
Saarland University

Faculty of Natural Sciences and Technology I

Department of Computer Science

Master’s Thesis

Equivalence of Petri Games

submitted by
Jesko Hecking-Harbusch

submitted on
June 15th, 2016

Supervisor
Prof. Bernd Finkbeiner, Ph.D.

Advisor
Prof. Bernd Finkbeiner, Ph.D.

Reviewers
Prof. Bernd Finkbeiner, Ph.D.

Prof. Dr. Ernst-Rüdiger Olderog

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbständig
verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel ver-
wendet habe.

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have
not used any other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Ver-
sionen in die Bibliothek der Informatik aufgenommen und damit veröffentlicht
wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible
to the public by having them added to the library of the Computer Science
Department.

Saarbrücken,
(Datum/Date) (Unterschrift/Signature)

Abstract

Petri games represent games between the system and the envi-
ronment which are distributed over several independent components,
respectively. Independent components of the system model that de-
cisions can be based on incomplete information, whereas each in-
dependent component of the environment represents one source of
non-determinism. Information is gathered locally and only exchanged
upon synchronization among components. The goal of Petri games
is to synthesize a strategy for the system which satisfies the winning
condition for every non-deterministic behavior of the environment.

Petri games are an extension of Petri nets. Bisimilarity defines an
equivalence relation on Petri nets among other modeling formalisms.
It defines two Petri nets as bisimilar if a bisimulation exists between
the nets. The bisimulation includes pairs of markings of two Petri
nets. For every pair, all possible transitions in one net can be sim-
ulated in the other net such that the following markings are again
related and vice versa. This allows us to view bisimilar Petri nets as
interchangeable.

In this Master’s thesis, bisimilarity of Petri games is defined. This
equivalence relation allows the translation of strategies between bisim-
ilar Petri games which makes the games interchangeable. We extend
the standard bisimulation between Petri nets to incorporate the ex-
tended expressiveness of Petri games. The bisimulation handles the
possibly infinite history of Petri games in a finite manner.

Acknowledgments

I am very grateful to Prof. Bernd Finkbeiner for generously offering me this
interesting and challenging topic. Especially, I am thankful for the aspiring
guidance, invaluably constructive criticism, and friendly advice during the
last months. I deeply appreciated the many and illuminating views on a
number of issues related to my thesis.
Furthermore, I would like to thank Prof. Bernd Finkbeiner and Prof. Ernst-
Rüdiger Olderog for reviewing this thesis.
Moreover, I also place on record, my sincere thank you to my family, friends,
and fellow students for their support. Especially, I want to give a warm
thanks to Marcel Maltry, Marius Mosbach, and Sebastian Schirmer for proof-
reading the thesis. Nevertheless, all remaining errors are mine alone.

Contents

1 Introduction 10

2 Background 12
2.1 Petri Nets . 12

2.1.1 Definition of Petri Nets 12
2.1.2 Enabledness and Firing of Transitions 13
2.1.3 Boundedness . 13
2.1.4 Preset and Postset . 14
2.1.5 Example of a Petri Net 14

2.2 Petri Games . 15
2.2.1 Definition of Petri Games 16
2.2.2 Unfoldings . 16
2.2.3 Strategies . 18
2.2.4 Example of a Petri Game 19

2.3 Bisimulation between Petri Nets 22
2.3.1 Definition of Bisimulation between Petri Nets 22
2.3.2 Example of Bisimilar Petri Nets 23
2.3.3 Properties . 24

3 Equivalence 26
3.1 Goals of the Equivalence . 26
3.2 Relating System Places . 27
3.3 Relating Bad Markings . 27
3.4 Deadlock-Avoiding Choices . 28
3.5 Strengthening towards System Decisions 29
3.6 History of the System . 30

3.6.1 Example of Different Histories at System Places 30
3.6.2 Bisimilarity Proof . 32
3.6.3 History Markings . 34

3.7 Strengthening towards System History 35
3.8 History of the Environment 38

3.8.1 Example of Environment Places Hiding History 38
3.8.2 Bisimilarity Proof . 39

3.9 Strengthening towards Environment History 41

4 Applications 44
4.1 Reduction of Environment Tokens 44
4.2 Non-Deterministic Strategies 46
4.3 Equivalence Example . 49

4.3.1 Proof of Bisimilarity 49
4.3.2 Unfoldings . 51
4.3.3 Winning Strategies . 52
4.3.4 Example Strategy Translation 53

5 Characteristics 56
5.1 Existence of Finite Bisimulations 56
5.2 Equivalence Relation . 57

5.2.1 Reflexivity . 57
5.2.2 Symmetry . 58
5.2.3 Transitivity . 58

5.3 Bisimilar History . 60
5.3.1 History Markings realize Bisimilar History 61

5.4 Algorithm for Strategy Translation 63

6 Related Work 68

7 Conclusion 70
7.1 Summary . 70
7.2 Future Work . 72

7.2.1 Deterministic Strategies 72
7.2.2 True Concurrency Semantics 72
7.2.3 Applications . 73

8 Appendix 74

A Reachable Markings in Fig. 7 and Fig. 8 74

B Bisimulation between Fig. 9 and Fig. 10 75

C Example Run of Algorithm 1 76

1 INTRODUCTION

1 Introduction

Petri nets [12, 4] provide a modeling formalism for distributed systems con-
sisting of several independent components. They explicitly model the con-
currency between individual components. A component can develop locally
as well as synchronously together with other components.

Petri games [7] define games between the system and the environment
on an underlying Petri net. The winner of the game is determined based on
a safety condition, i.e. the system has to avoid certain game states to win.
Petri games are an extension of Petri nets by defining each component to
either belong to the system or to the environment.

The system and the environment are divided into local components, re-
spectively. Local components of the system realize incomplete information
because each component gathers information locally. Information cannot
be exchanged passively between components but only by synchronization.
As information, we define the history of choices of components. Each local
component of the environment represents one source of non-determinism. A
non-deterministic choice creates history the system may be required to ob-
tain to fulfill the safety condition. Petri games allow for infinitely long lasting
games and can therefore be used to model reactive systems which interact
with the environment.

In a Petri game, we try to synthesize a winning strategy for the system.
The realizability problem ask whether there exists such a winning strategy.
The synthesis problem further requires the automatic construction of the
strategy if it exists. A winning strategy readily yields an implementation of
the modeled reactive system.

Petri games with a single environment component are decidable [7]. A
single environment component implies that there is only one source of non-
determinism in the game. Therefore, the decision procedure can ensure that
the system either has the required information to make decisions fulfilling
the safety condition or that it is impossible to obtain these information. The
case of two or more sources of non-determinism is significantly more difficult
as one environment can proceed while the system ensures that it is informed
about the other source of non-determinism.

A decision procedure for the case of more than one environment compo-
nent in a Petri game represents an open research topic. This thesis takes an
alternative approach of defining an equivalence notion on Petri games which
allows the reduction of components. We thereby increase the range of solv-
able Petri games to such games with more than one environment component
which are equivalent to a game with a single environment component. Our
equivalence notion is based on bisimulation.

10

1 INTRODUCTION

Bisimulations [16, 10] consist of pairs of distributions of tokens from Petri
nets. Such distributions of tokens are called markings and represent states of
the net. The bisimulation requires that each marking in a pair can simulate
the labels of all transitions the related marking allows such that the respec-
tively reached markings are again in the bisimulation. Bisimilarity based on
the existence of a bisimulation including the pair of initial markings of two
nets constitutes an equivalence relation on Petri nets [13]. The Petri nets
are assumed equivalent because they can simulate each sequence of transi-
tions in the other game. This equivalence relation allows for instance to find
the minimal Petri net modeling a certain situation as well as showing that
certain markings in a Petri net can be assumed to be repetitive.

In this thesis, we transfer and extend the definition of bisimulation be-
tween Petri nets to Petri games. The goal is to allow the translation of
strategies between bisimilar Petri games. This allows us to tackle an easy,
bisimilar Petri game instead of a harder one because winning strategies can
be translated automatically between bisimilar games. Adam [6] represents
an automatic solver for Petri games with a single source of non-determinism.
A well-founded removal of environment components increases the range of
solvable games by Adam.

Strategies are a restriction to so called unfoldings of Petri games. Unfold-
ings can become infinite as they explicitly represent all possible histories for
each component. A loop already produces a new history during each iteration
as the number of repetitions of a transition counts as history. Bisimulation
between Petri games relates a newly developed strengthening of markings
called history markings to represent the different histories of the same mark-
ing. We prove that bisimilarity based on the existence of a bisimulation
between the history markings of Petri games relates these games as equiva-
lent such that their (non-deterministic) winning strategies are translatable.

This thesis is structured as follows. In Section 2, an overview of the gen-
eral framework of Petri nets, Petri games, and bisimulation between Petri
nets is presented. Section 3 defines bisimulation and bisimilarity of Petri
games. We develop the final form of bisimulation with the help of several
strengthenings targeted at certain properties of Petri games. Applications
of bisimilarity of Petri games are outlined in Section 4. In Section 5, it is
proven that bisimilarity based on the developed bisimulation is an equiva-
lence relation on Petri games and that it allows the translation of strategies
between bisimilar Petri games. Related work is discussed in Section 6 and in
Section 7, conclusions are drawn and future work is addressed.

11

2 BACKGROUND

2 Background

In the following, we outline the basics about Petri nets. In turn, we intro-
duce Petri games1. Finally, we envision the basic definition of bisimulation
between Petri nets. For this general framework we propose a bisimulation
between Petri games in Section 3.

2.1 Petri Nets

Petri nets [12, 4] model the flow of independent components in distributed
systems. They consist of places, represented by circles, and of transitions,
represented by bars. Each place holds at most one token which represents
the current state of a component of the distributed system. Transitions
enable tokens to flow through the Petri net by defining arrows between the
circles and bars. They illustrate the step-wise development of the distributed
system. A transition can be used if all preceding places hold one token. When
using the transition, all tokens from the preceding places are removed and
then tokens are added to all places following the transition. Labels become
assigned to transitions to have indistinguishable transitions with different
places preceding and following the transitions.

2.1.1 Definition of Petri Nets

A Petri net N is a five-tuple (P,T ,F , In,L), where:

• P is a finite non-empty set of places.

• T is a finite non-empty set of transitions.

• F ⊆ (P ×T) ∪ (T ×P) is the flow relation.

• In ⊆P is the non-empty initial marking.

• L : T → L is a labeling function for transitions.

The set of places and the set of transitions are disjoint (P ∩ T = ∅).
Places and transitions alternate according to the flow relation. A pair of the
form P × T defines that the place precedes the transition, whereas a pair
of the form T ×P defines that the transition is followed by the place.

1The introduction of Petri nets and Petri games is an extended and revised version of
the respective subsections from the author’s Bachelor’s thesis [8]. We base our definition
of Petri games on bad markings [5] instead of bad places [7, 6]. Furthermore, we introduce
a labeling function for Petri nets and Petri games. Accordingly all examples presented
here are entirely new in order to fit the remainder of this Master’s thesis.

12

2 BACKGROUND 2.1 Petri Nets

The initial marking describes in which places tokens reside before any
transition is used. The progress of a Petri net can be described by markings
Mi ⊆ P. Any marking Mi describes a distribution of tokens after i transi-
tions were used starting from the initial marking. This implies that M0 = In
holds. When using markings, we identify a token in a certain place by the
name of the place.

L is the set of labels. The number of labels might be smaller than the
number of transitions (|L| ≤ |T |) in order to have several indistinguishable
transitions. We use the identity function as labeling function if L = T and
L (t) = t for each t ∈ T . This function is used when we do not wish to
utilize the extended expressiveness of labels. We assume the usage of the
identity function if not mentioned otherwise.

2.1.2 Enabledness and Firing of Transitions

Using pairs of the form P ×T , the flow relation F defines in which places
tokens are necessary in order to use a transition. A transition is called enabled
if all preceding places hold one token, respectively. The use of transitions is
called firing. When a transition is fired all preceding tokens are consumed
and new tokens are produced based on the pairs of the form T ×P from F .
A transition with several places preceding it is called synchronous, whereas
a transition with a single place preceding it is called local.

If (p, t) and (t, p) are in F then a token in place p is required for the
transition t and firing the transition does not remove the token from p but
leaves it in place. This situation is identified by a double arrow between p

and t. We use the notation M
t−→N M ′ to represent that firing transition t

in Petri net N leads from marking M to marking M ′. We omit N if it can
be uniquely inferred from the context.

2.1.3 Boundedness

A place is k-bounded by a variable k iff for all sequences of fired transitions
there are at most k tokens in the place. A Petri net is k-bounded iff all its
places are k-bounded. A Petri net which is 1-bounded is called safe. We
restrict ourselves to safe Petri nets to use simpler notation when introducing
bisimulation. By our definition of Petri nets, initially each place can hold
at most one token and each transition can produce at most one token in a
certain place. Thus, a Petri net is safe iff each transition is only enabled if
all following places do not contain any tokens, respectively. Our definition of
markings is already tailored to safe Petri nets.

13

2.1 Petri Nets 2 BACKGROUND

approachingCar

carLeft carRight

left right

(a)

approachingCar

carLeft carRight

left right

(b)

Figure 1: A Petri net is depicted with its initial marking (cf. subpanel (a))
and after firing the transition left (cf. subpanel (b)). The Petri net consists
of three places interconnected by two transitions. It models the situation
where a car approaches a junction and can decide to drive left or right.

2.1.4 Preset and Postset

We introduce the preset pre for a transition t of a safe Petri net which is
defined by pre(t) = { p ∈ P | (p, t) ∈ F }. It returns the set of places
that are required to enable the transition. We abbreviate pre(t) by •t.
Analogously, we define for safe nets the postset post for a transition t by
post(t) = { p ∈ P | (t, p) ∈ F } and abbreviate post(t) by t•. It defines in
which places a token is produced by firing the transition t.

Accordingly, we define which transitions can produce a token in a place p
by pre(p) = { t ∈ T | (t, p) ∈ F } and which transitions can consume a token
from place p by post(p) = { t ∈ T | (p, t) ∈ F }. We use the abbreviations •p
and p•, respectively.

2.1.5 Example of a Petri Net

In Fig. 1a and in Fig. 1b, we see two markings of a Petri net. The example
models a car approaching a three-way junction. The car is represented by a
token in the place approachingCar. There are no other tokens in the initial
marking (cf. situation depicted in subpanel (a)). The flow relation consists
of the following four pairs: (approachingCar, left), (approachingCar, right),
(left, carLeft), and (right, carRight).

Two transitions are enabled, namely left and right. Subpanel (b) illus-
trates the case after firing the transition left. One token in approachingCar
has been consumed and one token in carLeft has been produced to model
that the car decided to go left at the junction. We extend this example
later on by assuming another car’s behavior to be modeled. By this intu-
itive example, we can illustrate which complications arise from independent
components which are either controllable or uncontrollable.

14

2 BACKGROUND 2.2 Petri Games

2.2 Petri Games

Petri games [7] define an extension to Petri nets [4]. They characterize
the synthesis problem of distributed controllers where all sources of non-
determinism are explicitly modeled. The distributed controllers can only
utilize the information they obtained actively.

A Petri net represents the underlying model. Specifically, its places are
divided to be either controlled by the global system player or by the global
environment player. The environment constitutes the uncontrollable part
of the model, whereas the system is controllable. The realizability problem
decides whether a winning strategy for the system under a certain winning
condition and despite the uncontrollable behavior of the environment exists.
Deciding whether a winning strategy can be derived automatically is called
the synthesis problem.

The winning condition of Petri games can be characterized as a safety
condition based on bad markings2. These markings have to be avoided by
the system in order to win the game. Conversely, the environment tries to
reach such a bad marking. A token at a system place is controlled by the
global system player and called a local system player. Obviously, there can
be several local system players but only one global system player.

Petri nets model the information flow in a distributed system. This
scheme of information flow is extended in Petri games where tokens (i.e. local
players but not global players) exchange their complete history of fired tran-
sitions and visited places upon synchronous transitions. Each token created
by a transition contains the history of all tokens consumed by said transition
and the information about this most recent firing including all places reached
by the firing.

The history is deployed by the local players when making decisions at
places. We define that the global system player can only utilize the local
information of a token when making a decision at a certain place but not
elsewhere (i.e. it cannot use the information other independent tokens in
places have although it is the same global player). This prohibits passive
exchange of information.

The global environment player is assumed to behave non-deterministically.
Nevertheless, an according distinction between global environment player and
local environment players will be useful.

2The usage of bad markings instead of bad places is based on [5]. They allow a coarser
equivalence notion while requiring less transitions to be checked when testing the existence
of a bisimulation between Petri games.

15

2.2 Petri Games 2 BACKGROUND

2.2.1 Definition of Petri Games

A Petri game G is a seven-tuple (PS,PE,T ,F , In,B,L), where:

• PS is a finite set of places belonging to the system.

• PE is a finite set of places belonging to the environment.

• B ⊆ 2PS∪PE is the set of bad markings.

In this definition, the set of transitions T , the flow relation F , the initial
marking In, and the labeling function L remain the same as in a Petri net
with P = PS ∪PE which shows that the extension is based on dividing
places into two different groups (system and environment) and to determine
certain markings as bad. The distribution of places is required to be disjoint
(PS ∩PE = ∅).

The notation P in the context of Petri games identifies all places in the
game, i.e. the union of system places and environment places. One of the two
sets PS and PE can be empty but not both as the underlying Petri game
requires P to be non-empty. When depicting Petri games, places belonging
to the system are filled gray, whereas places belonging to the environment
remain white.

We restrict ourselves to Petri games based on safe Petri nets. We adapt
the labeling function L : T → L of Petri nets with L ⊆ T . It allows two
transitions in the Petri game to have the same label. This is necessary when
modeling a certain, indistinguishable situation which can happen in different
ways. Therefore, bisimulation is defined on these labels.

The progress of Petri games is described—as in Petri nets—by markings
Mi ⊆ PS ∪PE. The set of sequences of transitions, where each sequence
can be fired sequentially to reach the marking M from the initial marking,

is defined by { 〈t1, . . . , tn〉 | In
t1−→M1

t2−→ . . .
tn−→Mn = M } and called the set

of runs from In to M .
In the following, names providing a superscript like G 1, G 2, etc. are used

to address individual Petri games. The superscripts percolate down to the
corresponding tuple of the game, e.g. G 1 = (P1

S,P
1
E,T

1,F 1, In1,B1,L 1).

2.2.2 Unfoldings

As already mentioned, it is essential for the system to find a winning strategy
in order to win a Petri game. In this subsection, strategies for Petri games
are defined. In particular, we characterize when they are called winning.
Strategies are a restriction to the unfolding which explicitly represents the

16

2 BACKGROUND 2.2 Petri Games

possibly different histories known to a token in a place. Different histories
for a token in a place arise when different transitions lead to the same place.

The unfolding βU = (G U , λ) of an underlying Petri game G consists of
a Petri game G U in which all joins of places in the underlying net have
been resolved and of a homomorphism λ from G U to G . A join of a place
occurs when two different transitions have an outgoing arc to the same place,
respectively. A join also occurs at a place out of the initial marking if it has
an incoming arc. The token can return to its initial position and has fired at
least one transition.

Both types of joins are resolved by copying the place (including all transi-
tions and places following it) and changing one transition responsible for the
join to lead to the copied place instead of the original one. If a place included
in a bad marking is copied an additional bad marking is added where the
original place is replaced by its copy.

The removal of all joins results in a replication of places for each possible
history they can be reached with. History refers to the places and transitions
which the local player has taken along with the places and transitions other
local players have taken up to the synchronous transition they participated in.
On a synchronous transition, local players exchange their complete history
including their knowledge about the history of other local players. Notice
that the unfolding can differentiate transitions with the same label if they
differ in their preset or their postset. We call G U the unfolded Petri game
of G and a marking in an unfolding a cut.

λ maps the possibly replicated places and transitions of G U to their origi-
nal places and original transitions in G to show the relationship between the
two games. Note that the unfolding enumerates all possible choices of the
system and of the environment. Consequently it delineates all possible ways
the game can develop.

The initial marking is the same in both Petri games G and G U . A place
which is not replicated is taken over from G to G U . The unfolding unwraps
loops in the game because the history incorporates the taken transitions
during each iteration of the loop. This implies that the unfolding stores how
often the loop is iterated which results in infinite unfoldings.

A sub-process β′ = (G U ′, λU
′
) of an unfolding β = (G U , λU) is produced

by removing transitions and the subsequent places and transitions from G U

as well as closing unwrapped loops resulting in G U ′. The homomorphism λ′

relates the fewer places and transitions of the sub-process to the underlying
Petri game of the unfolding. Notice that each sub-process is required by
definition to be finite, whereas unfolding can be infinite.

17

2.2 Petri Games 2 BACKGROUND

2.2.3 Strategies

A strategy is a sub-process of the unfolding because for each system place, the
unfolding provides all information available to make a decision. In a strategy,
every system place has to decide to either stop movement, to activate all
transitions based on the same transition of the original game, or to activate
a maximal set of transitions out of which one environment player will choose
when firing its transitions (i.e. the transitions are all synchronous with the
single environment player). The later case defines that the strategy has
to determine an order in which it reacts to two or more local environment
players. For this case, it is ensured that the environment always chooses
exactly one of the transitions the system allowed. The restriction to every
system place ensures deterministic strategies. The unfolding also models all
transitions of the environment. However, as the environment is assumed
to behave non-deterministically it is not possible to restrict environment
transitions.

Formally, a (global) strategy σ for all local system players in a Petri
game G is a finite sub-process σ = (G σ, λσ) of the unfolding βU = (G U , λ) of
the underlying game G for which the following three conditions must hold:

(S1) if p ∈Pσ
S then σ is deterministic at place p

(S2) if p ∈Pσ
E then ∀t ∈ T U . (p ∈ •t∧∀p′ ∈ •t. p′ ∈PE) =⇒ (p, t) ∈ F σ

(S3) ∀t ∈ T U . t /∈ T σ =⇒ ∃p ∈ •t ∩Pσ
S .∀t′ ∈ p•. λ(t′) = λ(t) =⇒ t′ /∈ T σ

A strategy σ is called deterministic at a place p when for all reachable
markings Mσ in the underlying net N σ of the strategy the following holds:
p ∈ Mσ =⇒ ∃≤1t ∈ T σ. p ∈ •t ⊆ Mσ, i.e. it is at most one transition
enabled from the place for all reachable markings. The second condition (S2)
ensures that the strategy does not impose restrictions on transitions which
require only environment players to fire.

The third requirement (S3) ensures that an unfolded system place forbids
all transitions which are based on the same transition in the original game
if it forbids at least one of these transitions. This defines that the system
does not get additional options from the unfolding of environment places
and their transitions. In fact, it bases its decision solely on the history of the
unfolded system place. Notice that during the collection of history the system
recognizes the difference between equally labeled transitions if their preset
and postset differ. The history therefore contains transitions and not labels
of transitions. The decision to fire a transition is made before the system
knows about the availability of tokens in the other places in the preset of the
transition.

18

2 BACKGROUND 2.2 Petri Games

As already mentioned, the unfolding is infinite when it unwraps a loop
because of the additional history for each iteration through the loop. Nev-
ertheless, the strategy is required to be finite in the number of places by
definition. This implies that the strategy can contain loops in order to deal
with loops in the underlying Petri game. Notice that a loop can only be
unwrapped finitely often resulting in different decisions by the system but
there must exist a finite point from which on the system always repeats one
certain decision.

The winner of a Petri game G and its strategy σ = (G σ, λσ) is determined
by checking whether there exists a possible sequence of transitions in the
strategy which reaches a bad marking. In this case, the environment wins,
otherwise the system wins. The global environment player does not benefit
from stopping movement if it has not reached a bad marking. Due to this
safety condition, the assumption is made that the environment does not stall
the game but always picks a transition. This licenses the enumeration of
all of its choices in order to check whether a strategy is winning for a Petri
game.

The system has to be forced to engage in transitions because otherwise it
would win every game, in which the environment cannot reach a bad marking
locally, by not moving at all. For the remainder of this thesis, strategies are
stipulated to be deadlock-avoiding. For all reachable markings M in the
strategy, this requires: ∃ t1 ∈ T U . •t1 ⊆ M =⇒ ∃ t2 ∈ T σ. •t2 ⊆ M .
Notice that it is not necessary that these transitions have the same name.
This formulation only states that if there exists an enabled transition in the
underlying unfolding of the strategy then there must also exist an enabled
transition in the strategy. It can be necessary to unfold the finite strategy
to map a reachable marking in the strategy to the corresponding marking in
the infinite unfolding.

When no transition is enabled in the strategy the game has terminated
and the winner of the game is determined depending on whether a bad mark-
ing is reached. A deadlock-avoiding strategy fulfilling (S1), (S2), and (S3)
which never reaches bad marking is called a winning strategy.

2.2.4 Example of a Petri Game

In Fig. 2, an example Petri game is depicted. It is an extension of the
example Petri net from Fig. 1. We add a second car to the previous scenario
of a three-way junction. With Petri games, we can model whether or not the
behavior of the cars is uncontrollable for the system. The first car from the
previous example assumingly belongs to the environment. According to the
convention introduced above, its places are depicted in white. The places of

19

2.2 Petri Games 2 BACKGROUND

apprCar1

car1L car1R

waitingCar2

apprCar2

car2L car2R

left1 right1

left2 right2

Figure 2: An extended model of the junction from Fig. 1 is displayed. A
second car is added which has to react to the decision of the first car at
the junction. The intended behavior of the second car is to follow the first
car. This is ensured by defining {car1L, car2R} and {car1R, car2L} as bad
markings.

the second car are depicted gray to indicate that we want to assume that
they belong to the system. In our scenario, we model that the second car
is a police car which is monitoring the junction. It spots which decision the
approaching first car makes at the junction via the synchronous transitions
left1 or right1. The police car then decides to follow the first car because
the police suspects the car to be driven by a bank robber. The Petri game
models how the police car can react at the junction using the information
about the first car gathered through synchronous transitions.

The police car can choose between the transitions left2 and right2 at the
junction which are local transitions since the first car has left the junction
already. Depending on the decision of the first car either the place car1L or
car1R is reached and depending on the second car either car2L or car2R is
reached. Since the goal of the police car is to follow the suspected robber’s
car, we define the markings {car1L, car2R} and {car1R, car2L} as bad mark-
ings. They characterize that the second car went into the opposite direction
of the first car.

The depicted Petri game uses the identity function as labeling function
and thereby makes it visible which car went left or right based on the number
following. Another possible labeling would be that left1 and left2 are labeled
by left and right1 and right2 by right to emphasize that the order of the
cars passing the junction is not important (but nevertheless predetermined
by the structure this simple game).

Later on, we extend this real life example of the situation where the
system tries to mimic the environment. A winning strategy of the system is

20

2 BACKGROUND 2.2 Petri Games

apprCar1

car1L car1R

waitingCar2

apprCar2

car2L car2R

apprCar2′

car2L′ car2R′

left1 right1

left2 right2left2′ right2′

Figure 3: The unfolding of the Petri game from Fig. 2 is depicted. All places
and transitions with an apostrophe appended represent a copy of the re-
spective place or transition without it. The unfolding is caused by the two
different transitions left1 and right1 leading to the place apprCar2. This
place and the sub-game following it are copied exactly once. The unfolding
adds {car1L, car2R′} and {car1R, car2L′} to the already existing bad mark-
ings {car1L, car2R} and {car1R, car2L}.

achieved by following the behavior of the environment. In order to find the
winning strategy formally, we first need to unfold the game. This is achieved
by copying all places with joins of incoming transitions. The only place
where this condition holds is apprCar2. The unfolding explicitly depicts
whether the token in this place saw the robber’s car go left or go right. The
following sub-Petri game is copied together with the place in order to give
the system player the chance to react differently to the two possible histories.
The unfolding is depicted in Fig. 3.

The winning strategy corresponding to the unfolding from Fig. 3 is de-
picted in Fig. 4. The intuitive idea that the system should always mimic the
behavior of the environment is stated formally here. At the place apprCar2′,
the system has witnessed that the environment has fired the transition left1.
Therefore, it reacts by firing transition left2′ (i.e. transition right2′ is de-
activated). Analogously, at place apprCar2 the system has seen that the
environment has fired transition right1; therefore, it fires transition right2.
The places and transitions which became unreachable because of the deacti-
vation of right2′ and left2 are also removed.

From the strategy (cf. Fig. 4), it is easy to see that all bad markings are
avoided since the only reachable markings where both cars made a decision
are {car1L, car2L′} and {car1R, car2R} representing that both cars went into
the same direction. Therefore, the given strategy avoids all bad markings and
thus is winning for the system.

21

2.3 Bisimulation between Petri Nets 2 BACKGROUND

apprCar1

car1L car1R

waitingCar2

apprCar2

car2R

apprCar2′

car2L′

left1 right1

right2left2′

Figure 4: A winning strategy based on the unfolding from Fig. 3 of the Petri
game from Fig. 2 is depicted. The system decides for the transitions left2′

and right2 at the unfolded places apprCar2′ and apprCar2, respectively.

2.3 Bisimulation between Petri Nets

A bisimulation between Petri nets relates markings of the nets such that
transitions with the same label are enabled and their firing reaches markings
which are again related. For each included pair of markings, this concept
creates a simulation of the labels of transitions in both directions, i.e. for
every enabled transition with a label in the first net there exists an enabled
transition with the same label in the second net such that another pair of
markings in the bisimulation is reached. The converse direction holds as well
making it a bisimulation.

The existence of such a bisimulation between two nets with their initial
markings related implies that every sequence of fired transition in the first
net can occur in the second net and vice versa. Furthermore, the option
of alternative labels is the same in both nets for every point of decision.
This sets up an equivalence notion on Petri nets realized by the bisimilarity
relation. Bisimilarity relates two Petri nets as bisimilar iff there exists a
bisimulation including the pair of initial markings. Bisimilarity constitutes
the equivalence relation on Petri nets we extend in the next section to be
applicable for Petri games.

2.3.1 Definition of Bisimulation between Petri Nets

The standard definitions of bisimulation and bisimilarity [10] are given. We
alter the original definition slightly to fit our notation for Petri nets.

Definition 2.3.1. (bisimulation between Petri Nets)

Given two Petri nets N 1 and N 2, a binary relation R ⊆ 2P1 × 2P2
is a

bisimulation if for all (M1,M2) ∈ R:

22

2 BACKGROUND 2.3 Bisimulation between Petri Nets

1. ∀ t1 ∈ T 1,M ′
1 ⊆P1.M1

t1−→N 1 M ′
1 =⇒ ∃ t2 ∈ T 2,M ′

2 ⊆P2.

M2
t2−→N 2 M ′

2 ∧ L 1(t1) = L 2(t2) ∧ (M ′
1,M

′
2) ∈ R,

2. ∀ t2 ∈ T 2,M ′
2 ⊆P2.M2

t2−→N 2 M ′
2 =⇒ ∃ t1 ∈ T 1,M ′

1 ⊆P1.

M1
t1−→N 1 M ′

1 ∧ L 1(t1) = L 2(t2) ∧ (M ′
1,M

′
2) ∈ R.

Definition 2.3.2. (Bisimilarity of Petri Nets)

Two Petri nets N 1 and N 2 are bisimilar if there exists a bisimulation R
relating their initial markings (i.e. (In1, In2) ∈ R).

For each marking, the bisimulation relates the markings which follow after
firing transitions with the same label (L (t1) = L (t2)). The bisimilarity
condition enforces that the initial marking is included in R. This implies
that two bisimilar Petri nets have a relation between their reachable markings
and two related markings can fire transitions with the same label which again
result in related markings.

approachingCar

carLeft carRight

left right

goneCarL goneCarR

straight straight

(a)

approachingCar

passedCar

left right

goneCar

straight

(b)

Figure 5: Two bisimilar Petri nets are depicted. Each marking in the bisim-
ulation consists of exactly one place. In the second and third row of places,
the place in the right net is in relation with the places in the left net, re-
spectively. This implies that in total the bisimulation between the two nets
consists of 5 elements.

2.3.2 Example of Bisimilar Petri Nets

Let us consider Fig. 5 as an example. The Petri net in subpanel (a) is an
extension to the previous example Petri net (cf. Fig. 1). After the car has
crossed the junction it goes straight until it is out of sight. The second
Petri net in subpanel (b) is a different model of the same situation of a car

23

2.3 Bisimulation between Petri Nets 2 BACKGROUND

approaching a junction where it can go either left or right and after the
junction the car can go only straight. The difference in the modeling occurs
after the car made its decision in which direction to drive. In the second net,
the very same place is reached from which the transition straight emits. This
is in contrast to the first Petri nets where the transitions left and right lead
to two different places each having an outgoing transition straight.

Notice that we use a labeling function different to the identity function in
the left Petri net. The transitions emerging from carLeft and carRight (e.g.
named straightL and straightR) are labeled with straight. For the remaining
transitions, the labels are identical to the transitions names, respectively.

We claim that the two Petri nets in Fig. 5a and in Fig. 5b are bisimilar.
To prove this we first give the relation R between markings from the first and
the second Petri net and then argue why the conditions from Definition 2.3.1
are fulfilled. Our proposed relation looks as follows:

R = { ({approachingCar}, {approachingCar}), ({carLeft}, {passedCar}),
({carRight}, {passedCar}), ({goneCarL}, {goneCar}),
({goneCarR}, {goneCar}) }

The relation R includes as first pair the initial markings of the two Petri
nets. The transitions left and right are enabled, respectively. The transi-
tion left leads to the pair ({carLeft}, {passedCar}), contained in R, and the
transition right to the pair ({carRight}, {passedCar}), also contained in R.
Therefore, the pair relating the initial markings of the two Petri nets fulfills
the bisimulation condition as no other transitions are enabled. For the pair
({carLeft}, {passedCar}) only the transitions straightL in the left net and
straight in the right net are enabled. The transitions have the same label
straight and lead to the pair ({goneCarL}, {goneCar}), contained in R. For
({carRight}, {passedCar}) the same holds analogously with straightR instead
of straightL in the left net resulting in the pair ({goneCarR}, {goneCar}).
For the last two mentioned pairs, no transitions are enabled in either net.
Therefore, the bisimulation condition is fulfilled for all elements of R. The
existence of R proves that the two Petri nets are in fact bisimilar.

2.3.3 Properties

From this example we can derive one important fact about bisimilar Petri
nets: the bisimulation only checks that there exists a bisimilar relation of
the markings based on their enabled transitions. However, it does not check
whether the places are related. In fact, the names of the places do not matter
for the bisimulation but only for the identification of places in the marking.

24

2 BACKGROUND 2.3 Bisimulation between Petri Nets

In the given example from Fig. 5, a token in the place goneCarL in the first
Petri net clearly incorporates more information than the place goneCar in
the second. As both places have no transitions, the bisimulation can relate
the two places as they represent a marking in the respective net. Thus, only
the labels of transitions are of importance for the modeling via Petri nets or
Petri games in the remainder of this thesis.

The example also shows why we introduced labels for Petri nets and Petri
games in the first place. It is possible to have two transitions in the first net
which can be related to a single transition in the second net with the same
label straight, respectively. Without the extension of labels the two nets
could not be bisimilar solely because of the different number of transitions.

25

3 EQUIVALENCE

3 Equivalence

This section constitutes the first major achievement of this thesis. We define
bisimilarity of Petri games. It relies on an underlying bisimulation which is
a strengthening of the standard bisimulation between Petri nets from Sec-
tion 2.3.

In Section 3.1, we explain the goal of strategy translation. In turn, we
show why the bisimulation between Petri nets cannot be carried over to Petri
games. We thereby identify specific properties of Petri games not covered
by the standard bisimulation. Conversely, we develop a strengthening of
the bisimulation to incorporate these properties. Then, we show that this
strengthening does not suffice to deal with another property of Petri games
which can be handled by a further strengthening. This approach is repeated
until the bisimulation covers all properties of Petri games.

3.1 Goals of the Equivalence

The goal of an equivalence notion on Petri games is to replace equivalent
Petri games with each other licensing to translate existing winning strategies
between equivalent Petri games. We thereby can replace a hard-to-solve Petri
game by an easier-to-solve equivalent one and tackle the easier game instead
of the hard one.

A Petri game can be easier-to-solve if there exist fewer system places as
there are fewer points where the system has to make a decision. Furthermore,
the unfolding becomes smaller for each place less as fewer places can accu-
mulate history. The game can become easier by having fewer transitions the
system has to choose from. The same holds analogously for the environment
as the number of choices is reduced to which the system has to react.

An even larger decrease in complexity can be expected if the equiva-
lence relation is able to reduce the number of local players, i.e. the number
of tokens. For a system token, this implies the removal of an unnecessary
distributed component, whereas for an environment token, the number of
sources of non-determinism is reduced. The solver for Petri games Adam [6]
is only applicable to Petri games with exactly one environment player, i.e.
one source of non-determinism. Therefore, the definition of an equivalence
relation can lead to an increase of the range of solvable Petri games by Adam
if the equivalence can reduce the number of environment tokens.

Unfoldings of Petri games can become infinite. Equivalence on finite
structures is easier to define and test than equivalence on infinite structures.
We set the goal to define our equivalence on Petri games instead of their
unfolding.

26

3 EQUIVALENCE 3.2 Relating System Places

I

L R

left right

(a)

I

L R

left right

(b)

Figure 6: Two example Petri games G a (cf. subpanel (a)) and G b (cf. sub-
panel (b)) are displayed. Both games are based on the same underlying Petri
net. The sets of bad markings Ba and Bb only contain the marking {R},
respectively.

3.2 Relating System Places

We consider Fig. 6 as a first example. It displays two Petri games G a and G b

which are based on the same underlying Petri net. The net contains the
place I in which one token resides. Two transitions left and right lead from I
to the places L and R, respectively. The marking {R} is defined as the
only bad marking in both games. {I}, {L}, and {R} are the reachable
markings, respectively. Since the underlying Petri nets are identical they are
also bisimilar with the bisimulation consisting of the three pairs ({I}, {I}),
({L}, {L}), and ({R}, {R}).

The difference between the two games is the type of the places. All
places in Petri game G a belong to the system, whereas all places in Petri
game G b belong to the environment. This implies that in G a the system
can decide whether to fire transition left or transition right and thus avoid
the bad marking {R} by firing left. In G b, it remains uncontrollable for the
system which transition is fired, i.e. the system cannot avoid that the bad
marking {R} is reached. Therefore, G a is won by the system, whereas G b is
won by the environment.

This shows that we have to extend the bisimulation between Petri nets
in order to deal with the extended expressiveness of Petri games due to the
distinction between system and environment places.

3.3 Relating Bad Markings

We consider again Fig. 6a. If the only bad marking is {R} then the game G a is
won by the system as we have seen before. If we add the bad marking {L} (i.e.
{L} and {R} are in the set of bad markings) we obtain the Petri game G LR

which is won by the environment. The single system player is forced to

27

3.4 Deadlock-Avoiding Choices 3 EQUIVALENCE

make a decision between left and right although both choices lead to a bad
marking. Firing no transition implies that the corresponding strategy is not
deadlock-avoiding and thus not winning.

Since the bisimulation between Petri nets does not incorporate bad mark-
ings the game G LR with {L} and {R} as bad markings is bisimilar to the
game G a. However, the difference in the bad markings provides the only
possibility to differentiate the two games as in both games, all places belong
to the system. Thus, it does not suffice to relate markings based on having
system places in the preset of enabled transitions. In fact, the firing of tran-
sitions has to lead to a bad marking either in both games or in none of the
two games.

3.4 Deadlock-Avoiding Choices

The example from Fig. 6 illustrates the importance of knowing which places
belong to the system and which belong to the environment. System places
are controllable for the strategy, whereas environment places remain uncon-
trollable for the strategy.

A local system player can decide not to fire any transitions when an
alternative transition is enabled in the current marking. This alternative
transition has other local players in its preset which activate it. The local
players in the preset of this alternative transition can be in system places, in
environment places, or in a mixture of both. If a local system player decides
not to fire any transition despite its transitions being the only ones enabled
in the reachable marking of the underlying unfolding then the corresponding
strategy is not deadlock-avoiding. Winning strategies are required to be
deadlock-avoiding to prevent trivial solutions of not firing any transitions. In
most cases, not firing any transitions by the system prevents the reaching of
bad markings unless the initial marking is a bad marking or the environment
can reach a bad marking only with local transitions.

Bisimulation ensures that two related markings have transitions enabled
with the same label to simulate each other. Therefore, a label of a transition
either has an alternative or has no alternative in both related markings.
The possibility for places in markings to be deadlock-avoiding is already
realized by the standard bisimulation between Petri nets. Therefore, the
requirement of deadlock-avoiding strategies in Petri games does not require
a strengthening of the bisimulation.

28

3 EQUIVALENCE 3.5 Strengthening towards System Decisions

3.5 Strengthening towards System Decisions

We formally realize the afore motivated strengthening in the following way:
Firstly, the definition of bisimulation is lifted to Petri games. Secondly,
the equivalence has to check that every enabled transition from a reachable
marking in the one game has an enabled transition in the other game with
the same label such that both transitions either have a system place in their
respective presets or both do not (motivated in Section 3.2). Thirdly, it has
to be ensured that related markings are either both bad markings or both are
not (motivated in Section 3.3). Extensions to the definitions of bisimulation
and bisimilarity for Petri nets (cf. Section 2.3.1) are printed bold.

Definition 3.5.1. (bisimulation between Petri Games)

Given two Petri games GGG 1 and GGG 2, a binary relation R ⊆ { (M1,M2) |
M1 ⊆PPP1∧M2 ⊆PPP2∧ (M1 ∈BBB1 ⇐⇒ M2 ∈BBB2) } is a bisimulation
if for all (M1,M2) ∈ R:

(1) ∀ t1 ∈ T 1,M ′
1 ⊆P1.M1

t1−→N 1 M ′
1 =⇒ ∃ t2 ∈ T 2,M ′

2 ⊆P2.

M2
t2−→N 2 M ′

2 ∧ (∃ p1 ∈PPP1
S. p

1 ∈ •t1 ⇐⇒ ∃ p2 ∈PPP2
S. p

2 ∈ •t2) ∧
L 1(t1) = L 2(t2) ∧ (M ′

1,M
′
2) ∈ R,

(2) ∀ t2 ∈ T 2,M ′
2 ⊆P2.M2

t2−→N 2 M ′
2 =⇒ ∃ t1 ∈ T 1,M ′

1 ⊆P1.

M1
t1−→N 1 M ′

1 ∧ (∃ p1 ∈PPP1
S. p

1 ∈ •t1 ⇐⇒ ∃ p2 ∈PPP2
S. p

2 ∈ •t2) ∧
L 1(t1) = L 2(t2) ∧ (M ′

1,M
′
2) ∈ R.

Definition 3.5.2. (Bisimilarity of Petri Games)

Two Petri games GGG 1 and GGG 2 are bisimilar if there exists a bisimulation R
according to Definition 3.5.1 relating their initial markings.

As a consequence, the Petri games G a and G b from Fig. 6 with bad
marking {R}, respectively, are not bisimilar following Definition 3.5.2. For
the transition left in G a with the system place I in its preset, it is impossible
to find a corresponding system place in the preset of left in G b as there are
no system places in G b.

Accordingly, the Petri game G LR with bad markings {L} and {R} and
the Petri game G a with bad marking {R} are not bisimilar. In both games,
all places belong to the system but after firing the transition left, the mark-
ing {L} is reached which is only a bad marking in G LR.

29

3.6 History of the System 3 EQUIVALENCE

3.6 History of the System

We show why the first strengthening made by Definition 3.5.1 does not yet
fulfill all requirements for an equivalence notion on Petri games (cf. Sec-
tion 3.1). In the following, we give a counterexample where the first strength-
ening relates two Petri games as bisimilar despite them having different win-
ners. After that, we analyze what caused this disagreement and develop a
further strengthening referring to the history of the system to fix it.

3.6.1 Example of Different Histories at System Places

We extend our running example by adding a second police car controlled by
the system. Both police cars have to follow a car driven by a bank robber
(controlled by the environment) at a three-way junction in order to win the
game. The two police cars can monitor the junction until the robber crosses
it. Depending on their observation, they can decide whether to go left or
right. Alternatively, the police cars can decide to go left or right without
monitoring the third car controlled by the environment. The corresponding
Petri game is depicted in Fig. 7.

The police cars can fire the synchronous version of transitions testL or
testR together and the remaining transitions independently of each other.
There are three versions of the transitions testL and testR, respectively, in
order to give the police cars the possibility to independently monitor the
junction (two transitions) or to monitor the junction together (one transi-
tion). This implies that either both police cars, only one of them, or no police
car at all monitors the junction. The later case occurs if testL and testR are
never fired.

Notice that we utilize a labeling function L in order to have three indis-
tinguishable transitions with different pre- and postsets. For testL, the game
contains three transitions testL1, testL2, and testL3 which are all labeled by
testL. The same holds analogously for testR. All further transitions of the
game are assumed to be labeled with their transition names.

After firing testL or testR for the first time, the environment reaches
the place tooLateL or tooLateR which indicates that the bank robber has
already crossed the junction. We thereby enforce that the two police cars
cannot recognize the robber independently of each other. We define every
marking where two cars went into different directions to be in the set of bad
markings. We deploy the distinction between tooLateL and tooLateR to store
the decision of the environment after one or both police cars monitored the
junction. Moreover, bad markings are defined for car1L and car1R for the
case that no police car monitored the intersection.

30

3 EQUIVALENCE 3.6 History of the System

apprCar1

car1L car1R

waitingCar2 waitingCar3

car2L car2R car3L car3R

left1 right1

left2 right2 left3 right3

tooLateL tooLateR

testL testR

Figure 7: A new version of the running example is depicted where we added
a third car controlled by the system. Bad behavior is characterized by those
cases when not all three cars make the same decision (i.e. every marking
containing a pair of places car(i)L and car(j)R with i, j ∈ {1, 2, 3}, i 6= j,
a pair tooLateL with car2R or car3R, respectively, or a pair tooLateR with
car2L or car3L, respectively, is defined as bad marking).

The game is won by the system by initially deactivating the transitions
left(i), right(i), i ∈ {2, 3}, and allowing the transitions testLeft and testRight
where both system players are included in the preset (i.e. the middle ones
of the pair of the three transitions labeled by testL and testR in Fig. 7
are activated and the other two are deactivated, respectively). Both police
cars actively monitor the junction which leads to the system re-reaching
the places waitingCar2 and waitingCar3. These places are copied in the
unfolding, respectively, i.e. the system gathers information about the choice
of the environment. Thus, the system can react by left2 and left3 if the
environment fired left1 and with right2 and right3 if the environment fired
right1. All three cars drive into the same direction which implies that the
system wins by avoiding all bad markings.

In Fig. 8, a closely related Petri game to the one in Fig. 7 is displayed.
The difference consists of removing two transitions, namely those labeled by
testLeft and testRight where both system players are in the respective preset.
This subtle change removes the possibility for both police cars to monitor
the junction together. A lack of parking space in sufficiently close proximity
to the junction might cause this.

The change implies for both system players that it is not possible anymore

31

3.6 History of the System 3 EQUIVALENCE

apprCar1

car1L car1R

waitingCar2 waitingCar3

car2L car2R car3L car3R

left1 right1

left2 right2 left3 right3

tooLateL tooLateR

testL testR

Figure 8: An altered version of the Petri game from Fig. 7 is depicted.
We removed the transitions which enabled both system players to obtain
information about the single environment player. This change is crucial
when determining the winner of the game. The set of bad markings remains
unchanged.

to gather information about the behavior of the environment. Without this
information, it is impossible for them to make an informed decision as the two
police cars cannot exchange information independent of the environment. At
least one of the police cars has to choose either left(i) or right(i), i ∈ {2, 3}, in
an uninformed manner. Both police officers have to make a decision because
otherwise the corresponding strategy is not deadlock-avoiding. The system
cannot ensure that both police cars follow the robber implying that the Petri
game is won by the environment since the reaching of a bad marking cannot
be prevented in general.

3.6.2 Bisimilarity Proof

We claim that the Petri games from Fig. 7 and Fig. 8 are bisimilar according
to Definition 3.5.2. The sets of reachable markings in the two games coincide.
For each reachable marking M , the bisimulation R includes the pair (M,M).
The entire list of all 45 reachable markings for both games is enumerated in
Appendix A. There are five positions where the environment token can reside.
Transitions license nine ways how the two system tokens can be distributed
over their places. Every combination of the position of the environment and
of the system is enumerated in Appendix A.

To prove that this relation is indeed a bisimulation it suffices to look at

32

3 EQUIVALENCE 3.6 History of the System

the markings from which the transitions testL and testR are enabled since
the lack of such transitions with two system places in the preset indicates
the only difference between Fig. 7 and Fig. 8. The respective markings are:

{car1L,waitingCar2,waitingCar3}, {car1R,waitingCar2,waitingCar3},
{car1L, car2L,waitingCar3}, {car1R, car2L,waitingCar3},
{car1L, car2R,waitingCar3}, {car1R, car2R,waitingCar3},
{car1L,waitingCar2, car3L}, {car1R,waitingCar2, car3L},
{car1L,waitingCar2, car3R}, and {car1R,waitingCar2, car3R}.

For all but the first two markings, one of the two system players has
already made a decision between left and right and thus the additional tran-
sitions of the Petri game from Fig. 7 are not enabled. Obviously, these
markings have identical behavior in both games. Notice that the transition
testL and testR can only be fired once because the environment reaches the
places tooLateL and tooLateR after the first firing, respectively.

We check the remaining two markings {car1L,waitingCar2,waitingCar3}
and {car1R,waitingCar2,waitingCar3}. Actually, it suffices to consider one
of the markings since the treatment of the other one works analogously
by exchanging L and R in names of places and labels of transitions, re-
spectively. Without loss of generality, let us investigate the first marking
{car1L,waitingCar2,waitingCar3}. The questionable situation occurs if we
fire the transition testL in Fig. 7 where both system players participate. The
two system players return to the same place, whereas the environment player
reaches the place tooLateL. This implies that this particular situation cannot
be distinguished from the firing of testL in the second game where only one
system player participates. The environment player also reaches tooLateL,
the participating system player re-reaches waitingCar(i), i ∈ {2, 3}, and the
non-participating system player remains in waitingCar(j), j ∈ {2, 3}, i 6= j.
One of those two transitions in Fig. 8 simulates the questionable transition
in Fig. 7 as the resulting markings are identical.

Thus, we have shown that the two Petri games are bisimilar based on the
bisimulation from Definition 3.5.1 despite the fact that the Petri game from
Fig. 7 is won by the system whereas the Petri game from Fig. 8 is won by
the environment. The crucial point is that bisimulation does not recognize
differences in the history which a token in a place can utilize in order to make
a decision. To overcome this problem we propose a space-efficient way for
storing which tokens in two related markings of a bisimulation have witnessed
the firing of transitions with the same labels, respectively.

33

3.6 History of the System 3 EQUIVALENCE

3.6.3 History Markings

We define history markings by extending markings to group places together
such that tokens (i.e. local players) in the places have fired the same tran-
sitions and visited the same places. We identify a token in a place by the
name of the place in the same way as we do for markings.

Definition 3.6.1. (History Markings)

The function H returns the set of vectors denoting all possible history mark-
ings for a marking M of a Petri game G and is defined as follows: H(M) =
{ 〈 s1, . . . , sn 〉 | ∀ 1 ≤ i ≤ n. si ⊆ M ∧ s1 ·∪ . . . ·∪ sn = M }, where n denotes
the number of different histories in each history marking and ·∪ represents
the disjoint union enforcing that each place of the marking M occurs exactly
once in every corresponding history marking.

Each history marking is defined as a vector containing sets of places. We
need the order of the vector in Section 3.7 when relating history markings
in pairs of our bisimulation. The definition of history markings ensures that
every place of the underlying marking occurs in exactly one set of the vector.
A history marking thereby realizes a refinement of the underlying marking
by distributing places among sets. Each set of the vector describes a unique
history which identifies the history of tokens in all places in the set. The
underlying marking of a history marking can be restored by union over the
elements of the vector.

We introduce the following notation: History markings are represented
by H as markings are represented by M . Each history marking H is based on
a marking M . For a given history marking H, H i, Hi, H

′ etc., we define that
the underlying marking is given by the same suffix (e.g. M5 is the underlying
marking of the history marking H5).

We say a transition t is enabled from a history marking H leading to
another history marking H ′ if t is enabled from the underlying marking M
of H and the firing results in the marking M ′ which is the underlying marking

of a history marking H ′. We introduce the notation H
t−→ H ′.

Let us consider Fig. 7 to exemplify the usage of history markings. Assume
the marking M = {tooLateL,waitingCar2,waitingCar3} is reached by firing
left1 followed by a transition labeled by testL. From the marking, it remains
unclear which of the three transitions labeled by testL was actually fired and
how informed the two system players are. From the structure of the game,
we can only derive that at least one system player is informed about the
decision of the environment.

34

3 EQUIVALENCE 3.7 Strengthening towards System History

The following five history markings of length n ≤ 2 are allowed by the
structure of the game for the marking M :

〈 {tooLateL,waitingCar2,waitingCar3} 〉, (1)

〈 {tooLateL,waitingCar2}, {waitingCar3} 〉, (2)

〈 {waitingCar3}, {tooLateL,waitingCar2} 〉, (3)

〈 {tooLateL,waitingCar3}, {waitingCar2} 〉, and (4)

〈 {waitingCar2}, {tooLateL,waitingCar3} 〉. (5)

The first history marking (1) describes that all three tokens are equally
informed. This can only be achieved when the transition testL was fired where
both system players participated. The next two history markings (2) and (3)
describe that only tooLateL and waitingCar2 are equally informed, whereas
waitingCar3 is informed differently. Only the first police officer participated
in the synchronous transition testL. The last two history markings (4) and
(5) work analogously assuming the second police officer becomes informed
while the first officer remains uninformed. Based on each history marking,
it is clear which transition was fired, i.e. the preset and the postset of the
transition labeled by testL can be derived.

The difference between the games in Fig. 7 and in Fig. 8 becomes obvious
by spelling out the history markings of length n ≤ 2 based on the marking
M for the second game. (1) is only a valid history marking for the first game
but not for the second one. (2) to (5) represent all history markings of length
n ≤ 2 for the marking M in Fig. 8. An increased length only licenses the
adding of empty sets for the history markings of both games.

3.7 Strengthening towards System History

We further strengthen the bisimulation between Petri games by forcing it to
relate history markings (instead of markings). When checking for the en-
abledness of transitions the bisimulation requires that the system places in
the preset of the transition come from sets from the same position in the
related history markings. The bisimulation ensures inductively that being
at the same position implies that tokens in the places from two sets of the
same position incorporate bisimilar history, i.e. their knowledge of labels of
fired transitions can be viewed as equivalent. Bisimilar history is introduced
formally in Section 5.3 because the intuitive explanation suffices until then.
This enables us to check whether the system places which are in the precon-
dition of a transition are informed enough to simulate each others decision.
Extensions to the previous strengthening (cf. Section 3.5) are printed bold.
The formal specification looks as follows:

35

3.7 Strengthening towards System History 3 EQUIVALENCE

Definition 3.7.1. (bisimulation between Petri Games)

Given two Petri games G 1 and G 2, a binary relation R ⊆ { (H1,H2) |M1 ⊆
P1 ∧M2 ⊆ P2 ∧ (M1 ∈ B1 ⇐⇒ M2 ∈ B2)∧H1 ∈ H(M1) ∧ H2 ∈
H(M2) } is a bisimulation if for all (H1, H2) ∈ R:

(1) ∀ t1 ∈ T 1, H ′1 ∈ H(M ′
1).M1

t1−→N 1 M ′
1 =⇒ ∃ t2 ∈ T 2, H ′2 ∈ H(M ′

2).

M2
t2−→N 2 M ′

2 ∧ L 1(t1) = L 2(t2)∧ repeat-constraint ∧ (H ′1, H
′
2) ∈ R,

(2) ∀ t2 ∈ T 2, H ′2 ∈ H(M ′
2).M2

t2−→N 2 M ′
2 =⇒ ∃ t1 ∈ T 1, H ′1 ∈ H(M ′

1).

M1
t1−→N 1 M ′

1 ∧ L 1(t1) = L 2(t2)∧ repeat-constraint ∧ (H ′1, H
′
2) ∈ R.

where repeat-constraint is respectively defined as the conjunction of:

(a) ∀ s1i ∈ H1. ∀ s2i ∈ H2. (∃ p1 ∈ PPP1
S. p

1 ∈ pre1(t1) ∧ p1 ∈ s1i ⇐⇒
∃ p2 ∈PPP2

S. p
2 ∈ pre2(t2) ∧ p2 ∈ s2i),

(b) H ′1 = 〈 post1(t1), s11\pre1(t1), s
1
2\pre1(t1), . . . , s

1
n\pre1(t1) 〉,

(c) H ′2 = 〈 post2(t2), s21\pre2(t2), s
2
2\pre2(t2), . . . , s

2
n\pre2(t2) 〉.

The usage of the history markings is defined precisely in repeat-constraint :
(a) defines how it is ensured that system places in the preset of enabled
transitions with the same label have bisimilar history in both games. For such
a pair of transitions t1 and t2, an iteration over the positions i of the history
markings takes place. Note that we control that related history markings
have the same length. For each pair of sets s1i and s2i from the history
markings, it is checked that either both sets contain a system place which is
in the preset of the respective transition (t1 for s1i and t2 for s2i) or both do
not entail such a place.

The definition of repeat-constraint utilizes the ordering of the vectors
of two related history markings in the following way: Sets from the same
position of two related vectors incorporate bisimilar history meaning that
they have witnessed fired transitions with the same labels in their respective
Petri game. We prove in Section 5.4 that this notion suffices to compare Petri
games. The bisimulation checks the structure of the related games in such a
way that the exact places visited in the respective game do not matter.

(b) and (c) of repeat-constraint define how the history markings are
changed when firing a transition. These two steps build up the successor
pairs of history markings which is required to be in the bisimulation. These
steps are crucial for (a) to constitute a meaningful check. It is proven in Sec-
tion 5.3.1 that history markings inductively realize bisimilar history when
following these construction rules.

36

3 EQUIVALENCE 3.7 Strengthening towards System History

Let t be t1 for (b) and t2 for (c) as they work analogously. The idea is
to put the most recently extended history to the beginning of the history
marking. This is done by defining the set at the first position equal to the
postset of the fired transition t in the respective game. If t is a synchronous
transition then all participating places have exchanged their entire history
and thus incorporate bisimilar history (including the firing of t and the visit-
ing of the places in t•). If t is a local transition then only one place occurs in
the postset and the token in this place incorporates a unique history because
it is the only token knowing about the most recent firing of t.

Based on the preset of t, we can define the remaining part of the new
history marking. The preset of t is removed from each element of the old
history marking and then the old history marking is appended to the postset
of t. All places that do not occur in the preset remain in their respective set
of the vector. These sets are moved one position to the right because the
postset of t is added to the front. The relation between the positions of the
two history markings remains intact since the movement follows the same
pattern in both history markings.

The current description leads to an increase in the vector size whenever a
transition is fired. For convenience, we define that an empty set at the same
position in both history markings can be removed including the movement of
the following sets one position to the left. It is an arbitrary choice to add the
postset to the front as any other position would work as well, as long as the
choice of the position is consistent for all elements of the bisimulation. For
the remainder of this thesis, we only add to the front of history markings.

Notice that the positions of the history markings do not impose an or-
dering on how well informed certain sets of places are, e.g. we cannot infer
information whether the first set is better or worse informed than the sec-
ond set of a history marking. In fact, we can only derive that the two sets
of places are differently informed and that sets in the same position of two
related history markings are informed bisimilar.

At last, we have to extend the definition of bisimilarity to include the
initial pair of two history markings. This is simple because initially all places
incorporate an empty history of no fired transitions.

Definition 3.7.2. (Bisimilarity of Petri Games)

Two Petri games G 1 and G 2 are bisimilar if there exists a bisimulation R
according to Definition 3.7.1 with (〈In1〉, 〈In2〉) ∈ R.

According to the new definition, the Petri games from Fig. 7 and from
Fig. 8 are not bisimilar anymore. After firing the transitions left1 and then
testL with both system players participating in the first game, the history

37

3.8 History of the Environment 3 EQUIVALENCE

marking 〈 {waitingCar2,waitingCar3, tooLateL}, {} 〉 will be reached. The
same firing sequence in the second game has to include a version of testL
where only one system player participates. This implies that only the his-
tory markings 〈 {waitingCar2, tooLateL}, {waitingCar3} 〉 (the first system
player participated in testL) and 〈 {waitingCar3, tooLateL}, {waitingCar2} 〉
(the second system player participated in testL) are reachable.

For 〈 {waitingCar2, tooLateL}, {waitingCar3} 〉, the distinction is caused
by the enabled transitions left3 and right3 from waitingCar3 because the
only system player in the preset of the respective transition in the other
game is not at the same position in the only candidate history marking
〈 {waitingCar2,waitingCar3, tooLateL}, {} 〉. Analogously, the same holds for
the second history marking of the second game and the transitions left2 and
right2 from waitingCar2. The uninformed police car is recognized in both
cases.

3.8 History of the Environment

We show that the previously deployed strengthenings of the bisimulation (cf.
Definition 3.7.1) are still not sufficiently restricted to state equivalence on
Petri games. We outline an example of two Petri games which are bisimilar
according to Definition 3.7.2 but are won by different players. The Petri
games can be found in Fig. 9 and Fig. 10.

3.8.1 Example of Environment Places Hiding History

The Petri game from Fig. 9 consists of two players. One is controlled by
the environment and can be identified by its places and local transitions
having names including “1”. The second player is controlled by the system.
Its names of places and local transitions have names including “2”. The
environment can decide between left1 or right1 reaching the places car1L or
car1R, respectively. In spirit of our running example, the police (system) still
tries to follow the bank robber (environment) at a three-way junction. The
system player can fire transitions labeled by testL and testR. We utilize the
labeling function L to describe a local (to the system) and a synchronous
version, respectively. The local version models that the police monitors the
junction lazily and thus overlooks the robber’s car, whereas the synchronous
version models a thoroughly monitoring resulting in recognizing the robber.
After firing testL or testR, the system reaches the place waitingCar2′ where
it can make a decision between left2 and right2. It is defined as bad behavior
if the system and environment go into opposite directions (i.e. the markings
{car1L, car2R} and {car1R, car2L} are bad markings).

38

3 EQUIVALENCE 3.8 History of the Environment

apprCar1

waitingCar2

waitingCar2′

car2L car2R

car1L car1R

left1 right1

left2 right2

testL testR

Figure 9: A Petri game is depicted which models the behavior of the police
car controlled by the system in response to the robber’s car controlled by
the environment. The police car is forced to perform a transition testL or
testR before making its decision between left2 or right2. Depending on how
thoroughly it wants to monitor the junction, these transitions can be local or
synchronous with the places car1L and car1R representing the environment’s
decision between left1 and right1, respectively. It is defined to be bad behav-
ior when the two cars go into different directions by having {car1L, car2R}
and {car1R, car2L} as bad markings.

The Petri game from Fig. 10 lacks the synchronous versions of testL and
testR. Therefore, the system place waitingCar2′ has only two incoming tran-
sitions. Another consequence of the lack of the synchronous transitions is
that the two players are disconnected in the game and cannot exchange in-
formation. It is impossible for the system to make an informed decision and
to thereby win the game.

3.8.2 Bisimilarity Proof

We prove that the Petri games from Fig. 9 and Fig. 10 are bisimilar according
to Definition 3.7.2 to motivate the next strengthening of the bisimulation
towards including the environment of the history as well. The relation R
between the two Petri games can be found in Appendix B. It contains 24
pairs of history markings from the two games.

The set of bad markings {{car1L, car2R}, {car1R, car2L}} in both games
coincide implying that we can neglect the check whether the underlying mark-
ings of history markings are bad markings.

39

3.8 History of the Environment 3 EQUIVALENCE

apprCar1

car1L car1R

waitingCar2

waitingCar2′

car2L car2R

left1 right1 testL testR

left2 right2

Figure 10: An altered version of the Petri game from Fig. 9 is displayed. The
synchronous version of the transitions testL and testR has been removed. The
bad markings {car1L, car2R} and {car1R, car2L} remain the same.

In the following, we focus on those pairs which represent how the syn-
chronous versions of transitions testL and testR in the first game can be
simulated by the local transitions in the second game. The synchronous
transitions are enabled if the environment is the first player to make a de-
cision. (〈 {car1L}, {waitingCar2} 〉, 〈 {car1L}, {waitingCar2} 〉) (cf. pair (2))
and (〈 {car1R}, {waitingCar2} 〉, 〈 {car1R}, {waitingCar2} 〉) (cf. pair (3)) are
the corresponding history markings.

The firing of the synchronous transition testL from (2) results in the
pair 〈 {waitingCar2′, car1L}, {} 〉, 〈 {waitingCar2′}, {car1L} 〉) (cf. pair (5))
and the firing of the synchronous transition testR from (3) leads to the
pair 〈 {waitingCar2′, car1R}, {} 〉, 〈 {waitingCar2′}, {car1R} 〉) (cf. pair (7)).
In these pairs, the reached system place (car1L or car1R) and the reached en-
vironment place (waitingCar2′, respectively) of the left history marking are
in the same set and thus both participated in the transition. This implies
that the history marking represents that the system learned the environ-
ment’s decision. In the right history marking, only the system place is in the
first set meaning that the system did not learn the environment’s decision.
There is an empty set at the second position of the left element of the pairs
to represent that there is no place in the first game not having learned the
fired transition.

From the pairs (5) and (7) onward, only the transitions left2 and right2
representing the system’s decision are enabled. These transitions make it
impossible to distinguish between the history in the two games because only
the respective system place participates in these transitions. (5) leads to
(〈{car2L}, {car1L}, {} 〉, 〈{car2L}, {}, {car1L} 〉) (cf. pair (14) in Appendix B)
and (〈{car2R}, {car1L}, {} 〉, 〈{car2R}, {}, {car1L} 〉) (cf. pairs (16)), whereas

40

3 EQUIVALENCE 3.9 Strengthening towards Environment History

(7) leads to (〈{car2L}, {car1R}, {} 〉, 〈{car2L}, {}, {car1R} 〉) (cf. pair (18))
and (〈{car2R}, {car1R}, {} 〉, 〈{car2R}, {}, {car1R} 〉) (cf. pair (20)). It is as-
sumed that the system places have bisimilar history since they participated
in the most recent transition. In fact, the difference of the environment place
participating in the first game and thus making one transition synchronous
including the exchange of history is not recognized.

After the respective firing of left2 and right2, the position of the environ-
ment in the related history markings of pairs (14), (16), (18), and (20) differs
showing that the environment exchanged history in the first game but did
not do so in the second game. No more transitions are enabled to recognize
this difference.

All other pairs in R are caused by the remaining game being isomorphic.
The system and the environment places have the same labels and the same
behavior as long as the synchronous versions of transitions testL and testR
are not fired. The remaining pairs of Appendix B cover the isomorphic parts
of the two games. R is a bisimulation because the games are mostly isomor-
phic and the non-isomorphic part is covered by simulating the synchronous
transitions with the respective local ones.

The previous proof shows a limitation to our current definition of bisim-
ulation. The bisimulation does not recognize that the environment player
carries information which the system learns via the synchronous versions of
testL and testR. In contrast to the second game, the environment learns that
the transition testL or testR is fired in the first game. As this is the last
transition of the environment this difference cannot be used in order to dif-
ferentiate the two Petri games. We tackle this problem by requiring that the
environment places preceding a transition are in sets of history markings at
the same position implying that they have bisimilar information. It then is
no longer possible to simulate synchronous transitions between the system
and the environment by local transitions.

3.9 Strengthening towards Environment History

The afore motivated strengthening is made precise in Definition 3.9.1. A
fourth repeat-constraint is added (for symmetry reasons it is inserted at po-
sition (b)). This constraint states that the check regarding system places also
has to be performed for environment places. If there exists an environment
place in the preset of a transition which is enabled in one game (accordingly,
the place is in a set of a history marking at a certain position) then there is a
transition with identical label in the other game such that the preset of said
transition includes an environment place at the same position in the related
history marking.

41

3.9 Strengthening towards Environment History 3 EQUIVALENCE

We also add a fifth repeat-constraint at position (e) which defines formally
how empty sets are removed from history markings. If empty sets occur at
the same position in two related history markings the following sets to the
right are shifted one position to the left. Thereby, the last set gets removed
in both history markings and both empty sets get replaced by the respective
shift. Although this procedure is not a strengthening, it is required to state
formally how the intuition about removing empty sets is realized. Extensions
to the previous strengthening (cf. Section 3.7) are printed bold.

Definition 3.9.1. (bisimulation between Petri Games)

Given two Petri games G 1 and G 2, a binary relation R ⊆ { (H1, H2) | M1 ⊆
P1∧M2 ⊆P2∧ (M1 ∈ B1 ⇐⇒ M2 ∈ B2)∧H1 ∈ H(M1)∧H2 ∈ H(M2) }
is a bisimulation if for all (H1, H2) ∈ R:

(1) ∀ t1 ∈ T 1, H ′1 ∈ H(M ′
1).M1

t1−→N 1 M ′
1 =⇒ (FO)

∃ t2 ∈ T 2, H ′2 ∈ H(M ′
2).M2

t2−→N 2 M ′
2 ∧ L 1(t1) = L 2(t2) ∧

repeat-constraint ∧ (H ′1, H
′
2) ∈ R,

(2) ∀ t2 ∈ T 2, H ′2 ∈ H(M ′
2).M2

t2−→N 2 M ′
2 =⇒ (RE)

∃ t1 ∈ T 1, H ′1 ∈ H(M ′
1).M1

t1−→N 1 M ′
1 ∧ L 1(t1) = L 2(t2) ∧

repeat-constraint ∧ (H ′1, H
′
2) ∈ R.

where repeat-constraint is respectively defined as the conjunction of:

(a) ∀ s1i ∈ H1.∀ s2i ∈ H2. (∃ p1 ∈P1
S. p

1 ∈ pre1(t1) ∧ p1 ∈ s1i (SE)
⇐⇒ ∃ p2 ∈P2

S. p
2 ∈ pre2(t2) ∧ p2 ∈ s2i),

(b) ∀ s1i ∈ H1. ∀ s2i ∈ H2. (∃ p1 ∈PPP1
E. p

1 ∈ pre1(t1) ∧ p1 ∈ s1i (EE)
⇐⇒ ∃ p2 ∈PPP2

E. p
2 ∈ pre2(t2) ∧ p2 ∈ s2i),

(c) H ′1 = 〈 post1(t1), s11\pre1(t1), s12\pre1(t1), . . . , s1n\pre1(t1) 〉, (H1)

(d) H ′2 = 〈 post2(t2), s21\pre2(t2), s22\pre2(t2), . . . , s2n\pre2(t2) 〉, (H2)

(e) ∀ s1i ∈ H ′1. ∀s2i ∈ H ′2. (s
1
i = ∅ ∧ s2i = ∅) =⇒ (RD)

∀ i ≤ j < n. s1j := s1j+1 ∧ s2j := s2j+1 ∧ s1n and s2n are removed
and n is reduced by one.

Definition 3.9.2. (Bisimilarity of Petri Games)

Two Petri games G 1 and G 2 are bisimilar if there exists a bisimulation R
according to Definition 3.9.1 with (〈In1〉, 〈In2〉) ∈ R.

42

3 EQUIVALENCE 3.9 Strengthening towards Environment History

The two Petri games from Fig. 9 and from Fig. 10 are not longer bisimilar
according to Definition 3.9.2. Transitions labeled by testL can be fired in both
games immediately after firing left1. In the first game, there is a synchronous
version of testL together with the environment player. This transition cannot
be simulated in the second game because no environment player participates
in the only transition labeled by testL. Therefore, the two games are not
bisimilar anymore.

Bisimilarity covers all properties of Petri games to enable the translation
of strategies. This is proven in Section 5.4. Some applications of bisimilarity
are discussed in Section 4.

For the following, we stipulate ∼ to be the relation induced by Defini-
tion 3.9.2, i.e. G 1 ∼ G 2 defines that there exists a bisimulation R following
Definition 3.9.1 relating G 1 and G 2 such that (〈In1〉, 〈In2〉) ∈ R.

As this is the final formulation of our definition of the equivalence we
added bookmarks to parts of the equivalence to reference them easily during
our proofs in Section 5. (FO) represents the forward direction of our bisim-
ulation. (RE) does same for the return direction. (SE) and (EE) describe
the additional constraints posed for the equal relation between system and
environment places in the respective preset of a transition. (H1) and (H2) ref-
erence the additional constraints about the calculation of H ′1 and H ′2. (RD) is
about the removal of empty sets in related history markings.

43

4 APPLICATIONS

4 Applications

In the following, we discuss applications of bisimilarity. We give an example
that it is possible to reduce the number of environment tokens. Furthermore,
we report that allowing non-deterministic choices in strategies allow us to get
rid of environment tokens in even more cases. Moreover, it is illustrated by an
example how strategies between two bisimilar Petri games can be translated.

E1

S1

E

E2S2 S3

t1 t2

t3

B1

B2

b1

Figure 11: A Petri game with three system players and two environment play-
ers is depicted. The winner of the game cannot be determined using Adam
because there are two environment players. All markings containing B2 are
bad markings.

4.1 Reduction of Environment Tokens

We show that two bisimilar Petri games can have a different number of
environment tokens. This implies that the number of environment players
can be reduced increasing the range of solvable Petri games by the automated
solver Adam [6]. As already mentioned before, Adam determines the winner
of Petri games which contain only a single environment player. It is written
in Java and based on a fixed-point algorithm where the history of tokens is
represented by Binary Decision Diagrams (BDDs) [2].

In Fig. 11 and Fig. 12, two bisimilar Petri games with a different number of
environment tokens are depicted. Both games entail a system place B1 which
has to be prevented from firing its only transition b1 reaching the place B2.
Thus, every marking containing B2 is a bad marking. In the first game
depicted in Fig. 11, the system player at S1 can choose between t1 and t2.
After firing t1, the transition t3 can be fired infinitely often, whereas after
firing t2, no transition except b1 is enabled. In the second game depicted in
Fig. 12, a choice between t1 and t2 takes place, too. However, each transition

44

4 APPLICATIONS 4.1 Reduction of Environment Tokens

E1

S1

S

E2S2 S3

t1 t2

t3

B1

B2

b1

Figure 12: A Petri game with four system players and only one environment
player is displayed. Therefore, Adam can be utilized to find out that the
system wins the game. All markings containing B2 are bad markings.

has only an independent system place in its preset. After firing t1, it is again
possible to fire t3 infinitely often, whereas firing t2 leaves only b1 enabled.

The difference between the two games is that the environment place E
in the first game becomes the system place S in the second game and the
preset of t2 changes from {S1, E} in the first game to {E1, S} in the second
game.

The bisimulation between the two games looks as follows:

R = { (〈 {E,E1, S1, S2, B1} 〉, 〈 {E1, S, S1, S2, B1} 〉), (1)

(〈 {E2}, {E, S2, B1} 〉, 〈 {E2}, {S, S2, B1} 〉), (2)

(〈 {S3}, {E1, S2, B1} 〉, 〈 {S3}, {S1, S2, B1} 〉), (3)

(〈 {B2}, {E,E1, S1, S2} 〉, 〈 {B2}, {E1, S, S1, S2} 〉), (4)

(〈 {E2, S2}, {E,B1} 〉, 〈 {E2, S2}, {S,B1} 〉), (5)

(〈 {B2}, {E2}, {E, S2} 〉, 〈 {B2}, {E2}, {S, S2} 〉), (6)

(〈 {B2}, {S3}, {E1, S2} 〉, 〈 {B2}, {S3}, {S1, S2} 〉), (7)

(〈 {E2}, {B2}, {E, S2} 〉, 〈 {E2}, {B2}, {S, S2} 〉), (8)

(〈 {S3}, {B2}, {E1, S2} 〉, 〈 {S3}, {B2}, {S1, S2} 〉), (9)

(〈 {B2}, {E2, S2}, {E} 〉, 〈 {B2}, {E2, S2}, {S} 〉), (10)

(〈 {E2, S2}, {B2}, {E} 〉, 〈 {E2, S2}, {B2}, {S} 〉) } (11)

The transition t2 is the only difference between the two games. In both
games, t2 contains a system and an environment place in its preset. A to-
ken resides in all these places initially. Therefore, the tokens are uninformed
about other players. We look at all pairs of history markings where t2 is en-
abled as this is the only part where the bisimulation can possibly differentiate
the two games.

45

4.2 Non-Deterministic Strategies 4 APPLICATIONS

From the initial pair (cf. pair (1) in R), pair (3) is reached after firing t2.
To fulfill (SE), we choose system place S1 in the first game for system place S
in the second game and vice versa. We do the same for E in the first game
and E1 in the second game to fulfill (EE). (3) is formally defined by (H1)
and (H2). No empty sets occur implying that (RD) is trivially fulfilled.
Therefore, t2 fulfills the conditions of the bisimulation for pair (1). All other
enabled transitions (t1 and b1) from said pair are the same in both games
and R includes the correspondingly reached pairs (2) and (4).

The same argumentation referring to t2 holds for (4) where said transition
is enabled as well. Here, the only difference is that the disconnected transi-
tion b1 was fired first which does not effect the informedness of S1 and E in
the first game and S and E1 in the second game, respectively. The remaining
pairs are caused by the different interleavings in which t1, t3, and b1 can be
fired. Therefore, R fulfills the definition of bisimulation and the games are
bisimilar.

One can use the winning strategy for the second game derived by Adam
and the bisimulation R to derive a winning strategy for the first game. For
Adam, it is impossible to solve the first game because the solver only supports
games with a single environment player. The winning strategy for both games
is to activate t1 and t3 while deactivating t2 and b1. Firing t3 infinitely often
enables us to deactivate b1 and thereby avoid all bad markings.

4.2 Non-Deterministic Strategies

We show that bisimilarity (cf. Definition 3.9.2) allows for further reductions of
environment tokens when dropping the constraint of requiring deterministic
choices at system places in a winning strategy.

Fig. 13 displays a Petri game which has no bad markings. There ex-
ists no deterministic and deadlock-avoiding decision for the system place S.
Nevertheless, no bad behavior can occur as no such behavior is defined for
the game. The environment decides between l, m, and r (abbreviations for
left, middle, and right) and spawns another environment player such that
the system has to decide between the two transitions the environment has
not fired, respectively. These synchronous transitions have names in capital
letters. After the environment fired l, the system has to decide between M
and R. The crucial problem is that the environment can reach any place the
system has to react to in two ways. The place A, from where R becomes
enabled, can either be reached after the environment fired l or m.

After the decision of the environment, precisely two of the three places
A, B, and C hold a token. The system has to decide for exactly one out
of the two enabled transitions in order to be deterministic and deadlock-

46

4 APPLICATIONS 4.2 Non-Deterministic Strategies

E

A B C

S

l m r

R M L

Figure 13: A Petri game is displayed where the system decides between
two remaining transitions out of the three transitions l, m, and r which
the environment did not fire. No deterministic, deadlock-avoiding, winning
strategy exists even though the Petri game has no bad marking.

avoiding. Assume the system decides for transition R in reaction to the
reachable marking {A,B, S}. Then, the system also has to make a choice
for the reachable marking {B,C, S}. The only choice is L because M is
already deactivated in response to the first marking. Activating R and L is
not deterministic for the last remaining reachable marking {A,C, S}.

For transition M in response to the first marking {A,B, S}, L needs to
be chosen for the third marking {A,C, S}. This again leaves only a non-
deterministic choice for the second marking {B,C, S}. Deactivating all tran-
sitions is not deadlock-avoiding. We showed that no deterministic, deadlock-
avoiding strategy for the game from Fig. 13 exists.

In Fig. 14, a bisimilar Petri game is depicted. The game also starts with
an initial choice between the transitions l, m, and r by the environment. No
additional environment players are spawned but one of the three separate
places A, B, and C is reached. From these places, two transitions exist,
respectively. The transitions are labeled in such a way that the system player
at S can choose between the two transitions the environment has not fired
before. All synchronous transitions can be identified by capital letters. This
Petri game has no bad markings, either.

The game is won by the system because a deterministic, deadlock-avoiding
strategy exists. The system simply chooses exactly one transition for each
pair of transitions from the places A, B, and C. For instance, a winning
strategy activates R in response to place A, L in response to B, and M
in response to C while deactivating the other three transitions available as
alternatives. The system can differentiate between the transitions as they
share the labeling A, B, or C but differ in the preset, respectively.

47

4.2 Non-Deterministic Strategies 4 APPLICATIONS

E

A B C

S

l m r

RM L R L M

Figure 14: A bisimilar Petri game to the Petri game from Fig. 14 is depicted.
This Petri game has no bad marking, either.

The two games from Fig. 13 and Fig. 14 are bisimilar according to Defi-
nition 3.9.2. The corresponding bisimulation R looks as follows:

R = { (〈 {S,E} 〉, 〈 {S,E} 〉), (〈 {A,B}, {S} 〉, 〈 {A}, {S} 〉),
(〈 {A,C}, {S} 〉, 〈 {B}, {S} 〉), (〈 {B,C}, {S} 〉, 〈 {C}, {S} 〉),
(〈 {A} 〉, 〈 {} 〉), (〈 {B} 〉, 〈 {} 〉), (〈 {C} 〉, 〈 {} 〉) }

The first element relates the history markings of the two initial markings.
From thereon, the three transitions l, m, and r are enabled in both games
leading to the next three pairs. The first of these three pairs shows that
tokens in the places S, A, and B in the first game can be simulated by S
and A in the second game and vice versa. In both cases, the transitions
labeled by M and R are enabled leading to the pairs (〈 {A} 〉, 〈 {} 〉) and
(〈 {B} 〉, 〈 {} 〉) which are included in the bisimulation. For firing M and R,
the two environment tokens in the first game are as informed as the one
in the second game and the two system tokens in the two games are also
informed in a bisimilar manner. Analog argumentations hold for the next
two pairs. In both cases, an environment place from the first position of the
history markings and a system place from the second position participate,
respectively. From the last three pairs in the bisimulation, no transitions are
enabled. Therefore, the relation fulfills the bisimulation condition.

The question arises whether the restriction to deterministic choices at
system places is a good idea. Formally, the two Petri games from Fig. 13
and Fig. 14 have different winners despite both games lacking bad markings.
In both games the same transitions can be fired and bisimilarity relates the
two games as bisimilar. The second game can be solved by Adam which re-
turns a deterministic winning strategy. This strategy can be translated into

48

4 APPLICATIONS 4.3 Equivalence Example

a non-deterministic strategy for the first game. Both strategies are deadlock-
avoiding and avoid bad markings. Therefore, we drop the constraint of de-
terministic strategies for the remainder of this thesis. This shows that Adam
and labelings can be used to derive (non-deterministic) winning strategies for
games with more than one environment token.

4.3 Equivalence Example

We show how the winning strategies for the Petri games in Fig. 15 and
Fig. 16 can be translated. The two Petri games model the situation where
two system players have to mimic one environment player. In spirit of our
running example, the environment models a bank robber arriving at a three-
way junction where it can decide to either go left or right. Afterwards, the
two system players can become informed about the environment’s decision
via the transitions testL and testR. The two system players can always decide
together to either go Left or Right. The police should follow the bank rob-
ber in order to catch them. Therefore, the markings {EL, SR}, {TL, SR},
{ER, SL}, and {TR, SL} are defined as bad markings representing that the
bank robber and the police went into opposite directions.

The police is modeled as two independent officers which may observe
certain behaviors of the environment via the transition testL and testR. In
order to go into a certain direction, the two police officers get in the car and
make a decision together in which direction to drive.

The difference between the two games is which police officer can observe
which decision of the environment. In the Petri game from Fig. 15, each
police officers monitor one direction of the junction independently. This
implies that the first officer S1 can identify when the bank robber goes left,
whereas the second officer can identify the bank robber going right. Both
police officers may sit in the front row of a single police car and look outside
the window on the side they are sitting on. The Petri game from Fig. 16
models a different monitoring behavior of the police officers. The first police
officer S1 is lazy and cannot recognize the environment at all, whereas the
second police officer S2 can monitor both directions of the junction at the
same time.

4.3.1 Proof of Bisimilarity

We give a bisimulation R between the two games in order to show that they
are bisimilar. Afterwards, we unfold both games and give the corresponding
winning strategies for the system. This gives us all necessary tools to show
how to translate the winning strategies between the two games.

49

4.3 Equivalence Example 4 APPLICATIONS

E

EL ERTL TR

S1 S2

SL SR

left right

testL testR

Left Right

Figure 15: A Petri game is depicted where two police officers independently
monitor a junction where a bank robber can go left or right. The first police
officer can recognize the robber going left, whereas the second police officer
can recognize the robber going right. The police officers can only start the
pursuit of the bank robber together. It is bad behavior if the police officers
go into a different direction than the bank robber. The corresponding bad
markings are {EL, SR}, {TL, SR}, {ER, SL}, and {TR, SL}.

E

EL ERTL TR

S1 S2

SL SR

left right

testL testR

Left Right

Figure 16: An alternation to the Petri game from Fig. 15 is displayed. The
second police officer can recognize every behavior of the environment, whereas
the first police officer cannot interact with the bank robber. The two police
officers still need to follow the bank robber together. The bad markings
remain {EL, SR}, {TL, SR}, {ER, SL}, and {TR, SL}.

50

4 APPLICATIONS 4.3 Equivalence Example

The bisimulation R between the two games looks as follows:

R = { (〈 {E, S1, S2} 〉, 〈 {E, S1, S2} 〉), (〈 {SR}, {EL} 〉, 〈 {SR}, {EL} 〉),
(〈 {EL}, {S1, S2} 〉, 〈 {EL}, {S1, S2} 〉), (〈 {SR}, {ER} 〉, 〈 {SR}, {ER} 〉),
(〈 {ER}, {S1, S2} 〉, 〈 {ER}, {S1, S2} 〉), (〈 {SL}, {EL} 〉, 〈 {SL}, {EL} 〉),
(〈 {TL, S1}, {S2} 〉, 〈 {TL, S2}, {S1} 〉), (〈 {SL}, {ER} 〉, 〈 {SL}, {ER} 〉),
(〈 {TR, S2}, {S1} 〉, 〈 {TR, S2}, {S1}〉), (〈 {SL}, {TL} 〉, 〈 {SL}, {TL} 〉),
(〈 {SR}, {TL} 〉, 〈 {SR}, {TL} 〉), (〈 {SL}, {TR} 〉, 〈 {SL}, {TR} 〉),
(〈 {SR}, {TR} 〉, 〈 {SR}, {TR} 〉), (〈 {SL}, {E} 〉, 〈 {SL}, {E} 〉),
(〈 {SR}, {E} 〉, 〈 {SR}, {E} 〉), (〈 {EL}, {SL} 〉, 〈 {EL}, {SL} 〉),
(〈 {EL}, {SR} 〉, 〈 {EL}, {SR} 〉), (〈 {ER}, {SL} 〉, 〈 {ER}, {SL} 〉),
(〈 {ER}, {SR} 〉, 〈 {ER}, {SR} 〉) }

The games are identical except for the transition testL with which the
police learns that the bank robber went left. In the first game (cf. Fig. 15), the
police officer S1 is in the preset of the transition, whereas in the second game
(cf. Fig. 16), the police officer S2 is in the preset. This difference is recognized
by the bisimulation in the pair (〈 {TL, S1}, {S2} 〉, 〈 {TL, S2}, {S1} 〉) (cf. the
first pair of the fourth line) which is reached after firing left followed by testL.

Only the transitions Left and Right are enabled from the underlying
markings of the first pair of the fourth line. It holds that S1 is as in-
formed in the first Petri game as is S2 in the second game as well as that
S2 is as informed in the first game as is S1 in the second. Therefore, the
places in the precondition fulfill the bisimulation condition for both transi-
tions Left and Right. The reached pairs (〈 {SL}, {TL} 〉, 〈 {SL}, {TL} 〉) and
(〈 {SR}, {TL} 〉, 〈 {SR}, {TL} 〉) are also in R (cf. the second pair of the fifth
line and the first pair of the sixth line of R).

The remaining parts of the two games are identical and covered by R
implying that the Petri games from Fig. 15 and Fig. 16 are bisimilar.

4.3.2 Unfoldings

The unfoldings of the two games can be found in Fig. 17 and in Fig. 18. We
only need them to formally derive the respective winning strategies. They
are not essential for the following discussion of strategy translation.

In the first game, S1 and S2 can each recognize one specific decision of the
environment, respectively. Therefore, S1 and S2 are copied once including the
following transitions and the thereby reached places. The resulting unfolding
is displayed in Fig. 17. In the second game, only the second police officer S2

can recognize any decision by the environment. Since there are two such

51

4.3 Equivalence Example 4 APPLICATIONS

E

EL ERTL TR

S1
S1

S2
S2

SL SR

SL SR SL SR

left right

testL testR

L RL R L R

Figure 17: The unfolding of Fig. 15 is displayed. The places S1 and S2 are
duplicated once for the returning arrows of the transitions testL and testR,
respectively. Each of these two places has their outgoing transition Left and
Right including the following places copied. We abbreviate Left by L and
Right by R. The positions of the original places S1 and S2 have been swapped.

decisions, the place including the following transitions and thereby reached
places is copied twice. The corresponding unfolding is depicted in Fig. 18.

4.3.3 Winning Strategies

The winning strategies for both games look similar. They are outlined in
Fig. 19 and Fig. 20. In both cases, the system waits with its decision in which
direction to drive until it has recognized the behavior of the environment
via testL or testR, respectively. After that, both system players mimic the
environment’s decision together since one of the two players is guaranteed to
have witnessed the bank robber’s behavior.

For the first game, the system activates the transitions testL in S1 and
testR in S2 to ensure that the environment’s decision is noticed. Furthermore,
S2 activates Left and S1 activates Right in case the other police officer has
already made a decision, respectively. The unfolded places S1 and S2 can
ensure that the environment either went left or right. Therefore, the system
activates Left at the unfolded place S1 and Right at the unfolded place S2.
These transitions represent that one police officer makes a decision while the
other police officer is still in its initial place. The only reachable markings
where all players made a decision are {TL, SL} and {TR, SR} which are no

52

4 APPLICATIONS 4.3 Equivalence Example

E

EL ERTL TR

S1
S2

S2 S2

SL SR

SL SR SL SR

left right

testL testR

L RL R
L

R

Figure 18: The unfolding of Fig. 16 is depicted. Both transitions testL and
testR return to the place S2 in the original game. Therefore, two copies
are introduced including the following transitions Left and Right which are
abbreviated by L and R. The following places SL and SR are also copied.

bad markings. The strategy is winning for the system.
The strategy for the second game is almost the same except that the

second police officer S2 always gets informed. Therefore, S1 simply follows
S2’s decision. S1 activates all its transitions waiting for the decision of its
partner, whereas the initial place S2 activates testL and testR. In the place S2

reached after firing testL, the transition Left is activated, whereas in the
place S2 reached after firing testR, the system activates Right. Again, the
only reachable markings where all players made a decision are {TL, SL} and
{TR, SR}. This implies that the strategy is winning for the system.

4.3.4 Example Strategy Translation

In the following, we show how to translate the winning strategy for the Petri
game from Fig. 15 into a winning strategy for the Petri game from Fig. 16.
This example becomes generalized in Section 5.4 to an algorithm for all
bisimilar Petri games. For the strategy translation, we utilize the winning
strategy from Fig. 19, the Petri game from Fig. 16, and the bisimulation R.

The basic idea is to initially deactivate all transitions at system places
in the second game. They can become activated based on a breadth-first
search over the activated transitions in the given strategy. The search iterates
over reachable history markings in the strategy. Places are unfolded only

53

4.3 Equivalence Example 4 APPLICATIONS

E

EL ERTL TR

S1
S1

S2
S2

SL SR

left right

testL testR

Left Right

Figure 19: The winning strategy based on the unfolding from Fig. 17 of the
Petri game from Fig. 15 is depicted. It is based on the system independently
trying to collect information and immediately following the other system
player if this player claims to have gathered information.

E

EL ERTL TR

S1
S2

S2 S2

SL SR

left right

testL testR

Left Right

Figure 20: The winning strategy based on the unfolding from Fig. 18 of the
Petri game from Fig. 15 is depicted. It is based on the one police officer
doing all the work of recognizing the behavior of the environment and then
taking the other (lazy) officer with her.

54

4 APPLICATIONS 4.3 Equivalence Example

on demand at the second reaching. For a history marking, we mimic the
transitions of the given strategy at the most recently unfolded version of the
places in the preset. Bisimulation R defines which transition in the second
game simulates the transitions allowed by the strategy.

The strategy for the first game allows exactly two runs of fired transitions:
left, testL, Left and right, testR, Right. We start from the pair of initial
history markings. The transitions left and right are enabled. We know that
they are environment transitions (i.e. they have no system places in their
preset, respectively). We therefore do not activate any local transitions at
the initial marking in the second game and disallow to do so in the future.

We reach the history markings 〈 {EL}, {S1, S2} 〉 and 〈 {ER}, {S1, S2} 〉.
For the first element, we know that the history marking 〈 {EL}, {S1, S2} 〉 is
reached in the second game by simulating the transition left. This is based
on the first pair of the second row in R. We are sure about this reaching as
said pair is the only pair in the bisimulation containing 〈 {EL}, {S1, S2} 〉 at
the first position. The treatment of a history marking occurring in multiple
pairs in R is made precise in the general algorithm in Section 5.4.

Only the transition testL is enabled and it contains a system place in its
preset. Therefore, we activate all transitions with the same label from the
related history marking in the second game. Here, testL in the second game
is the only candidate. As S2 cannot be unfolded yet, we activate testL for
the initial place S2. The pair of history markings reached after firing testL is
(〈 {TL, S1}, {S2} 〉, 〈 {TL, S2}, {S1} 〉) (cf. first pair in the fourth row of R).

We continue with the history marking 〈 {ER}, {S1, S2} 〉 due to breadth-
first search. The same treatment for testR as for testL is performed. The
resulting pair of history markings is (〈 {TR, S2}, {S1} 〉, 〈 {TR, S2}, {S1} 〉)
(cf. first pair in the fifth row of R).

For (〈 {TL, S1}, {S2} 〉, 〈 {TL, S2}, {S1} 〉), testL re-reaches the place S2

in the second game. Therefore, we unfold the place by copying it and all
following transitions. We change testL to lead to the unfolded place. In the
strategy, the last transition Left is fired from the unfolded place S1. For the
current history marking of the second game, we know that the only possible
transition with the same label Left has only S2 in its preset. As S2 was
unfolded, we activate Left at the unfolded place. Transitions of unfolded
places are deactivated, i.e. Right is deactivated at the unfolded place S2.

For (〈 {TR, S2}, {S1} 〉, 〈 {TR, S2}, {S1} 〉), testL re-reaches the place S2

in the second game for the second time. We therefore unfold it for the second
time and allow only Right at the unfolded place. No transitions are enabled
from the remaining pairs of history markings in the open list. The search
therefore terminates and has constructed exactly the winning strategy from
Fig. 20 for which we already argued why it is winning.

55

5 CHARACTERISTICS

5 Characteristics

This section constitutes the second major achievement of this thesis. We
prove thoroughly that bisimilarity as introduced by Definition 3.9.2 gives rise
to sharing winning strategies between bisimilar Petri games. With the help
of strategy translation, one can choose either—especially the easier to find—
strategy for both games (cf. Section 3.1). First, we show that for two bisimilar
Petri games, there exists a finite bisimulation according to Definition 3.9.1.
In turn, we prove that bisimilarity is in fact an equivalence relation (i.e. it is
reflexive, symmetric, and transitive).

The next step is to show that strategies of bisimilar Petri games are
translatable. Therefore, we need to define in a precise manner what the term
bisimilar history means and between which places of two related history
markings bisimilar history is realized by a bisimulation. Finally, we give
a construction for translating strategies between bisimilar Petri games and
prove its correctness.

5.1 Existence of Finite Bisimulations

We prove that there exists a bisimulation of finite size between any two bisim-
ilar Petri games. With this property, we can prove that finite bisimulations
suffices to show the reflexivity of bisimilarity of finite Petri games.

Theorem 1. (Existence of Finite Bisimulations)
∀G 1,G 2.G 1 ∼ G 2 =⇒ ∃ bisimulation R between G 1 and G 2. |R| <∞

Proof. The bisimilarity of G 1 and G 2 implies the existence of a bisimula-
tion R′ between the two games. We show how to reduce the size of R′ to
obtain a finite bisimulation R. We claim that every pair of history markings
can be removed from R′ where two empty sets occur at the same position to
obtain R. (RD) enforces to remove empty sets at the same position for every
enabled transition and the following pair of history markings. By definition,
the initial pair of history markings cannot contain any empty sets. Therefore,
two empty sets at the same position are never required for the reachable pairs
of a bisimulation starting from the pair of initial history markings. Thus, all
these pairs of history markings can be removed from R′ resulting in R where
it holds that |R| ≤ |R′|.

For any two Petri games, we prove that the number of different pairs of
history markings without empty sets at the same position is finite. Remember
that we assumed Petri games to be finite and safe. A finite Petri games has
only finitely many places. A safe Petri game has at most one tokens residing
in each place for each sequence of enabled transitions. From these properties,

56

5 CHARACTERISTICS 5.2 Equivalence Relation

it follows that the maximum number of tokens for every game is restricted to
the number of places. The maximum length of each history marking in R is
m = |P1|+ |P2| as no two empty sets can be related at the same position.
In the maximal case, both games have a token in each place and each token
has a unique history, i.e. it is related to the empty set in the other history
marking.

Let m be the length of a given history marking (i.e. the number of sets
in the history marking) and let k be the number of tokens in the underlying
marking. There exist maximally mk <∞ possibilities to distribute k tokens
over m positions where more than one token can be at a certain position
while certain positions can be empty but all tokens have to be distributed.

An upper bound for the number of pairs in R is
∑m

i=2(2 ∗ i)i. In the
worst case, the number of tokens in both games can vary between one and
|P i|, i = 1, 2, respectively. The variation in the number of tokens occurs if it
is possible to spawn new players. Therefore, the number of tokens i iterates
from two to the maximum m = |P1|+ |P2|. The number of tokens i is equal
to the maximal length of one element of the pair. The other element of the
pair has to be of the same length, hence 2 ∗ i. We over-approximate because
we assume that the tokens can be freely moved between the two elements
of a related pair from R. Nevertheless, the upper bound is finite as m is
finite.

5.2 Equivalence Relation

We prove that bisimilarity induced by our strengthening of the bisimulation
between Petri nets is an equivalence relation.

Theorem 2. (Equivalence Relation)
The bisimilarity relation ∼ induced by Definition 3.9.2 is an equivalence re-
lation (i.e. it is reflexive, symmetric, and transitive).

5.2.1 Reflexivity

∼ is reflexive (i.e. ∀G .G ∼ G).

Proof. We build the bisimulation R by relating every history marking to
itself, i.e. R = { (H,H) | ∃M ⊆ PS ∪PE. H ∈ H(M) }. This relation is
infinite as H(M) is infinite for a single marking. It is proven in Section 5.1
that we can calculate a bound to the length of reachable history markings
which makes the relation finite. This can be seen as an optimization but is
not essential for the proof’s correctness.

57

5.2 Equivalence Relation 5 CHARACTERISTICS

We claim that R is a bisimulation between G and G . Requirements (FO)
and (RE) of Definition 3.9.1 hold for every pair in R since the related Petri
games are identical. Therefore, the same transitions are enabled having the
same label and leading to the same underlying marking, respectively. (SE)
and (EE) hold true for every pair in R by always choosing the same place.
(H1) and (H2) are satisfied as every possible history marking is related to
itself meaning that the needed one is also included in R. The last repeat-
constraint (RD) holds for the same reason.

5.2.2 Symmetry

∼ is symmetric (i.e. ∀G 1,G 2.G 1 ∼ G 2 =⇒ G 2 ∼ G 1).

Proof. Let R be the bisimulation between the Petri games G1 and G2. For
each pair (q1, q2) ∈ R, we include the pair (q2, q1) in R′. We claim that
R′ is a bisimulation between G 2 and G 1. The definition of bisimulation is
symmetric for (FO) and (RE), i.e. the forward direction (FO) becomes the
return direction (RE) and vice versa. The repeat-constraints (SE), (EE), and
(RD) are independent of the proof direction (i.e. they hold for G 2 ∼ G 1 iff
they hold for G 1 ∼ G 2). (H1) is the converse direction of (H2) and vice versa.
Therefore, all constraints are fulfilled for R′.

5.2.3 Transitivity

Let R be the bisimulation between G 1 and G 2 and R′ the bisimulation be-
tween G 2 and G 3. The obvious approach of building R′′ between G 1 and G 3

by including pairs (H1, H3) in R′′ for all matching pairs (H1, H2) ∈ R and
(H2, H3) ∈ R′ does not work. The problem is that removing empty sets
based on (RD) is defined between two games. This removing of empty sets
can differ for two pairs of games.

Let us consider Fig. 21 as an example. Three Petri games G a, G b, and G c

are depicted consisting of various numbers of system tokens. In all three
games, the transition t can be fired once. The three games only differ in the
number of existing and participating system players.

The three games are pairwise bisimilar. We show that the aforementioned
construction for proving transitivity does not work. The relation R between
the Petri games G a and G b consists of the pairs (〈 {P1, P2} 〉, 〈 {P4, P5} 〉) and
(〈 {P3}, {P2} 〉, 〈 {P6, P7}, {} 〉). The relation R′ between the Petri games G b

and G c entails the pairs (〈 {P4, P5} 〉, 〈 {P8} 〉) and (〈 {P6, P7} 〉, 〈 {P9} 〉).
The construction of the relation R′′ between the Petri games G a and G c

would result in the pair (〈 {P1, P2} 〉, 〈 {P8} 〉). No further pair would be
created because 〈 {P6, P7}, {} 〉 does not match 〈 {P6, P7} 〉. Nevertheless,

58

5 CHARACTERISTICS 5.2 Equivalence Relation

P1

P3

P2

t

(a)

P4

P6

P5

P7

t

(b)

P8

P9

t

(c)

Figure 21: Three Petri games are depicted where a single transition t is
enabled, respectively. The difference lays in the participating system players.
In the first game, only one of two system players participates in the transition,
whereas in the second game, both system players participate. In the third
game, the only existing system player participates in t.

(〈 {P3}, {P2} 〉, 〈 {P9}, {} 〉) with the added empty set for the second history
marking has to be included in R′′ in order to specify a bisimulation. As a
way out, we add empty sets before performing the check for equality of the
sets in the following proof of transitivity for bisimilarity.
∼ is transitive (i.e. ∀G 1,G 2,G 3.G 1 ∼ G 2 ∧ G 2 ∼ G 3 =⇒ G 1 ∼ G 3).

Proof. Let R be the bisimulation between G 1 and G 2 and R′ the bisimulation
between G 2 and G 3. We construct the relation R′′ between G 1 and G 3 by
including (Hx

1 , H
x
3) for all pairs (H1, H

1
2) ∈ R and (H2

2 , H3) ∈ R′. The sets
at each position of H1

2 and H2
2 have to match after adding empty sets such

that no two added empty sets occur at the same position. This implies that
the empty sets are added in the minimal manner and that the resulting pair
consists of two finite history markings. Hx

1 and Hx
3 are H1 and H3 with

empty sets added at the same positions as for H1
2 and H2

2 , respectively.
For the Petri game from Fig. 21, 〈 {P6, P7}, {} 〉 and 〈 {P6, P7} 〉 match

after we add the empty set at the second position in the second history
marking. H3 gets an empty set added at the second position such that
Hx

3 = 〈 {P9}, {} 〉, whereas H1 = 〈 {P3}, {P2} 〉 = Hx
1 remains the same.

Before adding (Hx
1 , H

x
3) to R′′, we remove empty sets at the same position

which may occur because G 2 contains places which are simulated by empty
sets in G 1 and G 3, respectively. This step is unrelated to the adding of empty
sets in the previous step.

We claim that R′′ is a bisimulation between G 1 and G 3. The set of history
markings referring to the second Petri game from R and R′ have to match
except for empty sets because otherwise a certain transition is not enabled
either in R or R′. Therefore, R or R′ would not be a bisimulation in the first
place.

59

5.3 Bisimilar History 5 CHARACTERISTICS

For each enabled transition t1 ∈ T 1 from H1 to H ′1, the same transition
is enabled from Hx

1 to Hx
1
′ because H1 and Hx

1 only differ in empty sets
by construction and empty sets do not affect the enabledness of transitions.
According to R, there exists a transition t2 and a history marking H1

2 such
that t2 is enabled from H1

2 leading to H1
2
′
, the transitions t1 and t2 have the

same label, and (H ′1, H
1
2
′
) ∈ R.

t2 is enabled from H2
2 to H2

2
′

as H1
2 and H2

2 only differ in the placement
of empty sets. Because of (H2

2 , H3) ∈ R′, firing t2 from H2
2 to H2

2
′

implies
that there exists a transition t3 and a history marking H ′3 such that t3 is
enabled from H3 to H ′3, the transitions t2 and t3 have the same label, and
(H2

2
′
, H ′3) ∈ R′. For the transition t1 enabled from Hx

1 to Hx′
1 , we pick the

transition t3 and history marking Hx
3
′. We know that t3 is enabled from Hx

3

to Hx
3
′, that L (t1) = L (t2) = L (t3), and that (Hx

1
′, Hx

3
′) ∈ R′′ because we

added the necessary empty sets by construction. This concludes our proof of
the forward direction (FO). The converse direction (RE) works analogously.

Next, we inspect the repeat-constraints. (SE) and (EE) hold true because
of the transitivity of the “⇐⇒ ”- operator and the existence of the underlying
history markings H1

2 and H2
2 for each pair (Hx

1 , H
x
3) ∈ R′′ which is based on

(H1, H
1
2) ∈ R and (H2

2 , H3) ∈ R′. We added empty sets in the minimal way
for H1

2 and H2
2 to match. The added empty sets are taken over for H1 and

for H3 such that they exactly match regarding their position when choosing
places. Conditions (H1) and (H2) are fulfilled because we add empty sets in
the minimal way, i.e. we never add empty sets in both markings H1

2 and H2
2

at the same position.
The last condition (RD) holds because we removed empty sets at the same

position from (Hx
1 , H

x
3) ∈ R′′ as the last step of our construction. These

empty sets do not occur because of our construction but because G 2 can
contain places which are simulated by empty sets both in G 1 and G 3.

5.3 Bisimilar History

We define the term bisimilar history which is realized by bisimulation be-
tween two Petri games G 1 and G 2. Based on this concept we prove the
possibility to translate strategies of bisimilar Petri games in Section 5.4.

Two history markings H1 and H2 incorporate bisimilar history iff H1 =
〈 s11, s12, . . . , s1n 〉 and H2 = 〈 s21, s22, . . . , s2n 〉 are of equal length n as well as
∀ 1 ≤ i ≤ n. s1i and s2i incorporate bisimilar history, i.e. two sets of places s1i
and s2i from the same position i have to incorporate bisimilar history.

Two sets of places s1 and s2 out of two history markings H1 and H2

incorporate bisimilar history iff ∀ j ∈ {1, 2}.∀ p, p′ ∈ sj. p and p′ incorpo-
rate bisimilar history and ∀ p1 ∈ s1.∀ p2 ∈ s2.p1 and p2 incorporate bisimilar

60

5 CHARACTERISTICS 5.3 Bisimilar History

history. This definition forces that both sets incorporate bisimilar history
pair-wise among their elements, respectively, and that each pair of places
including one place from the one set and one place from the other set incor-
porates bisimilar history.

The question whether two places from the same history marking Hi incor-
porate bisimilar history is positively answered by verifying that the sequences
of fired transitions witnessed by the two places reaching the underlying mark-
ing of Hi are the same. By arguing about transitions, we realize that the
visited places and the labels of fired transitions are the same as well as the
number of firings per transition.

The question whether two places from different history markings H1

and H2 incorporate bisimilar history is positively answered by verifying that
the labels of the sequence of transitions fired to reach the respective under-
lying markings of H1 and H2 and witnessed by the two places are the same.
When comparing two games, we cannot argue about the visited places in
both games as these can have different names.

5.3.1 History Markings realize Bisimilar History

We show that bisimilarity realizes bisimilar history. For each reachable pair of
history markings, we show that each sequence of labels of transitions enabled
in the first game resulting in the first history marking can be simulated in the
second game such that the reached second history marking realizes bisimilar
history and vice versa.

Theorem 3. (History Markings realize Bisimilar History)
If R is a bisimulation between Petri games G1 and G2, then the following holds
for each pair (H1, H2) ∈ R : if the underlying markings of H1 and H2 are
reachable in their respective Petri game via runs of the same length having
the same labels then H1 and H2 incorporate bisimilar history for said runs.

Proof. By induction on the length n of the runs in the Petri game (i.e. the
number of fired transitions):

n = 0: (〈In1〉, 〈In2〉) is in R by definition. In1 and In2 are obviously
reachable in their respective Petri game. The history of each element of
〈In1〉 and 〈In2〉 is empty and thus In1 and In2 incorporate bisimilar history.
Other markings are not reachable without firing a transition.

n → n + 1: By the induction hypothesis, it is ensured that all pairs
(H1, H2) ∈ R reached after runs of length n with the same labels incorporate
bisimilar history for the respective runs. These pairs are the only possibility
to reach pairs (H ′1, H

′
2) ∈ R for runs of the length n + 1 according to (FO)

and (RE). Let t1 be the transition fired from H1 to H ′1 and t2 the transition

61

5.3 Bisimilar History 5 CHARACTERISTICS

from H2 to H ′2 such that t1 and t2 have the same label. The transitions
either exist in both games or do not exist in either game as otherwise no
bisimulation R between the games would exist. H ′i has the following form
for i = 1, 2: 〈 posti(ti) 〉_〈Hi \ prei(ti) 〉 (cf. (H1) and (H2)). _ denotes
the concatenation of two vectors, 〈Hi \ prei(ti) 〉, i = 1, 2 represents a vector
of length m for i = 1, 2, which preserves the obvious order from 1 to m,
respectively, and the removal of elements of the places of the preset of ti is
performed per set of Hi. Empty sets are only removed if they occur in both
history markings at the same position according to (RD).

The places of posti(ti) incorporate bisimilar history per set and among the
two sets because by (SE) and (EE), the participating system and environment
places of the pre-condition are forced to have a partner with bisimilar history
in the other Petri game. All participating places exchange their entire history
when firing the transition. The pair (H1, H2) incorporates bisimilar history
for the current run by the induction hypothesis.

Removing places keeps the property that the remaining places still have
bisimilar history because empty sets are only removed if they occur at the
same position in both history markings of a pair (cf. (RD)). Both history
markings are shifted in the same way following (H1) for the first history
marking and (H2) for the second history marking. This ensures that all
respective positions in both pairs incorporate bisimilar history and shows
that all pairs for runs of the length n+ 1 incorporate bisimilar history.

This induction covers all reachable markings of the Petri game because it
follows which transitions are enabled.

Notice that (FO) and (RE) ensure the following property: if two sets
that incorporate bisimilar history contain a different number of places then
no transition is able to take advantage of this situation. For instance, a set
with one element can have bisimilar history to the empty set and these two
sets can be related by a pair of history markings in a bisimulation as long as
a transition including the single place in its pre-condition is never enabled in
any run of the underlying Petri game.

A pair of runs of same length is required to reach a pair of history mark-
ings. Such a pair of history markings can be reached via pairs of runs of
different length. Therefore, history markings are defined to realize bisimilar
history pairwise for runs of the same length. This re-reaching can happen in
both games. Because the underlying marking is the same, the environment
cannot take advantage of this situation despite the system possibly having
the chance to make different decisions.

62

5 CHARACTERISTICS 5.4 Algorithm for Strategy Translation

5.4 Algorithm for Strategy Translation

Two Petri games G 1 and G 2 have the same winner iff either both are won
by the system or by the environment (i.e. ∃ winning strategy σ1 for G 1 iff ∃
winning strategy σ2 for G 2).

Bisimilarity realizes the following stronger claim for a different definition
of strategies: G 1 ∼ G 2 =⇒ (∀ winning strategies σ1 for G 1.∃ winning
strategy σ2 for G 2 and ∀ winning strategies σ2 for G 2.∃ winning strategy σ1

for G 1). The definition of winning strategies drops the requirement of de-
terministic decisions at system places. System places are allowed to activate
more than one transition for a marking if a specific decision is not required
to win the game.

The strategy is winning in the sense that it avoids bad markings and that
it is deadlock-avoiding by always having at least one transition enabled in
the strategy for all reachable markings if the same holds for the underlying
unfolding. It further complies with (S2) and (S3).

Theorem 4. (Strategy Translation)
∀G 1,G 2.G 1 ∼ G 2 =⇒ (∀ winning strategies σ1 for G 1.∃ winning strat-
egy σ2 for G 2 and ∀ winning strategies σ2 for G 2.∃ winning strategy σ1

for G 1) (assuming winning strategies without the requirement of determinis-
tic choices at system places)

Proof. The line of argumentation focusses on the first part of the conjunct
since the second part works analogously. G 1 ∼ G 2 implies that there exists a
bisimulation R according to Definition 3.9.1 between G 1 and G 2. For each σ1,
we build σ2 by allowing the same decisions at related history markings. We
realize a breadth-first search over the strategy σ1 to handle infinite strategies.
This search represents the formal definition of the intuitive approach from
Section 4.3.4. Based on R, we know where to simulate every decision of σ1.
We utilize the related history marking to unfold G 2 (if necessary and pos-
sible) and allow transitions with the same label. This technique of allowing
transitions is based on the fact that initially all system places deactivate all
transitions, whereas no such restrictions are made for environment places.
The bisimulation R defines which transitions in the second game can be used
to simulate activated transitions in the first game.

A pseudo-code representation of the algorithm is given in Algorithm 1.
We begin by taking G 2 as the starting point of the strategy σ2 we will con-
struct. All decisions at system places are deactivated at σ2. The visited
places in σ2 are required to determine when it is possible to unfold places.
Line 5 defines the four-tuples that we perform a search over. The first two
elements H1 and H2 are history markings related according to R. The third

63

5.4 Algorithm for Strategy Translation 5 CHARACTERISTICS

element F : PG 2 →Pσ2
stores which unfolded place in σ2 is used to simulate

decisions of σ1. The bisimulation R is calculated before σ2 is unfolded during
the algorithm. Initially, G 2 and σ2 contain the same places. We therefore
use the identify function Id on places from G 2 as F . The fourth element V
stores which history markings have been visited in the given strategy σ1.
This information is required to determine if σ1 refuses on a possible unfold-
ing. The open list open is used to store the queue of four-tuples waiting to
be processed. We remove elements exclusively from the front and add at the
back to realize a breadth-first search. The closed list closed is used to prevent
us from processing a four-tuple twice as the second processing repeats the
already done steps.

For a reached history marking H1 in σ1 which has been simulated in σ2 by
reaching H2, F , and V (cf. Line 7), we search for each enabled transition t1
for all partner transitions t2 which fulfill the definition of bisimulation (cf.
Line 9 to Line 13). The bisimulation property ensures that at least one
such partner transition exists. Line 12 ensures that the transition can be
activated. This may be forbidden if the transition is local and was not fired
at a previously reached marking. In Line 34, the activation of transitions is
forbidden. This can be required to ensure that the environment makes its
decision before the system does. We simulate t1 by activating t2 at the places
in its preset. We utilize the function F to find the most recent unfolding of
the places for the currently simulated run (cf. Line 15).

Lines 17 to 29 inspect the necessity and possibility to unfold the places in
the postset of t2. We need to alter F when unfolding places resulting in F ′.
For each place post in the postset of t2, the algorithm decides whether σ1

requires an unfolding at this position. This is the case if σ1 reaches a new
history marking which can be identified by the history marking not being
in V (cf. Line 18). The next decision to be made by the algorithm is whether
the unfolding of the place post can lead to a new history marking in σ2. This
is only the case if post was already visited which we can check on behalf
of vp2 which represents the set of so far visited places among all runs. If
post was not visited before then an unfolding yields that the original place is
unreachable. Therefore, no unfolding is necessary in this case.

The unfolding of post into post′ in Line 20 is performed by copying the
place including all following transitions and thereby reached places. If post is
a system place then we deactivate all copied transitions. For the case of post
being an environment place, we are not justified to make such restrictions
as the strategy is not allowed to restrict the environment. We update F ′ to
return the place unfolded in this step for future decisions. The unfolded place
post′ is added to set of visited places in σ2. In case of not unfolding post, we
add the original place to vp2 (cf. Line 27 and Line 29) as it is reached.

64

5 CHARACTERISTICS 5.4 Algorithm for Strategy Translation

Algorithm 1 BFS-Algorithm for Strategy Translation

1: procedure BfsStrategyTranslation (G 1, R, G 2, σ1):
2: σ2 = G 2

3: deactivate all system decisions in σ2

4: vp2 = In2 // visited places in σ2

5: open = [(In1, In2, Id, {In1})]
6: closed = {}
7: while open 6= [] do
8: (H1, H2, F, V) = open.pop() // remove at first position
9: for t1 ∈ T 1 do

10: if H1
t1−→σ1 H ′1 then // enabled transition

11: for t2 ∈ T 2 s.t. L (t1) = L (t2) do
12: if t2 can be activated then

13: if (H1, H2) ∈ R∧H2
t2−→G 2 H ′2∧ (H ′1, H

′
2) ∈ R then

14: for pre ∈ •t2 do
15: activate t2 at F (pre) // copy decision

16: F ′ = F
17: for post ∈ t2• do
18: if H ′1 /∈ V then // we should unfold
19: if post ∈ vp2 then // we can unfold
20: unfold post into post′

21: if post ∈PS then
22: deactivate all decisions at post′

23: for p unfolded because of post do
24: F ′ = F ′[λ1(p) = p′]

25: add post′ to vp2
26: else
27: add post to vp2

28: else
29: add post to vp2

30: add (H1, H2, F, V) to closed
31: V ′ = V with H ′1 added
32: if (H ′1, H

′
2, F

′, V ′) /∈ closed then
33: add (H ′1, H

′
2, F

′, V ′) to open

34: Forbid the activation of not fired local system transition

35: return σ2

65

5.4 Algorithm for Strategy Translation 5 CHARACTERISTICS

We extend V to V ′ by adding H ′1 as a reached history marking in σ1.
Now, we update the closed and open list in the obvious way. The adding to
the open list happens to the end of the list to realize breadth-first search.

For each transition t1 ∈ T 1 leading from H1 to H ′1, we know that there
exists H2 and a transition t2 with (H1, H2) ∈ R that can be used to simulate
the label of t1. We allow all of these possible transitions making the con-
structed strategy possibly non-deterministic at system places. The algorithm
terminates when all elements from the open list have been processed.

For all Petri games G 1 and G 2, we claim that Algorithm 1 creates a
winning strategy σ2 for G 2 given a bisimulation between the two games and
a winning strategy σ1 for G 1. Each run of transitions allowed by σ1 is either
finite (i.e. it reaches a marking from which no transitions are enabled) or
infinite. An infinite run has to repeat a history marking at some point as the
number of reachable history markings is finite between the two games (cf.
Theorem 1). This is an application of the pigeonhole principle [1]. The closed
list identifies these repetitions in our algorithm. For two history markings,
we can assume that the run repeats itself because a different run can only be
caused by the environment as the strategy is fixed. Because we enumerate all
runs, any deviating decision of the environment happens as soon as possible in
another run and is handled there. The breadth-first search therefore iterates
over runs of finite length.

It remains to show that there are only finitely many of such runs. The
branching behavior of places is finite. For finite Petri games, we have a finite
postset for each place. These properties assure that there are only finitely
many choices before a history marking repeats itself. The interleaving of
these choices is finite as well. Therefore, the algorithm terminates as it
iterates over finitely many runs of finite length.

Next, we show that σ2 allows the same runs as σ1. This holds true because
we allow exactly those transitions that have the same labels as transitions
allowed by σ1. The runs in σ2 follow the unfolding of σ1. Theorem 3 from
Section 5.3.1 shows that the system places incorporate bisimilar history when
making their decisions. Therefore, it is guaranteed that system places in σ2

are as informed as the respective places in σ1 when allowing a transition.
σ2 cannot reach a bad marking because it only allows the same runs

as σ1. The existence of R proves that either both strategies reach a bad
marking or none of them does and σ1 never reaches a bad marking because
it is winning. The constructed strategy σ2 does not restrict environment
transitions by construction. σ2 is deadlock-avoiding because it decides for
transitions with the same label as σ1 and σ1 is deadlock-avoiding by it being
winning. R ensures that both strategies are based on games which have the
same alternatives enabled when making a decision. Therefore, σ2’s decisions

66

5 CHARACTERISTICS 5.4 Algorithm for Strategy Translation

are also deadlock-avoiding and σ2 is winning. This proves that our algorithm
not only terminates but produces a winning strategy for G 2.

In Appendix C, one can find the open list open before every iteration of
the while-loop when using Algorithm 1 for the example from Section 4.3.4.
In said example, we translate the winning strategy from Fig. 19 for the Petri
game from Fig. 15 into a winning strategy for the bisimilar Petri game from
Fig. 16. The algorithm terminates after seven iterations and returns the
strategy from Fig. 20.

67

6 RELATED WORK

6 Related Work

Van Glabbeek and Vaandrager present equivalence notions on Petri nets [16].
These notions are divided to realize either true concurrency or interleaving
semantics and to realize either branching time semantics or linear time se-
mantics. The first distinction depends on whether transitions can take place
in parallel (i.e. at the same time) or only one after the other. The second
distinction spells out the fact whether the point in time when a decision is
made is important (branching time) or not (linear time).

An occurrence net equivalence based on the isomorphism of the unfoldings
of two nets realizes interleaving semantics and branching time. The standard
bisimulation equivalence on Petri nets (cf. Section 2.3.1) leads to interleaving
semantics and branching time semantics as well. The two equivalence notions
leverage differently powerful algebraic tools in the sense of rules for equivalent
Petri nets. The authors define another requirement for an equivalence called
causality. All previously proposed equivalences fail to fulfill this requirement
as they neglect which places causally depend on each other.

Partially ordered multisets (pomsets) represent the causality of places in
a Petri net. Pomset equivalence based on two Petri nets having the same
pomsets fails to realize branching time, i.e. it realizes linear time. By defin-
ing pomset bisimulation equivalence, this problem is fixed. The equivalence
provides true concurrency semantics, realizes branching time, and conforms
with causality. Another requirement the authors tackle is real-time consis-
tency based on the nets real-time behavior which can be realized by ST-
bisimulation equivalence. This equivalence handles the start and termination
time of transitions and maintains the previously achieved features.

The equivalence presented in this thesis realizes interleaving semantics
and branching time as it is an extension of the bisimulation between Petri
nets. It further realizes some form of causality as pomsets can be judged
to be more general than history markings. A history marking groups only
equally informed places. However, it does not specify information about the
corresponding informedness of two such sets which is in contrast to pom-
sets. When elaborating on future work, we discuss how to obtain a true
concurrency semantics for Petri games.

Van Glabbeek extends the previous results by stating criteria to take
into consideration when choosing an equivalence notion [15]. These criteria
include the already mentioned branching time, concurrency, causality, and
real-time consistency. The author further mentions inevitability and action
refinement. Those are interesting for games as choices in two equivalent
games should lead to the same (inevitable) game state. Action refinement
forces the equivalence to be preserved when substituting sub-games which can

68

6 RELATED WORK

be viewed as another application of an equivalence notion on Petri games.
Jensen, Larsen, and Srba develop Timed-Arc Petri Net Games [11]. The

underlying Timed-Arc Petri Nets introduce time to Petri nets. Transitions
are guarded by time intervals for the places preceding them such that transi-
tions are only enabled if all tokens in the preset have an age in the interval,
respectively. Tokens possess an age, i.e. the time that passed since their cre-
ation. Per default, each firing of a transition resets the age of all participat-
ing tokens. This can be circumvented by transport transitions. Furthermore,
Timed-Arc Petri Nets introduce a test of places for emptiness in order to
fire transitions by so called inhibitor arcs to transitions. The continuous and
discrete semantics for Timed-Arc Petri Nets coincide.

The game definition on Timed-Arc Petri Nets is based on dividing tran-
sitions to be either controllable or uncontrollable. The winning condition is
based on safety, i.e. avoidance of certain markings which include the age of
tokens. The authors show that Timed-Arc Petri Net Games with continuous
and discrete time are incomparable. They prove that the games for both as-
sumptions about time coincide when controllable transitions are restricted to
be urgent. A transition is urgent if no time can pass as long as the transition
is enabled. A synthesis algorithm is given for this special case which utilizes
a timed bisimulation between markings to identify equivalent ages of tokens.

This work outlines another way to define games based on Petri nets. It
introduces the concept of time constraints and shows that a bisimulation
equivalence based on markings can be used to identify the equivalence of
markings with different ages for tokens. Timed-Arc Petri Net Games do
not model all non-deterministic choices explicitly. If the system and the
environment decide to fire a transition at the same time then it is decided
non-deterministically which of the two transitions is fired first.

Henzinger, Horowitz, and Majumdar define rectangular hybrid games as
a restrictive generalization of hybrid automata to two-player games [9]. The
restriction comprises constant lower and upper bounds for continuous time
behavior in the underlying hybrid automata. These games utilize linear-time
temporal logic (Ltl) [3] to define the winning sequences which have to be
ensured by a strategy.

The paper shows decidability of the so-called Ltl control problem. For
the purpose of the proof, game trace equivalence, game similarity, and game
bisimilarity are defined as extensions of the respective notions from automata
to two-player games. In contrast, Petri games do not realize a turn taking
behavior of system and environment. Instead, they define the order of play
by the structure of the underlying Petri net. Furthermore, the possibility
of utilizing information from the history is more expressive in Petri games
which does not allow us to use one of the aforementioned equivalences.

69

7 CONCLUSION

7 Conclusion

This section provides a summary of the presented material. We recall the
most important facts during the development of bisimilarity. Moreover, we
sum up the presented applications and the following theorems showing that
bisimilarity induces an equivalence relation. In addition, we recall the al-
gorithm for strategy translation between bisimilar Petri games. Regarding
future work, we present possible extensions to the definition of bisimulation
and further applications in the context of solving Petri games.

7.1 Summary

The starting point of our endeavor to an equivalence relation on Petri games
is the standard bisimulation between Petri nets. The goal of our work is to
translate winning strategies between bisimilar Petri games in order to solve
easier games instead of hard ones. We especially focus on the reduction of
environment tokens.

We prove that the standard bisimulation between Petri nets does not
realize said goal as Petri games introduce system places as decision points
for the strategy and bad markings as winning condition of the game. These
points can be identified by a corresponding strengthening of the bisimulation
(cf. Section 3.5).

A problem with a bisimulation between markings is that the system places
do not only represent decisions points but they can accumulate history about
fired transitions and visited places. This history can be essential to make
decisions. For instance, a system place can decide for a transition left in
response to being reached after firing testL and for right after witnessing
testR. This example refers to our running example where the police tries to
follow a bank robber.

Bisimulation based on markings cannot be used to identify the history of
tokens in places. A possible way out is to work on unfoldings but this option is
rejected because unfoldings can become infinite. Instead, we develop history
markings. A history marking is a vector containing subsets of an underlying
marking which incorporate bisimilar history.

Bisimulation is extended to consist of pairs of history markings. Such
a pair represents that reaching an underlying marking via a sequence of
transitions with certain labels in one game can be simulated in the other
game with another sequence of transitions with the same labels and vice
versa. Furthermore, the places are distributed in such a way that tokens
in places from two sets of the same position of related history markings
incorporate bisimilar history. The vector is used to realize an order of the

70

7 CONCLUSION 7.1 Summary

sets in a history marking. Thereby, places can be tested to originate from
two sets of the same position of related history markings.

In order to utilize history markings, we need to check not only the en-
abledness of transitions but also that they have system places in the preset
from the same position of history markings. This requirement represents that
for each system place which has to decide on firing a transition in the one
game there is a bisimilar informed system place in the other game such that
the enabled transition has the same label as in the first game. If a system
place in the one game decides to not fire a transition based on a certain his-
tory then there exists a system place in the other game which has witnessed
bisimilar history and can simulate the decision. The respective strengthening
is given in Section 3.7.

We show further that it does not suffice to perform this check for system
places only but we rather need to track the history of environment places as
well. At first, this may seem counterintuitive as environment players only
perform non-deterministic choices. For these choices, the history is of no
importance. However, the system can perform synchronous transitions with
the environment in order to gain information about the environment. If we
do not track the history of environment places we cannot ensure that after
firing such a synchronous transition, the system places of two related history
markings incorporate bisimilar history.

The problem can be solved by carrying out the same check for environ-
ment places as for system places when firing a transition, i.e. we search for
each participating environment place of a transition in the one game for a cor-
responding environment place in the other game such that both places occur
at the same position of the two related history markings. The corresponding
strengthening is made precise in Section 3.9. The definitions outlined in this
section establish the bisimilarity with the underlying bisimulation between
history markings.

We depict an application where the bisimilarity relation defines two games
as bisimilar where one game has a reduced number of environment players.
Although the example is artificial, it shows that the concept of bisimilarity
gives rise to a wider range of solvable games by Adam including some Petri
games with two or more environment tokens. Furthermore, we show that
the bisimilarity concept elicits further simplifications regarding the removing
of environment tokens when allowing non-deterministic choices at system
places.

On the one hand, the constraint for deterministic choices at system places
forces the strategy to pick one particular direction even if another alterna-
tive is equally good as the picked one. Without the constraint for determin-
istic choices on the other hand, not all sources and developments of non-

71

7.2 Future Work 7 CONCLUSION

determinism are modeled explicitly. To allow more simplifications, we allow
non-deterministic strategies from this point onwards. We come back to this
when discussing future work.

We prove that (non-deterministic) winning strategies between bisimilar
Petri games are translatable. Together with the result that the bisimilarity
relation based on the bisimulation between history markings is an equivalence
relation, the goal of an equivalence on Petri games is achieved. We show by
induction that two related history markings are reachable via runs resulting
in bisimilar history for all tokens.

Given a winning strategy for one game, we therefore can translate this
strategy into a strategy for another bisimilar game. The strategy predeter-
mines an unfolding of the first game which is copied in the second game.
The pairs of history markings determine uniquely where to simulate each
decision.

7.2 Future Work

The first aspect of future work is affiliated to bisimilarity relating two Petri
games as bisimilar although only one of the two games has a deterministic
winning strategy. Additionally, we discuss an alternative to history markings.
Furthermore, additional applications to the ones presented in Section 4 are
considered.

7.2.1 Deterministic Strategies

It is an interesting task to strengthen bisimilarity in such a way that only
Petri games are bisimilar with translatable deterministic strategies. One
could build up a global store of necessary and possible decisions at system
places when searching for a bisimulation. Such a strengthening would not
require any alternation to the definition of Petri games but yield a stronger
equivalence notion allowing less simplifications.

7.2.2 True Concurrency Semantics

We discussed related work about equivalence notions realizing true concur-
rency semantics [16]. It is challenging to realize such semantics and a corre-
sponding equivalence for Petri games. Petri games could allow transitions of
independent parts of the game to happen in parallel, i.e. more than one tran-
sition can be fired between two markings. This would reduce the number of
markings to relate because all interleaving of a set of concurrent transitions
would be replaced by one parallel execution.

72

7 CONCLUSION 7.2 Future Work

It is necessary to alter history markings as the parallel execution of more
than one transition should not exchange the history of players participating
in different transitions. We presume that the notion for history markings
and bisimulation can be extended to work in this case. Nevertheless, it is
difficult to maintain a simple notation.

7.2.3 Applications

We have seen two applications of the equivalence relation that allowed to
reduce the number of environment players for certain games. It is an open
question whether it is possible to efficiently calculate the bisimulation be-
tween two games or prove the non-existence of such a bisimulation as outlined
in [14] for standard bisimulation.

This problem leaves us with finding a smaller Petri game with which
the existence of a bisimulation is tested. The general problem is based on
finding the quotient of a Petri game. The quotient constitutes the smallest
equivalent Petri games to a given one. A definition of smallest could be based
on different concepts: (1) the number of environment tokens, (2) the number
of system tokens, and (3) the number of places or transitions. This would
define an order in which a Petri game is best reduced. If the existence of
such a quotient can easily be calculated via the existence of a bisimulation
to the given game this concept can run as a preprocessor of Adam.

An alternative approach of solving Petri games is centered on using
bounded synthesis [5]. We limit the unfolding to a certain size and simu-
late runs of a certain length. This approach is suspected to find winning
strategies faster than Adam but cannot prove the non-existence of a win-
ning strategy. An equivalence notion on Petri games could be used to find
places which have to be unfolded to find a winning strategy. A place could
be unfolded and the resulting Petri game could be tested for equivalence to
the game without the most recent unfolding. If the two games are equivalent
the unfolding is unnecessary, whereas in the opposite case, a place is found
which has to be unfolded.

73

A REACHABLE MARKINGS IN FIG. 7 AND FIG. 8

8 Appendix

A Reachable Markings in Fig. 7 and Fig. 8

This is the set of reachable markings in the underlying nets N 1 and N 2 of
the Petri games from Fig. 7 and Fig. 8.

R(N 1) = R(N 2) = { {apprCar1,waitingCar2,waitingCar3},
{car1L,waitingCar2,waitingCar3}, {car1R,waitingCar2,waitingCar3},
{apprCar1, car2L,waitingCar3}, {apprCar1, car2R,waitingCar3},
{apprCar1,waitingCar2, car3L}, {apprCar1,waitingCar2, car3R},
{car1L, car2L,waitingCar3}, {car1L, car2R,waitingCar3},
{car1L,waitingCar2, car3L}, {car1L,waitingCar2, car3R},
{TTL,waitingCar2,waitingCar3}, {TTR,waitingCar2,waitingCar3}
{car1R, car2L,waitingCar3}, {car1R, car2R,waitingCar3},
{car1R,waitingCar2, car3L}, {car1R,waitingCar2, car3R}
{apprCar1, car2L, car3L}, {apprCar1, car2L, car3R},
{apprCar1, car2R, car3L}, {apprCar1, car2R, car3R},
{car1L, car2L, car3L}, {car1L, car2L, car3R},
{car1L, car2R, car3L}, {car1L, car2R, car3R},
{TLL, car2L,waitingCar3}, {TRR, car2L,waitingCar3}
{TLL, car2R,waitingCar3}, {TRR, car2R,waitingCar3},
{TLL,waitingCar2, car3L}, {TRR,waitingCar2, car3L}
{TLL,waitingCar2, car3R}, {TRR,waitingCar2, car3R},
{car1R, car2L, car3L}, {car1R, car2L, car3R},
{car1R, car2R, car3L}, {car1R, car2R, car3R},
{TLL, car2L, car3L}, {TRR, car2L, car3L}
{TLL, car2L, car3R}, {TRR, car2L, car3R}
{TLL, car2R, car3L}, {TRR, car2R, car3L}
{TLL, car2R, car3R}, {TRR, car2R, car3R} }

where TLL and TRR are abbreviations for tooLateL and tooLateR.

74

B BISIMULATION BETWEEN FIG. 9 AND FIG. 10

B Bisimulation between Fig. 9 and Fig. 10

This is a bisimulation according to Definition 3.7.1 between the Petri games
from Fig. 9 and from Fig. 10:

R = {
(〈 {apprCar1,waitingCar2} 〉, 〈 {apprCar1,waitingCar2} 〉), (1)

(〈 {car1L}, {waitingCar2} 〉, 〈 {car1L}, {waitingCar2} 〉), (2)

(〈 {car1R}, {waitingCar2} 〉, 〈 {car1R}, {waitingCar2} 〉), (3)

(〈 {waitingCar2′}, {apprCar1} 〉, 〈 {waitingCar2′}, {apprCar1} 〉), (4)

(〈 {waitingCar2′, car1L}, {} 〉, 〈 {waitingCar2′}, {car1L} 〉), (5)

(〈 {waitingCar2′}, {car1L} 〉, 〈 {waitingCar2′}, {car1L} 〉), (6)

(〈 {waitingCar2′, car1R}, {} 〉, 〈 {waitingCar2′}, {car1R} 〉), (7)

(〈 {waitingCar2′}, {car1R} 〉, 〈 {waitingCar2′}, {car1R} 〉), (8)

(〈 {car2L}, {apprCar1} 〉, 〈 {car2L}, {apprCar1} 〉), (9)

(〈 {car2R}, {apprCar1} 〉, 〈 {car2R}, {apprCar1} 〉), (10)

(〈 {car1L}, {waitingCar2′} 〉, 〈 {car1L}, {waitingCar2′} 〉), (11)

(〈 {car1R}, {waitingCar2′} 〉, 〈 {car1R}, {waitingCar2′} 〉), (12)

(〈{car2L}, {car1L} 〉, 〈{car2L}, {car1L} 〉), (13)

(〈{car2L}, {car1L}, {} 〉, 〈{car2L}, {}, {car1L} 〉), (14)

(〈{car2R}, {car1L} 〉, 〈{car2R}, {car1L} 〉), (15)

(〈{car2R}, {car1L}, {} 〉, 〈{car2R}, {}, {car1L} 〉), (16)

(〈{car2L}, {car1R} 〉, 〈{car2L}, {car1R} 〉) (17)

(〈{car2L}, {car1R}, {} 〉, 〈{car2L}, {}, {car1R} 〉), (18)

(〈{car2R}, {car1R} 〉, 〈{car2R}, {car1R} 〉), (19)

(〈{car2R}, {car1R}, {} 〉, 〈{car2R}, {}, {car1R} 〉), (20)

(〈{car1L}, {car2L} 〉, 〈{car1L}, {car2L} 〉), (21)

(〈{car1R}, {car2L} 〉, 〈{car1R}, {car2L} 〉), (22)

(〈{car1L}, {car2R} 〉, 〈{car1L}, {car2R} 〉), (23)

(〈{car1R}, {car2R} 〉, 〈{car1R}, {car2R} 〉) } (24)

75

C EXAMPLE RUN OF ALGORITHM 1

C Example Run of Algorithm 1

The open list open of Algorithm 1 is enumerated before each iteration of the
while-loop for the example from Section 4.3.4. The algorithm translates the
winning strategy from Fig. 19 for the Petri game from Fig. 15 into a winning
strategy for the bisimilar game from Fig. 16. Termination occurs after seven
iterations because open becomes empty. The algorithm returns the strategy
from Fig. 20. S ′2 denotes the first unfolding of S2, S

′′
2 the second one.

open before 1st Iteration:

[(〈 {In1} 〉, 〈 {In2} 〉, Id, V1 := {In1})]

open after 1st Iteration:

[(〈 {EL}, {S1, S2} 〉, 〈 {EL}, {S1, S2} 〉, Id, V L
2 := V1 ∪ {〈 {EL}, {S1, S2} 〉}),

(〈 {ER}, {S1, S2} 〉, 〈 {ER}, {S1, S2} 〉, Id, V R
2 := V1 ∪ {〈 {EL}, {S1, S2} 〉})]

open after 2nd Iteration:

[(〈 {ER}, {S1, S2} 〉, 〈 {ER}, {S1, S2} 〉, Id, {In1, 〈 {EL}, {S1, S2} 〉}),
(〈 {TL, S1}, {S2} 〉, 〈 {TL, S2}, {S1} 〉, Id[S2 = S ′2], V L

3 := V L
2 ∪{〈 {TL, S1}, {S2} 〉})]

open after 3rd Iteration:

[(〈 {TL, S1}, {S2} 〉, 〈 {TL, S2}, {S1} 〉, Id[S2 = S ′2], V L
3 := V L

2 ∪{〈 {TL, S1}, {S2} 〉),
(〈 {TR, S2}, {S1} 〉, 〈 {TL, S2}, {S1} 〉, Id[S2 = S ′′2], V R

3 := V R
2 ∪{〈 {TL, S1}, {S2} 〉})]

open after 4th Iteration:

[(〈 {TR, S2}, {S1} 〉, 〈 {TL, S2}, {S1} 〉, Id[S2 = S ′′2], V R
3 := V R

2 ∪{〈 {TL, S1}, {S2} 〉),
(〈 {SL}, {TL} 〉, 〈 {SL}, {TL} 〉, Id[S2 = S ′2], V L

4 := V L
3 ∪{〈 {SL}, {TL} 〉})]

open after 5th Iteration:

[(〈 {SL}, {TL} 〉, 〈 {SL}, {TL} 〉, Id[S2 = S ′2], V L
4 := V L

3 ∪{〈 {SL}, {TL} 〉}),
(〈 {SR}, {TR} 〉, 〈 {SR}, {TR} 〉, Id[S2 = S ′′2], V R

4 := V R
3 ∪{〈 {SR}, {TR} 〉})]

open after 6th Iteration:

[(〈 {SR}, {TR} 〉, 〈 {SR}, {TR} 〉, Id[S2 = S ′′2], V R
4 := V R

3 ∪{〈 {SR}, {TR} 〉})]

76

C EXAMPLE RUN OF ALGORITHM 1

77

REFERENCES REFERENCES

References

[1] M. Ajtai. The complexity of the pigeonhole principle. In Foundations of
Computer Science, 1988., 29th Annual Symposium on, pages 346–355.
IEEE, 1988.

[2] S.B. Akers. Binary Decision Diagrams. Computers, IEEE Transactions
on, 100(6):509–516, 1978.

[3] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic Verification
of Finite-State Concurrent Systems using Temporal Logic Specifica-
tions. ACM Transactions on Programming Languages and Systems
(TOPLAS), 8(2):244–263, 1986.

[4] J. Esparza and K. Heljanko. Unfoldings - A Partial-Order Approach to
Model Checking. EATCS Monographs in Theoretical Computer Science.
Springer-Verlag, 2008.

[5] B. Finkbeiner. Bounded Synthesis for Petri Games. In Correct System
Design, pages 223–237. Springer, 2015.

[6] B. Finkbeiner, M. Gieseking, and E.-R. Olderog. ADAM: Causality-
Based Synthesis of Distributed Systems. In Computer Aided Verifica-
tion, pages 433–439. Springer, 2015.

[7] B. Finkbeiner and E.-R. Olderog. Petri Games: Synthesis of Distributed
Systems with Causal Memory. In Proceedings Fifth International Sympo-
sium on Games, Automata, Logics and Formal Verification, GandALF
2014, Verona, Italy, September 10-12, 2014., volume 161 of EPTCS,
pages 217–230, 2014.

[8] J. Hecking-Harbusch. A Game-Based Semantics for CSP. Bachelor’s
Thesis, Saarland University, 2015.

[9] T. Henzinger, B. Horowitz, and R. Majumdar. Rectangular Hybrid
Games. Springer, 1999.

[10] P. Jančar. Undecidability of bisimilarity for Petri nets and some related
problems. Theoretical Computer Science, 148(2):281–301, 1995.

[11] P.G. Jensen, K.G. Larsen, and J. Srba. Real-Time Strategy Synthesis
for Timed-Arc Petri Net Games via Discretization. In Model Checking
Software, pages 129–146. Springer, 2016.

78

REFERENCES REFERENCES

[12] M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures and
domains, part I. Theoretical Computer Science, 13(1):85–108, 1981.

[13] E.-R. Olderog. Strong bisimilarity on nets: a new concept for comparing
net semantics. In Linear Time, Branching Time and Partial Order in
Logics and Models for Concurrency, pages 549–573. Springer, 1988.

[14] R. Paige and R.E. Tarjan. Three partition refinement algorithms. SIAM
Journal on Computing, 16(6):973–989, 1987.

[15] R.J. van Glabbeek. Structure Preserving Bisimilarity, Supporting an
Operational Petri Net Semantics of CCSP. In Correct System Design,
pages 99–130. Springer, 2015.

[16] R.J. van Glabbeek and F. Vaandrager. Petri Net Models for Algebraic
Theories of Concurrency. In PARLE Parallel Architectures and Lan-
guages Europe, pages 224–242. Springer, 1987.

79

	Introduction
	Background
	Petri Nets
	Definition of Petri Nets
	Enabledness and Firing of Transitions
	Boundedness
	Preset and Postset
	Example of a Petri Net

	Petri Games
	Definition of Petri Games
	Unfoldings
	Strategies
	Example of a Petri Game

	Bisimulation between Petri Nets
	Definition of Bisimulation between Petri Nets
	Example of Bisimilar Petri Nets
	Properties

	Equivalence
	Goals of the Equivalence
	Relating System Places
	Relating Bad Markings
	Deadlock-Avoiding Choices
	Strengthening towards System Decisions
	History of the System
	Example of Different Histories at System Places
	Bisimilarity Proof
	History Markings

	Strengthening towards System History
	History of the Environment
	Example of Environment Places Hiding History
	Bisimilarity Proof

	Strengthening towards Environment History

	Applications
	Reduction of Environment Tokens
	Non-Deterministic Strategies
	Equivalence Example
	Proof of Bisimilarity
	Unfoldings
	Winning Strategies
	Example Strategy Translation

	Characteristics
	Existence of Finite Bisimulations
	Equivalence Relation
	Reflexivity
	Symmetry
	Transitivity

	Bisimilar History
	History Markings realize Bisimilar History

	Algorithm for Strategy Translation

	Related Work
	Conclusion
	Summary
	Future Work
	Deterministic Strategies
	True Concurrency Semantics
	Applications

	Appendix
	Reachable Markings in Fig. 7 and Fig. 8
	Bisimulation between Fig. 9 and Fig. 10
	Example Run of Algorithm 1

