Algorithms for Monitoring Hyperproperties*

Christopher Hahn

Saarland University, Saarbriicken, Germany
hahn@react.uni-saarland.de

Abstract. Hyperproperties relate multiple computation traces to each
other and thus pose a serious challenge to monitoring algorithms. Obser-
vational determinism, for example, is a hyperproperty which states that
private data should not influence the observable behavior of a system.
Standard trace monitoring techniques are not applicable to such proper-
ties. In this tutorial, we summarize recent algorithmic advances in mon-
itoring hyperproperties from logical specifications. We classify current
approaches into two classes: combinatorial approaches and constraint-
based approaches. We summarize current optimization techniques for
keeping the execution trace storage and algorithmic workload as low as
possible and also report on experiments run on the combinatorial as well
as the constraint-based monitoring algorithms.

Keywords: Hyperproperties - HyperLTL - Information-Flow - Monitor-
ing - Runtime Verification.

1 Introduction

Hyperproperties [12] relate multiple computation traces to each other.
Information-flow control is a prominent application area. Observational deter-
minism, for example, is a hyperproperty which states that two executions agree
on the observable output whenever they agree on the observable input, i.e., pri-
vate data does not influence the observable behavior of the system. Standard
trace monitoring techniques are not applicable to such properties: For example,
a violation of observational determinism cannot be determined by analyzing exe-
cutions in isolation, because each new execution must be compared to executions
already seen so far. This results in a challenging problem: A naive monitor would
store all traces and, thus, run inevitably out of memory. So how do we efficiently
store, process and compare every executions seen so far? In this paper, we will
give an overview on the significant algorithmic advances [1, 23,24, 9, 31,8, 7] that
have been made in monitoring hyperproperties.

* This work was partially supported by the German Research Foundation (DFG) as
part of the Collaborative Research Center “Methods and Tools for Understand-
ing and Controlling Privacy” (CRC 1223) and the Collaborative Research Center
“Foundations of Perspicuous Software Systems” (TRR 248, 389792660), and by the
European Research Council (ERC) Grant OSARES (No. 683300).

2 C. Hahn

‘ execution 1 ’:{> ‘ execution 1 ‘ | execution 1 |

‘ execution 2 ’:(> ‘ execution 2 ‘ | execution 2 ':>
= O
U ‘ execution 3 > O
- g
O
‘ execution b ’:{> E bound b

Fig. 1. Input Models: The parallel model (left), the unbounded sequential model (mid-
dle), and the bounded sequential model (right).

Monitoring hyperproperties requires, in general, extensions of trace property
monitoring in three orthogonal dimensions: (1) how the set of execution traces is
obtained and presented to the monitor, (2) how hyperproperties can be rigorously
specified formally and (3) how algorithms process multiple traces at once without
an explosion of the running time or storage consumption.

Input Model. There are three different straight-forward input models [25]: (1)
The parallel model, where a fired number of system executions is processed
in parallel. (2) The unbounded sequential model, where an a-priori unbounded
number of system executions are processed sequentially, and (3) The bounded
sequential model where the traces are processed sequentially and the number
of incoming executions is bounded (see Figure 1). Choosing a suitable input
model for the system under consideration is crucial: The choice of the model
has significant impact on the monitorability and, especially, on the monitoring
algorithms. If, for example, the number of traces is a-priori bounded, offline
monitoring becomes an efficient option. If, however, violations must be detected
during runtime, algorithms must be specifically designed and optimized to reduce
trace storage and algorithmic workload.

Hyper logical specifications. Hyperlogics are obtained by either (1) extending
linear-time temporal and branching-time temporal logics with explicit trace
quantification [11] or (2) by equipping first-order and second-order logics with
the equal-level predicate [39,29]. There are several extensions of logics for trace
properties to hyperlogics (see [13] for a recently initiated study of the hierarchy of
hyperlogics). HyperLTL [11] is the most studied hyperlogic, which extends linear-
time temporal logic (LTL) with a trace quantification prefix. Let Out, In C AP
denote all observable output and input propositions respectively. For example,
the HyperLTL formula

Vv (N\ o < 0n)W(\/ in $ in) (1)

o€ Out i€In

expresses observational determinism, i.e., that all pairs of traces must agree on
the observable values at all times or until the inputs differ. With this added
dimension, hyperlogics can relate traces or paths to each other, which makes

Algorithms for Monitoring Hyperproperties 3

execution 1 ooao | execution 1 :I
execution 2 [& | OO | execution 2 S :I
2 2
= c
O o O 5]
O E 0 <E
O O
execution b odod | execution b :I

Fig. 2. [25] Monitor approaches for the parallel model: online in a forward fashion (left)
and offline in a backwards fashion (right).

execution 1 ‘ | execution 1 |

execution 2

]
O
O

‘ execution 2

execution 3
O
O
O

monitor

monitor

| execution b |

Fig. 3. [25] Monitor approaches for the sequential models: an unbounded number of
traces (left) and bounded number of traces (right) are processed sequentially.

it possible to express hyperproperties, such as information-flow control policies
rigorously and succinctly.

Algorithms. Current monitoring approaches can be classified into two classes:
(1) algorithms that rely on combinatorial constructions, for example, on multiple
instantiations of automaton constructions and (2) constraint-based algorithms
that translate the monitoring requirements into Boolean constraints and, for
example, apply rewriting techniques, which rely on SAT or SMT solving. Both
types of monitoring techniques require heavy optimization, in order to make
the monitoring problem of hyperproperties feasible. The bottleneck in combi-
natorial approaches is that a monitor needs to store, in the worst case, every
observation seen so far. Optimizing the trace storage is therefore crucial. We
describe a trace storage minimization algorithm that prunes redundant traces to
circumvent this problem. Constraint-based approaches on the other hand, suffer
from growing constraints, such that naive implementations push SAT and SMT
solvers quickly to their limits. Keeping the constraint system as small as possible
is therefore crucial. We report an optimization technique that stores formulas
and their corresponding variables in a tree structure, such that conjunct split-
ting becomes possible. The algorithms reported in this paper in detail, i.e., [25,
31], have been implemented in the state-of-the-art monitoring tool for temporal
hyperproperties, called RVHyper [24].

Structure. The remainder of this paper is structured as follows. We will report re-
lated work in Section 2 and give necessary preliminaries in Section 3. We classify

4 C. Hahn

current monitoring approaches into two classes in Section 4 and go exemplary
into detail in [25] and [31]. We will summarize the optimization efforts that have
been implemented in RVHyper in Section 5. In Section 6, we will report a sum-
mary of the experimental results that have been done over the last couple of
years on RVHyper before concluding in Section 7.

2 Related Work

HyperLTL was introduced to model check security properties of reactive sys-
tems [11,27,26]. The satisfiability problem [19, 22, 20] and the realizability prob-
lem [21] of HyperLTL has been considered as well. For one of its predecessors,
SecLTL [16], there has been a proposal for a white box monitoring approach [17]
based on alternating automata. The problem of monitoring HyperLTL [6] was
considered in an combinatorial approach in [1,25] and in a constraint-based ap-
proach in [9, 31].

Runtime verification of HyperLTL formulas was first considered for (co-)k-
safety hyperproperties [1]. In the same paper, the notion of monitorability for
HyperLTL was introduced. The authors have also identified syntactic classes of
HyperLTL formulas that are monitorable and they proposed a combinatorial
monitoring algorithm based on a progression logic expressing trace interdepen-
dencies and the composition of an LTL3 monitor.

Another combinatorial and automata-based approach for monitoring Hyper-
LTL formulas was proposed in [23]. Given a HyperLTL specification, the algo-
rithm starts by creating a deterministic monitor automaton. For every incoming
trace it then checks that all combinations with the already seen traces are ac-
cepted by the automaton to minimize the number of stored traces, a language-
inclusion-based algorithm is proposed, which allows for pruning traces with re-
dundant information. Furthermore, a method to reduce the number of combi-
nation of traces which have to get checked by analyzing the specification for
relations such as reflexivity, symmetry, and transitivity with a HyperLTL-SAT
solver [19,22], is proposed. The algorithm is implemented in the tool RVHy-
per [24], which was used to monitor information-flow policies and to detect spu-
rious dependencies in hardware designs.

A first constraint-based approach for HyperLTL is outlined in [9]. The idea
is to identify a set of propositions of interest and aggregate constraints such that
inconsistencies in the constraints indicate a violation of the HyperLTL formula.
While the paper describes the building blocks for such a monitoring approach
with a number of examples, we have, unfortunately, not been successful in ap-
plying the algorithm to other hyperproperties of interest, such as observational
determinism.

A sound constraint-based algorithm for HyperLTL formulas in the V? frag-
ment is proposed in [31]. The basic idea is to rewrite incoming events and a given
HyperLTL formula into a Boolean constraint system, which is unsatisfiable if a
violation occurs. The constraint system is built incrementally: the algorithm
starts by encoding constraints that represent the LTL constraints, which result

Algorithms for Monitoring Hyperproperties 5

from rewriting the event into the formula, and encode the remaining HyperLTL
constraints as variables. Those variables will be defined incrementally when more
events of the trace become available.

In [7], the authors study the complexity of monitoring hyperproperties. They
show that the form and size of the input, as well as the formula have a sig-
nificant impact on the feasibility of the monitoring process. They differentiate
between several input forms and study their complexity: a set of linear traces,
tree-shaped Kripke structures, and acyclic Kripke structures. For acyclic struc-
tures and alternation-free HyperLTL formulas, the problems complexity gets as
low as NC.

In [8], the authors discuss examples where static analysis can be combined
with runtime verification techniques to monitor HyperLTL formulas beyond the
alternation-free fragment. They discuss the challenges in monitoring formulas
beyond this fragment and lay the foundations towards a general method.

For certain information flow policies, like non-interference and some exten-
sions, dynamic enforcement mechanisms have been proposed. Techniques for
the enforcement of information flow policies include tracking dependencies at
the hardware level [37], language-based monitors [36, 2, 3,40, 5], and abstraction-
based dependency tracking [30, 32, 10]. Secure multi-execution [15] is a technique
that can enforce non-interference by executing a program multiple times in dif-
ferent security levels. To enforce non-interference, the inputs are replaced by
default values whenever a program tries to read from a higher security level.

3 Preliminaries

Since hyperproperties relate multiple computation traces to each other, standard
trace property specification logics like linear-time temporal logic (LTL) [34] can-
not be used to express them. In this section, we will give a quick overview on
how classic logics can be extended to obtain hyperlogics. We define HyperLTL,
which is the, so far, most studied hyperlogic. We furthermore give the finite trace
semantics of HyperLTL and define monitorability for the different input models.

3.1 Logics for Hyperproperties

Two extensions for obtaining hyperlogics are studied in the literature so far: (1)
extending temporal trace logics, like LTL [34] and CTL* [18], with explicit trace
quantification or (2) extending first-order and second-order logics with the equal-
level predicate [39,29]. An extensive expressiveness study of such hyperlogics
has been initiated recently [13] and the hierarchy of linear-time hyperlogics is
depicted in Fig. 4.
For example, HyperLTL extends LTL with trace quantification and trace
variables. The formula
Vava'. O /\ Uy < Qg (2)
a€AP

6 C. Hahn

Fig. 4. The hierarchy of linear-time hyperlogics [13].

expresses that all pairs of traces must agree on the values of the atomic propo-
sitions (given as a set AP) at all times.

The other technique for obtaining hyperlogics consists of adding the equal-
level predicate E, which relates the same time points on different traces. The
HyperLTL formula (2), for example, is equivalent to the FO[<, E] formula

Vevy. E(z,y) = [\ (Pa(z) © Pa(y)).
acAP

Solving the runtime verification problem for logics beyond HyperLTL is still
open. Current monitoring approaches focus on the, so far, best understood tem-
poral hyperlogic HyperLTL, which we will define in the following.

3.2 HyperLTL

Let AP be a set of atomic propositions. A trace t is an infinite sequence over
subsets of the atomic propositions. We define the set of traces TR := (247).
A subset T C TR is called a trace property. A hyperproperty H is a set of trace
properties, i.e., H C P(X*). We use the following notation to manipulate traces:
let t € TR be a trace and ¢ € N be a natural number. ¢[i] denotes the i-th element
of t. Therefore, ¢[0] represents the starting element of the trace. Let j € N and
J > i. t[i, j] denotes the sequence t[i] t[i + 1]...¢[5 — 1] t[4]. ¢[i, o] denotes the
infinite suffix of ¢ starting at position i. Let V be an infinite supply of trace
variables.
The syntax of HyperLTL is given by the following grammar:

pu=Vr.o|Ime|y , and
Vi=ar | [V | OV [PUY

where a € AP is an atomic proposition and m € V is a trace variable. The
quantification over traces makes it possible to express properties like “on all

Algorithms for Monitoring Hyperproperties 7

traces 1) must hold”, which is expressed by V7. ¢ and, dually, that “there exists
a trace such that v holds”, which is denoted by Jw. ¥. The derived operators
<&, O, and W are defined as for LTL.

A HyperLTL formula defines a hyperproperty, i.e., a set of sets of traces. A
set T of traces satisfies the hyperproperty if it is an element of this set of sets.
Formally, the semantics of HyperLTL formulas is given with respect to a trace
assignment II from V to TR, i.e., a partial function mapping trace variables
to actual traces. II[m — t] denotes that 7 is mapped to ¢, with everything else
mapped according to IT. II[i, 00] denotes the trace assignment that is equal to
II ()[4, 00] for all 7.

(T, I,i) F ax if a € II(m)]i]

(T, 11,i) E - it (T, I1,0) ¥ ¢

(T, 11,7) = oV 1) if (T,11,i) E ¢ or (T, I0,i) E ¢

(T, 11,i) E O if (T,11,i+1) F ¢

(T, IT,9) & pU b if3j >0 (T,I1,j) Ep AVi <k < j. (T, LK) E
(T,I,i) F 3m.p if there is some ¢ € T such that (T, II[r — t],i) F ¢
(T, I,i) EV7m. @ if for all t € T it holds that (T, I [r — t],i) F ¢ .

3.3 Finite Trace Semantics

We recap the finite trace semantics for HyperLTL [9,31]. Let I, : V — XF
be a partial function mapping trace variables to finite traces. We define €[0] as
the empty set. By slight abuse of notation, we write ¢ € Ils, to access traces
t in the image of IIg,. The satisfaction of a HyperLTL formula ¢ over a finite
trace assignment 15, and a set of finite traces T', denoted by (T, IIs,, 1) F ¢, is
defined as follows:

(T, fin, 1) F an if a € I ()[d]

(T, iy, i) F —p if (T, fin, i) ¥ ¢

(T, Hppn, i) F VY if (T, iy, 1) F @ or (T, Hf,, i) Ey

(T, Hfp, i) EOp ifvt € Ig,. t| >i+1and (T, Hpn, i+ 1) Fr

(T, Ifin, 1) E U if 3j >4 with j < tIenIIqul |t| such that (T, IIf,j) E ¢
AVE > i with k < j it holds that (T, I, k) F ¢

(T, Hpp, i) E3m.p if there is some ¢ € T such that (T, I, [m — t],1) F ¢

(T, I, i) EVT. @ if for all ¢ € T such that (T, I, [m — t],7) E ¢

3.4 Monitorability of HyperLTL Specifications

We recap the monitorability definitions for trace properties [35] and hyperprop-
erties [1,25]. Let L C X*. We distinguish good and bad prefixes: good(L) = {u €
Y*|Vve XY w € L} and bad(L) = {u € X* | Vv € X% uv ¢ L}, respectively.
A trace language L is monitorable if every prefix has a (finite) continuation that
is either good or bad, formally, Vu € X*. Jv € X*.wv € good(L) V uv € bad(L).

Theorem 1 ([4]). Deciding whether an LTL formula ¢ is monitorable is
PSPACE-complete.

8 C. Hahn

Let H C P(X%) be a hyperproperty. We say that a finite set of prefix traces
is good if every continuation, i.e., a (possibly infinite) set of infinite traces, is
contained in H. The set of good and bad prefix traces is then formally defined
as good(H) == {U € P*(X*) | VW € P(X¥).U <V =V € H} and bad(H) =
{UeP*(X*)|VWePX).UV=V¢&H}

Unbounded Sequential Model. A hyperproperty H is monitorable in the un-
bounded input model if every finite prefix set has a good or bad continuation,
formally,

YU € P*(£%).3V € PX(£%).U XV A (V € good(H) V'V € bad(H)) .

Theorem 2 ([25]). Given an alternation-free HyperLTL formula . Deciding
whether o is monitorable in the unbounded sequential model is PSPACE-complete.

Theorem 3 ([25]). Deciding whether a HyperLTL formula ¢ is monitorable in
the unbounded sequential model is undecidable.

Bounded Sequential Model. We give the adapted definition of monitorability
and a characterization for alternation-free HyperLTL. A hyperproperty H is
monitorable in the bounded input model for some bound b > 0 if

YU € PSY(X%).3V € PY(E*).U 2V A(V € good’(H)VV € bad®(H)) ,

where good’(H) = {U € PY(X*) | YV € PY(Z¥).U =V = V € H} and
bad(H) == {U € P*(Z*) | ¥V € PY(5%).U 2V = V ¢ H}.

Theorem 4 ([25]). Deciding whether a HyperLTL formula ¢ is monitorable in
the bounded sequential model is undecidable.

Parallel Model. Lastly, we consider the parallel model, were b traces are given
simultaneously. This model is with respect to monitorability a special case of
the bounded model. A hyperproperty H is monitorable in the fixed size input
model if for a given bound b

YU € PY(Z%).3V € PYZ*).U =V A(V € good’(H) V'V € bad"(H)) .

Theorem 5 ([25]). Deciding whether a HyperLTL formula ¢ is monitorable in
the parallel model is undecidable.

4 Algorithms for Monitoring Hyperproperties

We classify the current state-of-the art monitoring algorithms for hyperprop-
erties into two approaches: combinatorial approaches [1,23,25] and constraint-
based approaches [9, 31].

As combinatorial approaches we understand algorithms that construct mon-
itors by explicitly iterating over each (necessary) combination of traces for mon-
itoring them. For example, consider a trace set T of already monitored traces

Algorithms for Monitoring Hyperproperties 9

’ incoming trace t ’: :> v :>/

Epne

’ stored trace t; ’: v v

O

O :>‘/:>x violation) (¢, t2)
- olatio

O

’ stored trace tn % new events on ¢

Fig.5. A combinatorial approach to monitoring hyperproperties [23, 25]: a monitoring
template A, constructed from a given HyperLTL formula ¢, is initiated with combi-
nations from the new incoming trace ¢ and stored traces {ti,...,tn}. The monitors
progress with new events on ¢, in this case, until a violation is found for trace ¢ and ¢».

and a fresh incoming trace t. A combinatorial monitor would construct each pair
T x {t} and check whether the hyperproperty holds on such a trace tuple. The
monitor, in the worst case, therefore has to store each incoming trace seen so
far. This is currently done by explicit automata constructions, but other meth-
ods, such as SAT-solvers could be plugged into such combinatorial approaches as
well. In Section 4.1, we will investigate one such approach [25] in detail, which is
the algorithmic foundation for the combinatorial algorithm implemented in the
current state-of-the-art monitoring tool RVHyper [24].

The constraint-based approaches try to avoid the storing of explicit traces by
translating the monitoring task into a constraint system. This is currently imple-
mented by rewriting approaches that translate the requirements that a current
trace imposes on future traces into the formula. For example, a hyperproperty
© under consideration and a new event e; on a trace ¢t will be translated into
¢le] and used as the new specification when monitoring new events on possibly
new traces. Such a rewritten formula can then, together with the trace under
consideration, be translated into an constraint system, which is fed, for example,
into a SAT-solver. In Section 4.2, we will investigate a recently introduced [31]
constraint-based algorithm for ¥? HyperLTL formulas in detail.

4.1 Combinatorial Approaches

Intuition. We describe the automaton-based combinatorial approach introduced
in [23,25] in detail. The basic architecture of the algorithm is depicted in Fig. 5.
Let a trace set T := {t1,...,t,} of already seen traces and a fresh trace t,
which is processed online, be given. From a V* HyperLTL formula, a monitor
template A is automatically constructed, which runs over two execution traces.
This template is then initialized with every combination between ¢ and T. A

10 C. Hahn

:::::

i 4

’rewritten formula “p¢, ...+, [€]” ‘

Suipoous

constraint system ‘

Fig. 6. A constraint-based approach to monitoring hyperproperties [31]: a fresh trace
t, and a HyperLTL formula ¢y, ...+, , which has already been rewritten with respect to
seen traces t1,...tn, will be rewritten to a formula representing the requirements that
are posed on future traces. The rewritten formula will be translated into a constraint
system, which is satisfiable if the new event complies with the formula ¢y, . +, and
unsatisfiable if there is a violation.

—PCx A PCr
Vypr N 87 —PpCrt

Ut A S -5 Uy &5 Vs
(Do
S

Fig. 7. [23,25] Visualization of the monitor template for Formula 3.

PCr N\ PCrt

violation will be reported when one of the automaton instantiations ends up in
a rejecting state.

Ezample 1 (Conference Management System [23, 25]). Consider a conference
management system, where we distinguish two types of traces, author traces
and program committee member traces. The latter starts with proposition pc.
Based on these traces, we want to verify that no paper submission is lost, i.e.,
that every submission (proposition s) is visible (proposition v) to every program
committee member in the following step. When comparing two PC traces, we
require that they agree on proposition v. The monitor template for the following
HyperLTL formalization is depicted in Fig. 7.

Vr.Va'. ((mpexAperr) = OO(sr — Qv)) A((pexApcrr) = OO(vr 4> var)) (3)
Algorithm. Formally, a deterministic monitor template M = (X, Q, , qo, F) [23,

25] is a tuple of a finite alphabet X' = P(AP x V), a non-empty set of states
@, a partial transition function § : Q x X — @, a designated initial state

Algorithms for Monitoring Hyperproperties 11

input : V" HyperLTL formula ¢

output: satisfied or n-ary tuple witnessing violation
M, = (2v,Q,q0,6, F) = build_template(p);

T « 0;

S :T" — @ initially empty;

while there is a new trace do

t < €
for t € (T U{t})" \T") do init S for every new tuple ¢
| S(t) = q;
end
while p € X' is a new input event do
t< tp append p tot;
for ((t1,...,tn),q) € S where t € (t1,...,tn) do progress every state in
S
if 3t € {t1,...,tn}.|t'| < |t| then some trace ended
if S((t1,...,tn)) € F then
‘ remove (t1,...,t,) from S and continue;
else
‘ return violation and witnessing tuple ¢;
end
else if 6(S((t1,..-,tn)), Uizi Uner,s—1y{(a, m)}) = ¢’ then
| S(N) ¢
else
‘ return violation and witnessing tuple ¢;
end
end
end
T=TU{t};
end

return satisfied;

Fig. 8. [25] Evaluation algorithm for monitoring V" HyperLTL formulas in the un-
bounded sequential model.

qo € @, and a set of accepting states F' C (). The instantiated automaton runs
in parallel over traces in P(AP)*, thus we define a run with respect to a n-
ary tuple N € (P(AP)*)™ of finite traces. A run of N is a sequence of states
Qoq1 -+ - gm € QF, where m is the length of the smallest trace in N, starting in
the initial state gg such that for all 4 with 0 < i < m it holds that

4 Qi7U U {(a’ﬂ-j)} = dqit+1 -

j=1aeN()()

A tuple N is accepted, if there is a run on M that ends in an accepting state.
The algorithm for monitoring V" HyperLTL formulas in the unbounded
sequential model is given in Figure 8. The algorithm proceeds as follows. A

12 C. Hahn

input : HyperLTL formula Q".v
trace set T' C P*(X*)
output: satisfied or violation

Ay = (Ev,Q,qo,0, F) = build-alternating automaton(¢);

if Q <> . LTL backwards_algorithm(Ay, (t1,ta, ..., t.)) then
t1€T tn€T

‘ return satisfied;

else

‘ return violation;

end

Fig. 9. [25] Offline backwards algorithm for the parallel model, where ¢; := A if the
i-th quantifier in ¢ is a universal quantifier and V otherwise.

monitoring template is constructed a-priori from the specification (in doubly-
exponential time in the size of the formula [14, 38]) and the trace set T is initially
empty. For each new trace, we proceed with the incoming events on this trace.
The automaton template will then be initialized by each combination between
t and traces in T, i.e. S(t) = qo. Each initialized monitor progresses with new
input events p until a violation is found, in which case the witnessing tuple ¢ is
returned, or a trace ends, in which case this monitor is discarded if no violation
occurred. If no violation occurred, and all trace combinations have been moni-
tored, the current trace t is added to the traces that have been seen already, i.e.,
T.

While the online monitoring algorithms in the bounded sequential and par-
allel input model can be seen as special cases of the above described algorithm,
traces can be processed efficiently in a backwards fashion when considering of-
fline monitoring. The algorithm depicted in Fig. 9 exploits the backwards algo-
rithm based on alternating automata [28].

4.2 Constraint-based Approaches

Intuition. We describe the constraint-based monitoring algorithm for ¥? Hyper-
LTL formulas introduced in [31] in detail. The basic architecture of the algorithm
is depicted in Fig. 6. The basic idea is that a formula and an event on a trace
will be rewritten into a new formula, which represents the requirements posed
on future traces.

Ezample 2 (Observational Determinism [31]). Assume the event {in, out} while
monitoring observational determinism: ((out, <> out.) W(ing < in,)). The
formula is rewritten by applying the standard expansion laws and insert-
ing {in,out} for the atomic propositions indexed by the trace variable
—in V out A O((outy <+ outy) W(ing < ing)). Based on this, a Boolean con-
straint system is built incrementally: one starts by encoding the constraints
corresponding to the LTL part —in V out and encodes the HyperLTL part as

Algorithms for Monitoring Hyperproperties 13

Input :Vm,n'.p, TC X"
Output: violation or no violation

b = nn ()
cC:=T
foreach t € T do
Ct = Uy,0
tenc = T
while e; := getNeztEvent(t) do
tene = tenc A encoding(e;)
foreach vy ; € C; do
c=[m, e,
Cy:=Cy A (’Uq;ﬂ' — C)
end

if —sat(C A Cy A tenc) then
| return violation

end

end

foreach v;iﬂ € Ci do
‘ Cy =Cy N U;i+1

end

foreach Vit € C; do
‘ Ct = Ct A\ _‘v;,i+1

end

C=CNC,

end

return no violation

Fig. 10. [31] Constraint-based algorithm for monitoring V?*HyperL TL formulas.

variables. Those variables will then be defined incrementally when more elements
of the trace become available. A violation will be reported when the constraint
system becomes unsatisfiable.

Algorithm. We define the operation @[, e, 7] (taken from [31]), where e € X' is
an event and ¢ is the current position in the trace, as follows: @[, e,] trans-
forms ¢ into a propositional formula, where the variables are either indexed
atomic propositions p; for p € AP, or a variable Vi i1 and U:’,i-&-l that act as
placeholders until new information about the trace comes in. Whenever the next
event e’ occurs, the variables are defined with the result of ¢'[r,€’,i + 1]. If the
trace ends, the variables are set to true and false for v+ and v~, respectively.
In Fig. 11, we define @[, e,i] of a V?HyperLTL formula Vr,7’. ¢ in NNF, event
e € X, and 7 > 0 recursively on the structure of the body ¢. We write v, ; to
denote either v, ; Or U;,r

The algorithm for monitoring V2 HyperLTL formulas with the constraint-
based approach is given in Fig. 10. We continue with the explanation of the
algorithm (taken from [31]): ¢ is the negation normal form of the symmetric

14 C. Hahn

) T ifa€ce . T ifade
A [77,6,1] = . (_'aﬂ)[ﬂ'vevl] = .
1 otherwise 1 otherwise
a7, e,i] =a; (maq)[m, e, 1] = a;
(pV)m e = plme i Vireid (pAp)lme i =¢reiApme,i
(O 90) [ﬂ—v e, 7’} = U;,iJrl (OW Lp) [ﬂ—v e, 7’] = U:,i+1

(eUY)[m, e,i] = [m, e, iV (o[m, e i A U;uw,z‘ﬂ)
(P RY)Im,e,i] = P[m, e, i) A (lm, e, i) Vol g i)

Fig. 11. [31] Recursive definition of the rewrite operation.

closure of the original formula. We build two constraint systems: C' containing
constraints of previous traces and C; (built incrementally) containing the con-
straints for the current trace ¢. Consequently, we initialize C with T and C} with
vy, 0. If the trace ends, we define the remaining v variables according to their
polarities and add Cy to C. For each new event e; in the trace ¢, and each “open”
constraint in C; corresponding to step i, i.e., vg; € Cy, we rewrite the formula
¢ and define vy ; with the rewriting result, which, potentially introduced new
open constraints vy ;41 for the next step ¢ 4+ 1. The constraint encoding of the
current trace is aggregated in constraint t.,.. If the constraint system given the
encoding of the current trace turns out to be unsatisfiable, a violation to the
specification is detected, which is then returned.

5 Optimizations

Both monitoring approaches rely heavily on optimization techniques to become
feasible in practice. Naive implementations, that blindly store all traces seen
so far or consider the same constraints multiple times, will run out of memory
quickly or will take unfeasibly long. We present several techniques that signifi-
cantly speed up the monitoring process.

5.1 Specification Analysis

We can analyze the specification and determine if it is symmetric, transitive,
or reflexive. Formally, we define symmetry of a HyperLTL formulas as follows
(reflexivity and transitivity is discussed in detail in [25]).

Definition 1 ([25]). Let ¥ be the quantifier-free part of some HyperLTL for-
mula @ over trace variables V. We say ¢ is invariant under trace variable per-
mutation o : V — V, if for any set of traces T C X and any assignment
I:Vv—T,(0,1,0)E¢ < (0,11 00,0) E . We say ¢ is symmetric, if it is
invariant under every trace variable permutation in V.

Algorithms for Monitoring Hyperproperties 15

Observational determinism, for example, is symmetric. To illustrate the impact
of this observation, consider again Fig. 5. Symmetry means that one of the
automaton instantiation Alt, ;] or Alt;, t] can be omitted for each i < n, resulting
in an reduction of half the monitor instantiations.

A HyperLTL formula can be checked for symmetry, transitivity and reflex-
ivity fully automatically and a-priori to the monitoring task with a satisfiability
solver for hyperproperties, such as EAHyper [22]. Such a check, for example for
observational determinism, is performed in under a second.

5.2 Trace Analysis

Keeping the set of stored traces minimal is crucial for a combinatorial approach
to monitoring hyperproperties: We explain a method that checks whether a trace
t poses strictly stronger requirements on future traces than another trace ¢’. In
this case, t' could be safely discarded without losing the ability to detect every
violation of the hyperproperty.

Definition 2 ([25]). Given a HyperLTL formula ¢, a trace set T and an arbi-
trary t € X, we say that t is (T,)-redundant if T is a model of ¢ if and only
if TU{t} is a model of ¢ as well, formally

VI" D T.T' € H(p) & T' U{t} € H(p) .
Ezample 3 ([31]). Consider the monitoring of the HyperLTL formula

Vr, 7' .0(axr — —by), which states that globally if a occurs on any trace ,
then b is not allowed to hold on any trace ', on the following incoming traces:

‘{a}l {} I {} l {} ‘ —b is enforced on the 1st pos. (4)
‘{a}l {a}l {} l {} ‘ —b is enforced on the 1st and 2nd pos. (5)
‘{a}l {} I{a}l {} ‘ —b is enforced on the 1st and 3rd pos. (6)

In this example, the requirements of the first trace are dominated by the re-
quirements of the second trace, namely that b is not allowed to hold on the first
and second position of new incoming traces. Hence, the first trace must not be
stored any longer to detect a violation.

5.3 Tree Maintaining Formulas and Conjunct Splitting

For constraint-based approaches, a valuable optimization is to store formulas and
their corresponding variables in a tree structure, such that a node corresponds to
an already seen rewrite. If a rewrite is already present in the tree, there is no need
to create any new constraints. By splitting conjuncts in HyperLTL formulas, we
can avoid introducing unnecessary nodes in the tree.

16 C. Hahn

-10*
N I
S naive
- - = specification analysis
trace analysis g 4l N
n
both g
B
) e
g 5 e
= - ’ |
= L ’
L
-
-
O - [

| |
0 100 200 300 400 500

of instances

Fig.12. [23,25] Hamming-distance preserving encoder: runtime comparison of the
naive monitoring approach with different optimizations and the combination thereof.

Table 1. [31] Average results of BDD and SAT based constraint-based algorithms
compared to the combinatorial algorithm on traces generated from circuit instances.
Every instance was run 10 times.

instance # traces length time combinatorial time SAT time BDD

XOR1 19 5 12ms 47ms 49ms
XOR2 1000 5 16913ms 996ms 1666ms
counterl 961 20 9610ms 8274ms 303ms
counter2 1353 20 19041ms 13772ms 437ms
MUX1 1000 5 14924ms 693ms 647ms
MUX2 80 5 121ms 79ms 81ms

Ezample 4 ([31]). Consider Vr,7'. ¢ with ¢ = O((ax < al) V (br < b)),
which demands that on all executions on each position at least on of propo-
sitions a or b agree in its evaluation. Consider the two traces t; = {a}{a}{a},
to = {a}{a,b}{a} that satisfy the specification. As both traces feature the same
first event, they also share the same rewrite result for the first position. Inter-
estingly, on the second position, we get (a V =b) A s, for t; and (a V b) A s,
for to as the rewrite results. While these constraints are no longer equal, by the
nature of invariants, both feature the same subterm on the right hand side of
the conjunction. We split the resulting constraint on its syntactic structure, such
that we would no longer have to introduce a branch in the tree.

6 Experimental Results

The presented algorithms and optimizations implemented in RVHyper [24] were
extensively evaluated over the last years [23,24, 31, 25].

Algorithms for Monitoring Hyperproperties 17
64bit input, trace length 50 128bit input, trace length 50
--=- SAT --=- SAT ,"
200 | BDD U 200 BDD S
—— RVHyper ," l:'
I' l'
150 | - 150 | .
I3} . ¢ "
& K 2 .
100 | - 100 | e
’ ’ ’ i ‘
50 e 50 .
0 amts 0| weiemnT -
T T T T T T T T T T T
0 200 400 600 800 1,000 0 200 400 600 800 1,000

number of traces

number of traces

Fig.13. [31] Runtime comparison between the combinatorial algorithm and the
constraint-based algorithm implemented in RVHyper on a non-interference specifica-
tion with traces of varying input size.

A first benchmark that shows the impact of the trace and specification anal-
ysis is the following: it is monitored whether an encoder preserves a Hamming-
distance of 2 [25], which can be encoded as a universally quantified HyperLTL
formula [11]: Van'.(OIr 0 In) = (O > Oz)U((Or +» Ox) ANO((Or <>
O)U(Or +» Or))))). In Fig. 12 a comparison between the naive monitoring
approach and the monitor using specification analysis and trace analysis, as well
as a combination thereof is depicted. Traces were built randomly, where the
corresponding bit on each position had a 1% chance of being flipped.

A second benchmark was introduced in [24] with the idea to detect spuri-
ous dependencies in hardware design. Traces were generated from circuit in-
stances and then monitored whether input variables influence out variables.
The property was specified as the following HyperLTL formula: Vrm,Vms. (05, ¢
07,) W(in, ¢ ir,), where ¢ denotes all inputs except 4. The results are depicted
in Table 1.

The next benchmark [31] considers non-interference [33], which is an impor-
tant information flow policy demanding that an observer of a system cannot infer
any high security input of a system by observing only low security input and
output. Reformulated we could also say that all low security outputs o!°® have
to be equal on all system executions as long as the low security inputs % of
those executions are the same: ¥, . (010 < 0!9%) W(iloW « §9%). The results
of the experiments are depicted in Fig. 13. For 64 bit inputs, the BDD imple-
mentation performs well when compared to the combinatorial approach, which
statically constructs a monitor automaton. For 128 bit inputs, it was not possible
to construct the automaton for the combinatorial approach in reasonable time.

The last benchmark considers guarded invariants, which express a certain
invariant relation between two traces, which are, additionally, guarded by a
precondition. Fig. 14 shows the results of monitoring an arbitrary invariant P :

18 C. Hahn

linear scale logarithmic scale

200 | -~ - SAT, o=1

SAT, 0o=8
—— RVHyper,
150 4~ —— RVHyper,
—— RVHyper,
—— RVHyper,
% 100 | RVHyper,
—— RVHyper,

RVHyper,
50 - —— RVHyper,

o ©

o

sec

o oo oo
L [T (R
0N DT W N

T T T T T h T T T T T
0 200 400 600 800 1,000 0 200 400 600 800 1,000

number of traces number of traces

Fig.14. [31] Runtime comparison between the combinatorial approach and the
constraint-based monitor on the guarded invariant benchmark with trace lengths 20,
20 bit input size.

¥ — B of the following form: Vr,7n'. O(Vierin < in) — O(P () <+ P(n’)). The
constraint-based approach significantly outperforms combinatorial approaches
on this benchmark as the conjunct splitting optimization synergizes well with
current SAT-solver implementations.

7 Conclusion

We classified current monitoring approaches into combinatorial and constraint-
based algorithms and explained their basic architecture. We have gone into detail
into two of these approaches and summarized current optimization technique
making the monitoring of hyperproperties feasible in practice.

Future work consists of implementing and adapting more optimization tech-
niques for constraint-based and combinatorial approaches. It would also be inter-
esting to plug SAT and SMT solvers into combinatorial monitoring approaches,
instead of using automata. Furthermore, considering the monitoring problem
of specifications given in HyperQPTL, i.e., the extension of HyperLTL with
quantification over propositions, is not studied yet. This problem is particularly
interesting and challenging since HyperQPTL allows for a true combination of
w-regular properties and hyperproperties.

Acknowledgements

This paper is based on a tutorial that will be given at the 19th International
Conference on Runtime Verification. The work summarized here has previously
appeared in various publications [23, 24, 31, 25]. The author is particularly grate-
ful to his coauthors Bernd Finkbeiner, Marvin Stenger, and Leander Tentrup
and, furthermore, to Maximilian Schwenger for his valuable comments on an
earlier version of this paper.

Algorithms for Monitoring Hyperproperties 19

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Shreya Agrawal and Borzoo Bonakdarpour. Runtime verification of k-safety hy-
perproperties in HyperLTL. In Proceedings of CSF. IEEE Computer Society, 2016.

. Aslan Askarov and Andrei Sabelfeld. Tight enforcement of information-release

policies for dynamic languages. In Proceedings of CSF. IEEE Computer Society,
2009.

Thomas H. Austin and Cormac Flanagan. Permissive dynamic information flow
analysis. In Proceedings of PLAS. ACM, 2010.

Andreas Bauer. Monitorability of omega-regular languages. CoRR, 2010.
Abhishek Bichhawat, Vineet Rajani, Deepak Garg, and Christian Hammer. In-
formation flow control in WebKit’s javascript bytecode. In Proceedings of POST,
LNCS. Springer, 2014.

Borzoo Bonakdarpour and Bernd Finkbeiner. Runtime verification for hyperltl.
In Runtime Verification - 16th International Conference, RV 2016, Madrid, Spain,
September 23-30, 2016, Proceedings, 2016.

Borzoo Bonakdarpour and Bernd Finkbeiner. The complexity of monitoring hy-
perproperties. In Proceedings of CSF. IEEE Computer Society, 2018.

Borzoo Bonakdarpour, César Sdnchez, and Gerardo Schneider. Monitoring hyper-
properties by combining static analysis and runtime verification. In Proceedings of
II, LNCS. Springer, 2018.

Noel Brett, Umair Siddique, and Borzoo Bonakdarpour. Rewriting-based runtime
verification for alternation-free HyperLTL. In Proceedings of TACAS, LNCS, 2017.
Andrey Chudnov, George Kuan, and David A. Naumann. Information flow moni-
toring as abstract interpretation for relational logic. In Proceedings of CSF. IEEE
Computer Society, 2014.

Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski,
Markus N. Rabe, and César Sanchez. Temporal logics for hyperproperties. In
Proceedings of POST, LNCS. Springer, 2014.

Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of Computer
Security, (6), 2010.

Norine Coenen, Bernd Finkbeiner, Christopher Hahn, and Jana Hofmann. The
hierarchy of hyperlogics. In To appear in the proceedings of LICS, 2019.

Marcelo d’Amorim and Grigore Rosu. Efficient monitoring of omega-languages. In
Proceedings of CAV, LNCS. Springer, 2005.

Dominique Devriese and Frank Piessens. Noninterference through secure multi-
execution. In Proceedings of SP. IEEE Computer Society, 2010.

Rayna Dimitrova, Bernd Finkbeiner, Maté Kovacs, Markus N. Rabe, and Helmut
Seidl. Model checking information flow in reactive systems. In Proceedings of
VMCAI, LNCS. Springer, 2012.

Rayna Dimitrova, Bernd Finkbeiner, and Markus N. Rabe. Monitoring temporal
information flow. In Proceedings of ISoLA, LNCS. Springer, 2012.

E. Allen Emerson and Joseph Y. Halpern. ”sometimes” and ”not never” revisited:
on branching versus linear time temporal logic. J. ACM, 1986.

Bernd Finkbeiner and Christopher Hahn. Deciding hyperproperties. In Proceedings
of CONCUR, LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.
Bernd Finkbeiner, Christopher Hahn, and Tobias Hans. Mghyper: Checking sat-
isfiability of hyperltl formulas beyond the exists forall fragment. In Automated
Technology for Verification and Analysis - 16th International Symposium, ATVA,
2018.

20

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

C. Hahn

Bernd Finkbeiner, Christopher Hahn, Philip Lukert, Marvin Stenger, and Leander
Tentrup. Synthesizing reactive systems from hyperproperties. In Computer Aided
Verification - 30th International Conference, CAV, 2018.

Bernd Finkbeiner, Christopher Hahn, and Marvin Stenger. EAHyper: satisfiability,
implication, and equivalence checking of hyperproperties. In Proceedings of CAV,
LNCS. Springer, 2017.

Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup. Mon-
itoring hyperproperties. In Proceedings of RV, LNCS. Springer, 2017.

Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup.
Rvhyper: A runtime verification tool for temporal hyperproperties. In Proceed-
ings of TACAS, LNCS. Springer, 2018.

Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup. Mon-
itoring hyperproperties. Formal Methods in System Design, 2019.

Bernd Finkbeiner, Christopher Hahn, and Hazem Torfah. Model checking quanti-
tative hyperproperties. In Computer Aided Verification - 80th International Con-
ference, CAV 2018, 2018.

Bernd Finkbeiner, Markus N. Rabe, and César Sanchez. Algorithms for model
checking HyperLTL and HyperCTL*. In Proceedings of CAV, LNCS. Springer,
2015.

Bernd Finkbeiner and Henny Sipma. Checking finite traces using alternating au-
tomata. Formal Methods in System Design, 24(2), 2004.

Bernd Finkbeiner and Martin Zimmermann. The first-order logic of hyperprop-
erties. In 384th Symposium on Theoretical Aspects of Computer Science, STACS
2017, March 8-11, 2017, Hannover, Germany, 2017.

Gurvan Le Guernic, Anindya Banerjee, Thomas P. Jensen, and David A. Schmidt.
Automata-based confidentiality monitoring. In Proceedings of ASIAN, LNCS.
Springer, 2006.

Christopher Hahn, Marvin Stenger, and Leander Tentrup. Constraint-based moni-
toring of hyperproperties. In Tools and Algorithms for the Construction and Anal-
ysis of Systems - 25th International Conference, TACAS, 2019.

Maté Kovacs and Helmut Seidl. Runtime enforcement of information flow security
in tree manipulating processes. In Proceedings of ESSo0S, LNCS. Springer, 2012.
John McLean. Proving noninterference and functional correctness using traces.
Journal of Computer Security, (1), 1992.

Amir Pnueli. The temporal logic of programs. In Proceedings of FOCS. IEEE
Computer Society, 1977.

Amir Pnueli and Aleksandr Zaks. PSL model checking and run-time verification
via testers. In Proceedings of FM, LNCS. Springer, 2006.

Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security.
IEEE Journal on Selected Areas in Communications, (1), 2003.

G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. Secure program
execution via dynamic information flow tracking. In Proceedings of ASPLOS. ACM,
2004.

Deian Tabakov, Kristin Y. Rozier, and Moshe Y. Vardi. Optimized temporal
monitors for SystemC. Formal Methods in System Design, (3), 2012.

Thomas. Path logics with synchronization. In Perspectives in Concurrency Theory,
2009.

Mathy Vanhoef, Willem De Groef, Dominique Devriese, Frank Piessens, and
Tamara Rezk. Stateful declassification policies for event-driven programs. In Pro-
ceedings of CSF. IEEE Computer Society, 2014.

