
Saarland University

Faculty of Natural Sciences and Technology I

Department of Computer Science

Bachelor’s Thesis

A Game-Based Semantics for CSP

submitted by
Jesko Hecking-Harbusch

submitted on
Mai 5th, 2015

Supervisor
Prof. Bernd Finkbeiner, Ph.D.

Advisor
Prof. Bernd Finkbeiner, Ph.D.

Reviewers
Prof. Bernd Finkbeiner, Ph.D.

Prof. Dr. Ernst-Rüdiger Olderog

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbständig
verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel ver-
wendet habe.

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have
not used any other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Ver-
sionen in die Bibliothek der Informatik aufgenommen und damit veröffentlicht
wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible
to the public by having them added to the library of the Computer Science
Department.

Saarbrücken,
(Datum/Date) (Unterschrift/Signature)

Abstract

Communicating Sequential Processes (CSP) which dates back to
Hoare, 1985, facilitates the modeling of concurrent processes and the
analysis of the behavior of concurrent processes. CSP provides a tex-
tual representation of processes which communicate via actions. Ex-
isting semantics transform a CSP expression into a transition system
representing the possible behaviors. As desirable feature in CSP, it
should be possible to indicate processes whether they are controlled
by the system or by the environment, respectively.

Petri nets model decisions during a concurrent execution explicitly.
They visualize which processes take part in a synchronous transition.
In a Petri net, processes are modeled by tokens in places. CSP and
Petri nets have been connected via several semantics. Petri games
extend Petri nets by explicitly marking places as belonging to the
environment or to the system. Environment places are assumed to
behave non-deterministically whereas the system places are controlled
by a global strategy. This stipulation characterizes a safety game
where the system attempts to avoid certain places in order to win the
game.

In this Bachelor’s thesis, a game-based semantics for CSP is pre-
sented. This semantics shows how to define a system and an environ-
ment player for CSP in order to develop a game model to answer the
realizability question and the synthesis problem for the system’s strat-
egy. A CSP expression is converted into a Petri game. Therefore, the
syntax of CSP is modified slightly to model system and environment.
Rules for a structural operational semantics are presented which allow
the derivation of the transitions of the Petri game.

Acknowledgments

I am very grateful to Prof. Bernd Finkbeiner for generously offering me this
interesting and challenging topic. Especially, I am thankful for the aspiring
guidance, invaluably constructive criticism, and friendly advice during the
last months. I deeply appreciated the many and illuminating views on a
number of issues related to my thesis.
I would also like to thank Prof. Ernst-Rüdiger Olderog for his contribution
and feedback to the thesis. I am very grateful for his offer to review the
thesis.
Moreover, I also place on record, my sincere thank you to my family, friends,
and fellow students for their support. Especially, I want to give a warm
thanks to David Gembalczyk and Sebastian Schirmer for proofreading the
thesis. Nevertheless, all remaining errors are mine alone.

Contents

1 Introduction 9

2 Background 11
2.1 Petri Nets . 11

2.1.1 Definition of Petri Nets 11
2.1.2 Enabledness and Firability 11
2.1.3 Example Modeling of a Vending Machine 12

2.2 Petri Games . 13
2.2.1 Definition of Petri Games 14
2.2.2 Unfolding and Strategy 14
2.2.3 Safety Assumption and Deadlock Avoiding Strategies . 16
2.2.4 Example Modeling of a Vending Machine 16

2.3 Communicating Sequential Processes (CSP) 19
2.3.1 Definition of a CSP Process 20
2.3.2 Example Modeling of a Vending Machine 21

3 Game-Based Semantics 23
3.1 Terminated Players . 23
3.2 Structural Operational Semantics 24
3.3 Syntax . 26
3.4 Transitions . 27
3.5 Synchronization . 27

3.5.1 Opening and Closing of a Synchronization 28
3.5.2 Deriving a Synchronous Transition 29
3.5.3 Local Transitions in a Synchronization 32

3.6 System Choice . 34
3.7 Environment Choice . 36
3.8 Recursion . 37

4 Examples 39
4.1 First Derivation Tree . 39
4.2 Three Places Synchronizing in Different Ways 40
4.3 Restriction to Recursion . 42
4.4 Synchronization of Recursive Petri Games 44
4.5 Distributed Alarm System . 47
4.6 Mimicking the Environment 51

5 Related Work 55
5.1 Synthesis . 55
5.2 Alternative Semantics . 56

6 Conclusion 57
6.1 Summary . 57
6.2 Future Work . 59

6.2.1 Additional Operators 59
6.2.2 Reduction of Occurrences of τ -Transitions 59
6.2.3 Equivalence between Petri Games 60
6.2.4 Analysis of the Semantics 60

7 References 61

1 Introduction

Communicating Sequential Processes (CSP) [4] is a formal language for the
modeling and description of concurrent processes. It introduces a notation
which describes processes by their ability to communicate via actions. The
processes are able to decide between different actions to communicate. Fur-
thermore, it is possible to synchronize several processes with each other. This
results in an action only occurring if particular processes communicate the
action at the same time. The behavior of a CSP expression can be defined by
a transition system consisting of edges labeled by actions and nodes repre-
senting the current state of all processes. The transformation of an expression
following the CSP syntax into a transition system is based on a structural
operational semantics (SOS) [13].

In CSP, it is not possible to mark processes as belonging to the system
or to the environment. This distinction is worthwhile because it can be used
to define games [14]. The system player controls all processes belonging
to the system whereas the processes belonging to the environment remain
uncontrollable. The goal of such a game is to decide whether a winning
strategy for the system exists (realizability question) and, if such a strategy
exists, to construct it automatically (synthesis problem). These games are
named after the condition which has to be achieved by a winning strategy. In
a safety game for example, the environment player aims at reaching certain
bad places whereas the system player tries to avoid these places.

In this thesis, a game-based semantics for CSP is presented which de-
scribes the concurrent processes as a Petri game [2]. Petri games define
games as introduced above on Petri nets [1].

A Petri net models a distributed system in which processes interact with
each other. Processes are represented by tokens which reside in places. Places
are connected via transitions which define the possible flow of tokens through
the net. If more than one place precedes and follows a transition, respectively,
then the transition models a synchronization. The difference to CSP is that
the synchronization of processes is modeled explicitly in a Petri net. For
each transition, it is clearly visible which places take part in it. Petri nets
are delineated as a directed bipartite graph of places and transitions. The two
theories are connected because both can be used to describe processes and
they only differ in the way they are notated which affects synchronization.

The extension made by Petri games marks every place to either belong
to the global system player or to the global environment player. Every token
represents a local system player or a local environment player depending on
to which global player the place belongs the token resides in. The global
player controls all local players. A local environment player is explicitly

9

modeled in the actions which a token possibly can perform at an environ-
ment place but the decision which actions are actually taken is decided non-
deterministically. Therefore, the environment remains uncontrollable. Local
system players are controlled by the global strategy which decides which
transition to perform. Petri games are by definition safety games. This is
achieved by marking certain places as bad behavior. The goal of the environ-
ment is to reach such bad places whereas the system has to avoid these places
in order to win. The places are bad from the system’s point of view. A strat-
egy is called winning if it can assure to never reach a bad places regardless of
the behavior of the environment. There can be several local system players
and several local environment players if there exist enough tokens which are
all controlled by the respective global player.

A game is a natural way to model a distributed system which interacts
with the environment because the distinction between the system and the
environment is explicit. Furthermore, the synthesis problem challenges us
to automatically derive winning strategies which represent a correct imple-
mentation for the model. A CSP expression can also model the interaction
between processes and based on the resulting transition system it is possible
to see all possible developments. Nevertheless, it is not possible to auto-
matically derive strategies due to the missing classification of processes to
belong either to the system or to the environment. This underspecification
prevents the definition of a game. For example, a meaningful vending ma-
chine can only be defined if the behavior of the costumers is modeled. The
same holds for a distributed alarm system which is hard to design without
making assumptions about the burglar’s behavior.

The main part of this thesis introduces a game-based semantics for CSP
which results in Petri games. This defines a game model for CSP which can be
used for synthesis. Realizability and synthesis questions can be answered for
certain Petri games [2]. Therefore, a subset of the syntax of CSP is extended
in order to deal with the explicit division into system and environment. Rules
of the structural operational semantics enable the transformation to Petri
games. For each used operator of CSP, a set of rules is given to derive
the corresponding transitions. The semantics shows that the deterministic
and non-deterministic choice of CSP coincide with the decisions on places
belonging to the system or to the environment, respectively.

This thesis is structured as follows: In Section 2, all relevant definitions
of Petri nets, Petri games, and CSP used in the following are provided. The
new semantics for CSP is defined in Section 3. In Section 4, the semantics
is illustrated by examples. In Section 5, related work is discussed and in
Section 6 conclusions are drawn and future work is addressed.

10

2 BACKGROUND

2 Background

In this section, the necessary background for the remainder of this thesis is
introduced. In Section 2.1, Petri nets are defined. In the next subsection,
they are extended to games by the definition of Petri games. In Section 2.3,
Communicating Sequential Processes (CSP) becomes established.

2.1 Petri Nets

Petri nets [1] are used to model distributed systems. They consist of places,
represented by circles, and of transitions, represented by bars. Places hold to-
kens which represent parts of a distributed system. Transitions enable tokens
to flow through the Petri net by defining arrows between the circles and bars.
They illustrate the possible developments of parts of the distributed system.
A transition can be used if all places preceding it hold the required amount
of tokens. When using the transition the tokens in all places preceding it are
removed and tokens are added to all places after the transition.

2.1.1 Definition of Petri Nets

A Petri net N is a tuple (P,T ,F , In), where:

• P is a finite non-empty set of places.

• T is a finite non-empty set of transitions.

• F as a multiset over (P ×T) ∪ (T ×P) is the flow relation.

• In : P → N0 is the initial marking.

The set of places and the set of transitions are disjoint (P ∩ T = ∅).
The initial marking describes the initial distribution of tokens. It defines
the number of tokens for every place (including zero if the place is empty).
The progress of a Petri net can be described by markings Mi : P → N0. A
marking Mi works like the initial marking In but describes a distribution of
tokens after i transitions were fired starting from the initial marking. This
implies that M0 = In holds.

2.1.2 Enabledness and Firability

The use of transitions is called firing. The flow relation F defines via the
pairs (P ×T) in which places tokens are necessary in order to fire a transi-
tion. A transition is called enabled if all preceding places hold the required

11

2.1 Petri Nets 2 BACKGROUND

amount of tokens. When a transition is fired all preceding tokens are con-
sumed and new tokens are produced based on the pairs (T ×P) of F . A
joint transition between several places is called synchronization.

As F is a multiset it is possible to consume or produce more than one
token from or in a place, respectively. If F contains the pair (p, t) once
then one arrows from the place p to the transition t exists. If F contains
the pair (p, t) more than once then for every occurrence one arrow would be
produced. This case is abbreviated to one arrow annotated by a number n
which is equal to the number of occurrences of the pair (p, t) in F . The
arrow then represents that n tokens are required in p in order to fire t. This
implies that an arrow without a number represents that one token is required.
Pairs of the form (t, p) representing the production of tokens are treated in
an analog manner.

2.1.3 Example Modeling of a Vending Machine

In Fig. 1 (a), two tokens are delineated, where one depicts a person at place A
and the other a machine at place M . The person can decide whether she
wants a cup of coffee or a cup of tea via the transitions decCoffee and decTea,
respectively. Only these two transitions are enabled and only one of them
can be fired depending on the decision of the person.

After firing the transition decTea the marking of the Petri net changes
to the one displayed in panel (b) of Fig. 1 representing that the person has
decided to order a cup of tea. Only the joint transition tea is enabled. It
represents that the person orders and gets a cup of tea from the machine.
After this transition the machine returns to its original position because the
arrow from M to tea is bidirectional. The machine is ready to serve the next
costumer despite of only one costumer being modeled in this example. The
person is finished with ordering and reaches the place in the right corner
representing that she received a cup of tea.

The only way to recognize A as a person is the explanation in the text
above. The person represents the environment in a game-theoretic sense
because the vending machine should work properly for all behaviors of the
person. The machine represents the system in this setting. The game be-
tween M and A can lead to a decision whether a correct vending machine
exists. The usage of CSP instead of a Petri net would suffer from the same
problem. With the introduction of Petri games in the next section the dis-
tinction between system and environment can be given explicitly for Petri
nets and with the game-based semantics introduced in Section 3 the distinc-
tion can be given explicitly for CSP. The example is extended in Fig. 2 in the
next subsection showing that the system has to perform internal decisions.

12

2.2 Petri Games 2 BACKGROUND

A

M

decTeadecCoffee

coffee tea

(a)

A

M

decTeadecCoffee

coffee tea

(b)

Figure 1: This simple Petri net models the interaction between a costumer
and a machine which can produce a cup of coffee or a cup of tea. The Petri
net is displayed with its initial marking (cf. left panel (a)) and after firing
the transition decTea (cf. right panel (b)).

2.2 Petri Games

Petri games [2] are an extension of Petri nets. The goal is to model the inde-
pendent development of local players which only communicate when taking
part in a joint transition. Therefore, each token symbolizes a local player.
During communication the participating players exchange their history of
visited places and taken transitions which then can be used for future deci-
sions by the other player(s). The local players are divided to either belong to
the global system player or to the global environment player. This introduces
the extensions from nets to games.

The set of places is divided into places belonging to the system (PS)
and to the environment (PE), respectively. This implies that there may ex-
ist several local players of the system and of the environment, respectively,
depending on the number of tokens in the Petri game. Players of the environ-
ment behave non-deterministically since no information about their decisions
are available. There exists a set B ⊆ PS ∪PE of bad places which marks
places the environment wants to reach and the system wants to avoid. Notice
that these places are bad from the point of view of the system. They are
annotated with ⊥.

In order to win the Petri game it is required to find a winning strategy
for the system players. A strategy restricts only the decisions taken at places
belonging to the systems. Strategies are required to be deterministic and are
assumed to be global meaning that they control every local system player.
A strategy is called winning if it can ensure that no bad place is reached
regardless of the non-deterministic decisions the environment takes. This

13

2.2 Petri Games 2 BACKGROUND

implies that Petri games are defined as safety games.

2.2.1 Definition of Petri Games

A Petri game G is a tuple (PS,PE,T ,F , In,B), where:

• PS is a finite non-empty set of places belonging to the system.

• PE is a finite non-empty set of places belonging to the environment.

• B is a finite non-empty set of bad places.

Notice that the multisets T , F , and the function In remain the same as
in a Petri net with P = PS ∪PE which shows that the extension is based
on dividing places into two different groups in order to introduce the global
system and the global environment player. The distribution is required to
be disjoint (PS ∩PE = ∅).

In the following, G 1, G 2, etc. are used to address individual Petri games.
The superscripts are also used for the elements of the tuple corresponding
to the Petri game, e.g., G 1 = (P1

S,P
1
E,T

1,F 1, In1,B1). Places belonging
to the system are filled grey whereas places belonging to the environment
in contrast remain white. System places can be viewed as the controllable
part of the Petri game whereas environment places stay uncontrollable. The
progress of a Petri game is also described by markings: Mi : PS∪PE → N0.

2.2.2 Unfolding and Strategy

As already mentioned, in order to win a Petri game it is required to find
a winning strategy for the system. In this subsection, strategies for Petri
games are defined and it is outlined when they are called winning. Strategies
rely on unfoldings which represent the possibly different history known to a
place because of the transitions which were used to reach it.

The unfolding βU = (G U , λ) of an underlying Petri game G consists of a
Petri game G U in which all joins of places with equal label in the underlying
net have been removed and an homomorphism λ from G U to G . The removal
of all joins results in a replication of places for each possible history they can
be reached with. History refers to the places and transitions which the player
has taken along with the places and transitions other places have taken up
to the joint transition they participated in. On a joint transition, players
exchange their complete history including their knowledge about the history
of other players. This implies that information transfer works in a transitive
manner.

14

2.2 Petri Games 2 BACKGROUND

The unfolding represents the specific information a player can have in a
place by having the place copied for each level of informedness. λ maps the
possibly replicated places of G U to their original places in G in order to show
the relationship between the two games. Notice that the unfolding enumer-
ates all possible choices of the system and of the environment. Consequently
it represents all possible ways the game can develop.

The Petri game G U is required to have the same outgoing transitions for
each copy of a place as the original game. Furthermore, the initial marking
stays the same. Notice that a place which need not be replicated is taken
over from G to G U . The unfolding unwraps recursion because the history
incorporates the taken transitions during each unwrapping of the recursion.
This implies that the unfolding stores how often the recursion is unwrapped
which may result in infinite unfoldings.

A strategy is defined based on the unfolding because the unfolding pro-
vides all information per place which can be used to find a strategy for
the system players. In a strategy, every place belonging to the system has
to decide on engaging in exactly one of the possible transitions or to stop
movement. This requirement ensures deterministic strategies. When making
decisions for the system places the information about the history of the place
can be used. The unfolding also models all transitions of the environment.
However, as the environment is assumed to behave non-deterministically it
is not possible to restrict environment transitions.

The function pre(t) generates as output the finite multiset of places which
precede the transition t. It is defined by pre(t)(p) = F (p, t), returning for
each place p the number of pairs (p, t) in F (including zero if the pair is
not contained). The multiset pre(t) is viewed as a function which returns
for each place how often it precedes t. A sub-process β′ = (G ′, λ′) of an
unfolding β = (G , λ) is produced by removing transitions and the following
places from G resulting in G ′ as well as closing unwrapped recursion. The
homomorphism λ′ relates the fewer places to the underlying Petri game of
both unfoldings.

Formally, a (global) strategy σ for all local system players in a Petri
game G is a finite sub-process σ = (G σ, λσ) of the unfolding βU = (G U , λ) of
the underlying game G for which the following two conditions must hold:

• if p ∈Pσ
S then σ is deterministic at place p

• if p ∈ Pσ
E then ∀ t ∈ T U : ((p, t) ∈ FU ∧ ∀ p′ ∈ pre(t) : p′ ∈ PE) ⇒

(p, t) ∈ F σ

A strategy σ is called deterministic at a place p when for all reachable
markings M in N σ it holds: p ∈ M ⇒ ∃≤1 t ∈ T σ : p ∈ pre(t) ⊆ M . This

15

2.2 Petri Games 2 BACKGROUND

means that the strategy can activate at most one transitions per system
player at every possible decision point which is represented by a reachable
marking for the strategy. The second condition ensures that the strategy does
not impose restrictions on transitions which require only local environment
players to fire. pre(t) is defined on the underlying Petri game G .

As already mentioned, the unfolding is infinite when it unwraps recursion
because of the additional history of each unfolding. Nevertheless, the strategy
is required to be finite by definition. This implies that the strategy can
contain loops in order to deal with loops in the underlying Petri game. Notice
that the loop may be unwrapped finitely often resulting in different decisions
by the system but there must exists a finite point from which on the system
always repeats its decision.

2.2.3 Safety Assumption and Deadlock Avoiding Strategies

The winner of a Petri game G and its strategy σ = (G σ, λσ) is determined
by checking whether there exists a possible sequence of transitions visiting a
bad place. In this case, the environment wins else the system wins. It is clear
that the environment player does not benefit from stopping movement if it
has not reached a bad place. Due to this safety condition the assumption is
made that the environment player does not stall the game but always picks
a transition. This licenses the enumeration of all of its choices in order to
find the winner of a Petri game.

The system has to be forced to engage in transitions because otherwise it
would win every game by not moving at all, in which the environment can-
not reach a bad place locally. For the remainder of this thesis, strategies are
stipulated to be deadlock avoiding. It is required that for all reachable mark-
ingsM , it must hold that ∃ t ∈ T U : pre(t) ⊆M ⇒ ∃ t ∈ T σ : pre(t) ⊆ M .
This ensures that if there exists an enabled transition in the underlying un-
folding of the strategy then there must also exist an enabled transition in the
strategy. When no transition is enabled the game has terminated and it is
possible to determine the winner. The system wins the game if a bad place
is never reached independent of the decisions the environment makes.

2.2.4 Example Modeling of a Vending Machine

Consider the example in Fig. 2 which is an extension to the example for
Petri nets of Fig. 1. The token which represents the person is now in an
environment place A. The machine starts on the system place M . The
environment can either decide that it wants a cup of coffee or a cup of tea
and thus orders according to this decision. The system must take the order

16

2.2 Petri Games 2 BACKGROUND

and then it must decide to produce either a cup of coffee or a cup of tea
because it is defined to be deadlock avoiding. The distribution into system
and environment introduces a game setting to the underlying net.

On the synchronous transitions a system and an environment token are
required to fire it and a system and an environment token are produced.
This implies that both tokens flow through the net by only visiting system
and environment places, respectively. The bad place ⊥ models that it is a
bad behavior of the system to produce the wrong product, i.e., a bad place
is reached when a cup of coffee is ordered but a cup of tea is produced or
vice versa. In Petri games, it is a useful property that the number of tokens
stays constant. This enables the distribution of the global strategy to local
controllers [2]. The system players taking part in the transitions to the bad
places return to their origin in order to achieve this property.

A

M

D

C T

⊥

decTeadecCoffee

orderCoffee orderTea

coffee tea

⊥L ⊥R

Figure 2: An extended example for the interaction between a person and a
machine producing either a cup of coffee or a cup of tea is displayed. The
person is modeled as the environment whereas the machine is modeled as
the system and a bad place is introduced to prohibit unintended behavior.
coffee and tea represent the production of coffee and tea, respectively.

The strategy to avoid the bad place is clear on an intuitive level. Since
the machine is forced to wait for an order the only difficulty is to produce the
right product. Because of the exchanged history which is already indicated by
the labels of the joint transitions orderCoffee and orderTea, it is always clear
which product the environment ordered and therefore it can be produced. In

17

2.2 Petri Games 2 BACKGROUND

order to become familiar with the terminology, the unfolding and the strategy
are shown in Fig. 3 and Fig. 4, respectively. The figures illustrate the formal
approach to solve Petri games.

A

M

D1 D2

C1 T1 C2 T2

decTeadecCoffee

orderCoffee orderTea

coffee tea coffee tea

Figure 3: The unfolding for the example Petri game of Fig. 2 is displayed.
Transitions to bad places are omitted to increase readability. For i = 1, 2,
the labels Di, Ci, and Ti indicate places which have been unfolded depending
on different histories. coffee and tea represent the production of coffee and
tea, respectively.

The unfolding has copied three places D, C, and T each one time. The
resulting six places are renamed to D1, D2, C1, C2, T1, and T2. The places D1

and D2 both represent the place where the system has to decide which hot
beverage to produce. D1 represents the situation where the joint transition
orderCoffee was fired and therefore the system knows that the environment
expects a cup of coffee. In the place D2, the system’s history incorporates
that a cup of tea is expected by the environment. After the production of
either a cup of coffee or a cup of tea one of the places C1, T1, C2, or T2 is
reached. They represent which product was expected by subscript 1 standing
for coffee and subscript 2 for tea and which product was produced by C
standing for coffee and T for tea.

The transitions to bad places are omitted to increase readability because
each of the four lowermost places has one outgoing transition to a unique
bad place. The bidirectional arrows from and to the environment place in
the transitions to bad places incorporate a loop which would need to be
unfolded infinitely often resulting infinitely many places.

C1 and T2 are the places which the strategy must reach in order to avoid
a bad place because both places represent that the order hot beverage was

18

2.3 Communicating Sequential Processes (CSP) 2 BACKGROUND

produced. The transitions to bad places are not enabled for these places.
The places C2 and T1 symbolize that the wrong product was served. In
place D1, the strategy has to decide for the transition coffee to reach C1

and in D2 for the transition tea tor each T2. The corresponding strategy is
displayed in Fig. 4. Comparing the unfolding (cf. Fig. 3) and the strategy it
becomes obvious that the essential difference lays in the pruning of transitions
originating from system places.

A

M

D1 D2

C1 T2

decTeadecCoffee

orderCoffee orderTea

coffee tea

Figure 4: The strategy for the example Petri game of Fig. 2 is displayed.
It shows that the system has to produce a cup of coffee at place D1 and a
cup of tea at place D2. Notice how the system in place M has to keep both
transitions because only one will be enabled depending on the decision of the
environment. It can therefore aggregate the information about which hot
beverage to produce and still be deterministic.

2.3 Communicating Sequential Processes (CSP)

Communicating Sequential Processes (CSP) [4] provides a language which
is used to describe concurrent processes and their interactions. CSP is a
textual representation of processes which can be transformed into a transition
system describing the concurrent behavior. In the following, we focus on
the textual representation and will develop an intuitive understanding of
the operators. The introduced game-based semantics of Section 3 will give
a different meaning than the original semantics resulting in the transition
system.

19

2.3 Communicating Sequential Processes (CSP) 2 BACKGROUND

2.3.1 Definition of a CSP Process

The following subset of the syntax of CSP will be used in this thesis (for more
information on CSP operators see, e.g., [4] and [13]). P , P1, and P2 represent
one process each, e is an event, X a set of events called the synchronization
alphabet, and L is a label. The intuitive meaning of the operators is already
given as comments and will be deepened in this subsection.

P ::= “STOP ” // no communication
| e “→ ” P // event
| P1 “ ‖

X

” P2 // synchronization

| P1 “ | ” P2 // deterministic choice
| P1 “u ” P2 // non-deterministic choice
| L “ = ” P // recursion

The simplest CSP process is STOP which cannot perform any events.
An event is emitted with the prefix operator (→). It takes an event e and a
process P and produces the process e→ P which first emits the event e and
then behaves like P . A simple example is a process hello → STOP which
only emits the event hello.

The next operator is the parallel operator. It takes two processes as
arguments and enforces synchronization on all events which are part of the
synchronization alphabet X. In (a → (e → STOP)) ‖

{e}
(e → STOP), the

synchronization operator determines the order of the occurring actions. e can
only occur after the event a occurred because e is in the synchronization
alphabet whereas a is not.

There are two forms of choices between processes. The first form is the de-
terministic choice (|) and the second form is the non-deterministic choice (u).
Both choice options take two processes P and Q as input and produce the re-
spective choice between the two processes (P | Q and P u Q). The processes
(hello → STOP) | (bye → STOP) and (hello → STOP) u (bye → STOP)
constitute an example for the deterministic choice and the non-deterministic
choice, respectively. In both cases, a decision is made to either emit the
event hello or bye, in the former case the decision is controllable whereas it
remains uncontrollable in the latter case.

The distinction between deterministic and non-deterministic choice be-
comes relevant for the parallel operator (‖

X

). Deterministic choices follow

the first event which occurs if both their decisions are part of a synchro-
nization. On the other hand, non-deterministic choices do not depend on
which event of a synchronization occurs first but are made independently.

20

2.3 Communicating Sequential Processes (CSP) 2 BACKGROUND

This means that in ((a → A) | (b → B)) ‖
{a,b}

((a → A) u (b → B)) the

deterministic choice on the left-hand side will follow the decision made by
the non-deterministic choice on the right-hand side of the synchronization.

CSP allows recursion with the “=”-operator by making it possible to
assign a label L to a process P as in L = P . The label L then represents the
process P and can be used in other processes to represent it. For example,
the process A = (a → A) constitutes a process which emits infinitely many
instances of a. The recursion operator enables us to state reused processes
only once as in the example (a → A) | (b → A) where the process can
deterministically decide between a and b but afterwards it will behave in
both cases like A. The only difference lays in the initial action whereas the
following part A has to be written down only once to define it.

The binding order in CSP is simple. → binds the strongest, followed
by the two choice operators (| and u) binding equally strong, which in turn
bind stronger than ‖. The recursion operator = binds weakest. For instance,
this makes it possible to omit all brackets in the previous example about
deterministic and non-deterministic choice retaining the intended meaning:
a→ A | b→ B ‖

{a,b}
a→ A u b→ B. The three operators |, u, and ‖ bracket

left-associative meaning that A u B u C u D represents ((A u B) u C) u D,
whereas → brackets right-associative implying that a → b → c → d stands
for a→ (b→ (c→ d)).

2.3.2 Example Modeling of a Vending Machine

In this subsection, two CSP expressions are shown which behave equivalent
to the example Petri net from Fig. 1 (a) and to the example Petri game
from Fig. 2. The expression for the Petri net in Fig. 1 (a) looks as follows:

A = (decCoffee→ coffee→ STOP) u (decTea→ tea→ STOP)

M = (coffee→M) | (tea→M)

Fig1 = A ‖
{coffee,tea}

M

The process A represents the person who can decide between a cup of
coffee and a cup of tea and the process M represents the machine which
will either produce a cup of coffee or a cup of tea and then wait for the
next order. The process Fig1 puts both A and M together and enforces
synchronization on coffee and tea. Notice that the person will force the
machine in this scenario to produce the right product because A uses the

21

2.3 Communicating Sequential Processes (CSP) 2 BACKGROUND

non-deterministic choice whereas M uses the deterministic one and therefore
waits for its only synchronization partner and follows the person’s decision
producing the desired hot beverage.

The expression for the Petri game from Fig. 2 can be defined as follows
without the explicit division into places belonging to the system or to the
environment:

A = (decCoffee→ orderCoffee→ ⊥L → STOP) u
(decTea→ orderTea→ ⊥R → STOP)

M = (orderCoffee→M ′) | (orderTea→M ′)

M ′ = (coffee→ ⊥R → STOP) | (tea→ ⊥L → STOP)

Fig2 = A ‖
{orderCoffee,orderTea,⊥L,⊥R}

M

The process A represents the person which now either decides and orders
a cup of coffee or a cup of tea. Afterwards it tries to use a bad transition
representing that the wrong product was served. The machine M first reacts
to the order of either a cup of coffee or a cup of tea and then reaches in
both cases the same state where it can either produce a cup of coffee or a
cup of tea. The process Fig2 ensures synchronization between A and M on
the order and on the transitions which show bad behavior because the bad
behavior can only be determined when investigating the behavior of both
processes. Notice that there is no representation in CSP for the bad places
of a Petri game which leads to the labeling of transitions by ⊥ to indicate
bad behavior as a workaround (which was already used when the figure was
introduced in Section 2.2.4). Furthermore, CSP does not recognize system or
environment but the way deterministic and non-deterministic choice behave
coincides with the intended meaning of the Petri game.

22

3 GAME-BASED SEMANTICS

3 Game-Based Semantics

In this section, a new semantics is developed as the main part of this the-
sis. The proposed game-based semantics translates expressions following a
slightly modified syntax of CSP into Petri games.

This section is structured as follows: First, non-communicating local sys-
tem and environment players are introduced. Second, it is explained how
the rules of the structural operational semantics (SOS) work and in which
way they are applied. Third, the modifications to the original syntax of CSP
are outlined. Fourth, the SOS-rules used to derive simple transitions are
introduced. Fifth, system and environment are given the chance to commu-
nicate with each other via SOS-rules for synchronization. Sixth and Seventh,
SOS-rules for choices of the system and of the environment are introduced.
It follows an explanation of the SOS-rules for recursion.

3.1 Terminated Players

A local player that cannot perform actions anymore is represented by a corre-
sponding token reaching a place without outgoing transitions. Such a place is
called terminal and the player reaching it is called terminated. As described
in the next subsection, the rules of the structural operational semantics allow
the derivation of the transitions of a Petri game. Therefore, no SOS-rules for
terminal places have to be provided in the presented semantics.

In CSP, the STOP -process is used to describe that neither external nor
internal communication can occur anymore. As Petri games distinguish be-
tween system and environment players two types of STOP -places are required
representing the non-communication of the corresponding player. This is
achieved by adding the subscript S as in STOPS for the terminal place of
the system player and by adding the subscript E as in STOPE for the ter-
minal place of the environment player, respectively.

As outlined in Section 2.2, Petri games can mark bad places. There is
no equivalent in CSP. Reaching a bad place represents that the environ-
ment won. This is the reason why this place has no outgoing transitions.
Therefore, each bad place is terminal but not vice versa. The bad place is
by default an environment place in this semantics and the additional syn-
tax construction FAIL suffices to specify the case in a uniquely recognizable
manner.

In Fig. 5, all new syntactic concepts defined for the corresponding Petri
games are shown. Each Petri game consists of one place which is labeled by
the syntactic construct and one token residing in the place. Notice how the
label FAIL identifies a bad place and replaces ⊥ which is used in the original

23

3.2 Structural Operational Semantics 3 GAME-BASED SEMANTICS

paper on Petri games to symbolize bad places.

STOPS STOPE FAIL

Figure 5: The corresponding Petri games for STOPS, STOPE, and FAIL are
displayed.

3.2 Structural Operational Semantics

In the following, the rules comprising the new semantics are introduced.
The goal is to start with an expression P from a slightly modified syn-
tax of CSP (which will be shown in the next subsection) and to finish
with a Petri game G = (PS, PE, T , F , In, B). Rules have the form

premise

conclusion
(side-condition) which can be read as the following statement:

premise and side-condition imply conclusion. A semantics based on rules of
this type is called structural operational semantics (SOS) [8] and the corre-
sponding rules are called SOS-rules. The presented semantics is structural
in the sense that the applicable rule is based on the syntactic structure of
the expression. It is operational in the sense that the conclusion results in
an extension of the Petri game by a transition.

The conclusion consists of one transition of a Petri game including the
places directly preceding it and the places directly following the transition.
The transition and all places have to be labeled and there must exist at least
one place before and after the transition. The premise consists of a number
of transitions (including zero transitions) for which the same conditions re-
garding places and labels as for the conclusion have to hold. The transitions
of the premise are strictly smaller than the conclusion, i.e., less places take
part in the transition or the labels of the places contain less operators. The
side-condition will be used for the synchronization operator and the recur-
sion operator. For the former case, it require a transition either to be or not
to be in a set of transitions. In the latter case, the side-condition requires
that the derived recursion is defined.

Initially, there exists one place labeled by the given expression P . The
expression is in PS if its first operator is →S, |, or STOPS, it is in PE

and B if its first operator is FAIL, or only in PE for all other operators.
The transition operator of the system (→S) and the choice operator of the
system (|) will be introduced in Section 3.4 and Section 3.6, respectively.
Initially, there are no transitions (T = F = ∅) and the initial marking In

24

3.2 Structural Operational Semantics 3 GAME-BASED SEMANTICS

is fixed to assign only one token to the place labeled by P . Notice that In
will not change when deriving transitions because the created Petri game is
given with its initial marking.

Next, systematically all possible transitions are derived via the SOS-rules
which will be introduced in the remainder of this section. As only the reach-
able part of a Petri game is of interest, it is sufficient to only start the
derivation of a transition when all places preceding the transition exist in the
union of the places of the system and of the environment (PS ∪PE). The
SOS-rules are applied recursively to derive a transition until all premises and
side-conditions are fulfilled. An empty premise or an empty side-condition is
always fulfilled. By this process, a derivation tree is constructed where the
first SOS-rule applied is the lowermost part of the tree and its premise is the
conclusion of the second applied SOS-rule. This procedure is continued till
all premises are empty and all side-conditions are fulfilled. The tree growth
upwards and can branch if a rule has more than one premise. Two examples
can be found in Fig. 18 and Fig. 19 in Section 4. The first example is simpler
and can be understood without in-depth knowledge of the rules introduced
in the remainder of this section.

For every successful derivation, the transition and the places of the lower-
most conclusion are added to the respective sets of G . For each arrow of the
transition, the corresponding pair is added to the flow relation F of G . Ac-
cording to the first operator (after ‖X and X‖), the places can be distributed
over PS, PE, and B as for the very first place of the Petri game. The split
synchronization operators ‖X and X‖ will be introduced in Section 3.5.1.
Notice the annotations ‖X and X‖ are not part of the syntax but only arise
from the rules for the opening of synchronization. Therefore, the operators
where not mentioned in the initial distribution of P above.

The SOS-rules induce the labels of the transition and the places. The label
of the transition has as subscript a unique number because all places taking
part in this transition are part of the derivation. This ensures unique pairs
for the transition in the flow relation F and enables several transitions which
are labeled equally up to the number. The number is left out in drawn Petri
games for convenience resulting in Petri games with several transitions with
the same label without these transitions collapsing into one huge transition
subsuming all small transitions with the same label. Notice that the same
does not hold for places because a place is uniquely identified by its label
and it is possible to reach it via several transitions.

If a transition with the same label (without the unique number) and
the same preceding and following places can be derived with more than one
derivation tree then it is added for each derivation tree to the Petri game.
Two derivation trees are different if at some point different rules are used.

25

3.3 Syntax 3 GAME-BASED SEMANTICS

This ensures that the derivation according to the semantics does not simplify
the given Petri game and it is possible to give for example a decision where
it does not matter which alternative the system chooses.

When all transitions for a place have been derived one continues with
the newly added places until all places have been processed. If a place is
reached more than once via several transitions then it is only processed the
first time. This ensures that the derivation terminates. The derivation of
transitions happens in a breadth-first search like manner.

3.3 Syntax

The syntax of an expression P on which the SOS-rules, which will be in-
troduced in the remainder of this section, are applicable looks as follows
where t is a transition, L is a label, and X is a set of transitions representing
the synchronization alphabet. P , P1, and P2 are expressions according to
the syntax. Transitions and labels are finite words of letters and numbers
starting with a letter. The usage of subscripts is possible. Transitions often
start with a lower case letter whereas labels mostly start with an upper case
letter. For transitions and labels the words STOP and FAIL are forbidden
to prohibit confusion with the syntax-constructs.

P ::= “STOPS ” // termination environment
| “STOPE ” // termination system
| “FAIL ” // bad place
| t “→S” P // transition system
| t “→E” P // transition environment
| P1 “ | ” P2 // system choice
| P1 “u ” P2 // environment choice
| P1 “ ‖

X

” P2 // synchronization

| L “ = ” P // recursion

There are three slight modification in contrast to the original syntax
of CSP from Section 2.3.1. As explained in Section 3.1, the syntactical con-
struct STOP is replaced by STOPS and STOPE to differentiate between
a terminated system player and a terminated environment player and the
construct FAIL is added to symbolize a bad place. In the next subsection,
it will be explained why thirdly the “→”-operator has to be replaced by →S

and →E. Notice that because of the replacement of STOP and → these two
operators without the subscripts S and E are not allowed according to the
syntax.

26

3.4 Transitions 3 GAME-BASED SEMANTICS

3.4 Transitions

The transitions of players in a Petri game are described with the prefix oper-
ator of CSP (→). It is important to indicate which player has the chance to
perform the transition since the strategy for the player may refuse to fire the
transition. For the transition t and the expression P , the prefix operator for
the system, t →S P , and the prefix operator for the environment, t →E P ,
are introduced.

A transition requires no further condition but having a token in the place
the transition starts in. As the semantics only results in the structure of a
Petri game with an initial marking it is obvious that the SOS-rules in the
semantics for →S and →E have an empty premise, respectively.

The two corresponding SOS-rules for transitions of the system and of
the environment are outlined in Fig. 6. The rule ST (system transition)
states that if there exists a system place labeled by x →S P then the tran-
sition x can be defined by adding xc to T and the two pairs (x →S P, xc)
and (xc, P) to F ; c is the counter mentioned before which makes all tran-
sitions unique. P is added according to its first operator either to PS, PE,
or PE and B. The rule ET (environment transition) works in an analog
manner for the environment.

So far, system places are circles filled grey and environment places are
circles which remain white. An additional, new type for places is introduced.
The place is depicted by a dashed, white circle as can be seen for both
places labeled by P in Fig. 6. When the new place follows a transition in
a conclusion then it denotes that the first operator of the place after ‖X
and X‖ decides which set of places it is added to and whether it is marked as
a bad place. When it is used for other places in an SOS-rule (i.e. it precedes
the transition in the conclusion or it stands in the premise) then it defines
that the type of the place does not matter for this rule. The only imposed
requirement in this case is that the corresponding places in the premise and
in the conclusion have to either belong both to the set of system places or
both to the set of environment places.

3.5 Synchronization

Players can interact with each other by means of the operator for synchro-
nization (P ‖

X

Q). It takes as input two expressions P and Q and a possibly

empty set of transitions X on which it enforces synchronization. X is called
the synchronization alphabet. It is defined that a transition a ∈ X can only
occur if P and Q can perform it at the same time. X must not include τ as
this symbol represents internal transitions.

27

3.5 Synchronization 3 GAME-BASED SEMANTICS

ST

x→S P Px

(a)

ET

x→E P Px

(b)

Figure 6: The rules ST (system transition; cf. panel (a)) and ET (environ-
ment transition; cf. panel (b)) for places of the form x →S P and of the
form x→E P are displayed.

For example, a →S b →S STOPS ‖
{a}
c →E a →E STOPE only licenses

one order of transitions, namely first c (because the system player has to wait
for synchronization on a), next a (because both players can only perform the
transition they synchronize on), and at last b (because the environment player
already terminated). As outlined in Section 2.2.3, the system is deadlock
avoiding and the environment tries to reach a bad place. In this example, no
player is allowed to or will stop, the former holds for the system, the later
for the environment.

The SOS-rules for synchronization consist of four parts: (1) one rule for
splitting in the beginning, (2) one rule for closing the synchronization in
the end, (3) one rule for the actual synchronization (in two versions), and
(4) a set of rules for performing local transitions which are not part of the
synchronization alphabet.

3.5.1 Opening and Closing of a Synchronization

The opening of the synchronization operator takes place by splitting the op-
erator. It enables us to define Petri games which incorporate more than
one token during the play of the game. Splitting a parallel operator aims
at obtaining two independent players. Nevertheless, each player provides
information about with which player it has to synchronize on which synchro-
nization alphabet. This is done by splitting the one player P ‖

X

Q into the

following two players P‖X and X‖Q [7]. Notice the different positions of X
in ‖

X

, ‖X , and X‖ representing the single parallel operator before the opening

and the two produced operators after the opening. Brackets of several par-
allel operators ensure that at any time only one pair can synchronize. The
synchronization operator takes exactly two expressions as arguments. This
implies that it builds a binary tree which represents the synchronization
structure.

28

3.5 Synchronization 3 GAME-BASED SEMANTICS

For bracketing, X‖ and ‖X bind equally strong but weaker than the choice
operators and stronger than the synchronization operator ‖

X

.

The SOS-rules of the semantics produce some transitions which are needed
to represent internal steps. The rule in Fig. 7 is the first one to do so and
shows that the transitions are labeled by τ in these cases. Internal transitions
are not visible to other local players. This implies that it is not possible to
perform synchronization on them.

SO

P ‖
X

Q

P‖X

X‖Q

τ

Figure 7: The rule SO (synchronization open) for the opening of the parallel
composition in places of the form P ‖

X

Q is displayed.

The place before the transition is assigned to the environment because
the place and the transition are produced in order to represent internals of
the semantics. Environment players do not get more power to win the Petri
game by an additional place with only one outgoing transition where they
can stop moving because they want to reach a bad place. The decision where
to add P ‖X is based on the first operator of P . An analog statement holds
for X‖Q.

Rule SC (synchronization close) deals with the situation when both play-
ers for one split up “‖”-operator have terminated, i.e., they have the form
STOPS‖X or STOPE‖X and X‖STOPS or X‖STOPE. In this case, the
two players can be merged into one player which cannot perform any ac-
tion (STOPE) but by removing the split parallel operator it is shown that
both players terminated. The rule SC is outlined in Fig. 8. The closing of
local players works for them belonging to the same global player as well as to
different global players. Only the produced player is an environment player
as the player was which opened the synchronization.

3.5.2 Deriving a Synchronous Transition

The following SOS-rules deal with the actual synchronization of two players.
In order to model the general case of synchronization, lets us start with
a specifically easy case characterized as the synchronization of exactly two

29

3.5 Synchronization 3 GAME-BASED SEMANTICS

SC

STOPS/E‖X

X‖STOPS/E

STOPEτ

Figure 8: The rule SC (synchronization close) for closing the synchronization
of pairs of places of the form STOPS/E‖X and X‖STOPS/E is displayed. It
can be chosen independently between STOPS or STOPE for any occurrence
of STOPS/E.

places. The two places are labeled by P‖X and X‖Q and can synchronize on
a transition t if t is in the synchronization alphabet (t ∈ X) and P and Q
can perform t on their own, respectively. Note that P‖X and X‖Q must have
the same synchronization alphabet. This ensures that only related pairs
of places can synchronize with each other. Furthermore, the split parallel
operators ‖X and X‖ stay attached to the produced places to ensure future
synchronization. The rule SY-PRE is delineated in Fig. 9.

SY-PRE
P P ′ Q Q′t t

P‖X

X‖Q

P ′‖X

X‖Q′

t

(t ∈ X)

Figure 9: The rule SY-PRE (preliminary version of the rule for synchro-
nization) for the synchronization between two environment players of the
form P‖X and X‖Q on a transition t ∈ X is displayed.

In order to model the general case of the synchronization on a transition t
the rule SY-PRE has to be extended. The outer synchronization operator
requires the left-hand side and the right-hand side to perform the same action.
In the general case, there may be several places Pi‖X on the left-hand side

30

3.5 Synchronization 3 GAME-BASED SEMANTICS

side because after the initial outer opening of a synchronization further inner
openings may have taken place. Thus several Pi‖X synchronize on the same t
which leads to all places, participating in the inner synchronization, taking
also part in the outer synchronization. This holds in an analog manner for
the places X‖Qi. This implies that the general rule for synchronization deals
with the synchronization of more than two places.

Accordingly, the rule SY-PRE (cf. Fig. 9) is extended to the rule SYNC
which is introduced in Fig. 10. Instead of a single place P and a single place Q
participating in the synchronization exactly two sets of places {P1, ..., Pm}
and {Q1, ..., Qn} take part. All members of these sets have to be part of
a possible derivation of the transition without the restriction of the outer
synchronization. The sets represent a minimal but sufficiently large group of
places which can perform the transition t when not restricted by ‖X or X‖,
respectively. If those two sets exist then both sets can perform the transition
together under the restriction of the outer synchronization. Notice that if one
of the conditions m = 1 or n = 1 holds then no inner synchronization happens
for the corresponding set but only one place is needed for the transition. For
both subsets there must exist a derivation of the symbolized transition t.

When two local players synchronize with each other on a transition then
it is not a problem at the time processing the first player that the second
player might not be ready for the synchronization because the second player
has to perform another transition before the synchronous transition. The
following example illustrates this situation. Let us assume there exist the two
places (a→S STOPS)‖{a} and {a}‖(b→S a→S STOPS). When these places
are processed in sequence it is not possible to derive a transition for the first
place because it lacks a partner for the synchronization on a. In the described
case, the synchronous transition will be derived when processing the place
which will be produced when the second player performs the transition b
locally. The first place is processed without deriving a transition and then
the second place is processed. Here, the transition b is derived leading to
the place {a}‖(a→S STOPS). When this place is processed the synchronous
transition a is derived which synchronizes with the already processed place
(a→S STOPS)‖{a} resulting in the two places STOPS‖{a} and {a}‖STOPS.

This example shows that nothing can happen before both players are
ready for the transition but at the time the second player becomes ready
the first player may be processed entirely and then it suffices to only derive
transitions for the second player and not to reactivate an already processed
place for derivation.

31

3.5 Synchronization 3 GAME-BASED SEMANTICS

SYNC

P1

...

Pm

P ′1

...

P ′m
t

Q1

...

Qn

Q′1

...

Q′n
t

P1‖X

...

Pm‖X

X‖Q1

...

X‖Qn

P ′1‖X

...

P ′m‖X

X‖Q′1
...

X‖Q′n

t

(t ∈ X)

Figure 10: The rule SYNC for the synchronization between players of the
form Pi‖X and X‖Qi on a transition t ∈ X is displayed. The set {P1, ..., Pm} is
a sufficiently large but minimal set of places to derive the transition t without
the restriction of ‖X as is the set {Q1, ..., Qn} without the restriction of X‖.

3.5.3 Local Transitions in a Synchronization

Now, SOS-rules for transitions on which no synchronization happens are spec-
ified. These transitions are called local. The first four rules are needed for
the cases when opening and closing of another parallel operator takes place.
These cases are called the inner opening of another synchronization and the
inner closing of another synchronization. The transitions are annotated by τ
which is by definition not part of the synchronization alphabet. This makes
the rules rather simple. Places of the form (P ‖

X

Q)‖X and X‖(P ‖
X

Q) can

always perform their transition. The two produced places both keep the split
parallel operator of the outer synchronization and get the split operator for
the inner synchronization. The corresponding pair of rules SOL (synchroniza-
tion open left) and SOR (synchronization open right) are outlined in Fig. 11.
It is important to note that the places (P ‖

Y

Q)‖X and X‖(P ‖
Y

Q) in this

case will always be environment places by the definition of the semantics. In

32

3.5 Synchronization 3 GAME-BASED SEMANTICS

contrast, their successor places can be system or environment places.

SOL

(P ‖
Y

Q)‖X

(P‖Y)‖X

(Y ‖Q)‖X

τ

(a)

SOR

X‖(P ‖
Y

Q)

X‖(P‖Y)

X‖(Y ‖Q)

τ

(b)

Figure 11: The rule SOL (synchronization open left; cf. panel (a)) for places
of the form (P ‖

Y

Q)‖X is displayed. P ‖
Y

Q engages on the left-hand side of

a synchronization over X and can open a synchronization to the places P‖Y
and Y ‖Q. The rule defines the τ -transition with the resulting places X‖(P‖Y)
and X‖(Y ‖Q). The rule SOR (synchronization open right; cf. panel(b)) works
in an analog fashion for places which engage on the right-hand side of a
synchronization.

The next two SOS-rules deal with the closing of an inner synchroniza-
tion. They correspond directly to the opening rules. Again it holds that the
transition will be labeled by τ meaning that it will not be part of the synchro-
nization alphabet. The rules SCL (synchronization close left) and SCR (syn-
chronization close right) are given in Fig. 12. STOPE‖X and X‖STOPE

will always be environment players by definition. The rules state that if two
places are terminated and therefore can be closed to one place than this can
also happen if the two places took part in an additional outer synchroniza-
tion. Notice that the resulting place must keep the synchronization operator
in order to enable closing of the outer synchronization.

The last two SOS-rules for synchronization represent the case when a
place performs a transition which is not part of the synchronizations al-
phabet. The rules SLS (synchronization left step) and SRS (synchroniza-
tion right step) show that if P can perform a transition t to the place P ′

and t 6∈ X then P‖X can do the same to P ′‖X and X‖P can do to X‖P ′. The
place following the transition keeps ‖X or X‖ because the opened synchro-
nization operator applies for the life time of a player. The rules are displayed
in Fig. 13. It is important to notice that the types of the places P and P‖X
as well as of the places P ′ and P ′‖X have to be either system or environment,
respectively.

33

3.6 System Choice 3 GAME-BASED SEMANTICS

SCL

(STOPS/E‖Y)‖X

(Y ‖STOPS/E)‖X

STOPE‖X

τ

(a)

SCR

X‖(STOPS/E‖Y)

X‖(Y ‖STOPS/E)

X‖STOPE

τ

(b)

Figure 12: The rule SCL (synchronization close left) is displayed. It shows
that two places of the form (STOPS/E‖Y)‖X and (Y ‖STOPS/E)‖X , which
are part of the left-hand side of a synchronization, have a τ -transition to a
place STOPE‖X representing the closing of an inner synchronization. For
each STOPS/E, it can be chosen independently between STOPS or STOPE.
The rule SCR (synchronization close right) works in an analog manner for
places which are part of the right-hand side of a synchronization.

3.6 System Choice

So far, the outcome of a constructed Petri game is determined by whether
a system player decides to stop at a place (only possible if another system
player has a fireable transition) and whether the synchronization deadlocks.
In addition, the system can also decide between P and Q via the “|”-operator
representing a deterministic choice in CSP. Two expressions P and Q are
taken as input and the transitions for both choices are added to the place
labeled by P | Q. The corresponding rules are delineated in Fig. 14.

In order to make a choice, P and Q are required to have at least one
transition. This results in two pairs of SOS-rules, depending on whether
the outgoing transition has one or two successor places. Notice that in the
semantics a transition with only one preceding place will have at most two
direct successor places. Two successors can only occur if the first operator
after the choice is a parallel operator. This constitutes a special case which
will be dealt with soon. The premise ensures that when the left-hand side can
do a transition on its own for example via the rule ST for transitions of the
system (cf. Fig. 6 (a)) then the place for the choice can perform this transition
to the same destination and behaves like the destination afterwards. The
destination is added based on its first operator to the respective set(s).

It is important to note that P ′ and Q′ belong to the same player in
the premise and in the conclusion, respectively. Furthermore, it is required

34

3.6 System Choice 3 GAME-BASED SEMANTICS

SLS
P P ′t

P‖X P ′‖Xt

(t /∈ X)

(a)

SRS
P P ′t

X‖P X‖P ′t

(t /∈ X)

(b)

Figure 13: The rules SLS (synchronization left step) and SRS (synchroniza-
tion right step) for places of the form P‖X and of the form X‖P are displayed.

that P and Q are system players. This prohibits any derived transitions
where it is unclear whether a place belongs to the system or to the envi-
ronment. This is the case for example for a →E STOPE | b →E STOPE.
One might except that two transitions are derivable for this example but, in
fact, no transition is derivable because neither the rule SL nor the rule SR is
applicable.

SL
P P ′t

P | Q P ′t

(a)

SR
Q Q′t

P | Q Q′t

(b)

Figure 14: The rules SL (system left) and SR (system right) for places of the
form P | Q are displayed where P is chosen in the left rule and Q is chosen
in the right rule.

The second pair of SOS-rules deals with the special case when P or Q in a
place labeled by P | Q have a transition with more than one successor place.
This can only happen if the first operator of P or Q is the synchronization
operator ‖

X

, i.e., P has the form P1 ‖
X

P2 or Q has the form Q1 ‖
X

Q2. In

this case, the decision of the system for either P or Q is represented by a
transition labeled by τ for the opening of the synchronization. The rules
rules are displayed in Fig. 15.

The additional rules constitute a special case because a place belonging to
the environment in the premise is transformed into a place belonging to the
system in the conclusion. The place before the split of a parallel operator is

35

3.7 Environment Choice 3 GAME-BASED SEMANTICS

defined to be an environment place (cf. rule SO in Fig. 7) but this cannot hold
here since the system made the decision which resulted in a split of players.
Therefore, P | Q is a system place despite P or Q being an environment
place because the first operator is the parallel operator, respectively. The
rules SLO (system left open) and SRO (system right open) state that the
decision of the system can be a split of players.

SLO

(P1 ‖
X

P2) | Q

P1‖X

X‖P2

τ

(a)

SRO

P | (Q1 ‖
X

Q2)

Q1‖X

X‖Q2

τ

(b)

Figure 15: The rules SLO (system left open) and SRO (system right open)
are displayed. SLO enables the left-hand side of a system place representing
the decision between P1 ‖

X

P2 and Q to perform its decision via a transition

opening the synchronization of P1 ‖
X

P2. Notice that P1 ‖
X

P2 on its own is an

environment place but becomes a system place in (P1 ‖
X

P2) | Q. SRO works

in an analog manner.

3.7 Environment Choice

The environment is supposed to behave non-deterministically. So far, the
environment could only stop its progress which does not enable it to actively
try to reach a bad place. In order to enable the environment to make choices
the non-deterministic choice operator P u Q is introduced. It takes as input
two arguments P and Q and symbolizes the situation that the environment
can choose between these two arguments.

The key difference between the deterministic and the non-deterministic
choice operators is that the environment must finalize its decision by a tran-
sition labeled by τ before performing further transitions which might syn-
chronize. Note that τ is not allowed to be part of the synchronization al-
phabet (cf. Section 3.5). The reason for defining obligatory τ -steps here is
that the system cannot enforce the environment to follow its direction but
the environment has its free choice with which the system has to deal when

36

3.8 Recursion 3 GAME-BASED SEMANTICS

synchronization takes place. The corresponding rules EL (environment left)
and ER (environment right) are depicted in Fig. 16.

EL

P uQ Pτ

(a)

ER

P uQ Qτ

(b)

Figure 16: The rules EL (environment left) and ER (environment right) for
places of the form P uQ are displayed where P is chosen in panel (a) and Q
is chosen in panel (b).

The environment must progress in the game as long as it has not reached
a bad place in order to have a chance to reach one. Assuming the choice
operator of the environment would work in the same way as it does for the
system the environment would always decide for the fireable transition if
only one of the two transitions is fireable. The system would control the
environment in some cases where it is not intended.

3.8 Recursion

There are two reasons to extend the semantics by the operator for recursion
which is represented by L = P . It assigns a Petri game P to the label L.
The label L can then be used instead of P in other Petri games. Firstly,
it makes the semantics more practical because formulae get large for large
Petri games. Recursion allows splitting the whole formula into smaller sub-
formulae. Moreover, recursion allows defining finite Petri games with infinite
paths of transitions by introducing loops.

The derivations in the semantics should terminate and every place should
belong either to the system or to the environment. This requires two restric-
tions for the recursion operator. The first one is that the recursion has to be
action-guarded. This is the case when for P a transition is derivable which is
not τ , i.e., the first operator of P after a possibly empty number of system
choices is either →S or →E. The operator for system choices | does not pro-
duce transitions but behaves like the decision which is taken and →S or →E

are the only possibility to produce transitions which are not τ . →E is only
possible if no system choice occurs (cf. Section 3.6). The second restriction
is that (nested-)self recursion including the “‖”-operator is not allowed. This
restriction will be illustrated by an example in Section 4.3.

The SOS-rules are called RS (recursion system) and RE (recursion envi-
ronment). They are delineated in Fig. 17. The rules describe that the place L

37

3.8 Recursion 3 GAME-BASED SEMANTICS

can perform an internal transition to the place P when L = P is defined.
Note that in RS and RE both places L and P have to be system places or
environment places, respectively. This ensures that it is possible to find the
type of the place L. Moreover, it is not possible to define labels for essential
places like STOPS, STOPE, or FAIL because the recursion is required to be
action-guarded. The rules result in one place marked with the label L and
one place labeled by P , respectively.

RS

L Pτ

(L = P)

(a)

RE

L Pτ

(L = P)

(b)

Figure 17: The rules RS (recursion system) and RE (recursion environment)
are delineated. They state that for a place L a τ -transition to a place P can
be derived when L = P is defined. L and P are either both system places (cf.
panel (a)) or both environment places (cf. panel (b)).

The condition of action-guardedness prohibits as a side effect Petri games
which have an infinite loop of τ -transitions. An example is the Petri game P
with P = P u P . It persists of two environment places and has three
transitions which are all labeled by τ . The first transition leads from the
place P to the place P u P and is derived with the rule for recursion of
the environment. The next two transitions go from the place P u P to the
place P and are caused by the rules for the left and right decision of the
environment, respectively. Only the condition that P = P u P has to be
action-guarded prohibits the existence of this futile Petri game.

38

4 EXAMPLES

4 Examples

In this section, examples illustrating the semantics are explained. The three
main topics derivation trees, synchronization and recursion, and large Petri
games will be discussed. The first subsection shows and explains a simple
derivation tree. The next subsection deals with a synchronization of three
places on one transition leading to a more advanced derivation tree. It is
shown how different synchronization alphabets and changed bracketing lead
to different derived transitions. In the third subsection, it is illustrated why
recursion is restricted not to include the operator for synchronization recur-
sively. The fourth subsection is about how the semantics handles synchro-
nization in a Petri game which includes loops of different length. The fifth
subsection shows how the semantics can be used to describe a meaningful
Petri game. The Petri game describes a distributed alarm system which has
to react correctly to a burglar by displaying the burglar’s break-in position at
all distributed components of the alarm system. The last subsection shows
the description of another meaningful Petri game. Two local system players
have to mimic the behavior of one environment player, respectively.

4.1 First Derivation Tree

In this example, the transition of the place P‖∅ is derived where P is defined
as P = a →S (P ‖

∅
STOPS). The transition will be used later in Fig. 20.

No synchronization is possible for P‖∅ because of the empty synchronization
alphabet. This implies that the only applicable rule is SLS (cf. Fig. 13)
meaning that the left-hand side of a synchronization performs a transition
which is not part of the synchronization alphabet. The premise of the rule
requires that a transition for P‖∅ without the restriction of ‖∅ is derivable.
Since P is a label the only possible transition is caused by the opening of the
recursion. The first operator of the right-hand side of the recursion is →S

implying that the place belongs to the system. Therefore, the only rule to
derive the opening of the recursion is RS (cf. Fig. 17 (a)). The side-condition
of the rule is true because it is defined that P = a →S (P ‖

∅
STOPS). The

rule RS has an empty premise meaning that the derivation tree is finished
and it defines that the transition leads to the place a →S (P ‖

∅
STOPS)

and the rule SLS then defines that the derived transition reaches the place
(a→S (P ‖

∅
STOPS))‖∅. The resulting derivation tree is depicted in Fig. 18.

39

4.2 Three Places Synchronizing in Different Ways 4 EXAMPLES

SLS

RS

P a→S (P ‖
∅

STOPS)τ

P‖∅ (a→S (P ‖
∅

STOPS))‖∅τ

Figure 18: The derivation tree for the τ -transition of the place P‖∅ from the
example from Fig. 20 is delineated. The rule RS requires as side-condition
that P = a→S (P ‖

∅
STOPS) is defined.

4.2 Three Places Synchronizing in Different Ways

The second example shows the derivation of a synchronization requiring three
local players. The expression is a→S A ‖

{a}
(a→E B ‖

{a}
a→S C) where A, B,

and C are labels for arbitrary Petri games. After two internal transitions
in order to open the initial synchronizations, three places with the follow-
ing labels can still derive transitions: (a →S A)‖{a}, {a}‖((a →E B)‖{a}),
and {a}‖({a}‖(a→S C)). At first, (a→S A)‖{a} is processed and it is tried to
derive a transition. The only candidate is the transition a and the only ap-
plicable SOS-rule is the rule SYNC (Fig. 10). This leads to two sets of places
for which a transition needs to be derived according to the premise of SYNC.
The first set contains places which can be part of the left-hand side of the
outer synchronization. The first operator of each element in this set is ‖{a}.
This implies that the set only consists of the first element of our previous
list of three places. The second set contains places for the right-hand side
of the outer synchronization. In this case, the first operator of each element
is {a}‖. This leads to the remaining two places being in the set. The goal is
to find sufficiently large, non-empty subsets of both sets which can perform a
without the restriction of ‖{a} and {a}‖, respectively.

There is only one non-empty subset of the set with one element and
therefore it is necessary to derive the transition a for a →S A. This is
possible via the rule TS (cf. Fig. 6 (a)). Next, it is required to find a subset
for the second set. Since the elements both have an inner parallel operator
including a in the synchronization alphabet the only choice is the set itself

40

4.2 Three Places Synchronizing in Different Ways 4 EXAMPLES

as its own non-empty subset. This implies that the transition a has to be
derived for the places (a→E B)‖{a} and {a}‖(a→S C). The simplified SOS-
rule for synchronization SY-PRE from Fig. 9 is applicable. It constitutes a
special case of the rule for general synchronization SYNC (cf. Fig. 10). The
premise can be fulfilled by applications of the rules ET for a→E B and ST
for a→S C. The two rules can be found in Fig. 6. The resulting derivation
tree is depicted in Fig. 19.

SYNC

SY

a→S A A

a

SY-PRE

ET

(a→E B) B

a
ST

(a→S C) C

a

(a→E B)‖{a}

{a}‖(a→S C)

{a}B

{a}‖C
a

(a→S A)‖{a}

{a}‖((a→E B)‖{a})

{a}‖({a}‖(a→S C))

A‖{a}

{a}‖(B‖{a})

{a}‖({a}‖C)
a

Figure 19: An example derivation of a transition which requires three tokens
to fire is displayed (cf. root of the derivation tree depicted on the bottom of
the tree). The first rule used is SYNC, followed by ST for the left-hand side;
on the right-hand side first SY-PRE is applied; the resulting two premises
are fulfilled by ET and ST.

No additional transitions are derivable without unfolding the recursion
of the Petri games A, B, or C. Each derivation tree for {a}‖((a→E B)‖{a})
and {a}‖({a}‖(a →S C)) will use the exact same SOS-rules as the previous
example.

If we consider a→S A ‖
{a}

(a→E B ‖
∅
a→S C) with the subtle change that

the second synchronization happens over the empty synchronization alpha-

41

4.3 Restriction to Recursion 4 EXAMPLES

bet, then we can derive two transitions labeled by a before unfolding the re-
cursion of A, B, or C. Two places take part in both transitions, respectively.
The place labeled by (a→S A)‖{a} is part of both transitions, i.e., for the first
transition it synchronizes with the place labeled by {a}‖((a→E B)‖{∅}) and
for the second one with the place labeled by {a}‖({∅}‖(a→S C)). At the po-
sition of using the rule SY-PRE in Fig. 19, we can instead derive a transition
for the outer synchronization in two ways. The first way uses SLS instead
of SY-PRE to make a step on the left-hand side inside the synchronization
and then TE to derive the transition a for (a→E B)‖{∅}. For {∅}‖(a→S C),
the second way uses the rule SRS instead of SY-PRE to make a step on the
right-hand side inside a synchronization and then the rule ST to derive the
transition a.

The brackets for the parallel operator have a big impact on the resulting
Petri game. For example, the Petri game a→S A ‖

{a}
(a→E B ‖

∅
a→S C) has

as we have seen two transitions labeled by a where both transitions have two
players taking part. This means that the player, which will behave like A
after performing the transition a, has to decide for one of the two transitions
and only two of the three places labeled by A‖{a}, {a}‖(B‖∅), and {a}‖(∅‖C)
are reached. On the other hand (a→S A ‖

{a}
a→E B) ‖

∅
a→S C also has two

transitions but the transition leading to {a}‖(∅‖C) is not a synchronization.
This means that both transitions can occur during the same run of the game
and all three places (A‖{a})‖∅, ({a}‖B)‖∅, and ∅‖C can be reached.

4.3 Restriction to Recursion

The second restriction to recursion postulates that (nested-)self recursion
including the synchronization operator is prohibited. The reason for this
restriction is that the “‖”-operator might be collected infinitely often. An il-
lustration for the collection of the operator when ignoring the restriction is
given by the example Petri game P with P = a →S (P ‖

∅
STOPS). No-

tice that the recursion is guarded by the transition a which implies that the
recursion accords to the first restriction to recursion.

The resulting Petri game is depicted in Fig. 20 up to a recursion depth of
two. All places belong to the system. Transitions are counted starting from
the place P . The first transition shows the unfolding of the recursion and is
reasoned by the rule RS. The second transition is labeled by a and derived
by the rule ST. The third transition is the opening of the synchronization.
It is derived by the rule SO and shows that the infinity of the Petri game
comes from the attached opened synchronization operator ‖∅. It leads to a

42

4.3 Restriction to Recursion 4 EXAMPLES

new place labeled by P‖∅. From this place, analog transitions can be derived
resulting in new places which all have ‖∅ attached. All these derivations start
with the rule SLS followed by the same rules as before. The place (P‖∅)‖∅ is
reached. From this place, analog transitions and places can be derived which
have ‖X attached twice. This procedure can be repeated infinitely often.

P a→S (P ‖
∅

STOPS)
τ

P ‖
∅

STOPS

a

P‖∅ ∅‖STOPS

τ

(a→S (P ‖
∅

STOPS))‖∅

τ

(P ‖
∅

STOPS)‖∅

a

(P‖∅)‖∅ (∅‖STOPS)‖∅

τ

...

τ

Figure 20: The derived Petri game P for P = a →S (P ‖
∅

STOPS) up to a

recursion depth of two is depicted. Notice that the definition of P is not
allowed according to the restrictions to recursion.

43

4.4 Synchronization of Recursive Petri Games 4 EXAMPLES

4.4 Synchronization of Recursive Petri Games

In this subsection, an example is presented that illustrates that it suffices
for the semantics to unfold recursion only once. If the recursion contains
a loop then the place starting the recursion is reached again after the first
unfolding. In this case, both places have equal labels which implies that they
fall together and therefore the place will not be processed a second time. In
order for the semantics to deal with this case, the derived transitions have
to cover all cases which can be reached if the recursion would be unfolded
infinitely often. This is explained best using an example.

The example consists of the Petri games A1 = a→E a→E a→E A1 and
A2 = a→E a→E A2. The first Petri game A1 can perform the transition a
three times before the recursion is unfolded again whereas A2 can perform it
only two times per recursion. A1 and A2 are forced to synchronize on a in
the Petri game A1 ‖

{a}
A2.

A possible approach which is not taken by the presented semantics would
unfold A1 two times and A2 three times in order to achieve six synchronous
transitions of a before both games would reach again the places after the
opening of the initial synchronization. This approach would lead to 18
places (twelve places are caused by the preceding places of the six syn-
chronous transitions labeled by a. One place is used for the initial opening
of the synchronization. A1 causes two places where it needs to be unfolded
whereas A2 causes three such places). The first transition would open the
synchronization. Then, two places would synchronize on a leading to the
next two places. Each place would have exactly one outgoing transition.
The recursion of A1 and A2 would be unfolded when necessary. The last two
places would return to the places representing the opened synchronization.
This approach is difficult to perform in a structural operational semantics
because the least common multiple for the unfolding of recursion needs to be
calculated.

The presented semantics incorporates another approach. The result of
this approach is depicted in Fig. 21. The minimal number of places is pro-
duced but additional transitions are derived, i.e., places will have more than
one outgoing transition in this example. The first place is labeled by A1 ‖

{a}
A2

and has one outgoing transition. It is labeled by τ and represents the open-
ing of the synchronization. The transition results in the two places A1‖{a}
and {a}‖A2 which represent A1 and A2 before the opening of the recursion.
Both places have one outgoing transition labeled by τ representing the un-
folding of the recursion, respectively. The places abbreviated by A13 and A22

are reached. The abbreviation A13 stands for (a →E a →E a →E A1)‖{a}

44

4.4 Synchronization of Recursive Petri Games 4 EXAMPLES

meaning that process A1 can still perform three times a before the next un-
folding of recursion is necessary. According abbreviations are used for all
remaining places implying that all outgoing transitions of A13 have to reach
the place A12. In an analog fashion, A22 represents {a}‖(a→E a→E A2).

All remaining transitions will be labeled by a and the derivation is based
on the rule SY-PRE each time. Transitions are derived for A13 first. The
only partner existing so far is A22. A transition is derived resulting in the
places A12 and A21. The abbreviation A12 describes that A1 can perform two
instances of a before the recursion needs to be unfolded again, i.e., it has
the form (a →E a →E A1)‖{a}. The place A21 represents {a}‖(a →E A2).
Now another transition is derivable for A13 because the new partner A21 was
produced. The transition leads to A12 and {a}‖A2. No additional places are
produced and all transitions for A13 have been derived.

Now, transitions are derived for A22. The transition together with A13 has
been derived already. A12 is a possible partner and the resulting transition
leads to the newly created place A11 and the already existing place A21. The
newly created place A11 gives A22 another partner for synchronization. The
transition leads to A1‖{a} and A21.

After this, transitions for the place A12 are derived. The transition syn-
chronizing with A22 has already been derived. The only new transition results
from a synchronization with A21 leading to the already existing places A11

and {a}‖A2. Next, for A21 a transition together with A11 is derived leading
to A1‖{a} and {a}‖A2. For A11, no further transitions can be derived and all
transitions for all places have been derived.

The transitions labeled by a in the resulting Petri game (cf. Fig. 21)
are depicted together with the number which makes them unique in order
to show the order in which they have been derived. This order does not
coincide with the order in which the transitions are fired when the game is
played. The produced Petri game results in the following path of transitions
labeled by a: (a1, a5, a4, a2, a3, a6)

ω. This shows that the derived Petri
game symbolizes the intended game where the play is repeated after six
synchronous transitions despite only producing eight places.

For completeness the abbreviations for places are stated:

A11 = (a→E A1)‖{a}
A12 = (a→E a→E A1)‖{a}
A13 = (a→E a→E a→E A1)‖{a}
A21 = {a}‖(a→E A2)

A22 = {a}‖(a→E a→E A2)

45

4.4 Synchronization of Recursive Petri Games 4 EXAMPLES

A1 ‖
{a}

A2

A1‖{a} {a}‖A2

τ

A13

A22

τ
τ

A12 A21

a1

A11

a5

a2a3

a6 a4

Figure 21: The Petri game A1 ‖
{a}
A2 for A1 = a →E a →E a →E A1 and

A2 = a→E a→E A2 is depicted. Transitions are annotated with the number
which marks the order of the derivation. The example illustrates that the
semantics handles recursion correctly.

46

4.5 Distributed Alarm System 4 EXAMPLES

4.5 Distributed Alarm System

This and the next example show how more complex Petri games can be
expressed in the semantics. The examples are introductory examples from
the paper by Finkbeiner and Olderog introducing Petri games [2]. The first
example results in the Petri game from Fig. 1 of [2] modeling a distributed
alarm system. Distributed alarm system is abbreviated by DAS in figures
and expressions in the following.

The burglar is represented by the environment. It can decide to break in
at position A or B with the transitions tA and tB, respectively. Afterwards
it may synchronize on transitions to bad places. The alarm system consists
of the two distributed parts A and B which are placed at the positions of the
same name. The goal of the alarm system is to signal the correct location of a
break-in at both locations if and only if a break-in occurs. A can either decide
that it recognized a break-in via the transition A2, get information from B
via tBB, or recognize a break-in of the burglar at A with a synchronization
on the transition tA. After the detection, A can decide to either keep the
information about the break-in (transition A1) or to share it with B via tAA.
In all four cases, a place is reached where A can signal a break-in at position B
via transition AB or at position A via transition AA. B works in an analog
manner except that BB signals a break-in at position B and BA at A.

Two transitions to bad places are given. The transition ⊥R shows that
the burglar broke in at A but the alarm system at B signaled a break-in
at B. The transition ⊥L represents the opposite situation when the burglar
broke in at B but the alarm system at A signaled a break-in at A. In the
original paper, the example is explained further and additional bad behaviors
are defined.

The following expression produces the described situation:

Env = tA →E EA u tB →E EB

EA = ⊥R →E EA

EB = ⊥L →E EB

A = tA →S (A1 →S pA | tAA →S pA) | A2 →S pA | tBB →S pA

pA = AB →S STOPS | AA→S ⊥L →S FAIL

B = tB →S (B1 →S pB | tBB →S pB) | B2 →S pB | tAA →S pB

pB = BB →S ⊥R →S FAIL | BA→S STOPS

DAS = Env ‖
{tA,tB ,⊥L,⊥R}

(A ‖
{tAA,tBB}

B)

The derived Petri game according to the semantics is depicted in Fig. 22.
It begins with two initial transitions from its initial place to the places repre-

47

4.5 Distributed Alarm System 4 EXAMPLES

senting Env, A, and B. After these transitions, all environment places have
the form e‖{tA,tB ,⊥L,⊥R}, all places belonging to the player A have the form

{tA,tB ,⊥L,⊥R}‖(a‖{tAA,tBB}) and all place belonging to the player B have the
form {tA,tB ,⊥L,⊥R}‖({tAA,tBB}‖b) where e, a, and b stand for the changing parts
of the label.

The opened synchronization operators stay attached for the lifetime of a
local player. This implies that two bad places are produced where the original
figure has only one. Furthermore, one transition labeled by τ followed by
another transition labeled by τ is added in the beginning in order to open
the synchronization. One τ -transition is added to close the synchronization
of the system players when they reach S7 and S15, respectively. Notice, that
this represents the situation that the alarm system at A signals a burglar
at B and the alarm system at B signals a burglar at A, meaning that this
transition exists only because of the omitted additional transitions to bad
places. The remaining transitions labeled by τ are caused by the unfolding
of recursion. The structural similarity to the original Petri game is obvious
while keeping the number of added places because of the semantics low.

48

4.5 Distributed Alarm System 4 EXAMPLES

The following abbreviations are used in Fig. 22:

E5 = EA‖{tA,tB ,⊥L,⊥R}

E6 = ⊥R →E EA‖{tA,tB ,⊥L,⊥R}

E7 = (tB →E EB)‖{tA,tB ,⊥L,⊥R}

E8 = EB‖{tA,tB ,⊥L,⊥R}

E9 = ⊥R →E EA‖{tA,tB ,⊥L,⊥R}

S1 = {tA,tB ,⊥L,⊥R}‖(A ‖
{tAA,tBB}

B)

S2 = {tA,tB ,⊥L,⊥R}‖(A‖{tAA,tBB})

S3 = {tA,tB ,⊥L,⊥R}‖((tA →S (A1 →S pA | tAA →S pA) |
A2 →S pA | tBB →S pA)‖{tAA,tBB})

S4 = {tA,tB ,⊥L,⊥R}‖((A1 →S pA | tAA →S pA)‖{tAA,tBB})

S5 = {tA,tB ,⊥L,⊥R}‖(pA‖{tAA,tBB})

S6 = {tA,tB ,⊥L,⊥R}‖((AB →S STOPS | AA→S ⊥L →S FAIL)‖{tAA,tBB})

S7 = {tA,tB ,⊥L,⊥R}‖(STOPS‖{tAA,tBB})

S8 = {tA,tB ,⊥L,⊥R}‖((⊥L →S FAIL)‖{tAA,tBB})

S9 = {tA,tB ,⊥L,⊥R}‖({tAA,tBB}‖B)

S10 = {tA,tB ,⊥L,⊥R}‖({tAA,tBB}‖(tB →S (B1 →S pB | tBB →S pB)

| B2 →S pB | tAA →S pB)

S11 = {tA,tB ,⊥L,⊥R}‖({tAA,tBB}‖(B1 →S pB | tBB →S pB))

S12 = {tA,tB ,⊥L,⊥R}‖({tAA,tBB}‖pB)

S13 = {tA,tB ,⊥L,⊥R}‖({tAA,tBB}‖(BB →S ⊥R →S FAIL | BA→S STOPS))

S14 = {tA,tB ,⊥L,⊥R}‖({tAA,tBB}‖(⊥R →S FAIL))

S15 = {tA,tB ,⊥L,⊥R}‖({tAA,tBB}‖STOPS)

⊥1 = {tA,tB ,⊥L,⊥R}‖(FAIL‖{tAA,tBB})

⊥2 = {tA,tB ,⊥L,⊥R}‖({tAA,tBB}‖FAIL)

49

4.5 Distributed Alarm System 4 EXAMPLES

DAS
Env ‖

{tA,tB ,⊥L,⊥R}
(A ‖
{tAA,tBB}

B)
τ

Env‖{tA,tB ,⊥L,⊥R} S1

τ

S2 S9

τ

(tA →E EA u tB →E EB)‖{tA,tB ,⊥L,⊥R}

τ

(tA →E EA)‖{tA,tB ,⊥L,⊥R} E7

τ τ

E5 E8S3 S10

τ τ

E6 E9

S4 S11

tA tB

τ τ

S5 S12

S6 S13

τ τ

A1 B1

tAA tBB
A2 B2

S7 S8 S14 S15

AB AA BB BA

⊥1 ⊥2
⊥L ⊥R

{tA,tB ,⊥L,⊥R}‖STOPE

τ

Figure 22: The derived Petri game according to the semantics for the expres-
sion DAS is depicted representing the first example from the introductory
paper on Petri games. The outgoing edges from the transition ⊥L to the
place E8 and from ⊥R to E5 are omitted to increase readability.

50

4.6 Mimicking the Environment 4 EXAMPLES

4.6 Mimicking the Environment

The Petri game from Fig. 3 of the original paper about Petri games [2] depicts
the situation where two local system players have to mimic the decision of
one environment player. All transitions to bad places are omitted in this
example.

The environment makes a decision between two options which is repre-
sented by the “u”-operator. Afterwards, it allows for testing its decision
via the synchronous transitions test1 and test2. There exist two local sys-
tem players. Both have four options: they can try to test the environment’s
decision with test1 and test2, they can mimic the first decision with t′1, or
they can mimic the second decision with t′2. Synchronization only occurs on
test1 and test2 ensuring that all three places take part in these transitions.
This means that either none or both of the local system players have the
information how to mimic the environment. Nevertheless, the transitions of
each system player mimicking the environment occur independently of each
other. The abbreviation MTE stands for mimicking the environment. The
following expressions produce the intended Petri game:

Env = test1 →E STOPE u test2 →E STOPE

Sys1 = test1 →S Sys1 | t′1 →S STOPS | t′2 →S STOPS | test2 →S Sys1

Sys2 = test1 →S Sys2 | t′1 →S STOPS | t′2 →S STOPS | test2 →S Sys2

MTE = Env ‖
{test1,test2}

Sys1 ‖
{test1,test2}

Sys2

The omitting of bad places leads to additional transitions which close the
synchronization. The semantics will produce differently labeled places for
each player meaning that both system players have their own places despite
behaving equally. It also holds that without outgoing transitions all terminal
places per player fall together whereas originally the system might end in EA
or EB and the environment in A′ or B′, respectively (A and B representing
the first and the second decision, respectively.). This does not happen as
soon as the transitions to bad places are added. The derived Petri game is
delineated in Fig.23.

51

4.6 Mimicking the Environment 4 EXAMPLES

The following abbreviations for labels on places are used:

E4 = ((test1 →E STOPE u test2 →E STOPE)‖{test1,test2})‖{test1,test2}
E5 = ((test1 →E STOPE)‖{test1,test2})‖{test1,test2}
E6 = ((test2 →E STOPE)‖{test1,test2})‖{test1,test2}
E7 = (STOPE‖{test1,test2})‖{test1,test2}
S2 = ({test1,test2}‖Sys1)‖{test1,test2}
S3 = ({test1,test2}‖(test1 →S Sys1 | t′1 →S STOPS | t′2 →S STOPS |

test2 →S Sys1))‖{test1,test2}
S4 = ({test1,test2}‖STOPS)‖{test1,test2}
S5 = {test1,test2}‖(test1 →S Sys2 | t′1 →S STOPS | t′2 →S STOPS |

test2 →S Sys2)

S6 = {test1,test2}‖STOPS)

The relation between the two Petri games may not be as obvious as in
the previous example. There are two reasons for that. The first one is that
the two system players do not fall together resulting in more places. The
second reason is caused by the recursion of the two system players. After the
transitions test1 and test2 they have to return to the place where a transition
is necessary to unfold recursion.

52

4.6 Mimicking the Environment 4 EXAMPLES

MTE
Env ‖

{test1,test2}
Sys1 ‖

{test1,test2}
Sys2

τ

(Env ‖
{test1,test2}

Sys1)‖{test1,test2} {test1,test2}‖Sys2

τ

(Env‖{test1,test2})‖{test1,test2}
S2

τ

E4

τ

S3

τ

S5

τ

E5

E6

τ τ

E7

test1

test2

S6
t′1

t′2

S4

t′1

t′2

STOPE‖{test1,test2}

τ

STOPE

τ

Figure 23: The derived Petri game according to the semantics for the expres-
sion MTE is depicted representing the third example from the introductory
paper on Petri games.

53

4.6 Mimicking the Environment 4 EXAMPLES

54

5 RELATED WORK

5 Related Work

This section about related work is structured in the following manner. First,
we sketch work on synthesis in general. In turn, we delineate alternative
semantic concepts connecting CSP and Petri nets.

5.1 Synthesis

Raskin, Samuelides, and Van Begin [12] present an alternative definition
of games based on Petri nets. In their definition, Petri nets are used to
define two-player monotonic games which are turn-taking. Transitions of the
underlying Petri net are divided either to belong to the system or to the
environment. The game is played on configurations which are represented
by a marking of the underlying Petri net and an annotation whether the
current player is the system player or the environment player. It is shown
that for all games which are constructed this way the coverability problem
is decidable and the corresponding winning strategy can be synthesized [12].
The coverability problem is a subclass of the reachability problem where a
certain ordering for the underlying game model exists. In a reachability game,
the system’s goal is to reach certain configurations. The presented games
differ from Petri games as they are turn-taking and distinguish transitions to
belong either to the system or to the environment. In contrast, Petri games
do not enforce a turn-taking game development and distinguish places to
belong either to the system or to the environment.

Originating from their work on synthesis of reactive systems [9], Pnueli
and Rosner introduce synthesis in the setting of distributed reactive sys-
tems [10]. Their work aims at a strategy to fulfill a given specification for a
distributed system. Here, the strategy is supposed to be spread over several
parts of a system. In the general case, this problem remains undecidable.
However, it is decidable for the restricted subclass of hierarchical architec-
tures [11]. An architecture is hierarchical if there exists a pipeline between
the components of the architecture. This pipeline can be used to exchange
information. Petri games tackle this distributed setting although the sys-
tem and the environment are distributed into several parts. So far, it is
only shown for Petri games that they are decidable for a bounded number
of system players and a single environment player [2]. On an intuitive level,
this result goes together with Pneuli and Rosner’s result because the system
players have to exchange as much information as possible to have a chance
to make the correct decision or to be certain that there exists no correct
decision, respectively.

Mohalik and Walukiewicz [6] introduce so called distributed games. A dis-

55

5.2 Alternative Semantics 5 RELATED WORK

tributed game consists of several system players and one environment player.
According to this definition, each system player can communicate with the
environment player only. A strategy controls each system player locally, i.e.,
without using knowledge of other system places. The only information, sys-
tem player can share implicitly, is that they have performed a turn in the
game. In the general case, these games are undecidable but it has been shown
that two theorems allow the simplification of certain distributed games like
pipelines [6]. The simplification reduces for these distributed games the num-
ber of system players to one which makes the games decidable, respectively.
Furthermore, it is shown that the corresponding strategy can be synthesized.
This game model is the opposite to Petri games where players exchange all
their history on a synchronous transition.

5.2 Alternative Semantics

Olderog [7] presents a semantics that relates CSP to Petri nets. This ap-
proach is also based on SOS-rules. Notice that the semantics presented in
this thesis is closely related to Olderog’s. He tries to minimize the number
of transitions which are labeled by τ . Olderog’s semantics is based on sets
of processes which initially are unfolded via a decomposition and expansion
function dex. This set theoretic approach always preserves a set of processes
for which further transitions have to be derived. The semantics also opens
the synchronization operator into ‖X and X‖ and unfolds recursion until all
parts are guarded. In contrast, the semantics of this thesis uses τ more of-
ten and deals with all operators via SOS-rules resulting in some overhead to
ensure the termination of the derivation.

Llorens and his colleagues [5] present another semantics from CSP to
Petri nets. It is used to build a software tool. The authors claim that
the tool transforms a CSP specification into a closely related Petri net. In
this context, closely related means that the connection between the CSP
specification and the Petri net is clearly visible. This goal is achieved by
determining that one process is represented by one token and its progress
through the Petri net is clearly visible despite any overhead produced by the
automatic generation. The close relationship between the CSP expression
and its resulting Petri game is a goal the semantics of this thesis achieves
as well. Furthermore, the idea of systematically deriving all transitions in a
breath-first search manner is also used in the stated paper.

56

6 CONCLUSION

6 Conclusion

This section first provides a summary of the presented material. Moreover,
future work is discussed. Especially, we focus on possible extensions and
changes to the semantics as well as further applications of the semantics.

6.1 Summary

We have modified a subset of the syntax of CSP in order to derive Petri
games. Petri games define games on an underlying Petri net. The trans-
formation follows a structural operational semantics for the derivation of
transitions. For each used syntactical construction, a set of SOS-rules is pre-
sented. The semantics shows that it is possible to define safety games based
on CSP.

STOPS, STOPE, and FAIL represent places in a Petri game without
outgoing transitions. Therefore, no SOS-rules exist for these cases. The
subscripts S and E define that the places belong to the system or to the
environment, respectively, whereas FAIL symbolizes a bad place. The bad
places are bad from the point of view of the system, i.e., the environment
aims at reaching a bad place whereas the system wants to prevent this. A
winning strategy for the system prevents the reaching of a bad place for all
possible behaviors of the environment. Whether such a strategy exists is
called the realizability question and the automatic generation of a winning
strategy is called the synthesis problem.

The syntactic constructions a →S P and a →E P are used to describe
that a system or an environment place can fire the transition a and behave
like P afterwards, respectively. A clear distinction between system and en-
vironment, respectively, enables the system to stop at a place in order to
prevent reaching a bad place. Here, the assumption is made that the sys-
tem’s strategy is deadlock avoiding in order to prevent Petri games from
being trivial.

Furthermore, the synchronization operator P ‖
X

Q is introduced. It en-

forces synchronization on all transitions of P and Q which are in the syn-
chronization alphabet X. A transition a ∈ X can only occur if it occurs
in P and Q at the same time. The opened synchronization operators P‖X
and X‖Q characterize that synchronization on a process is defined for its
lifetime. SOS-rules for the opening and the closing of the synchronization
are presented. Additional rules are given for the derivation of transitions
during a synchronization which are not labeled by τ . These transition can
be synchronous or local depending on whether the transition is in X or not.

57

6.1 Summary 6 CONCLUSION

The system and the environment can perform choices, respectively. The
system choice operator a →S P | b →S Q enables the system to decide be-
tween performing the transition a or b. The decision for a results in a behavior
according to P afterwards whereas a decision for b leads to Q, respectively.
The system’s decision is finalized by performing either a or b. In contrast,
the choice operator of the environment in the example a →E P u b →E Q
basically can perform the same decision as the system before. However,
the environment finalizes its decision with a τ -transition, respectively, before
performing the transition a or the transition b. Thus during a synchroniza-
tion the system cannot dominate the environment. This specific construction
ensures meaningful Petri games.

The deterministic choice operator (|) of CSP corresponds to the choice
operator of the system in a Petri game, i.e., the strategy controls which
decision is taken. This decision can be seen as deterministic from a game-
theoretic point of view. The non-deterministic choice operator (u) of CSP
represents a choice of the environment. The environment is assumed to
behave non-deterministically.

In order to allow for loops in Petri games, the recursion operator is in-
troduced. The derivation of transitions for the place L with the definition
of L = P leads to one outgoing τ -transition from L to the starting place
of the Petri game P . Two SOS-rules are introduced depending on whether
the resulting place P belongs to the system or to the environment. This
ensures that the place labeled by L can be assigned to the system or to the
environment.

In various examples, derivation trees for single transitions are illustrated
and explained as well as the resulting Petri games of larger expressions are
outlined. The derivation trees (cf. Fig. 18 and Fig. 19) illustrate why the
semantics terminates and produces the intended transitions. Furthermore,
the example in Fig. 20 illustrates in which respect the recursion operator has
to be restricted. The Petri game in Fig. 22 shows how CSP can be used
to define a distributed alarm system for which a winning strategy can be
synthesized.

The second example in Fig. 23 illustrates how a distributed system can be
synthesized in which two local system players have to mimic the decision of
an environment player. The latter example shows a weakness of the seman-
tics in the handling of places with more than one token. If two tokens can
perform the same transitions they could reside in the same place before each
transition. The presented semantics, however, results in separate places for
each token. We come back to this issue in the next subsection about future
work.

58

6.2 Future Work 6 CONCLUSION

6.2 Future Work

In this subsection, future work is discussed. The first part deals with addi-
tional operators for the semantics. In the second part, optimizations to the se-
mantics are discussed regarding the reduction of occurrences of τ -transitions.
Afterwards, it is explained why an equivalence for Petri games is helpful in
order to analyze the semantics and to define rules which extend and simplify
CSP-expression and the corresponding Petri games.

6.2.1 Additional Operators

An obvious extension of the semantics is the sequential operator P ;Q which
makes it possible to serialize two Petri games P and Q, i.e., the Petri game P
has to terminate before the Petri game Q is started. The closing of synchro-
nization is defined with the sequential operator in mind permitting to define
a Petri game produced by the presented semantics as terminated when a
place labeled by STOPS/E is reached. Unfortunately, the sequential opera-
tors requires unexpectedly high number of rules for the case before the first
Petri game terminates. In fact, nearly every rule would require a modified
counterpart for this case. The sequential operator is left out in order to in-
crease readability of the thesis. Notice that all examples could circumvent
the lack of the sequential operator without loss of expressibility. The sequen-
tial operator is most useful when analyzing concurrency since it requires a
notion of termination.

The example about the two system players mimicking one environment
player elicits the wish for an operator which produces places with more than
one token in it. The presented semantics produces different places for each
token making the produced Petri game less readable. The goal of the operator
is to give the opportunity for each transition of the places with more than
one token to have either all or only one token take part in a transition.

Another interesting idea is to define a hiding operator from CSP in a
meaningful fashion for Petri games. The key question about how to handle
the hiding of a synchronous transition between the system and the envi-
ronment remains unclear. This operator would make it possible to answer
questions about which transitions of a Petri game are necessary for the sys-
tem or the environment to win the game. The operator would be useful to
tackle game-theoretic questions.

6.2.2 Reduction of Occurrences of τ-Transitions

In the semantics, τ -transitions are produced for the recursion operator, the
choice operator of the environment, and the synchronization operator. For

59

6.2 Future Work 6 CONCLUSION

the choice operator, the τ -transitions enable an indication of the decision of
the environment in order to prevent it from being forced to follow the system.
The recursion operator can work without τ -transitions whereas the synchro-
nization operator can safe some τ -transitions when more than one synchro-
nization operator occurs in a series. However, the reduction of occurrences
of τ -transitions has purely cosmetic consequences making the produced Petri
games more handy while keeping the expressiveness.

6.2.3 Equivalence between Petri Games

It is desirable to proof the compositionality of the presented semantics. For
that purpose, it is necessary to define under which circumstances two Petri
games are equivalent. Intuitively, a third Petri game should not be able
to distinguish between two equivalent Petri games using a certain kind of
test, i.e., a testing scenario is required. This idea is inspired by Hennessy’s
testing equivalence about how processes may or must behave [3]. A possible
testing scenario is the synchronization on an arbitrary synchronization al-
phabet of the third Petri game with the two possibly equivalent Petri games,
respectively. For this case, all basic equivalences which were tested so far
failed. This leads to the question whether the testing scenario gives the
third Petri game too much power or whether a more sophisticated equiva-
lence might exist. We want to conjecture the second case and will address
this topic as future work as it gives rise to interesting research questions we
summarize in the next subsection.

6.2.4 Analysis of the Semantics

The equivalence addressed in the previous subsection would enable to check
whether rules for CSP relating two CSP-expressions also hold for Petri games
and the defined equivalence. This allows checking existing rules for extension
and simplification in order to broaden the understanding of Petri games and
to simplify Petri games. It might also be possible to find additional rules
which do not hold for CSP but are in fact true for Petri games.

60

7 REFERENCES

7 References

[1] J. Esparza and K. Heljanko. Unfoldings - A Partial-Order Approach to
Model Checking. EATCS Monographs in Theoretical Computer Science.
Springer-Verlag, 2008.

[2] B. Finkbeiner and E.-R. Olderog. Petri Games: Synthesis of Distributed
Systems with Causal Memory. In Proceedings Fifth International Sympo-
sium on Games, Automata, Logics and Formal Verification, GandALF
2014, Verona, Italy, September 10-12, 2014., volume 161 of EPTCS,
pages 217–230, 2014.

[3] M. Hennessy. Algebraic Theory of Processes. The Foundations Of Com-
puting Series. MIT press, 1988.

[4] C.A.R. Hoare. Communicating Sequential Processes, volume 178.
Prentice-Hall Englewood Cliffs, 1985.

[5] M. Llorens, J. Oliver, J. Silva, and S. Tamarit. Generating a Petri
net from a CSP specification: A semantics-based method. Advances in
Engineering Software, 50:110–130, 2012.

[6] S. Mohalik and I. Walukiewicz. Distributed Games. In FST TCS 2003:
Foundations of Software Technology and Theoretical Computer Science,
pages 338–351. Springer, 2003.

[7] E.-R. Olderog. Nets, Terms and Formulas: Three views of Concurrent
Processes and Their Relationship, volume 23. Cambridge University
Press, 2005.

[8] G.D. Plotkin. A Structural Approach to Operational Semantics. DAIMI
FN–19, 1981.

[9] A. Pnueli and R. Rosner. On the Synthesis of a Reactive Module. In
Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, pages 179–190. ACM, 1989.

[10] A. Pnueli and R. Rosner. On the Synthesis of an Asynchronous Reactive
Module. In Automata, Languages and Programming, pages 652–671.
Springer, 1989.

[11] A. Pnueli and R. Rosner. Distributed Reactive Systems are Hard to
Synthesize. In Foundations of Computer Science, 1990. Proceedings.,
31st Annual Symposium on, pages 746–757. IEEE, 1990.

61

7 REFERENCES

[12] J.-F. Raskin, M. Samuelides, and L. Van Begin. Petri Games are Mono-
tonic but Difficult to Decide. Technical report, Université Libre De
Bruxelles, 2003.

[13] A.W. Roscoe. The Theory and Practice of Concurrency, volume 1. Pren-
tice Hall Englewood Cliffs, 1998.

[14] W. Thomas. Infinite Games and Verification. In Computer Aided Veri-
fication, pages 58–65. Springer, 2002.

62

	Introduction
	Background
	Petri Nets
	Definition of Petri Nets
	Enabledness and Firability
	Example Modeling of a Vending Machine

	Petri Games
	Definition of Petri Games
	Unfolding and Strategy
	Safety Assumption and Deadlock Avoiding Strategies
	Example Modeling of a Vending Machine

	Communicating Sequential Processes (CSP)
	Definition of a CSP Process
	Example Modeling of a Vending Machine

	Game-Based Semantics
	Terminated Players
	Structural Operational Semantics
	Syntax
	Transitions
	Synchronization
	Opening and Closing of a Synchronization
	Deriving a Synchronous Transition
	Local Transitions in a Synchronization

	System Choice
	Environment Choice
	Recursion

	Examples
	First Derivation Tree
	Three Places Synchronizing in Different Ways
	Restriction to Recursion
	Synchronization of Recursive Petri Games
	Distributed Alarm System
	Mimicking the Environment

	Related Work
	Synthesis
	Alternative Semantics

	Conclusion
	Summary
	Future Work
	Additional Operators
	Reduction of Occurrences of -Transitions
	Equivalence between Petri Games
	Analysis of the Semantics

	References

