation.

The underlying problem is that synthesis algorithms have the freedom to
resolve any underspecified behavior in the specification, and we have no way of
knowing which parts of the behavior were fixed by the specification, and which
parts were chosen by the synthesis algorithm.

In this paper, we introduce a new artifact that can be produced by synthesis
algorithms and which provides exactly this information. We call this artifact
the skeleton of the specification. We envision that synthesis algorithms would
produce the skeleton along with the actual implementation, so that the user of
the algorithm understands where the implementation is underspecified, and can,
if so desired, strengthen the specification in critical areas.

A skeleton is a labeled transition system defined over three-valued sets of
atomic propositions, where in each state of the skeleton an atomic proposition is
either true, false, or open. For a given specification, the truth value of a propo-
sition in some state of the skeleton is open if it can be replaced by true as well
as by false without violating the specification. Consider for example the LTL
formula Qp for some atomic proposition p. Any transition system that satisfies
the formula has truth value true for p in the second position of every path of the
transition system. On the other hand, whether p is true or false in the initial
state is not determined, either truth value would work. In this case, the skeleton
would not fix a particular truth value, but rather leave the value of p in the
initial state open. In a sense, the skeleton implements only those parts of the
transition system that are determined by the specification.

Skeletons are useful to understand the meaning of partially written spec-
ifications. Consider, for example, an arbiter over two clients that share some
resource. Each client can make a request to the source (via the inputs r and
r9) and the arbiter can, accordingly, decide to give out grants via the outputs ¢;
and go. A specification for the arbiter might begin with the property of mutual
exclusion, i.e., the LTL formula [J(g; V g2) stating that only one of the clients
should have access to the resource at a time. Figure 1 shows an implementation
of this specification as a transition system and a skeleton. The transition system
has a single state, and no grants are given at any time (see Figure 1(a)). The
skeleton shown in Figure 1(b) reveals that all outputs are open, as indicated by
the question mark. If we extend the specification with the property g; A g2, then
the previous transition system does not need to change, because it already sat-
sifies the extended specification. The skeleton, on the other hand, now indicates
that the output in the initial state is determined. The output in subsequent
states is still open (see Figure 1(c)). Extending the specification further with
the property [J(r1 — Og1) results in a skeleton where the responses to requests
from the first client are determined, and outputs in situations where there is no
request from the first client are still open (see Figure 1(e)). An implementation
for this specification could be the transition system that never gives a grant to
the second client (see Figure 1(d)).

We study the model checking and synthesis problems for skeletons. For a
given LTL formula ¢ and a skeleton & we say that S is a model of the LTL
formula ¢, if each trace in S satisfies following condition: If the truth value for

* *

(a)
(c) (d) (e)

Fig. 1. Transition systems and skeletons for an arbiter specification. The symbol *
denotes all possible input labels.

some proposition p in some position of the trace is open, then ¢ must both have
a model where p is true at this position, and a model where p is false at this
position. Furthermore, if the trace has truth value true or false for p at some
position, then all models of ¢ map p to the truth value true or false, respectively,
at this position.

We show that given an LTL formula ¢ we can build a nondeterministic au-
tomaton that accepts a sequence over the three-valued semantics if it satisfies the
satisfaction relation described above. The automaton is of doubly-exponential
size in the length of the formula . With this automaton, the model checking
problem can be solved in EXPSPACE.

To solve the synthesis problem, we could determinize the automaton and
check whether there is a skeleton for the formula, along the lines of standard
synthesis [16], but this construction would be very expensive. Instead, we intro-
duce a synthesis algorithm for skeletons based on learning. We show that for
each LTL formula, a skeleton that models the formula defines a safety language
that can be learned using the learning algorithm L*. The algorithm can learn
a skeleton for an LTL formula in time polynomial in the size of the minimal
skeleton for the specification. The membership and equivalence queries of the
L* algorithm are answered by the model checking algorithm introduced in this

paper.

Related Work. There is a rich body of work on the synthesis of reactive systems
from logical specifications [7,4,10,13, 14]. Supplemented by many works that
investigated the optimization of specification for synthesis and the identification
of unrealizable specification [11,12,1]. Multi-valued extensions of logics have
been rather popular in the verification of systems, where a simple truth value is
not enough to determine the quality of implementations. Chechik et. al. provide

a theoretical basis for multi-valued model checking [6], where the satisfaction
relation M | ¢ for a model M and a specification ¢ can be multi-valued.
Bruns and Godefroid experiment on multi-valued logics and show that many
algorithms for multi-valued logics can be reduced to ones for two-valued logics
[5]. Easterbrook and Chechik introduce a framework where multiple inconsistent
models are merged according to an underlying specification given in a multi-
valued logic, where the different values in the specification represent the different
levels of uncertainty, priority and agreement between the merged models [9]. In
comparison to all these works, we are interested in multi-valued extensions of
the models themselves and in the synthesis of such models, in order to determine
the amount of information that resides in a specification.

The term skeleton has been also used by Emerson and Clarke which shall
not be confused with the skeletons presented here. They presented a method for
the synthesis of synchronization skeletons that abstract from details irrelevant to
synchronization of concurrent systems [8]. In our skeletons, we stick to the struc-
ture of transition systems and leave place holders for the underspecified details,
which may then be supplemented with further steps to a complete transition
system.

2 Preliminaries

Alternating Automata. We define an alternating Biichi automaton as a tuple
A=(X,Q,q,9, F), where X denotes a finite alphabet, @ denotes a finite set of
states, go € @ denotes a designated initial state, § : Q x X — BT (Q) denotes a
transition function, that maps a state and an input letter to a positive boolean
combination of states, and finally the set F' C @ of accepting states.

We define infinite words over X' as sequence o : N — Y. A Y-tree is a pair
(T,r) over a set of directions D, where T is a prefix-closed subset of D* and
r: T — X is a labeling function. The empty sequence € is called the root. The
children of a node n € 7 are nodes C(n) ={n-d €T |d € D}.

A run of an automaton A = (X, Q, qo,0, F) on a sequence 0 : N —» Y is a
Q-tree (T,r) with r(e) = go and for all nodes n € T, if r(n) = ¢ then the set
{r(n’) | n" € C(n)} satisfies d(g,o(|n|)).

A run (7,r) is accepting if for every infinite branch ng,n,... the sequence
r(no)r(ny) ... satisfies the Biichi condition, which requires that some state from
F occures infinitely often in the sequence r(ng)r(ny).... The set of accepted
words by the automaton A is the language of the automaton and is denoted by
L(A). An automaton is empty iff its language is the empty set.

A nondeterministic automaton is a special alternating automaton, where the
image of 0 consists only of such formulas that, when rewritten in disjunctive
normal form, contain exactly one element of () in every disjunct.

An alternating automaton is called universal if, for all states ¢ and input
letters «, d(g,) is a conjunction. A universal and nondeterministic automaton
is called deterministic.

A Biichi automaton is called a safety automaton if QQ = F'. Safety automata
are denoted by a tuple (X, Q,qo,d). For safety automata, every run graph is
accepting.

Safety Languages: A finite word w = {1,...,i} — X over some finite alphabet X
is called a bad-prefix for a language L C X, if every infinite word o € (N — X))
with prefix w is not in the language L. A language L C (N — X)) is called a safety
language, if every o € L has a bad-prefix. We denote the set of bad-prefixes for
a language L by BP(L). For every safety language L we can define a finite word
automaton B = (@, @B, F5,05) that accepts the language BP(L). We call B
the bad-prefix automaton of L.

Linear-time Temporal Logic: We use Linear-time Temporal Logic (LTL) [15],
with the usual temporal operators Next O, Until &/ and the derived operators
Eventually <> and Globally 0. LTL formulas are defined over a set of atomic
propositions AP = I UO, which is partitioned into a set I of input propositions
and a set O of output propositions. We denote the satisfaction of an LTL formula
¢ by an infinite sequence o: N — 247 of valuations of the atomic propositions
by o = . For an LTL formula ¢ we define the language L(p) by the set {o €
(N 247) | o |- o).

Implementations: We represent implementations as labeled transition systems.
For a given finite set 7" of directions and a finite set X of labels, a X-labeled 7-
transition system is a tuple 7 = (T, to, 7, 0), consisting of a finite set of states T,
an initial state tg € T, a transition function 7: T'x T — T, and a labeling
function o: T — X. A path in T is a sequence 7: N — T x 7T of states and
directions that follows the transition function, i.e., for all i € N if 7 (i) = (¢, €;)
and m(i + 1) = (t;41,€41), then t;11 = 7(;,e;). We call a path initial if it
starts with the initial state: w(0) = (¢o, e) for some e € 7". We denote the set of
initial paths of T by Path(T). For a path m € Path(T'), we denote the sequence
ox: i — o(m(i)), where o(t,e) = (o(t) Ue) by the trace of m. We call the set of
traces of the paths of a transition system 7 the language of the 7, denoted by
L(T).

For a set of atomic propositions AP = O U I, we say that a 29-labeled 2/-
transition system 7T satisfies an LTL formula ¢, if and only if L(T) C L(yp), i.e.,
every trace of 7T satisfies ¢. In this case we call 7 a model of ¢.

Multi-valued Sets: A multi-valued set over an alphabet X and set of values I is a
function v € (X — I'). The simplest type of multi-valued sets is the two-valued
set which define the notion of sets as we know, where X' is a set of symbols and
I'={L1, T}, ie., for a two-valued set v over X and I', a symbol a € ¥ is in v if
v(a) = T, and not otherwise. The set of all multi-valued sets over an alphabet
XY and a set of values I" is denoted by I'*, e.g., in the usual set notion this is
the set {1, T}* or as we know it 2% for an alphabet X.

For a multi-valued set v € I'* and for p € X and h € I' we define the
multi-valued set v' = v[p — h|, where v'(p) = h and for all p’ € X'\ {p}, we

have v'(p’) = v(p’). For a multi-valued set v € I'* and for a set X’ C X the set
vsy € I'* is the multi-valued set obtained by projection from X to X'.

3 Skeletons

An open set over an alphabet X is a three-valued set v : {T,1,?}*, where
each element a € X is either in v denoted by v(a) = T, not in v denoted by
v(a) = L, or it is open whether it is in the set or not, i.e., it could be one of
both, denoted by v(a) =?. In the remainder of the paper, we denote the set
{T,1,?}* by 3*. For two open sets v,v’ € 3* we define the partial order C
such that v C v’ if and only if for all symbols a € X, v(a) < v'(a) with respect
to the lattice <= {(L, L), (T, T),(L,?),(T,?),(?,7)}.

We call a sequence o an open sequence if it is a sequence over open sets, i.e.,
o € (N — 3%). For two open sequences o and ¢’ we define the partial order C
such that o C o’ if for all i € N, o(i) C o/(i). For a sequence o € (N — 3%)
and X’ C X the sequence o € (N — 32/) is the sequence where for all 4,
02/(7;) = J(i)g/.

We define the satisfaction relation of LTL over open sequences as follows.
Given an LTL formula ¢ over a set of atomic propositions AP = O U I, an open
sequence o satisfies ¢, denoted by o | ¢, if for each sequence o’ € L(p) that
is input equivalent to o, i.e., of = o}, we have ¢’ C o. For a fixed sequence of
inputs ¢ € (N — 27), there is a unique open sequence o with o; = ¢ that satisfies
¢ and that is minimial with respect to the partial order C, i.e., for all sequences
o' € (N — 34F) with ¢’ |= ¢ and 0} = ¢, we have o C ¢’. We call such sequence
a manimal satisfying sequence. For an LTL formula ¢, we denote the set of all
minimal satisfying sequences by min(y).

Building on the definitions of open sequences and transition systems we in-
troduce the notion of skeletons of reactive systems, which are transition systems
labeled with open sets from 3.

Definition 1 (Skeleton). For a set AP = O U I of atomic propositions, a
skeleton over AP is a 3°-labeled-2! -transition system.

The language of a skeleton S is the set of open sequences given by the set of
its traces. Figure 2 shows four skeletons defined over the sets I = {ry,r2} and
O = {g1,92}. Figures 2(a) and 2(b) both define the language {o : N — 347 |
Vi.o(i)(g1) = o(i)(g2) =7}, i.e., for all input sequences the values of the output
propositions g; and g» are open in all positions. The language of the skeleton in
Figure 2(c) is the set {o : N — 347 | 0(0)(g1) = 0(0)(g2) = L,Vi > 0. 0(i)(g1) =
T Ao(i)(ge) =7} where the values of g1 are fixed in all positions and for go only
in the first position of the sequence.!

We say that a skeleton S is a model of an LTL formula ¢ denoted by S
¢, if L(S) = min(y). Intuitively, for an LTL formula ¢, a skeleton gives an
incomplete transition system where values of atomic propositions that are not

! Note that skeletons have no open values for input propositions.

=GO
(v)

(a) (c) (d)

Fig. 2. Skeletons over the sets I = {r1,r2} and O = {g1, g2}

deterministically fixed by ¢, are left open, i.e., they are mapped to the value ?
in the open set of a state. Consider the formula ¢ = g, A gy, AO(r1 — Og1).
We notice that all transition systems that satisfy ¢ must have the label §,g, in
the initial state. For the rest of the transition system, the formula forces only to
label a state with g; in case the direction(input) leading to this state contains
the proposition r1, and leaves it open on how to label the states reached by other
directions, or whether to label a state with g if it is reached by an input where
r1 is true (Figure 2(d)).

Building on the satisfaction relation between LTL and skeleton we investigate
in the next sections the problems of model checking and synthesis of skeletons.

4 Model Checking Skeletons

We present an automata-based model checking algorithm for skeletons. Given an
LTL formula ¢ we show that we can construct a nondeterministic Biichi automa-
ton that recognizes the complement language min(y). Using the usual product
construction, in this case, the product of the automaton and the skeleton, one
can check whether the resulting automaton contains a path that simulates an
accepting path in the nondeterministic automaton. If this is the case, then the
language of the skeleton contains a sequence in min(y) and, thus, the skeleton is
not a model for the formula ¢. Using the construction of the product automaton
we also show that checking whether a skeleton is a model of an LTL formula can
be done in space exponential in the length of the formula.

Lemma 1. Given an LTL formula ¢ we can build a nondeterministic Biichi
automaton N' = (347,Q, qo, F,0) such that L(N) = min(p). The number of
states of N is doubly-exponential in the length of .

Construction. The language min(p) contains all sequences o : N — 347 that
are not minimal satisfying open sequences for . These can be distinguished
by two types of open sequences. The first type involves sequences o where in
some position ¢ the truth value of a proposition p € AP is open (mapped to ?),
although, in all sequences ¢’ € L(p) with o; = o} the proposition p has the

one same truth value (one of T or L in all sequences) at position i. The second
type are sequences o, where in some position 7 a proposition p has truth value
L(resp. T), although, there exists another sequence o’ € L(y) with o} = o7
and o/ (i)(p) = T(resp. L). The latter case also subsumes the case of sequences
o € (N — 247) with o € L(p).

We construct a Biichi automaton N = (347, Q, qo, F,6) that accepts an
open sequence o if and only if ¢ ¢ min(p). The automaton is composed of
two nondeterministic Biichi automata N7 = (347, Q1,q0.1, F1,01) and Ny =
(347, Qa, qo.2, Fa, 02), one for each of the sequence types mentioned above. We
define the automaton as N'= N7 V Nz, where Q = {qo} UQ1UQ2, F = F{UF,
and § = {(qo, a, 01 (q071,a) V (52(Q072, a)) | ac 3AP} Ud; Udy

Automaton A accepts a sequence o € (N — 347) if ¢ has a position i where
an atomic proposition p € AP is incorrectly marked as open. The automaton N
can be constructed as follows:

Let Uy = (247, Q%, qlf,, F¥,6%) be a universal Biichi automaton for the
formula —¢. We extend the automaton U; to another universal Biichi automa-
ton U; over an extended alphabet {T,L,? st,*; }4". We make use of the
values *T and *, to encode in the input sequence whether a mapping to ?
is wrong, and whether it is wrong when replacing ? by T or by 1. We de-
fine Uy = ({T, L, 7, 51,%.}*F, Q1. 451, Fi, 0}) over two copies of the automa-
ton Ui (denoted by the numbers 1 and 2) where Qf = QY x {1,2}, ¢, =
(g1, 1), Fy = FY x {1,2}. The transition function ¢} is given by the union of
the following sets:

- {((Q?h)’v’611/{(qvv){q’€Qﬁ‘/(q/,h)}) | h e {172}7vp € O’U(p) € {T7J*}}
where in both copies of the automaton U, transitions over symbols v with
no open values remain in the same copy and follow the structure of the
transition relation ¢ of U;. The operation {¢’ € QY /(¢’,h)} substitutes
every appearance of a state ¢’ in 0% (q,v) by a state (¢’, h) from Q3.

= {((a,h),v, (¥ (g, v[p = T]) A& (g, vp = L)) tgrequ /@ my) |
he{l,2},pe O,v(p) =1,}
universal transitions for symbols where a proposition p has an open truth
value imitating transitions for both truth values T and L for p.

- {((Q7 1)7’07 511/{((]71)[1) — T]){q’GQZf/(q’,Z)}) | pE O,’U(p) = *T}
when we guess at some position ¢ that an open truth value for a proposition
p is wrong, and it is wrong when replacing it by T we follow the transition
T to the second copy of U; in which 7,%, and %1 are treated equivalently.
This helps to check, whether replacing ? by T results in accpeting run in U,
which means that at position ¢ the truth value T violates the property ¢,
and thus it cannot be open at the that point.

= {((g,1),v,8 (g, v[p = J—]){q’EQlf{/(q’Q)}) |p€O0,v(p) =x*1}
which introduce transitions that involve the dual case of *—.

- {((Q7 2)71)’ (611/{(%1}[1) — _l_]) A 6T(Qav[p = J-])){q/tef’/(q’,Q)}) ‘
p € O,v(p) € {x1,%7}}
these transitions make sure that when moving to copy 2 of U;, values %+

and *, are treated equally to 7, because after guessing that a ? is wrong it
must be wrong for all continuations.

In order to obtain the desired automaton Nj over the alphabet 34F we
first transform the automaton Uf to a nondeterministic automaton N7 with
L(U;) = L(N7) using a subset construction. This is necessary in order to merge
all transitions x| at one level into one state. The same holds also for transitions
*1. In this way, we can check whether at some position in a sequence a value
? is wrong by checking all possible branches of the automaton U; at that level.
The automaton Nj* can be transformed now to the desired automaton N by
projecting every transition label with values in {*T,*, } to a label v’ € 34" such
that for every p € O, if v(p) = *T or v(p) = *, then v'(p) =7.

The size of the automaton U; is exponential in the length of ¢ using the
transformation of LTL formulas into alternating Biichi automata [17], and then
using a subset construction. The transformation to U5 from Uy, and to N from
N are both polynomial, and exponential from U; to N7*. Thus, the size of N;
is doubly-exponential in the length of .

In a similar way, we can construct the automaton ANs. Automaton N accepts
a sequence o € (N — 34F) if a proposition p € AP is incorrectly mapped to
T or L. Starting with the alternating Biichi automaton for the formula ¢, we
extend the alphabet with symbols %1 and *, and build an automaton U5 =
(T, L, 2, %, }4F, Q3, 5.2, F5,05). Whenever we read a symbol v where some
p € O is mapped to *1(x,), the automaton follows the transition for v(p) =
L(T). After turning U5 to a nondeterministic automaton and projecting, a label
v is replaced by a label v" such that for every p € O, if v(p) = *1 or v(p) =
x| then v'(p) = T or v/(p) = L, respectively. The automaton N3 is doubly-
exponential in the length of .

Proof. Let o € (N — 34F). We distinguish three cases:

— o € min(yp) and for some ¢ and some p € O, the mapping o(i)(p) =7 is wrong.
We assume, w.l.o.g., that for all o’ € L(p) with o = o, that o’(i)(p) =T,
and that 7 is the first position for which o(i)(p) =? is wrong. A run of the
automaton A over ¢ is a sequence r € (N — ZQT). Let r = XoX;... be the
run of the automaton A" on o, where Xo = {¢;,}, and up to the position
i1 the run follows for each mapping to ? the transitions in N that were
transitions for mappings to ? in the automaton N before the projection,
i.e., all sets X; with j < i contain only states (¢,1) from @7, where ¢ € QY.
In the position i, where the mapping to ? is incorrect, the run follows the
transition with ? in state X; of A that can be mapped to a transition x|
in the automaton N} which moves to a set X;4; with only states (q,2) from
Q7, i.e., the transition that checks whether replacing 7 at ¢« with L always
leads to rejecting states for possible instantiations of upcoming 7. As Uy
is built from copies of the automaton U; for the formula —¢p, following the
transition for *, means replacing at position i the value ? with 1, which can
only lead to rejecting runs, because the automaton U; accepts no sequence
where p is mapped to value L at position 3.

— 0 € min(yp) and for some ¢ and some p € O, o(i)(p) is incorrectly mapped to
T or to L. With the same argumentation of the last case over the structure
of the automaton N3 the claim can be proven.

— o € min(p). In this case, for each position i, for each proposition p € O
such that o(i)(p) =7, and for each instantiation of ? for p in position 4, there
are instantiations for all other 7 values in o and for all propositions such
that the resulting sequence o’ € (N — 24F) is in L(p). Let r = XoX;...
be a run of N} on o. If r follows all transitions for a mapping to ? that
correspond to a transition for the value ? in N}. In this case, all sets X for
§ > 0 have states (g, 1) of U; where ¢ € Q4 and the run is not accepting,
because the run simulates a universal run tree in U/ with at least one non-
accepting branch, because there is an instantiation for o that is a model of
. If at any point, then run r takes a transition for some mapping to ? that
corresponds to a transition *; or xT in the automaton ./\/1*7 then the run
cannot be accepting, otherwise there is a mapping to ? for some proposition
p € O in some position in ¢ for which all other 7 in ¢ cannot be instantiated
appropriately in order to get a model in o.

In a similar way we can also prove that N3 has no accepting run for o.
O

To check whether a skeleton S is a model for a given LTL formula ¢ we compute
the product P = S x N where N is nondeterministic Biichi automaton with
L(N) = min(y) constructed in Lemma 1. If P contains a path that simulates an
accepting path in A/, then S has a path that violates the property ¢, i.e., there
is a sequence in the language L(S) that is not in min(¢p).

Instead of constructing the product automaton P one can also guess a run
in P and check whether it is accepting®. Based on this idea, the complexity of
model checking skeleton is given by the following theorem.

Theorem 1. Checking whether a skeleton S is a model for an LTL formula ¢
15 in EXPSPACE.

5 Synthesis of Skeletons

For a set of atomic propositions AP = I U O, to check whether there is 2°-
labeled 2/-transition system 7 that satisfies a given LTL formula ¢, one would
construct a deterministic w-automaton D (for example a parity automaton) with
L(D) = L(yp), interpret the automaton as a tree automaton over trees with labels
from 3° and directions from 2! and check its emptiness. In case, the language
of the automaton is not empty the procedure returns a transition system 7 that
models the formula ¢. In the same fashion, we can construct a deterministic
w-automaton for the language min(p) (for example by determinizing the au-
tomaton from Lemma 1) and check whether there is a skeleton that is a model

2 This follows the idea of the PSPACE model checking algorithm for LTL over transition
systems [3]

for ¢ by performing an emptiness check over tree automaton interpretation of
the deterministic automaton.

The deterministic automaton is very expensive to construct (triple exponen-
tial in the formula). Instead, we show that we can avoid this construction of
the large deterministic automaton using learning. In comparison to transition
systems, given an LTL formula, we show that it has a unique minimal skeleton
that models the formula. The language of the skeleton is a safety language, and
thus, can be characterized by a bad-prefix automaton, which is a finite word au-
tomaton. We use the learning algorithm L* to learn the deterministic bad-prefix
automaton [2], which can be easily transformed to a skeleton that models the
formula. The learning algorithm learns the skeleton in time polynomial in the
size of the minimal skeleton.

5.1 Learning Skeletons

In the following we present an algorithm for learning skeletons of LTL formulas.
Our algorithm is based on the L* algorithm for learning deterministic finite au-
tomata introduced by Dana Angluin [2]. The setting of the L* algorithm involves
two key actors, the learner and the teacher. The learner tries to learn a language
known to the teacher by learning a minimal deterministic finite word automaton
for the language. The interaction between the learner and the teacher is driven
by two types of queries: membership queries, where the learner asks whether a
particular word is in the language, and equivalence queries, to check whether a
learned deterministic finite automaton indeed defines the language to be learned.
Here, the teacher responds either with a “yes” or with a counterexample, which
is a word in the symmetric difference of the language of the learned automa-
ton and the actual language. A teacher is called minimally adequate, if she can
answer membership and equivalence queries.

Theorem 2. [2] Given a minimally adequate Teacher for an unknown regular
language L, we can construct a minimal finite word automaton that accepts L,
in time polynomial in the number of states of the automaton and the length of
the largest counterexample returned by the teacher.

For an LTL formula ¢ we show that the language of a skeleton that satisfies
@ is a safety language. This can be characterized by a language over finite words,
namely the language of bad-prefixes. The L* algorithm can learn a finite automa-
ton for the language of bad-prefixes, which in turn can then be transformed to
a skeleton for the property ¢.

Lemma 2. For an LTL formula ¢, the language min(p) is a safety language.

Proof. We show that every ¢ € min(p) has a bad-prefix. We distinguish two
cases for o:

— There is a point ¢ in o and a proposition p such that o(i)(p) = T(or L) and
there is a sequence o’ € L(p) with oy = ¢} and o’(i)(p) = L(orT). Thus,
any finite sequence vy . ..v; € (34)* with (vg...v;)r = (¢(0)...0(i)); and
v;(p) #7 is a bad-prefix for min(yp).

w € BP(min(p)) L(S) 2 min(y)
A
| 1E KR S
12 : —
! 8 Q| |

Fig. 3. A modified L* for learning minimal skeletons of LTL formulas

— There is a point 7 in o and a proposition p such that o(i)(p) =7 and for all
o' € L(p) with oy = o we have ¢’(7)(p) is solely T or solely L. In this case,
every finite sequence vy . .. v; € (347)* with (vg...v;)r = (¢(0)...0(i)); and
v;(p) =7 is a bad-prefix for min(yp).

O

From the last lemma we deduce, that a skeleton S for an LTL formula ¢ can
be seen as a safety automaton that accepts the language of minimal satisfying
open sequences for ¢. In particular, there is a bad-prefix automaton B that
accepts the language of bad-prefixes of the language min(yp).

We use the L* algorithm to learn a deterministic bad-prefix automaton for
the language min(y). Figure 3 shows a high level flow graph of the learning
algorithm?. The learner poses a series of membership questions before making
a conjecture about the bad-prefix automaton. With a membership query the
learner asks whether a finite word w € (34F)* is a bad-prefix for min(y). If w
is a bad-prefix then the teacher returns yes, and no otherwise. The equivalence
queries allow the learner to check whether a skeleton S is correct, i.e., L(S) =
min(p). The teacher either confirms the automaton or returns a counterexample
to the learner. The latter is either a bad-prefix that is not rejected by B or
word w € (34F)* that is not a bad-prefix for min(y) yet is in the language of
B. The black box shown in Figure 3 between the bad-prefix automaton and a
skeleton, is a check whether the safety language characterized by the bad-prefix
automaton can be represented by a skeleton. We will refer to this check as the
output consistency check and will explain it later in more detail.

The skeleton returned by the learning procedure is minimal and it is unique.

Lemma 3. For each LTL formula ¢ there is a unique (up to isomorphism)
minimal skeleton S such that S |= .

Proof. Let S = (S, s9,7,0) and §' = (57, s(, 7', 0') be two minimal skeletons for
v, 1.e, |S| = |S’| = ¢ and there is no skeleton 8" = (S, sy, 7",0") for ¢ with
|S”] < c¢. We show that & and &’ define the same skeleton up to isomorphism.

3 For more details on the L* algorithm we refer the reader to [2].

Let 8 = {(s,s') € S xS | Vor € (21)*. 7%(s50,07) = s <> 7/*(s),07) = s'}.
The relation 8 is bijective because 7% and 7'* are both functional and complete.
Thus, there is a one-to-one mapping between the states of S and those of &,
and for each (si1,%,s2) € 7 we have (8(s1),%, 8(s2)) € 7'. For each (s,s’) € 8
it is also the case that o(s) = o/(s’), otherwise, there is an input sequence that
distinguishes a trace in S from the corresponding one in &', which contradicts
the assumption that L(S) = L(S’). This implies that S is isomorphic to §’. O

In the next sections we show how membership and equivalence queries can
be solved algorithmically.

5.2 Membership Queries

In this section we show that using the ideas of the automaton presented in
Lemma 1 we can check whether a word is a bad-prefix in space exponential in
the length of .

Theorem 3. Given an LTL formula ¢ and a finite word w € (34F)*, checking
whether w is a bad-prefiz for min(p) is in EXPSPACE.

Proof. A finite word w € (34F)* is a bad-prefix for min(y) if w = wy . .. w, has a
prefix and there is a sequence of input values ¢ and no sequence o : N — 34 with
o7 = ¢ can extend w to a sequence in w-o € min(p). Let U = (¥, Q, qo, 9, F') be
a universal Biichi automaton such that L(U) = L(—¢g). The idea is to iteratively
construct a run of the automaton &/ and check if the run is accepting (remember
that a run of U is Q-tree). Given the input word w, we first guess which position
1 of w contains a wrong mapping and compute the set of states of the run
tree over wy . ..w; reached at this position. Then, we compute the set of states
reached via choosing the transition for which the guessed position ¢ is wrong.
Form here on, we guess the next input and branch universally for all valuations
of the output propositions, and compute the next set of reached states. This
is repeated 2/9! times (At latest at position 2191 we reach a set of states, that
was seen before and enter a loop in the run). If during the procedure a valid
accepting configuration of the universal automaton was guessed, then we have
found a sequence of inputs ¢ for which no o with o; = ¢ extends the prefix of
wp ... w; to a sequence in min(y). Thus, w is a bad-prefix for min(y). In each
step we only need to remember the currently reached set of states of U, and
whether we have seen an accepting configuration of /. Furthermore, the number
of iteration can be encoded in binary and is polynomial in the size of U, which
in turn is exponential in the length of ¢. a

5.3 Equivalence Queries

We move now to equivalence queries. To check whether a skeleton is a model
for a formula ¢ we apply the model checking algorithm presented in Section 4.
The learning algorithm first constructs a bad-prefix automaton for the language

min(y). We show that this automaton can be turned into a safety automaton for
min(y) on which we can simulate a skeleton for ¢. In case we cannot simulate the
skeleton on top of the safety automaton, then there is no skeleton that models
the formula ¢.

Lemma 4. Given a deterministic bad-prefiz automaton B for a safety property

@, we can construct a deterministic safety automaton S for ¢ in time linear in
the size of B.

Construction. Let B = (X,Q,qo, F,d) be a bad-prefix automaton for some
property ¢ and we assume it is complete. We construct a safety automaton
S=(X,0Q,q),0) for ¢ by first removing all states in F and then by iteratively
removing all resulting sink states in the automaton.

Remark 1. Note that if B is minimal, so is S.

Before we move on to the construction we consider following fact about skele-
tons and the language min(p) for some formula . Let AP = OUT be the set of
atomic propositions. Let S = (.5, sg, 7, 0) be a skeleton that models the formula
@. Let m1 = (s0,%1)(81,%1) ... and mo = (S0,%1)(S1,42) ... be paths in S where
S0,$1 € S and 41,43 € I. Then, both sequences o, = (0(so) Ui1)(o(s1) Ui1)...
and o, = (0(sg) Ui1)(o(s1) Uiz)..., must be in the set min(y), otherwise S
is not a model of . This means, if the language min(yp) contains sequences
(01 Uir)(oa Uidy)... and (01 Uiy)(oh Uiz)... with oo # o then there is no
skeleton that models ¢, because min(y) = L(S) and both traces cannot be trace
of the skeleton at the same time.

Definition 2 (Output Consistent). For a set of atomic propositions AP =
O U I, a safety automaton A = (347, Q, qo,0) is output consistent, if for each
state ¢ € Q there is a unique mapping v € {1, T,?}° and for all transitions
(q,v',q") €6, v'(p) = v(p) for all propositions p € O.

Lemma 5. Given an LTL formula v, if there is an output consistent safety
automaton A for the language min(yp), we can transform A to skeleton S that
models @. The size of S is equal to the size of A.

Construction. Let ¢ be an LTL formula and let A = (347, Q, g0, d) be an out-
put consistent safety automaton for the language min(p) constructed from a
deterministic bad-prefix automaton as in Lemma 4. Let @ = {qo,q1...qn}
We can construct a skeleton § = (S5, sg,7,0), where S = {sp,...,s,} and
o(si) =X NO for (¢;,X,q") € ¢ for some ¢’ € Q, and (s;,Y,s;) e Tfor Y C T
when (g;,0(s;) UY,q;) € §. The skeleton S models ¢, because it simulates the
language of A.

Lemma 6. Given a formula @, if an output consistent safety automaton A with
L(A) = min(p) is minimal then the skeleton S extracted form A is also minimal.

Proof. This follows from the fact that we can use the reverse of the construction
presented in Lemma 5 to construct the safety automaton from the skeleton.
Assume S was not minimal, then there is a skeleton &’ with less number of
states. This one, however, can be transformed backwards to a output consistent
automaton of same size, which contradicts the assumption. a

Once we obtain a candidate skeleton, we check whether the skeleton is a
model of the formula using the model checking algorithm presented in Section
4. If the skeleton is not a model, the algorithm returns a counterexample, which
is a lasso-shaped trace in the candidate skeleton. As this trace must contain a
bad-prefix, we can iteratively check all prefixes of the trace using membership
queries until we reach the (shortest) bad-prefix.

Using the results presented in Theorem 1 (Equivalence query checking is
in EXPSPACE), Theorem 2 (L* learns a minimal bad-prefix automaton in poly-
nomial time in the size of the minimal automaton), Theorem 3 (Membership
checking is in EXPSPACE), Lemma 2 (The language min(p) can be characterized
by a finite automaton), Lemma 3 (The minimal skeleton is unique), Lemma 5
(The safety automaton is a skeleton), and Lemma 6, we can conclude now with
following theorem.

Theorem 4. Given an LTL formula ¢, we can construct a skeleton S that mod-
els ¢ in time polynomial in the size of the minimal skeleton of ¢.

6 Conclusion

We have presented an analysis technique for temporal specifications of reactive
systems that identifies, on the level of individual system outputs over time, which
parts of the implementation are determined by the specification, and which parts
are still open. Based on the algorithms developed in this paper, a synthesis
tool can represent this information in the form of a skeleton for the reactive
system. Skeletons are more informative than conventional transition systems in
identifying critical situations that are still underspecified.

Our automaton-based model checking algorithm for skeletons also serves as
the teaching oracle in the learning-based synthesis algorithm. The learning algo-
rithm L* can be used to synthesize minimal skeletons because skeletons define
safety languages, which can be characterized by a unique minimal bad-prefix
automaton. Once the automaton is learned, it can directly be transformed into
a skeleton for the specification. The skeleton is minimal and can be constructed
in time polynomial in the number of states of the skeleton.

In the development of a reactive system, skeletons can be seen as an inter-
mediate step between the specification of the system and its implementation. In
future work, we plan to investigate this aspect further, by exploring an incremen-
tal development process, where the refinement of the specification is guided by
the identification of underspecified situations through the skeletons synthesized
from the intermediate specifications.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Rajeev Alur, Salar Moarref, and Ufuk Topcu. Counter-strategy guided refinement
of GR(1) temporal logic specifications. In Formal Methods in Computer-Aided
Design, FMCAD 2013, pages 26-33. IEEE, 2013.

. Dana Angluin. Learning regular sets from queries and counterexamples. Inf.

Comput., 75(2):87-106, November 1987.

. Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Represen-

tation and Mind Series). The MIT Press, 2008.

. Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv Saar.

Synthesis of reactive(1) designs. J. Comput. Syst. Sci., 78(3):911-938, May 2012.

. Glenn Bruns and Patrice Godefroid. Model checking with multi-valued logics.

In Josep Diaz, Juhani Karhumaki, Arto Lepistd, and Donald Sannella, editors,
Automata, Languages and Programming: 31st International Colloquium, ICALP
2004. Proceedings, pages 281-293. Springer Verlag, 2004.

. Marsha Chechik, Benet Devereux, Steve Easterbrook, and Arie Gurfinkel. Multi-

valued symbolic model-checking. ACM Trans. Softw. Eng. Methodol., 12(4):371—
408, October 2003.

. Alonzo Church. Logic, arithmetic, and automata. In Proc. Internat. Congr. Math-

ematicians (Stockholm, 1962), pages 23-35. Inst. Mittag-Leffler, Djursholm, 1963.

. Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization

skeletons using branching-time temporal logic. In Logic of Programs, Workshop,
pages 52-71, London, UK, UK, 1982. Springer-Verlag.

. Steve Easterbrook and Marsha Chechik. A framework for multi-valued reasoning

over inconsistent viewpoints. In Proceedings of the 23rd International Conference
on Software Engineering, ICSE *01, pages 411-420. IEEE Computer Society, 2001.
Bernd Finkbeiner and Sven Schewe. Bounded synthesis. International Journal on
Software Tools for Technology Transfer, 15(5-6):519-539, 2013.

Robert Konighofer, Georg Hofferek, and Roderick Bloem. Debugging unrealizable
specifications with model-based diagnosis. In Sharon Barner, Ian Harris, Daniel
Kroening, and Orna Raz, editors, Hardware and Software: Verification and Testing:
6th International Haifa Verification Conference, HVC 2010, pages 29-45. Springer
Verlag, 2011.

Wenchao Li, Lili Dworkin, and Sanjit A. Seshia. Mining assumptions for synthesis.
In Satnam Singh, Barbara Jobstmann, Michael Kishinevsky, and Jens Brandt,
editors, 9th IEEE/ACM International Conference on Formal Methods and Models
for Codesign, MEMOCODE 2011, Cambridge, UK, 11-18 July, 2011, pages 43-50.
IEEE, 2011.

Zohar Manna and Pierre Wolper. Synthesis of communicating processes from tem-
poral logic specifications. ACM Trans. Program. Lang. Syst., 6(1):68-93, January
1984.

A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proceedings
of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’89, pages 179-190, New York, NY, USA, 1989. ACM.

Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, SFCS 77, pages 46-57. IEEE
Computer Society, 1977.

Roni Rosner. Modular Synthesis of Reactive Systems. PhD thesis, Weizmann
Institute of Sceince, Rehovot, Israel, 1992.

Moshe Y. Vardi. Alternating automata and program verification. In In Computer
Science Today. LNCS 1000, pages 471-485. Springer-Verlag, 1995.

