
Counterfactual Causality in Real-Time Systems

Saarland University

Department of Computer Science

Master’s Thesis

submitted by

Felix Jahn

Saarbrücken, July 2023

Supervisor: Prof. Bernd Finkbeiner, Ph.D.

Advisor: Julian Siber

Reviewer: Prof. Bernd Finkbeiner, Ph.D.

Dr. Anne-Kathrin Schmuck

Submission: July 04, 2023

Abstract

Verifying specifications of computer systems is a well-explored task addressed, for
instance, by model checking. Understanding a negative model checking result is, how-
ever, difficult. In such an instance, a counterexample witnessing the violation will be
returned but yields only limited insights for debugging.

A promising technique to foster understanding of counterexamples is to generate
explanations based on causal analyses. For real-time systems – which have to satisfy
crucial real-time constraints and are increasingly deployed in various safety-critical con-
texts like traffic, manufacturing, or healthcare – causal analyses, however, are especially
hard: not only the performed actions of the systems but also their real-time behavior
contributes to the overall system behavior.

In this thesis, we present multiple notions of counterfactual causality for real-time
systems that consider both actions and real-time behavior for potential causes. This then
yields precise explanations for observed effects in the executions of the systems, which
we model as timed automata. Our definitions are based on the seminal conceptual work
on causality by Halpern and Pearl. We adapt their ideas for counterfactual reasoning
to the real-time setting by representing counterfactual executions using counterfactual
trace automata. This enables us to define progressively more refined causality notions
and to thereby adopt different perspectives on the timing behavior of real-time systems.

We demonstrate the destined notions on numerous examples, present some basic
theoretical properties, and provide algorithms for checking computing causal relation-
ships. Furthermore, we analyze the complexity of both problems, which we show to
be EXPSPACE-complete. Lastly, we report on the implementation of a Python tool for
checking and computing causes for real-time systems modeled in Uppaal, enabling an
automated explanation of counterexamples.

Acknowledgements

My sincere thanks go to Julian, who advised me closely from the very start of this
project. Uncountable hours were spent together at the – always completely scribbled
– whiteboard, uncountable possible causality notions were created, and uncountable
philosophical discussions developed, giving me uncountable “aha”-experiences about
the causal character of time. Thanks for the diverse scientific advice, for awaking my
enthusiasm for the topic of causality, and for all the time spent bending my scarily
nested English sentences by giving always great writing feedback – I’m afraid when
reading these lines, you are also already eagerly waiting for a point again, so once again
very precise: Thank you, Julian!

The supervision of this thesis – the last examination in my study – by Prof. Finkbeiner
is, in some way, a closing circle as he also gave the very first computer science course I
attended at university, the good old Programming 1. Apparently, he was able to excite
me about computer science, and, almost six years later now, I am standing here and
would like to thank him for his professional advice whenever necessary and scientific
freedom whenever possible. Thanks in advance to him as well as to Anne-Kathrin
Schmuck for reviewing the thesis.

I can only be grateful for my wonderful proofreaders, who gave me another boost of
motivation in the last few days. Thanks to Dominik, Julia, and Lukas for your helpful
remarks and a big sorry for the narrow time window I gave you! Particularly, I want
to thank Yannick and Dominik for the mentoring you offered me throughout the years,
that was, however, and especially exceptionally, actually not even close to being limited
to scientific insecurities.

Thanks to all those who always helped me throughout my studies with my panic and
clumsiness to install even the simplest things. Special thanks in this regard to Luca, but
of course not only in this regard, hard to grasp all the things we have experienced in all
the years. I cannot thank enough and definitely not name all the amazing people that
make Saarbrücken what it means to me. Un merci particulier à tous les enfants terribles
de la ville, on reste fou! And deeply connected greetings to all those near and far who
do not stop dreaming. Very heartfelt thanks go as well to my in such short time insanely
cherished roommates for always taking care of "De Klään", especially in the last days.

Whether as “Klääna” or for some years now as “Großer”, I could always count on
your full support in all areas and situations of life. How you have helped me along my
educational journey, ink snakes slithering through lichen, mosses, and ferns probably
are the best report. Mom, Dad, from the bottom of my heart, thank you both!

...as forever the sun always rises again!

Eidesstattliche Erklärung
Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement in Lieu of an Oath
I hereby confirm that I have written this thesis on my own and that I have not used any
other media or materials than the ones referred to in this thesis.

Einverständniserklärung
Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die
Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent
I agree to make both versions of my thesis (with a passing grade) accessible to the public
by having them added to the library of the Computer Science Department.

Saarbrücken, 04 July, 2023

Erklärung
Ich erkläre hiermit, dass die vorliegende Arbeit mit der elektronischen Version übere-
instimmt.

Statement
I hereby confirm the congruence of the contents of the printed data and the electronic
version of the thesis.

Saarbrücken, 04 July, 2023

Contents

1 Introduction 1

2 Preliminaries 7

2.1 Counterfactual Causality . 7
2.1.1 Causal Models and Formulas . 7
2.1.2 But-For Causality . 9
2.1.3 Actual Causality à la Halpern and Pearl 12

2.2 Real-Time Systems . 13
2.3 Real-Time Logics . 20

3 Formal Definitions of Counterfactual Causality in Real-Time Systems 23

3.1 Delay Causality in Real-Time Systems . 23
3.1.1 Causal Setting: Events and Effects in Real-Time Systems 23
3.1.2 But-For Causality in Real-Time Systems 29
3.1.3 Actual Causality in Real-Time Systems 37

3.2 Timestamp Causality . 46
3.3 Remarks, Limitations, and Discussion . 55

4 Algorithms for Cause Checking and Computation 61

4.1 Cause Checking . 62
4.2 Cause Computation . 71

5 Causality Tool 83

5.1 Usage and Functionalities . 83
5.2 Implementation Remarks . 86
5.3 Experiments and Measurements . 90

5.3.1 Experiments on Examples from the Literature 90
5.3.2 Cause Checking Measurements . 94
5.3.3 Cause Computation Measurements 99

xi

6 Related Work 105

6.1 Causality in Computer Science . 105
6.2 Causality in Real-Time Systems . 108

7 Future Work 111

7.1 Future Theoretical Work . 111
7.2 Desired Upgrades of the Causality Tool . 115

8 Summary 117

Bibliography 119

xii

Chapter 1
Introduction

Gaining knowledge about the behavior of computer systems is a common goal in many
areas of computer science research and of verification-oriented formal methods in partic-
ular. For various kinds of systems, gaining knowledge on how a certain system behaves
is a well-explored task: In the past decades, different methods like testing, model check-
ing, or deductive verification have proven their capability to provide guarantees about
system behaviors.

A more recent line of research is concerned with the task of gaining knowledge on
why systems behave in a certain way. Finding explanations – in the various ways this
term might be understood – for the behavior of systems is of steadily increasing interest:
Not only is such an understanding crucial to identify reasons for unexpected system
behaviors, easing, for instance, system repair, providing explanations for the output
of a system is also a desirable feature in itself as computer systems are increasingly
entrusted with far-reaching decisions concerning people’s lives.

This interest particularly applies to real-time systems. These systems find crucial ap-
plication in contexts where the timing of the involved systems is crucial for correctness.
Such contexts arise, for instance, in various traffic or healthcare applications in which
processed data or events underlie certain time constraints.

Explaining the behavior of such real-time systems comes with an additional layer
of complexity: Not only the performed actions but also the variable timing in the
execution of the system might influence its overall behavior. Therefore, attempts in
finding system explanations by playing through possible combinations of the actions
and timing in the course of a system execution manually will quickly collapse. But
also for discrete-time systems, gaining knowledge of the reasons for their behavior gets
quickly manually infeasible with scaling system size. Consequently, recent research
attempting to automatize this process using different ideas, approaches, and methods
has begun.

1

1. Introduction

Causality. The originally philosophical concept of causality was for this research of
particular relevance from the very start. Loosely speaking, causality is concerned with
the influence that certain objects have to the occurrence of another object. In the course
of centuries, various concrete notions of causality emerged, differing especially in the
way they captured the informal idea of "the influence to production".

Especially an approach called counterfactual causality gained particular popularity.
Counterfactual causality tries to draw conclusions on what objects have an influence on
the production of another object based on so-called counterfactual reasoning. Going
back to considerations of David Hume already in the 18th century, he described the
principle of counterfactual reasoning as follows:

"If the first object had not been, the second never had existed."

– David Hume1 –
The "first object" is then understood as a cause for the occurrence of the "second object".

Retrieved by Lewis in the 1970s [53], it was then Halpern and Pearl who published a
formalized notion of counterfactual causality [40] and gave the concept eminent atten-
tion in computer science, especially in those fields that work in a formal manner. Using
a set of equations, Halpern and Pearl represent the causal behavior of the world in a
causal model and consider certain events in the world ("first object") that might cause
a certain effect ("second object"). For this to hold, they require three conditions to be
fulfilled: (1) The events and the effect indeed occurred – the satisfiability condition, (2) if
the events had not occurred, also the effect had not occurred – the counterfactual condition
capturing exactly the idea of Hume, and (3) the events are minimal in this regard – the
minimality condition.

As a further notable contribution of Halpern and Pearl, they extend the basic prin-
ciple of counterfactual reasoning, referred to as but-for causality, in their formalization
of the counterfactual condition with the idea of contingencies to tackle the so-called
preemption problem. In a nutshell, the preemption problem occurs when an event
causing an effect preempts a second event that would cause the effect as well. In this
case, the first event will by the basic counterfactual reasoning not be recognized as a
cause, as assuming the event to not occur leads on the occurrence of the second event,
and this in turn still on the occurrence of the effect. Contingencies however allow fixing
certain parts in the counterfactual reasoning to be as they had been in the actual world
– in the case of the preemption problem to fix the non-occurrence of the second cause.
With this refined causality concept named actual causality [38], the first event will now
be recognized as a cause.

Error localization. Causality was successfully applied in various approaches to find
explanations for the behavior of computer systems: Different kinds of explanations
were obtained for different kinds of systems or system behaviors [35, 32, 22]. Influential

1In his book on Philosophical Essays Concerning Human Understanding [46].

2

Contents

in this regard was the work of Beer et al. who developed – for their setting of discrete
Kripke structures – a notion of counterfactual causality in the flavor of Halpern and Pearl
[16]. They used their adapted notion of but-for causality (i.e., without contingencies) to
explain violations of Linear Temporal Logic (LTL) properties: Given a system execution
violating a given LTL formula, they identified events in the execution that caused the
violation. Finding such kinds of explanations is also subsumed under the term of error
localization [14].

Real-time systems. While there is, as mentioned already, quite a broad range of
developed causality notions for various kinds of computer systems, causality and error
localization in the setting of real-time systems have been studied only sparsely. The
class of real-time systems [55] describes computer systems that need to satisfy crucial
real-time constraints regarding, for instance, their timing behavior relative to other
systems or resulting from temporal deadlines for the computation of output that the
systems should fulfill. With the capability to capture such timing behaviors, real-time
systems gained increasing importance in various fields of application: In manufacturing,
the correct temporal interaction between different processes is essential for the overall
outcome, healthcare treatments are subject to critical time-related restrictions, and also
in various traffic contexts like railway crossings or autonomous transportation, the
correct dynamical timing with respect to (other) traffic participants is of indispensable
importance.

A common formalism for modeling such real-time systems are timed automata [8, 17].
Timed automata express real-time constraints using real-valued clocks that measure
certain times throughout the system execution, that can be updated, and on whose
current values the further execution may depend. In contrast to discrete systems, the
concrete delays spent in locations between the execution of subsequent actions can vary
non-deterministically or depending, for instance, on the timing of received input.

Especially for this reason, finding explanations for the behavior of real-time systems
is a particularly difficult task. Consider, for instance, the following real-time example
from the medical sector: After a surgery, two further treatment options T1 and T2 can
be conducted. For the optimal healing process of a specific disease, it is crucial that
treatment T1 is applied exactly six hours after the surgery. However, imagine now that
a doctor decides to apply treatment T2 twelve hours after the surgery which leads to
a non-optimal healing process. Intuitively, we would declare both the false treatment
as well as the time of the treatment application as aspects of this scenario that caused
the non-optimal healing. For explaining the behavior of real-time processes it is, hence,
essential to take both the performed actions as well as the timing component into
account. Thereby, a major challenge arises from the infinite number of possible timing
alternatives as known results on decidability and complexity of Halpern and Pearl’s
causality consider only models with finitely many alternative events [7].

3

1. Introduction

The methodical research to overcome this obstacle for gaining explanations of real-
time scenarios is, as mentioned, still in its infancy. Early causality-related works on
real-time systems head into the direction of so-called system repair [64, 49], an ap-
proach that tries to identify the faulty parts of a system that caused a faulty behavior.
In the field of error localization, existing works analyze the influence solely of certain
delays or delay ranges to the execution [50], or apply other causality concepts using no
counterfactual reasoning [56].

Contributions. This thesis aims to contribute to the study of causality in the context of
real-time systems modeled as timed automata: We develop several notions of causality
in the counterfactual flavor of Halpern and Pearl that consider both, performed actions
and the timing of the system, to find explanations for an observed system behavior.
Given a run of an automaton, we identify the actions and real-time events in the run
that were causal for a certain effect. That is, we apply causality to obtain a form of error
localization.

Those causal conclusions are drawn based on counterfactual reasoning that simulates
the possible counterfactual executions of the system with respect to potential causes.
We, therefore, take an automata-theoretical approach and use for the counterfactual
simulation, following the ideas of Coenen et al. [22], the concept of counterfactual trace
automata. Informally, a counterfactual trace automaton for a certain set of events repre-
sents exactly the possible counterfactual traces, i.e., those traces that allow alternative
actions or timings for the events in the given set while the events not in the set get
enforced to remain unchanged. If there is then a counterfactual trace in whose corre-
sponding counterfactual run the effect is no longer present, we classify the events as a
cause for the effect in the original run. Those effects in runs of timed automata are de-
scribed using Metric Interval Temporal Logic (MITL) [9], a decidable – and therefore model
checkable – extension of Linear Temporal Logic (LTL) to the real-time setting. Crucially,
representing counterfactual simulations in terms of automata enables us to reduce the
problem of checking causes to the MITL model-checking problem.

Furthermore, again based on a careful automata construction, we succeed in adding
contingencies to the counterfactual reasoning to obtain not only a notion of but-for
causality but even of actual causality in real-time systems. Again inspired by Coenen
et al. [22], we do so by constructing contingency automata that in every step allow coun-
terfactual runs to reset their configuration as it was in the respective step of the actual
run. As in the foundational setting of Halpern and Pearl, contingencies solve, at least
for some scenarios, also in our real-time setting the problem of preemption.

Early in the study of real-time causality, we noticed that the perspective taken on
real-time events crucially affects the causal analysis. We thereby distinguish two per-
spectives: A delay perspective that considers the delays spent between two actions in
the locations of the timed automaton as time events, and a timestamp perspective that
considers the global timestamps of actions, that is, the overall time since the start of

4

Contents

the automaton as time events. For both perspectives, we present causality notions, that
reflect the differing perspectives on events in differing proceedings for the counterfac-
tual reasoning and compare the two notions in terms of how they perform in different
scenarios.

In general, we will consider numerous examples throughout the thesis. This is in line
with a remarkable statement by Joseph Halpern about a peculiarity in the theoretical
research on causality and the process of developing definitions of causality:

"What’s really hard about this area, I’m gonna give you a definition and would
love to be able to prove a theorem that says: "This is the right definition."

I’m a theoretician, that’s what I do, I prove theorems.
If I only knew the statement of the theorem, I might have a shot of proving it,

but I don’t know what it means to have the "right" definition of causality. I don’t know what
the theorem should say. [...]

The way you show your definition is good is to show that - gee - look at
how well it does it all in all the examples."

– Joseph Y. Halpern2 –

Unsurprisingly, Halpern’s observation applies to our real-time setting as well: We
do not know how to prove our suggested causality notions to be "right", we can only
demonstrate their usefulness by showing them to do the "right" thing in various exam-
ples, that is, that they detect causes in accordance with our intuitive causal judgments.
We will do so for demonstration purposes mainly on synthetic examples but will also
present some causal analysis of (simplified) real-world scenarios.

We additionally support our definitions by showing that they fulfill some basic
properties that we would expect to hold in meaningful notions of causality. Moreover,
we prove our notions to be decidable and computable by giving algorithms for those
tasks and proving their correctness. For the computation of minimal causes, we present
an optimized algorithm for computing causes. Showing this optimized algorithm to
compute exactly the intended causes turned out to require a quite involved correct-
ness proof. We furthermore report on the computational complexity of checking and
computing causes and conclude via a reduction from model checking that the cause-
checking problem is EXPSPACE-complete.

As a last major part of our work, we implemented a Python tool for checking and
computing causes in the sense of our causality definitions. The project as well as
installation and usage instructions can be found at

https://github.com/FelixJahnFJ/Real-Time-Causality-Tool.

2Recording of his talk at AAAI 2018: Actual Causality: A Survey [39].

5

https://github.com/FelixJahnFJ/Real-Time-Causality-Tool

1. Introduction

The tool relies on the modeling and verification software for real-time systems Uppaal [2]
and the Python library Pyuppaal [1] allowing to use most of Uppaal’s functionalities in
Python. More concretely, the tool processes real-time systems and effect descriptions
specified in Uppaal. The key in the development was then to implement – based on self-
written data structures for timed automata and timed traces – all the formally introduced
automata operations like automata intersection, and the construction of counterfactual
trace automata and contingency automata. Together with the discussed algorithmic
methods and use of Uppaal’s model checker, this enables behavior explanation of real-
time systems by highlighting causal action and time events in the execution. Thus, we
provide a fully automatized error localization technique for real-time systems.

Due to the dependence on Uppaal, the tool inherits its limitations. In particular,
Uppaal’s restricted specification language allows the tool to handle effects only for
a small fragment of MITL. Nonetheless, we tested and experimented with the tool
in various examples and measured its runtime performance extensively in different
scenarios. Especially, we want to emphasize that all the examples presented in this
thesis are available for the tool as well and can be accessed under

https://github.com/FelixJahnFJ/Real-Time-Causality-Tool/tree/main/Thesis_Examples.

Outline. This thesis is organized in the following manner: We start with preliminary
remarks on Halpern and Pearl causality, real-time systems, and the real-time logic MITL
in Chapter 2. Chapter 3 forms the heart of our formal development of causality notions
in the real-time setting: we introduce the different definitions, show basic properties for
them, present how they apply in numerous examples, and discuss further aspects and
limitations of the notions. In Chapter 4, we focus on the discussion of the algorithms
for checking and computing of causes, while Chapter 5 reports in more detail about
the developed causality tool. In Chapter 6, we report on related work in the field of
causality in computer science contexts and particularly real-time systems. Lastly, we
comment on possible lines of future research in Chapter 7 and conclude with some final
remarks in Chapter 8.

6

https://github.com/FelixJahnFJ/Real-Time-Causality-Tool/tree/main/Thesis_Examples

Chapter 2
Preliminaries

We start the theoretical presentation with preliminary notes about the concept of coun-
terfactual causality in Section 2.1, real-time systems in Section 2.2 and their correspond- : Section 2.1, p. 7

: Section 2.2, p. 13ing logics in Section 2.3.
: Section 2.3, p. 20

2.1 Counterfactual Causality

The goal of the thesis is to introduce notions of counterfactual causality for real-time
systems, hence, we first address some foundational background of causality. More
precisely, we look at the counterfactual concepts of actual causality by Halpern and
Pearl and its precursor, the more basic but-for causality. Originally published in 2001
[40], the definition of actual causality was refined and improved multiple times [41, 37]
so that we focus on the latest definitions by Halpern from 2015. We thereby content
to give the key intuition behind the important ideas in Halpern’s work. For a more
detailed discussion of the foundations of counterfactual and actual causality as well as
various examples, we refer to the above cited publications, to Halpern’s 2016th textbook
"Actual Causality" [38], and especially to the recording of Halpern’s excellent talk at
AAAI-18 [39].

2.1.1 Causal Models and Formulas

First, we discuss Halpern and Pearl’s formal causal setting we are working in. Informally
speaking, we describe the world and its causal behavior by variables that affect each
other depending on their values. We thereby split the variables in exogenous variables, Def. exogenous

variablewhose values are taken as given (e.g., values that are determined by factors outside
the model) and endogenous variables, that might be assigned to varying values and are Def. endogenous

variable

7

2. Preliminaries

therefore the variables one considers as (parts of) potential causes1.
Formally, we use a signature S = (U,V,R) that explicitly lists the exogenous variablesDef. signature

U, the endogenous variables V and for every variable Y ∈ U ∪ V its associated possible
values R(Y). The causal model M = (S,F) consists then in addition to the signature alsoDef. causal model

of a set of structural equations F = {FX |X ∈ V}. For an endogenous variable X ∈ V, theDef. structural
equation function FX : (×U∈UR(U)) × (×Y∈V\{X}R(Y)) → R(X) specifies the value of X given the

values of all other variables in U ∪ V.
External interventions in a causal model M are then mimicked by setting the values

of some variable X to a fixed value x. This results in a new causal model MX←x, that
is identical to M, except that the equation FX is replaced by X = x. Interventions at
multiple variables are then defined recursively as

M[X1←x1,...,Xn←xn,Xn+1←xn+1] :=M[X1←x1,...,Xn←xn][Xn+1←xn+1].

Like Halpern, we restrict the theory to recursive models, that is, models with a totalDef. recursive model

ordering ≺ on the endogenous variables for which X ≺ Y implies X to be independent
of Y, i.e., the value of Y cannot affect the value of X. In recursive models, the structural
equations have a unique solution for a given context u⃗ ∈ (×U∈UR(U)), that is, a valueDef. context

setting for the exogenous variables U.

To reason about causality, we consider a small language of causal formulas: For a
signature S = (U,V,R), primitive events of the form X = x with X ∈ V and x ∈ R(X) areDef. primitive event

used to build causal formulas of the form [Y⃗ ← y⃗]φ, wherebyDef. causal formula

• φ is a Boolean combination of primitive events,

• Y⃗ = (Y1, . . . , Yk)
⊤ with distinct variables Y1, . . . , Yk in V, and

• y⃗ = (y1, . . . , yk)
⊤ with yi ∈ R(Yi) for all i = 1, . . . , k.

In the case of k = 0, we simply write φ.
The satisfiability relation of a causal formula ψ is then defined in a causal model

M = (S,F) with a given context u⃗ inductively on the formula:

• (M, u⃗) |= X = x for a primitive event X = x, if the unique solution of FX in the
model M in context u⃗ is x,

• (M, u⃗) |= φ for a Boolean combination of primitive events φ is defined in the for
Boolean operations expected way, and

• (M, u⃗) |= [Y⃗ ← y⃗]φ, if (MY⃗=y⃗, u⃗) |= φ for a primitive event X = x.

Hence, a causal formula [Y⃗ ← y⃗]φ is true in a model M, if φ would be true after an
external intervention that sets Y⃗ to y⃗.

1In fact, exogenous variables are in several examples from the literature even fully omitted.

8

2.1. Counterfactual Causality

Example 2.1.1. We want to represent the process of a person using a coffee machine as a
causal model. The machine requires to push both a button and to insert a coin in order
to produce coffee. The order of pushing the button and inserting a coin does not matter.
We choose the following variables:

• Exogenous variables UB and UC with UB = 1 iff the person intends to push the
button and UC = 1 iff the person intends to insert a coin,

• endogenous variables XB and XC with XB = 1 iff the button is pushed and XC = 1

iff a coin is inserted, and

• endogenous variable C with C = 1 iff coffee is produced.

The intended causal behavior can then be modeled with the following structural equa-
tions for the endogenous variables:

• FXB
= UX,

• FXC
= UC,

• FC = XB ∧ XC.

The above signature and structural equations give then the causal model M. The
structural dependencies in this model can be visualized in the following way:

UB

XB

UC

XC

C

For a context u⃗, we can then, for instance, express that coffee is produced in this context
by (M, u⃗) |= C = 1. △

2.1.2 But-For Causality

With the previous definitions in hand, we are ready to head to the different notions of
causality. Informally, we always want to express what it means for a set of events to be a
cause for some effect. For this being the case, we require three conditions, a satisfiability,
a counterfactual, and a minimality condition, that informally state the following:

SAT The events and the effect indeed occurred (in the actual world).

CF In the counterfactual world in which the events did not occur, also the effect does
not occur.

9

2. Preliminaries

MIN The set of events is minimal, i.e., no strict subset satisfies SAT and CF.

The CF-condition forms thereby the heart of the definition – and the condition in
that different notions of counterfactual causality vary. The most basic counterfactual
concept we discuss is the so-called but-for causality, capturing exactly the basic intuitive
idea behind counterfactual reasoning, namely to argue that if the causal event(s) had
not happened, the effect would also not have happened. With respect to a certain set of
events, we refer to events in this sets as "causal events"2.

In our setting given a causal model M and context u⃗, we consider

• as set of events the assignment of a set of endogenous variables, that might thereforeDef. set of events

also be represented in vector notation X⃗ = x⃗or as an conjunction of primitive events
X1 = x1 ∧ · · ·∧ Xn = xn, and

• as effects a Boolean combination φ of primitive events.Def. effects

This leads us to the formal definition of but-for causes, initially going back to the
ideas of Lewis in 1973 [54]. Since but-for causes in their original flavor do not require
minimality, we introduce the separate terminology of minimal but-for causes.

Definition 2.1 (But-For Causality)
X⃗ = x⃗ is a but-for cause of φ in (M, u⃗), if the following two conditions hold:Def. but-for cause

SAT (M, u⃗) |= X⃗ = x⃗ and (M, u⃗) |= φ.

CFBF There is a setting x⃗ ′ of the variables in X⃗ such that (M, u⃗) |= [X⃗← x⃗ ′]¬φ.

We call the cause minimal but-for cause if, furthermore, the following condition holds:Def. minimal but-for
cause

MIN X⃗ is minimal, i.e., no strict subvector of X⃗ satisfies SAT and CFBF.

As expressed in the CFBF-condition, but-for causes ask in the counterfactual reasoning
for an external intervention, i.e., an alternative variable setting x⃗ ′ of the causal variables
X⃗, that prevents the effect to occur. We also call this alternative variable setting x⃗ a witnessDef. witness

for the fact that X⃗ = x⃗ is a cause of φ. The SAT- and MIN-condition are straightforward
formalizations of the informal description above.

Example 2.1.2. Recall the above Example 2.1.1 of the coffee machine. We discuss po-:Example 2.1.1, p. 9

tential causes for the effect C = 1 given a context u⃗ = (1, 1), i.e., potential causes for the
producing of coffee when the person intends to push the button and to insert a coin.

2Which might actually be a bit misleading, as we do so regardless of whether or not the set of events is
indeed a cause.

10

2.1. Counterfactual Causality

• XB = 1 and XC = 1 are both minimal but-for causes for C = 1 in (M, u⃗): (M, u⃗) |=
XB = 1 and (M, u⃗) |= C = 1, hence, the SAT-condition holds. To reason for CFBF,
we consider the alternative setting x ′B = 0 and have (M, u⃗) |= [XB ← 0] ¬C = 1. The
MIN-condition is always satisfied for singleton but-for causes. Showing XC = 1

to be a minimal but-for cause works analogously.

• XB = 1 ∧ XC = 1 is a but-for cause, but no minimal but-for cause for C = 1:
The SAT-reasoning works similar as above and the CFBF-condition is fulfilled, for
instance, with the witness X ′B = 0∧ X ′C = 0. Minimality does not hold since there
are as shown above strict subvectors satisfying SAT and CFBF. △

While but-for causality handles different kinds of real-world examples – provided
they are modeled in a suitable way – as desired and in agreement to the intuition,
this simple concept fails if the the causal event(s) preempt another potential cause. In
those cases, the further potential cause then occurs in the counterfactual reasoning and,
therefore, also the effect is still present such that the mere absence of the causal event(s)
does not suffice to prevent the effect. Hence, the cause is not recognized as such, as it is
demonstrated in the following example.

Example 2.1.3. We consider a drink machine, where both coffee and tea are ordered
immediately after each other. If a drink is ordered, the machine starts to produce
the respective drink. However, the machine cannot produce different drinks at the
same time, hence, only the first order (in this case coffee) can be produced. We are
interested whether the machine pours out a drink, which is the case after coffee or
tea was produced. The scenario is modeled in the following way, where exogenous
variables are fully omitted:

• CO stands for "Coffee is ordered", CP for "Coffee is produced", hence, CP = CO.

• TO and TP have the corresponding meaning for tea. However, tea is only produced
if also coffee is not produced, i.e., TP = TO∧ ¬CP.

• D stands for "A drink is poured out". Here, it does not matter which kind of drink,
i.e., D = CP ∨ TP.

CO

CP

TO

TP

D

CO = 1 is no but-for cause for D = 1 since the CFBF-condition is not fulfilled: Even
with the potential witness CO = 0, we have (M, u⃗) |= [CO← 0]D = 1. △

11

2. Preliminaries

The example illustrates a deviation from our intuition as we would expect the ordering
of coffee to be a cause for a drink to be poured out. This is exactly due to the preemption
of the further potential cause of producing tea.

2.1.3 Actual Causality à la Halpern and Pearl

In order to capture also this broader range of examples, Halpern and Pearl refine the
notion of but-for causality by the idea of so-called contingencies. Contingencies allow
to fix parts of the counterfactual world to be as they had been in the actual world. More
concretely, we allow further potential causes to not take effect in the counterfactual rea-
soning, such that now the absence of the actual cause indeed prevents the effect. This
more involved concept of counterfactual causality is then called actual causality. We
define it by only extending the CFBF-condition with contingencies to obtain a more ad-
vanced CF-condition, now denoted CFAct, the other two conditions remain unchanged.

Definition 2.2 (Actual Causality à la Halpern and Pearl)
X⃗ = x⃗ is an actual cause of φ in (M, u⃗), if the following three conditions hold:Def. actual cause

SAT (M, u⃗) |= X⃗ = x⃗ and (M, u⃗) |= φ.

CFAct There is a set W⃗ ⊆ V of endogenous variables with setting w⃗, i.e., (M, u⃗) |= W⃗ = w⃗,
and there is a setting x⃗ ′ of the variables in X⃗ such that (M, u⃗) |= [X⃗← x⃗ ′, W⃗ ← w⃗]¬φ.

MIN X⃗ is minimal, i.e., no strict subvector of X⃗ satisfies SAT and CFAct.

The set W⃗ in the CFAct-condition formalizes exactly the aforementioned concept of
contingencies. We fix its actual values w⃗ for the counterfactual reasoning by reasoning
in the new causal model MW⃗←w⃗ such that the alternative setting x ′ can then no longer
affect the values of W⃗. Similar to witnesses of but-for causes, we now say the tuple
(W⃗, w⃗, x⃗ ′) to be a witness for the fact that X⃗ = x⃗ is an actual cause of φ.Def. witness

Indeed, actual causality solves the problem of preemption.

Example 2.1.4. Consider again the scenario in Example 2.1.3. The ordering of coffee:Example 2.1.3, p. 11

CO = 1, that was no but-for cause, is an actual cause for the drink to be poured out:
We choose the contingency TP = 0, i.e., we fix the fact that in the actual world no tea
is produced. Then, we have (M, u⃗) |= [CO ← 0, TP ← 0] ¬CO = 1. Hence ({TP}, TP =

0, CO = 0}) is a witness for the fact that CO = 1 is an actual cause of D = 1. △

Note, that in the above example the larger set of events CO = 1 ∧ TO = 1 is a but-for
cause. This shows, that actual causality analyzes causal connections more precisely
than but-for causality, which can also be proven in general.

Proposition 1. If X⃗ = x⃗ is a (minimal) but-for cause of φ in (M, u⃗), then there is a subvector
Y⃗ ⊆ X⃗ and a subsetting y⃗ ⊆ x⃗ such that Y⃗ = y⃗ is an actual cause of φ in (M, u⃗). In particular,
every singleton but-for cause is also an actual cause.

12

2.2. Real-Time Systems

Proof. Let x⃗ ′ be a witness for the (minimal) but-for cause X⃗ = x⃗. Then, (∅, ∅, x⃗ ′) is a
witness for X⃗ = x⃗ satisfying the SAT- and CFAct-condition also in the definition of actual
causality. If X⃗ = x⃗ is not minimal, taking a minimal subvector Y⃗ ⊆ X⃗ and subsetting
y⃗ ⊆ x⃗ that satisfies SAT and CFAct shows the first claim. The second claim simply
follows, since the only strict subset of singleton events is ∅, that never fulfills both SAT
and CFAct.

While we will not use causal models directly in the later definitions of counterfactual
causality in real-time systems, we will argue that our definitions do widely agree with
this foundational theory of causality in Section 3.3. : Section 3.3, p. 55

2.2 Real-Time Systems

Next, we introduce important definitions and results regarding real-time systems. As
commonly done, we represent real-time systems by timed automata and orient ourselves
at the underlying formalism of the model checker Uppaal [4, 17, 27]. This is mainly
because our developed causality tool (c.f. Chapter 5) uses several functionalities and :Chapter 5, p. 83

formats of Uppaal.
Timed automata use a set of real-valued clocks and so-called clock constraints over

this set of clocks to model the real-time behavior. For a set of clocks C, a clock constraint Def. clock constraint

is a conjunctive formula of atomic constraints of the form x ∼ n or x − y ∼ n with
x, y ∈ C, with ∼∈ {<,⩽,=,⩾, >}, and with n ∈ N. We denote the set of clock constraints
over a clock set C as CC(C). In contrast to the usual definitions of timed automata,
Uppaal allows not only to reset certain clocks when traversing a transition but to assign
clocks also to non-zero values specified in terms of Uppaal’s expression language. For
our purpose, it suffices to define a clock expression over a set of clocksC to be a composition Def. clock expression

of assignments of the form x := n for x ∈ C and n ∈ N (i.e., an assignment of a clock to
a fixed value) and denote the set of clock expressions as CE(C). We denote the "empty
clock expression" (that is, the expression not changing any clock values) as ϵ.

Definition 2.3 (Timed Automaton)
A timed automaton is a tuple TA = (Loc, l0, C,Act,→, I), where Def. timed automaton

• Loc is a finite set of locations,

• l0 ∈ Loc is the initial location,

• C is a finite set of clocks,

• Act is a finite set of actions,

• →⊆ (Loc× CC(C)×Act× CE(C)× Loc) is the finite transition relation, and

• I : Loc→ CC(C) is an invariant assignment.

13

2. Preliminaries

For (l, g, α, E, l ′) ∈→, we also write l g:α,E−−−−→ l ′.
If there is furthermore a labeling function L : Loc → P(AP) over a finite set of atomic

propositions AP, we talk about a labeled timed automaton.Def. labeled timed
automaton

We introduce some syntactic sugar for timed automata:

• If there are multiple transitions only differing by their actions, we combine them
to one transition annotated with a set of actions.

• For transitions l g:α,E−−−−→ l ′ with g = ⊤, we might omit the guard and for transitions
with E = ϵ, we might omit the clock expression.

• We will assume all our timed automata to be labeled. If no explicit labeling
function is given, we assume that the locations are labeled with their location
names, i.e., AP = Loc and L(l) = {l}.

All of this is also demonstrated in the following first example of a timed automaton.

Example 2.2.1. We model a coffee machine as a timed automaton depicted in Figure 2.1.
To start producing coffee, the machine requires its button to be pushed and takes then 5
time units to produce the coffee. While coffee is produced, further button pushes have
has no effect. Furthermore, the user of the machine can wait in front of the machine at
any time.

init prod coffee

x ⩽ 5

wait

push

x := 0

x < 5 : {push, wait}

{push, wait}

x = 5

{push, wait}

Figure 2.1: Timed automaton modeling a coffee machine

Invariants are annotated next to their locations (e.g., the invariant x ⩽ 5 below the
location "prod"), while actions, guards, and clock expressions are arranged around the
corresponding transition. △

For an execution of a timed automaton, we use clock assignments to represent the
current values of the clocks. Such a clock assignment over a set of clocks C is a functionDef. clock assignment

u : C→ R⩾0, i.e., a function from the clock set to the non-negative reals. u0 denotes the
assignment where all clocks have value 0. We write u ∈ g, if the clock assignment u
satisfies a clock constraint g ∈ CC(C), write u + δ for the clock assignment that results
out of u after δ ∈ R⩾0 time units have passed (that is, the clock assignment mapping all

14

2.2. Real-Time Systems

x ∈ C to u(x)+ δ), and write E(u) for the clock assignment that results after applying the
clock expression E ∈ CE(C) to u.

For a timed automaton TA = (Loc, l0, C,Act,→, I), we define the set of enabled tran-
sitions Post(l, u, α) of a given location l ∈ Loc at a given clock assignment u for a given
action α as

Post(l, u, α) := { l
g:α,E−−−−→ l ′ | g ∈ CC(C), E ∈ CE(C), and u ∈ g}.

We say that the timed automaton is timewise action-deterministic, if |Post(l, u, α)| ⩽ 1 for Def. action-
determinismall l ∈ Loc, clock assignments u, and α ∈ Act.

The operational semantics of timed automata is defined via a transition system with
states ⟨l, u⟩ consisting of the current location l and the current clock assignment u. We
shall also call the pair ⟨l, u⟩ a configuration of the timed automaton. We then allow two Def. configuration

types of transition between states: delay transitions, where the automaton spends some Def. delay transition

time in its current location, and action transitions, where the automaton takes an enabled Def. action transition

transition from the transition relation.

Definition 2.4 (Semantics of Timed Automata)
Let TA = (Loc, l0, C,Act,→, I) be a timed automaton. The semantics is defined as a

transition system whose states are pairs ⟨l, u⟩ of locations l ∈ Loc and clock assignments
u, whose initial state is ⟨l0, u0⟩, and whose transition relation is defined by

• ⟨l, u⟩ d−→ ⟨l, u+ δ⟩, if (u+ d ′) ∈ I(l) for all 0 ⩽ δ ′ ⩽ δ, δ ∈ R⩾0, (delay transition)

• ⟨l, u⟩ α−→ ⟨l ′, u ′⟩, if l g:α,E−−−−→ l ′ for some guard g and expression E such that u ∈ g,
u ′ = E(u), and u ′ ∈ I(l ′). (action transition)

Even though this spans an infinite and even infinite branching transition system, the
model-checking problem for certain logics like MITL (cf. Section 2.3) turn out to still be : Section 2.3, p. 20

decidable.

For our discussion of causality in real-time systems, the traces and runs of timed
automata will play a crucial role. We introduce three types of timed traces, all consisting
out of timed actions.

Definition 2.5 (Runs, Timed Actions, and Timed Traces)

1. A finite run of a timed automaton is a sequence of executable delay and action Def. finite run

transitions between the pairs of locations and clock assignments:

ρ = ⟨l0, u0⟩
δ1−→ α1−→ ⟨l1, u1⟩

δ2−→ α2−→ . . .
δn−→ αn−−→ ⟨ln, un⟩.

2. An infinite run of a timed automaton is an infinite sequence of executable delay Def. infinite run

and action transitions between the pairs of locations and clock assignments:

ρ = ⟨l0, u0⟩
δ1−→ α1−→ ⟨l1, u1⟩ . . .

δi−→ αi−→ ⟨li, ui⟩ . . . i = 2, 3,

15

2. Preliminaries

3. A lasso-shaped run of a timed automaton is an infinite run in lasso-form, i.e.,Def. lasso-shaped run

ρ = ⟨l0, u0⟩
δ1−→ α1−→ . . .

δn−→ αn−−→
(
⟨ln, un⟩

δn+1−−−→ αn+1−−−→ . . .
δp−1−−−→

αp−1−−−→ ⟨lp−1, up−1⟩
δp−→

αp−−→
)ω
.

4. A delay action is a pair ⟨δ, α⟩, where α ∈ Act is the action taken after a delay ofDef. delay action

δ ∈ R⩾0 since the last delay action (or the start of a timed automaton if it is the
first delay action).

5. A timestamp action is a pair ⟨t, α⟩, where α ∈ Act is the action taken at time-pointDef. timestamp action

t ∈ R⩾0.

6. A finite finite delay trace is a sequence of delay actions ξ = ⟨δ1, α1⟩ . . . ⟨δn, αn⟩.Def. finite delay trace

7. A lasso-shaped delay trace is a sequence of delay actions in lasso-form, i.e., ξ =Def. lasso-shaped
delay trace ⟨δ1, α1⟩ . . . ⟨δn, αn⟩

(
⟨δn+1, αn+1⟩ . . . ⟨δp, αp⟩

)ω
.

8. A finite timestamp trace is a sequence of timestamp actions ξ = ⟨t1, α1⟩ . . . ⟨tn, αn⟩Def. timestamp trace

where ti ⩽ ti+1 for all 1 ⩽ i ⩽ n− 1.

Delay traces can be transformed into timestamp traces by setting ti :=
∑i

j=1 dj and vice
versa timestamp traces into delay traces by setting di := ti − ti−1 (with t0 := 0). Given
a finite or lasso-shaped run ρ, the trace consisting of its delays/timestamps and actions
is called corresponding trace of ρ. Conversely given a trace, we speak of correspondingDef. corresponding

trace
Def. corresponding

runs

runs. We say that a trace is in a timed automaton TA if there exists a corresponding run

Def. trace in TA

of TA and denote the set of all traces in TA as Traces(TA). Already by definition, a
lasso-shaped run is an infinite run, however, there are also infinite runs that are not
lasso-shaped (and hence, not necessarily computably treatable). If only the locations
of a run are of interest we might omit the clock assignments and denote a run as
l0

δ1−→ α1−→ l1
δ2−→ α2−→ . . .

δn−→ αn−−→ ln.
Certain behaviors might occur in timed automata only after time is spent in a location

without performing a further action. Hence, we might also consider finite runs ending
with a delay and no further action written as l0

δ1−→ α1−→ l1
δ2−→ α2−→ . . . ln−1

δn−→ and
denote its corresponding trace as ⟨δ1, α1⟩ . . . ⟨δn,−⟩. Furthermore such a run might also
stay infinitely long in its last location, we represent this by allowing δn = ∞.

If a finite run ρ is a prefix of another run ρ ′, we call ρ ′ an extension of ρ. We therebyDef. extension

define ρ to be no prefix and, therefore, also no extension of itself, a run l0
δ1−→ α1−→

. . . ln−1
δ ′n−→ however to be a prefix and, therefore, an extension of l0

δ1−→ α1−→ . . . ln−1
δn−→

if δ ′ > δ.
Almost everywhere, it should become clear from the context whether we talk about

finite delay, lasso-shaped delay, or timestamp traces; if there might be ambiguity, we
will explicitly state which kind of timed trace is meant.

16

2.2. Real-Time Systems

Example 2.2.2. For the timed automaton given in Example 2.2.1, there is, for example, :Example 2.2.1, p. 14

the finite run

⟨init, x 7→ 0⟩ 4−→ push−−−→ ⟨prod, x 7→ 0⟩ 2−→ wait−−→ ⟨prod, x 7→ 2⟩ 3−→ wait−−→ ⟨coffee, x 7→ 5⟩

with corresponding finite delay trace

⟨4,push⟩⟨2,wait⟩⟨3,push⟩. △

For timewise action-deterministic timed automata, the corresponding runs of a given
trace in TA are uniquely determined.

Proposition 2. Let TA be a time-wise action-deterministic timed automaton. Then each trace
in TA has a unique corresponding run of TA.

Proof. The result is only proven for delay traces, the proofs for the other kinds of timed
traces work analogously. We proceed by induction on the length n of the trace.

n = 0: For the empty trace, the empty run is the unique corresponding run of TA.

n+ 1: Let ξ = ⟨δ1, α1⟩ . . . ⟨δn, αn⟩⟨δn+1, αn+1⟩ be a trace in TA. By induction, there
exists a unique corresponding run ρ ′ = ⟨l0, u0⟩

δ1−→ α1−→ . . .
δn−→ αn−−→ ⟨ln, un⟩

of ⟨δ1, α1⟩ . . . ⟨δn, αn⟩. Since ξ is a trace in TA and ρ ′ the unique run of its
prefix, we have Post(ln, un + δn+1, αn+1) ⩾ 1 and since TA is timewise action-
deterministic, we have also have Post(ln, un + δn+1, αn+1) ⩽ 1. Hence, there is
a unique element ln

g:α,E−−−−→ ln+1 ∈ Post(ln, un + δn+1, αn+1) and

ρ ′ := ρ
δn+1−−−→ αn+1−−−→ ⟨ln+1, E(un + δn+1)⟩

is the desired unique run corresponding run of ξ.

This unique corresponding run is for a timewise action-deterministic automaton, in
addition, easy to compute. This allows us to easily switch back and forth between traces
and their corresponding run, which will in the following be done oftentimes implicitly
without further justification. As a rule of thumb, we will talk about runs in contexts,
where the locations or clock assignments are of interest, and refer to traces in contexts,
where (only) the delays and actions matter.

We continue by defining some of the for our purpose important properties of runs
of timed automata. We thereby denote with ∆ = (δi)i∈I the sequence of all delays in a
run. Depending on the type of the run, ∆ might be a finite or an infinite sequence and
I correspondingly a finite or an infinite index set. In particular for a lasso-shaped run,
we define ∆ as an infinite sequence of delays resulting from infinite unrolling of the
lasso-part.

17

2. Preliminaries

Definition 2.6 (Run Properties)
Let ρ be a run of a timed automaton TA and∆ = (δi)i∈I the (possibly infinite) sequence

of its delays.

1. The execution time ExecTime(ρ) of ρ is defined as
∑

δi∈∆ := δi, whereby it mightDef. execution time

happen that ExecTime(ρ) = ∞.

2. ρ is called time-divergent, if ExecTime(ρ) = ∞, otherwise ρ is called time-convergent.Def. time divergence

3. ρ is called zeno, if it is an infinite but time-convergent run. Otherwise ρ is non-zeno.Def. zenoness

For a finite run ρ, we furthermore say that

4. ρ is timelocking, if there is no run of TA that is an extension of ρ.Def. timelock

5. ρ is deadlocking, if there is no run of TA that is an extension of ρwith further actions.Def. deadlock

We call a timed automaton non-zeno/timelock-free/deadlock-free, if all of its runs are
non-zeno/not timelocking/not deadlocking.

We denote the set of all runs of a timed automaton TA as Runs(TA) and the set of all
time-divergent runs as Runsdiv(TA).

Remark 2.2.1. Both time-locking as well as zeno runs are considered as modeling flaws
that should be avoided. Just for reasons of simplification, most of the timed automata
considered in the remainder of the presentations will, however, include in particular
zeno runs. △

A further key operation for our definitions of counterfactual causality in real-time
systems will be the intersection of timed automata. In contrast to for instance negation,
timed automata are closed under intersection by constructing their product automaton.
We define a slightly modified intersection operator, that given two labeled timed au-
tomata returns the labeled automaton, whose traces are exactly the intersection of the
traces of both given automata while using as labels only the one the first automaton.
The construction works as expected by basically building the product automaton and
using the labeling function of the first automaton.

Definition 2.7 (Intersection Automaton)
Let TA = (Loc, l0, C,Act,→, I, AP, L) and TA ′ = (Loc ′, l ′0, C

′, Act,→ ′, I ′, AP ′, L ′) be two
labeled timed automata over the same set of actions Act and with disjoint clock sets C
and C ′. The intersection automaton of TA and TA ′ is defined as

TA ∩ TA ′ :=
(
Loc× Loc ′, ⟨l0, l ′0⟩, C ∪̇C ′, Act,→ ∩ → ′, I ∩ I ′, AP, Lπ

)
,

whereby

18

2.2. Real-Time Systems

• → ∩ → ′ :=
{(
⟨l, l ′⟩, g ∧ g ′, α, E;E ′, ⟨r, r ′⟩

)
| (l, g, α, E, r) ∈→, (l ′, g ′, α, E ′, r ′) ∈→ ′

}
,

where E;E ′ denotes the composition of the expressions E and E ′,

• I ∩ I ′(⟨l, l ′⟩) := I(l)∧ I(l ′), and

• Lπ(⟨l, l ′⟩) := L(l).

Note that the assumption of disjoint clock sets can always be ensured by renaming
and the assumption of the same set of actions by taking the union of the two sets of
actions.

As desired, the intersection automaton fulfills the following property.

Proposition 3. Let TA and TA ′ be two automata with disjoint sets of clocks C and C ′. Then:

1. Let ρ = ⟨l0, u0⟩
δ1−→ α1−→ . . .

δi−→ αi−→ ⟨li, ui⟩ . . . be a run of the automaton TA and
ρ ′ = ⟨l ′0, u ′0⟩

δ1−→ α1−→ . . .
δi−→ αi−→ ⟨l ′i, u ′i⟩ . . . a run of the automaton TA ′ with identical

corresponding trace ξ. Then the run

ρ ∩ ρ ′ := ⟨⟨l0, l ′0⟩, u0 ∪ u ′0⟩
δ1−→ α1−→ . . .

δi−→ αi−→ ⟨⟨li, l ′i⟩, ui ∪ u ′i⟩ . . .

is a run of TA∩ TA ′ with corresponding trace ξ, where u∪u ′ : C∪C ′ → R⩾0 denotes the
union of the assignments u : C→ R⩾0 and u ′ : C ′ → R⩾0.

2. Let ρ := ⟨⟨l0, l ′0⟩, u0⟩
δ1−→ α1−→ . . .

δi−→ αi−→ ⟨⟨li, l ′i⟩, ui⟩ . . . be a run of TA ∩ TA ′ with
corresponding trace ξ. Then

ρ1 := ⟨l0, u0
∣∣
C
⟩ δ1−→ α1−→ . . . ,

δi−→ αi−→ ⟨li, ui
∣∣
C
⟩ . . .

is a run of TA and

ρ2 := ⟨l ′0, u0
∣∣ ′
C
⟩ δ1−→ α1−→ . . .

δi−→ αi−→ ⟨l ′i, u ′i
∣∣ ′
C
⟩ . . .

is a run of TA ′, both with corresponding trace ξ.

Proof. Both claims follow directly by the definition of the intersection automaton.

The result holds for any kind of runs (both finite and infinite runs). We will call the
run ρ ∩ ρ ′ intersection run, the runs ρ1 and ρ2 projective runs. Regarding the traces of Def. intersection run

Def. projective runsintersection automata we derive the following corollary.

Corollary 4. Let TA and TA ′ be two automata with disjoint sets of clocks C and C ′. Then, we
have Traces(TA ∩ TA ′) = Traces(TA) ∩ Traces(TA ′).

Proof. By applying Proposition 3 to the corresponding runs. :Proposition 3, p. 19

While the intersection of timelock-free/deadlock-free automata is not necessar-
ily timelock-free/deadlock-free, this corollary implies action-determinism and non-
zenoness to transport to the intersection.

19

2. Preliminaries

2.3 Real-Time Logics

In order to express specifications, properties, and particularly for our purpose effects
in real-time systems, we conclude our preliminary discussions with some notes about
real-time logics. For discrete-time logics, one roughly distinguishes between trace-
based logics like Linear Temporal Logic (LTL) and so-called branching time logics like,
for instance, Computation Tree Logic (CTL). Loosely speaking, trace-based logics focus on
the sequence of labels (or sometimes outputs) generated during a run of the system3. A
similar distinction can also be retained for the respective real-time counterparts Metric
Temporal Logic (MTL) of LTL and Timed Computation Tree Logic (TCTL) of CTL. For our
application, the family of branching time logics is not suitable as we will discuss in
more depth in Section 3.3, such that we will focus on MTL or more precisely on its: Section 3.3, p. 55

decidable fragment Metric Interval Temporal Logic (MITL). These real-time logics are
based on continuous-time and label-valued signals.

Definition 2.8 (Signal)
A signal over a set of atomic propositions AP is a function M : R⩾0 → P(AP).Def. signal

Given a labeled timed automaton TA = (Loc, l0, C,Act,→, I, AP, L), the correspondingDef. corresponding
signal signal M of a time-divergent run ρ of TA is defined as M(t) := L(lρ(t)), where lρ(t)

denotes the current location of ρ at absolute time t.

The run ρ is required to be time-divergence since we can otherwise not define a
total corresponding signal M : R⩾0 → P(AP) for ρ but only up to ExecTime(ρ). Note
furthermore, that for absolute times t at which ρ performs an action taking the run from
one location to another location, its current location lρ(t) is not uniquely determined.
For this cases, we defineM(t) as the union of the labels of the multiple current locations.

Besides atomic propositions and the basic Boolean connectives, temporal logics in-
clude temporal operators specifying temporal behavior. MTL lifts the until operator U

– also known, for example, from LTL – to real time. The operator is now parameterized,
in addition, with a time interval I ⊆ R⩾0 and the formula ϕUIψ states that after some
period of time included in I, we have that ψ holds and until then ϕ holds. In its full
generality, MTL is, however, not decidable. Therefore, we will work as already men-
tioned above with its decidable fragment MITL restricting MTL to non-singleton and
naturals-bounded intervals I. Formally, the syntax and semantics of MITL are defined
as follows.

Definition 2.9 (MITL)
The syntax of MITL formulas over a set of atomic propositions AP is defined byDef. MITL syntax

ϕ := p | ¬ϕ | ϕ∧ ϕ | ϕUIϕ,

3Here, the use of the term "trace-based" may lead to some confusion: In discrete settings, one commonly
calls the sequence of labels trace, while for real-time systems, traces describe the sequence of delays
and actions (cf. Def. 2.5).

20

2.3. Real-Time Logics

where p ∈ AP and I is a non-singleton interval of the form [a, b], (a, b], [a, b), (a, b), (a,∞),

or [a,∞) with a, b ∈ N and a < b.
The semantics is defined with respect to a signalM : R⩾0 → P(AP) and a point of time Def. MITL semantics

t ∈ R⩾0 inductively by

M, t |= p iff p ∈M(t)

M, t |= ¬ϕ iff M, t ̸|= ϕ

M, t |= ϕ∧ψ iff M, t |= ϕ and M, t |= ψ

M, t |= ϕUIψ iff ∃t ′ > t. t ′ − t ∈ I, M, t ′ |= ψ and ∀t ′′ ∈ (t, t ′).M, t ′′ |= ϕ

We say that a signal M satisfies an MITL formula ϕ, if M,0 |= ϕ. Furthermore, a time- Def. formula
satisfactiondivergent run ρ satisfies a formula ϕ, if its corresponding signal does so and that a timed

automaton TA satisfies ϕ, if all its time-divergent runs satisfy ϕ. In all those cases, we
shall write M |= ϕ, ρ |= ϕ, and TA |= ϕ respectively.

Further Boolean connectives are defined in the classical way. We introduce some
abbreviations to get further common temporal operators:

• ♢Iϕ := ⊤UIϕ (expresses that ϕ holds eventually in the interval I)

• □Iϕ := ¬♢I ¬ϕ (expresses that ϕ holds always in the interval I)

• ϕUψ := ϕU[0,∞)ψ, ♢ϕ := ♢[0,∞)ϕ, and □ϕ := □[0,∞)ϕ

MITL is defined as a logic that talks about continuous signals with infinite domain
which are as mentioned in turn only defined for time-divergent runs. For finite runs,
we use the concept of good and bad prefixes enabling us also to specify finite runs using
MITL.

Definition 2.10 (Good Prefixes)
Let ρ be a finite run and ϕ an MITL formula. We call ρ a good prefix of ϕ, if all time- Def. good prefix

divergent extensions ρ ′ of ρ satisfy ϕ.

We overload the notation and shall also write ρ |= ϕ, if ρ is a good prefix of ϕ, and
write ρ ̸|= ϕ, if ρ is no good prefix of ϕ.

We conclude our preliminary discussion by stating the result that MITL model check-
ing is decidable by computational manners, i.e., we can for a timed automaton algorith-
mically decide whether all its time divergent runs satisfy an MITL formula [9]. We will
use this model checker in our work as a "black box" and do not focus on the details of
this model-checking process. Consequently, we do also not present a proof of the result
but refer to the literature.

21

2. Preliminaries

Theorem 5 (MITL Model Checking). The decision problem "Given a timed automaton TA

and an MITL formula ϕ, do we have TA |= ϕ?" is decidable by computation.

Proof. See the proof by Alur et al. [9].

We abbreviate the MITL model-checking problem from the above theorem asMCMITL.
Relevant for the complexity analysis of our notions, Alur et al. classify the problem as
well in terms of the computational effort it takes to solve it.

Theorem 6. MCMITL is EXPSPACE-complete.

Proof. See again [9].

Thereby EXPSPACE denotes the complexity class of decision problems that are de-
terministically solvable in exponential space. It is a well-known result in complexity
theory, that the class of decision problems that are deterministically solvable in expo-
nential time EXPTIME is a subclass of EXPSPACE, i.e., EXPTIME ⊆ EXPSPACE.

22

Chapter 3
Formal Definitions of
Counterfactual Causality in
Real-Time Systems

We aim to define a formal notion of counterfactual causality in real-time systems in the
flavor of Halpern and Pearl’s but-for and actual causality as presented in Section 2.1, : Section 2.1, p. 7

to which we will refer as the "foundational notions" in the "foundational setting". We
take an approach that looks at events and effects on timed traces. It turns out that the
delay perspective on traces is well-suited to fully adapt the concepts of counterfactual
causality to real-time systems. This development is presented in Section 3.1. We discuss : Section 3.1, p. 23

and compare a different approach in Section 3.2 that takes a timestamp perspective on : Section 3.2, p. 46

traces in timed automata. For both perspectives, we give a number of examples that
showcase the usefulness and the conformity with the intuition of our notions but also
demonstrate the differences between both approaches. Finally, we add various further
remarks in Section 3.3: We comment on the assumptions of our setting in more detail, : Section 3.3, p. 55

report limitations of the developed notions, and discuss further theoretical aspects of
our causality formalism. We recall that all presented examples are available under

https://github.com/FelixJahnFJ/Real-Time-Causality-Tool/tree/main/Thesis_Examples.

for own tests and experiments using the developed causality tool.

3.1 Delay Causality in Real-Time Systems

3.1.1 Causal Setting: Events and Effects in Real-Time Systems

To get to a notion of causality in real-time systems, we first have to discuss and choose
carefully, in which causal setting we want to work. In all our approaches, we will

23

https://github.com/FelixJahnFJ/Real-Time-Causality-Tool/tree/main/Thesis_Examples

3. Formal Definitions of Counterfactual Causality in Real-Time Systems

start by considering a given timed automaton together with a run of this automaton
and base the counterfactual reasoning then on its corresponding trace. For now, recall
Definition 2.5 of a finite delay trace:Definition 2.5, p. 15

ξ = ⟨δ1, α1⟩ . . . ⟨δn, αn⟩ consisting of timed actions ⟨δi, αi⟩, i = 1, . . . , n,

and of a finite run

ρ = l0
δ1−→ α1−→ l1

δ2−→ α2−→ . . .
δn−→ αn−−→ ln.

Halpern and Pearl define causes as sets of events that lead to an effect. Therefore, it is
also in our context of real-time systems a crucial – and in various ways not canonical –
choice, what we want to understand as events and effects, and, hence, what we consider
as possible causes. Take a look at the following (synthetic) example.

Example 3.1.1. We consider the timed automaton TA in Figure 3.1 over the action alpha-
bet {α,β}:

l0

l1

l2

l3

l4

α

x ⩾
3

α
x < 3

α

β

{α,β}

{α,β}

{α,β}

Figure 3.1: Timed Automaton TA

The run l0
3−→ α−→ l1

2−→ α−→ l4 reaches location l4. Both with a shorter delay in l0 or with
taking action β instead of α in l1, the run would not have reached l4. △

The above example illustrates, that in real-time systems both delays as well as actions
seem to "cause" certain effects – in this case the effect, that location l4 is reached. Hence,
we want to consider at every point of the corresponding trace both delays and actions
as events.

Definition 3.1 (Events – Delay Perspective)

1. The set of delay events is defined as DE := {(δ, i) ∈ R⩾0 × N}, the set of action eventsDef. delay and action
event over a set of actions Act as AE := {(α, i) ∈ Act× N}}.

2. The whole set of events E is then obtained by the disjoint union1 of DE and AE, i.e.,Def. set of events

E := DE ∪̇AE.
1To avoid confusion and ensure disjointeness of delay and action events, we assume that no α ∈ Act is a

real value.

24

3.1. Delay Causality in Real-Time Systems

The integer values in the second component of the event pairs specify the index of
the event in the trace, which allows to refer to events at different positions.

In line with the foundational definitions of counterfactual causality, we include not
only the actual events, i.e., the delays and actions on the given trace in the set of events
but define the set of events independently of a concrete trace. Later, sets of events will
then be required to be satisfied by the given trace in order to qualify as potential cause.
A trace satisfies a set of events if all delay and all action events indeed occur at the
particular positions in the trace.

Definition 3.2 (Event Satisfaction – Delay Perspective)
We say that a finite delay trace ξ = ⟨δ1, α1⟩ . . . ⟨δn, αn⟩ or a lasso-shaped delay trace

ξ = ⟨δ1, α1⟩ . . . ⟨δn, αn⟩
(
⟨δn+1, αn+1⟩ . . . ⟨δp, αp⟩

)ω satisfies a set of events C ⊆ E, if Def. event satisfaction

• for every delay event (δ, i) ∈ C, we have δ = δi, and

• for every action event (α, i) ∈ C, we have α = αi.

We denote this by ξ |= C.

Given a trace ξ = ⟨δ1, α1⟩ . . . ⟨δn, αn⟩, we also introduce a notation for the set of all
events of this trace and denote

Cξ := {(δi, i) | i = 1, . . . , n} ∪ {(αi, i) | i = 1, . . . , n}.

The notation is adapted as expected also for lasso-shaped delay traces. It is easy to see
that we have ξ |= Cξ for every trace ξ.

Recall again, that the key principle in counterfactual reasoning is to simulate a coun-
terfactual world, that is, the world that would have been if the potential cause had not
been. In our case, we want to simulate how the timed automaton would have run if the
potentially causal delay and action events had not happened. For this counterfactual
simulation, we use in a first step a so-called counterfactual trace automaton, an idea
adapted from the work of Coenen et al. [22]. Counterfactual trace automata represent
exactly all the possible counterfactual traces, that is, those traces that allow exactly for
the causal events alternatives to happen while all non-causal events remain fixed. To do
so for a given trace

ξ = ⟨δ1, α1⟩⟨δ2, α2⟩ . . . ⟨δn−1, αn−1⟩⟨δn, αn⟩

and a set of events like this demonstration example set

C = {(δ1, 1), (δn, n), (α2, 2), (αn, n)}

we proceed in the following way:

25

3. Formal Definitions of Counterfactual Causality in Real-Time Systems

1. We enforce all delays and actions to be exactly as in the given actual trace using a
clock d that measures the delays:

. . .α1 α2 αn−1 αn
Act

d ⩽ δ1
d = δ1
d := 0 d ⩽ δ2

d = δ2
d := 0

d = δn−1

d := 0 d ⩽ δn
d = δn
d := 0

2. We relax the delay constraints at the points for which there is a delay event in C

by omitting the corresponding guards and invariants:

. . .α1 α2 αn−1 αn
Act

d := 0 d ⩽ δ2
d = δ2
d := 0

d = δn−1

d := 0 d := 0

3. We relax the action constraints at the points for which there is an action event in
C by allowing all actions from Act to be taken:

. . .Act α2 αn−1 Act
Act

d := 0 d ⩽ δ2
d = δ2
d := 0

d = δn−1

d := 0 d := 0

4. We allow arbitrary continuations in the counterfactual simulation by adding a
self-loop without any delay or action constraints to the last location:

. . .Act α2 αn−1 Act
Act

d := 0 d ⩽ δ2
d = δ2
d := 0

d = δn−1

d := 0 d := 0

By this construction, we indeed enforce for traces in the counterfactual trace automaton
exactly the non-causal events to be as they were in ξ, but allow alternatives for the causal
events of ξ, that is, arbitrary delays at the points of causal delay events and arbitrary
actions at the points of causal action events.

For the case of a trace ending with a delay, i.e., ξ = ⟨δ1, α1⟩ . . . ⟨δn,−⟩, we proceed as
if the non-existent action at the last position were a causal action event and allow all
actions in the n-th transition. For the case of a trace ending with an "infinite delay", i.e.,
ξ = ⟨δ1, α1⟩ . . . ⟨∞,−⟩, we allow further actions only if the infinite delay is a causal one.
For a lasso-shaped delay trace

ξ = ⟨δ1, α1⟩ . . . ⟨δn, αn⟩
(
⟨δn+1, αn+1⟩ . . . ⟨δp, αp⟩

)ω

we adapt the above construction by mirroring the lasso-shape in the structure of the
counterfactual trace automaton by starting in Step 1 with the following automaton:

26

3.1. Delay Causality in Real-Time Systems

.α1 αn αn+1 αp−1

d ⩽ δ1

d = δ1
d := 0

d ⩽ δn+1

d = δn
d := 0

d = δn+1

d := 0
d = δp−1

d := 0

d ⩽ δp

αp

d = δp
d := 0

That is, the automaton in which the transition belonging to the last delay action of the
lasso-part leads to the location whose outgoing transition belongs to the first delay ac-
tion of the lasso-part. Except for Step 4, which is omitted, we proceed for the remaining
steps completely analogously.

This concept of a counterfactual trace automaton is formalized as follows.

Definition 3.3 (Counterfactual Trace Automaton – Delay Perspective)
Let ξ = ⟨δ1, α1⟩ . . . ⟨δn, αn⟩ be a finite delay trace over a finite set of actions Act and

let C ⊆ E be a finite set of events. The counterfactual trace automaton of trace ξ for the set Def. counterfactual
trace automatonof events C is defined as TAC

ξ := (Loc, l0, C,Act,→, I) with

• Loc := {0, . . . , n}

• l0 := 0

• C := {d}

• the transition relation→ is defined by the following rules:

(δi, i) /∈ C (αi, i) /∈ C

i− 1
d=δi: αi, d:=0−−−−−−−−−−→ i

(δi, i) ∈ C (αi, i) /∈ C

i− 1
⊤: αi, d:=0−−−−−−−→ i

(δi, i) /∈ C (αi, i) ∈ C β ∈ Act

i− 1
d=δi: β, d:=0−−−−−−−−−→ i

(δi, i) ∈ C (αi, i) ∈ C β ∈ Act

i− 1
⊤: β, d:=0−−−−−−−→ i

β ∈ Act

n
β−→ n

• I(i) :=

 d ⩽ δi+1, (δi+1, i+ 1) ̸∈ C

⊤, otherwise.

27

3. Formal Definitions of Counterfactual Causality in Real-Time Systems

For a lasso-shaped delay trace ξ = ⟨δ1, α1⟩ . . . ⟨δn, αn⟩
(
⟨δn+1, αn+1⟩ . . . ⟨δp, αp⟩

)ω the
construction of the counterfactual trace automaton works as above but we use as set
of locations Loc := {0, . . . , n, n + 1, . . . , p − 1}, identify in the definition of the transition
relation→ index p with n, and omit the last defining rule of→.

The first four defining rules of the transition relation cover exactly the four possible
combinations

• there is no causal delay event and no causal action event at position i,

• there is a causal delay event but no causal action event at position i,

• there is no causal delay event but a causal action event at position i, or

• there is a causal delay event and a causal action event at position i.

The last rule creates the self-loop in the last state as sketched in Step 4 of the construction.

We remark two details regarding the invariants in the counterfactual trace automaton:

Remark 3.1.1. 1. Notice that the well-definedness of the invariant function I in the
above definition is not that clear. In fact, the definition of I is ambiguous in cases
where we have multiple causal delay events at a position i, i.e., if we have (δ, i) ∈ C

and (δ̃, i) ∈ C with δ ̸= δ̃. Such sets of events will, however, never be satisfiable by
a trace, such that those sets already disqualify themselves beforehand as a cause.

2. Later, we will require the counterfactual run only to be time-divergent. The
purpose of adding the invariants in the locations with non-causal delay events
is, therefore, to exclude counterfactual runs that remain forever in locations with
actually fixed delay times. On the other hand, it will indeed be possible for
counterfactual runs to remain infinitely long in a location in which we have a
causal delay event (as the invariant is omitted in those locations and such a run
would be time-divergent). △

We give multiple examples for the construction of counterfactual trace automata in
the upcoming subsections where we show how the concept is then finally used to define
counterfactual causality in real-time systems.

For now, we will content with a property about the traces of the counterfactual trace
automata for two particular kinds of event sets. The result basically states that in the
counterfactual trace automaton for the empty set of events the only possible trace is
exactly ξ, while in the counterfactual trace automaton for the set of all events Cξ all
traces over the given set of actions are possible.

28

3.1. Delay Causality in Real-Time Systems

Lemma 7. Let ξ be a finite or lasso-shaped delay trace over a set of actions Act.

1. All time-divergent traces of TA∅ξ agree with ξ in all their indices up to the length of ξ. In
particular if ξ is time-divergent, ξ is the only time-divergent trace of TA∅ξ.

2. The time-divergent traces of TA
Cξ

ξ are all constructible time-divergent traces over Act.

Proof. 1. Follows since all transitions of TA∅ξ have (for finite ξ up to the last location)
the form i− 1

d=δi: αi, d:=0−−−−−−−−−−→ i, whereby ⟨δi, αi⟩ are the timed actions of ξ.

2. Follows since all transitions of TA
Cξ

ξ have (for finite ξ up to the last location) now
the form i− 1

⊤: Act, d:=0−−−−−−−−−→ i.

The final aspect of the causal setting that remains to be discussed are effects. We
specify effects in runs of timed automata by using the language of MITL:

Definition 3.4 (Run Effect)
A run effect is an MITL formula ϕ. We shall say that an effect ϕ appears in a run ρ, if Def. run effect

we have ρ |= ϕ, otherwise we say that the effect does not appear.

Recall our remarks regarding MITL in Section 2.3: The semantics of MITL is defined : Section 2.3, p. 20

with respect to time-divergent runs of timed automata by considering its corresponding
signal. A time-divergent run ρ does either satisfy an MITL formula ϕ, written as ρ |= ϕ,
or does not satisfy the formula, written as ρ ̸|= ϕ. For our purposes also the notion of
good prefixes (cf. Definition 2.10) will be important as we will oftentimes also consider :Definition 2.10, p. 21

finite runs in which certain effects appear. Recall in this regard in particular that MITL
allows us to express properties of runs like reachability, which will be for simplicity the
effect considered regularly in the upcoming examples.

3.1.2 But-For Causality in Real-Time Systems

We are set to define the first notion of counterfactual causality in real-time systems.
Therefore, recall again the crucial idea of counterfactual reasoning: We assume for the
causal events alternatives to occur and consider then the counterfactual simulation of
the world resulting from the alternative events. In the foundational setting, we simulate
this counterfactual world based on given structural equations. By respecting those
equations, we ensure that the simulation follows the rules of the causal model, i.e., the
rules describing the behavior of the world.

Now given a run and a set of events, the counterfactual trace automaton of the
corresponding trace represents as discussed above all the possible alternative traces.
However, we do not yet ensure that those alternative runs indeed also respect the given
rules of the world, which are in our setting specified by the given timed automaton. In
fact, there might be lots of traces in the counterfactual trace automaton that are no traces

29

3. Formal Definitions of Counterfactual Causality in Real-Time Systems

at all in the given automaton and have, therefore, no corresponding runs that should be
considered as valid counterfactual simulations. Hence, we require for a counterfactual
run that its corresponding trace is not only a trace in the counterfactual trace automaton
but that it is also a trace in the given timed automaton. Technically, this is realized by
using the intersection operator ∩ from Definition 2.7.:Definition 2.7, p. 18

Apart from this, the definition of but-for causes is a straightforward transfer of the
foundational one (cf. Definition 2.1) to the real-time setting.:Definition 2.1, p. 10

Definition 3.5 (But-For Causality in Real-Time Systems – Delay Perspective)
Let TA be a timed automaton, ρ a run of TA with corresponding delay trace ξ, and ϕ a

run effect. A set of events C ⊆ E is a but-for cause for ϕ in ρ of TA, if the following twoDef. but-for cause

conditions hold:

SAT ξ |= C and ρ |= ϕ.

CFBF There is a time-divergent run ρ ′ of TA ∩ TAC
ξ with ρ ′ ̸|= ϕ.

We call the cause minimal but-for cause if furthermore the following condition holds:Def. minimal but-for
cause

MIN C is minimal, i.e., no strict subset of C satisfies SAT and CFBF.

We again call the counterfactual run ρ ′ in the CFBF-condition witnessing run or witnessDef. witnessing run

for the fact that C is a but-for cause for ϕ in ρ of TA.

Notice a small detail in the above definition: The effect ϕ refers in the SAT-condition
to a run of the given automaton TA while in the CFBF-condition ϕ refers then to a run
of the intersection automaton TA ∩ TAC

ξ . Exactly to handle this lifting of run effects we
defined the labels of the locations of intersection automata to be only the label of the
first component. Also conversely, run effects (not) appearing in runs in the intersection
transport to the projective runs. Those transport properties are crucial to show first
results regarding the notion of causality in real-time systems.

Proposition 8. ∅ is never a but-for cause for a run effect ϕ in a run ρ of a timewise action-
deterministic timed automaton TA.

Proof. Let ρ be a run of a timewise action-deterministic timed automaton TA. We distin-
guish two cases:

ρ |= ϕ: We show that the CFBF-condition is violated: Towards a contradiction, assume
that there is a time-divergent run ρ ′ of TA ∩ TA∅ξ with ρ ′ ̸|= ϕ, whereby ξ ′ is the
corresponding trace of ρ ′. By Lemma 7 we do however know that ξ ′ agrees with:Lemma 7, p. 29

ξ up to the length of ξ. Hence the trace of the projection run ρ ′1 also agrees with
ξ up to the length of ξ. Now Proposition 2 implies that the run ρ ′1 as a run of:Proposition 2, p. 17

the timewise action-deterministic automaton TA agrees with the run ρ up to the

30

3.1. Delay Causality in Real-Time Systems

length of ρ. Now either if ρ is time-divergent we have ρ = ρ ′1, a contradiction since
we have both ρ |= ϕ as well as ρ ′1 ̸|= ϕ (since ρ ′ ̸|= ϕ), or if ρ is not time-divergent,
ρ cannot be a good prefix of ϕ since there is the extension ρ ′1 with ρ ′1 ̸|= ϕ, again a
contradiction.

ρ ̸|= ϕ: Now, the SAT-condition is violated already by definition and, hence, ∅ is again no
cause for ϕ on ρ of TA.

While this shows that an effect is never caused by "nothing", i.e., never by the empty
set of events, we can on the other hand also show that in the case that the effect can be
avoided in the timed automaton at all, there is indeed also a but-for cause in the sense
of our definition for the effect.

Proposition 9. Let ϕ be a run effect and TA a timed automaton. If there exists a time-divergent
run ρ ′ of TA with ρ ′ ̸|= ϕ, then for every run ρ in which ϕ appears there is a (minimal) but-for
cause for ϕ in ρ of TA.

Proof. Let ρ ′ be a time-divergent run of TA with ρ ′ ̸|= ϕ and ρ be a run of TA with ρ |= ϕ.
The set of events Cξ, i.e., the set of all events of the corresponding trace ξ of ρ, fulfills
the SAT- as well as the CFBF-condition:

By assumption, we have ρ |= ϕ and by construction of Cξ we have ξ |= Cξ such that
the SAT-condition is fulfilled. By Lemma 7, we find the corresponding trace of ρ ′ also :Lemma 7, p. 29

in TA
Cξ

ξ . Hence, we find a correspondence to ρ ′ also in TA ∩ TA
Cξ

ξ in which ϕ does not
appear such that CFBF is fulfilled.

Therefore Cξ is a but-for cause and a minimal subset of Cξ that fulfills SAT and CFBF is
a minimal but-for cause for ϕ in ρ of TA.

The previous two results establish some basic properties we expect from a causality
notion. In the following, we continue to argue for the meaningfulness of the notion by
giving elementary examples that demonstrate the application of the above constructions
and definitions, that illustrate how to validate whether a set of events fulfills the criteria
of but-for causality, and that show that the notion is in many scenarios in accordance
to what we would intuitively identify as a cause for certain events. We start with our
entry example from the beginning of the chapter.

Example 3.1.2. Recall Example 3.1.1, where we considered the timed automaton TA in
Figure 3.1 and its run ρ := l0

3−→ α−→ l1
2−→ α−→ l4 with its effect that location l4 is reached. :Figure 3.1, p. 24

We express the effect formally in MITL as ϕ := ♢ l4. In line with our intuition, both
C1 := {(3, 1)} as well as C2 := {(α, 2)} are (minimal) but-for causes for ϕ in ρ of TA:

Let ξ be the corresponding trace of ρ. We have both ξ |= C1 and ξ |= C2 as well
as ρ |= ϕ such that the SAT-condition is fulfilled. For the CFBF-condition, we start by
constructing the counterfactual trace automata. For demonstration purposes, we first
look at the one for the empty set of events TA∅ξ:

31

3. Formal Definitions of Counterfactual Causality in Real-Time Systems

α α
{α,β}

d ⩽ 3
d = 3
d := 0 d ⩽ 2

d = 2
d := 0

The counterfactual trace automaton is then used to construct the intersection TA ∩ TA∅ξ.
We will generally depict all the locations of this product construction but only the
transitions and invariants of interest:

⟨l0, 0⟩

⟨l1, 0⟩

⟨l2, 0⟩

⟨l3, 0⟩

⟨l4, 0⟩

d ⩽ 3

⟨l0, 1⟩

⟨l1, 1⟩

⟨l2, 1⟩

⟨l3, 1⟩

⟨l4, 1⟩

d ⩽ 2

d ⩽ 2

⟨l0, 2⟩

⟨l1, 2⟩

⟨l2, 2⟩

⟨l3, 2⟩

⟨l4, 2⟩

α

x ⩾ 3∧ d
= 3

d := 0

α
x < 3∧ d = 3

d := 0

α

d = 2
d := 0

α

d = 2
d := 0

{α,β}

{α,β}

Due to the enforcement of the first delay, the transition from ⟨l0, 0⟩ to ⟨l2, 1⟩ cannot be
taken. Hence, all runs in the intersection automaton lead again to location l4 such that
we cannot find a counterfactual run in which the effect ϕ does not appear.

This changes when turning to non-empty sets of events: For C1 = {(3, 1)}, the counter-
factual trace automaton TAC1

ξ looks as follows:

α α
{α,β}

d := 0 d ⩽ 2
d = 2
d := 0

This then results in the following intersection automaton TA ∩ TAC1

ξ :

⟨l0, 0⟩

⟨l1, 0⟩

⟨l2, 0⟩

⟨l3, 0⟩

⟨l4, 0⟩ ⟨l0, 1⟩

⟨l1, 1⟩

⟨l2, 1⟩

⟨l3, 1⟩

⟨l4, 1⟩

d ⩽ 2

d ⩽ 2

⟨l0, 2⟩

⟨l1, 2⟩

⟨l2, 2⟩

⟨l3, 2⟩

⟨l4, 2⟩

α

x ⩾ 3
d := 0

α

x < 3
d := 0

α

d = 2
d := 0

α

d = 2
d := 0

{α,β}

{α,β}

Since there is now no delay enforced in the first transition, we find, for example, the
time-divergent counterfactual run ρ ′ := ⟨l0, 0⟩

1−→ α−→ ⟨l2, 1⟩
2−→ α−→

(
⟨l2, 2⟩

1−→ α−→
)ω with

ρ ′ ̸|= ♢ l4, i.e., in which ϕ does not appear. Hence, ρ ′ is a witness for C1 being a but-for
cause for ϕ in ρ of TA.

For C2 = {(α, 2)}, the counterfactual trace automaton TAC2

ξ now allows the alternative
action β for the second transition:

32

3.1. Delay Causality in Real-Time Systems

α {α,β}
{α,β}

d ⩽ 3
d = 3
d := 0 d ⩽ 2

d = 2
d := 0

Therefore, also the intersection automaton TA∩TAC2

ξ now allows an additional transition:

⟨l0, 0⟩

⟨l1, 0⟩

⟨l2, 0⟩

⟨l3, 0⟩

⟨l4, 0⟩

d ⩽ 3

⟨l0, 1⟩

⟨l1, 1⟩

⟨l2, 1⟩

⟨l3, 1⟩

⟨l4, 1⟩

d ⩽ 2

d ⩽ 2

⟨l0, 2⟩

⟨l1, 2⟩

⟨l2, 2⟩

⟨l3, 2⟩

⟨l4, 2⟩

α

x ⩾ 3∧ d
= 3

d := 0

α
x < 3∧ d = 3

d := 0

β

d = 2

d := 0

α

d = 2
d := 0

{α,β}

d = 2
d := 0

{α,β}

{α,β}

{α,β}

Again, we find with ρ ′ := ⟨l0, 0⟩
3−→ α−→ ⟨l1, 1⟩

2−→ β−→
(
⟨l3, 2⟩

1−→ α−→
)ω a time-divergent

counterfactual run for which we have ρ ′ ̸|= ♢ l4 and which is, therefore, a witness for
The MIN-condition is, due to Proposition 8, always satisfied for singleton sets. △ :Proposition 8, p. 30

Notice that in the above examples we have in fact also the finite run ρ ′ := ⟨l0, 0⟩
∞−→

as a time-divergent run not reaching location l4 and, therefore, as a counterfactual run
witnessing C1 to be a but-for cause. This phenomenon of finite counterfactual runs is
not limited to this example, but can be observed in general.

Remark 3.1.2. Recall Remark 3.1.1 in which we already mentioned that the counterfac- :Remark 3.1.1, p. 28

tual trace automaton includes runs staying infinitely long in locations with causal delay
events. As those runs are time-divergent, they might qualify as finite counterfactual
runs (we do not require counterfactual runs to be infinite). This, in turn, means that all
delay events in locations without a bounding invariant will for many effects be identified
as singleton causes. Allowing to stay infinitely long in a location as an alternative for a
causal finite delay and thereby allowing in fact also all following delay and action events
– no matter whether causal or non-causal – to not appear at all seems at first glance a bit
odd. However, we would argue that it makes perfect sense to say that if the automaton
could have stayed forever in a certain location and thereby avoid the effect, then the
delay event causing the automaton to leave the location should count as a cause for the
subsequent system behavior.

This has, however, implications for our following work as the causality analysis is
significantly affected when we already have numerous delay events as singleton causes:
firstly, all supersets of those singleton causes qualify as but-for causes and secondly also
conversely, the analysis of what causes are minimal gets strongly affected by having
those singleton sets already as minimal causes.

There are different ways to respond to this, for our purposes, oftentimes undesired
behavior. In theory, it would be possible to require the counterfactual run to also

33

3. Formal Definitions of Counterfactual Causality in Real-Time Systems

perform an infinite number of actions. However, preserving the decidability of this
adapted definition seems to require an elaborate encoding of the additional property
that would enlarge the automaton size and effect formula. Moreover, in practice, this
property cannot be stated in Uppaal’s language, so we choose to avoid the behavior
by manually excluding those singleton causes whenever necessary by adding upper
bounds as invariants to the respective locations. △

The following examples shows, that it might then indeed be the case that singleton
events are not enough to explain a certain effect. Instead, causes with multiple events
have to be considered.

Example 3.1.3. Consider a small variation of the timed automaton and let TA now be
the following:

l0

x ⩽ 10

l1

x ⩽ 20

l2

x ⩽ 20

l3

l4

α

x ⩾
3

α
x < 3

α

β

{α,
β}

{α,β}

{α,β}

We have, for instance, the run rho := l0
2−→ α−→ l2

5−→ α−→ l4 with corresponding trace ξ. The
set of events C := {(2, 1), (α, 2)} is a but-for cause for the unchanged effect ϕ := ♢ l4, that
is now indeed also minimal:

The SAT-condition is easy to verify, for the CFBF-condition we consider again the
intersection automaton TA ∩ TAC

ξ :

⟨l0, 0⟩

x ⩽ 10

⟨l1, 0⟩

⟨l2, 0⟩

⟨l3, 0⟩

⟨l4, 0⟩ ⟨l0, 1⟩

⟨l1, 1⟩

⟨l2, 1⟩

⟨l3, 1⟩

⟨l4, 1⟩

x ⩽ 20∧ d ⩽ 5

x ⩽ 20∧ d ⩽ 5

⟨l0, 2⟩

⟨l1, 2⟩

⟨l2, 2⟩

⟨l3, 2⟩

⟨l4, 2⟩

α

x ⩾ 3
d := 0

α

x < 3
d := 0

β

d = 5

d := 0

α

d = 5
d := 0

{α,β}

d = 5

d := 0

{α,β}

{α,β}

Here, we find, for example, ρ ′ := ⟨l0, 0⟩
3−→ α−→ ⟨l1, 1⟩

5−→ β−→
(
⟨l3, 2⟩

1−→ α−→
)ω as time-

divergent witnessing run . For the MIN-condition, we have to check that neither

34

3.1. Delay Causality in Real-Time Systems

C1 := {(2, 1)} nor C2 := {(α, 2)} is a but-for cause. When looking at the intersection
automata, we notice however that in fact a singleton cause does not suffice to find a run
not reaching l4. For C1, TA ∩ TAC1

ξ has no β-transition leading to ⟨l3, 2⟩:

⟨l0, 0⟩

x ⩽ 10

⟨l1, 0⟩

⟨l2, 0⟩

⟨l3, 0⟩

⟨l4, 0⟩ ⟨l0, 1⟩

⟨l1, 1⟩

⟨l2, 1⟩

⟨l3, 1⟩

⟨l4, 1⟩

x ⩽ 20∧ d ⩽ 5

x ⩽ 20∧ d ⩽ 5

⟨l0, 2⟩

⟨l1, 2⟩

⟨l2, 2⟩

⟨l3, 2⟩

⟨l4, 2⟩

α

x ⩾ 3
d := 0

α

x < 3
d := 0

α

d = 5
d := 0

α

d = 5

d := 0

{α,β}

{α,β}

For C2 in turn, TA ∩ TAC2

ξ enforces the first delay to be 2, preventing the transition to
location ⟨l2, 1⟩ to be traversable:

⟨l0, 0⟩

⟨l1, 0⟩

⟨l2, 0⟩

⟨l3, 0⟩

⟨l4, 0⟩

x ⩽ 10∧ d ⩽ 2

⟨l0, 1⟩

⟨l1, 1⟩

⟨l2, 1⟩

⟨l3, 1⟩

⟨l4, 1⟩

x ⩽ 20∧ d ⩽ 5

x ⩽ 20∧ d ⩽ 5

⟨l0, 2⟩

⟨l1, 2⟩

⟨l2, 2⟩

⟨l3, 2⟩

⟨l4, 2⟩

α

x ⩾ 3∧ d
= 2

d := 0

α
x < 3∧ d = 2

d := 0

β

d = 5

d := 0

α

d = 5
d := 0

{α,β}

d = 5

d := 0

{α,β}

{α,β}

Hence, there are no counterfactual runs for the smaller sets of events C1 and C2. △

For this inference, the aforementioned manual exclusion of singleton delay cause
sets was indeed necessary and realized by the invariants in the locations l0, l1, and l2.
Without those invariants, we had both the sets {(2, 1)} and {(5, 2)} as but-for causes and,
therefore, in particular {(2, 1), (α, 2)} no longer as a minimal but-for cause.

In the next example, we show that it is also possible to have a causal delay and a causal
action event at the same position. Furthermore, we demonstrate how our concept can
identify a delay to be causal for the behavior of the timed automaton later in the run,
which will also explain why it is at all important to require counterfactual runs to be
time-divergent.

Example 3.1.4. We consider the following timed automaton TA:

35

3. Formal Definitions of Counterfactual Causality in Real-Time Systems

l0

x ⩽ 10

l1

x ⩽ 10

l2

l3

x ⩾ 2

β

α

α

x < 2

α

{α,β}

{α,β}

The effect ϕ := ♢ l2, i.e., reaching location l2, appears in the run ρ := l0
2−→ α−→ l2 and

C := {(2, 1), (α, 1)} is a minimal but-for cause for ϕ on ρ in TA. The reasoning works as
above, we merely take a closer look at why the strictly smaller set {(α, 1)} is no but-for
cause: the causal action allows a counterfactual run via l1. However, the fixed first delay
results in the clock assignment {x 7→ 2} when entering l1 for which the transition guard
x < 2 leading to l3 is not enabled. Hence, the only time-divergent continuation leads to
location l2 such that no time-divergent run without appearing effect exists. △

Notice, that in the above example indeed the delay of 2 in the first location is identified
to be causal for a disabled transition and therefrom resulting behavior later in the run.
Furthermore, the example shows, as already indicated, the necessity of the requirement
for the counterfactual run to be time-divergent: If we would only analyze counterfactual
runs up to the length of the actual run, we would not recognize that in every possible
continuation of the potential counterfactual run l0

2−→ α−→ l1 the effect still appears. As a
consequence, we would mistakenly identify {(α, 1)} as a singleton cause for the effect.

Our last synthetic example demonstrates the explanation of further and more involved
effects, for which we also deal for the first time with actual runs in lasso-shaped from.

Example 3.1.5. Consider the following timed automaton TA:

l0

l1

l2

l3

l4

α

x ⩾
3

α
x < 3

α

{α,β}

β

{α,β}

{α,β}

36

3.1. Delay Causality in Real-Time Systems

The lasso-shaped run ρ := l0
4−→ α−→

(
l1

2−→ β−→ l1
3−→ β−→

)ω does not reach location l2, i.e., the
effect ϕ1 := ρ |= ¬♢ l4 appears. We identify C1 := {(4, 1)} as minimal but-for cause for ϕ1

in ρ of TA. Furthermore, also the effect ϕ2 :=|= ¬□♢ l4 appears in ρ, that is, ρ does not
visit l4 infinitely often2. Here, we identify C1 := {(4, 1), (β, 2)} as minimal but-for cause
for ϕ2 in ρ of TA. The reasoning thereof works analogously as above, now using – for
example for C2 – the following counterfactual trace automaton TAC2

ξ , whereby ξ is again
the corresponding trace of ρ:

α {α,β}

d := 0

d ⩽ 2 d ⩽ 3

d = 2
d := 0

β

d = 3
d := 0

△

Lastly, we revisit the real-time model of a coffee machine from Section 2.2 as an
example for a simplified real-world scenario in which we can explain different system
behaviors.

Example 3.1.6. Recall the automaton TA given in Figure 2.1 modeling a coffee machine. :Figure 2.1, p. 14

In Example 2.2.2, we then considered its run :Example 2.2.2, p. 17

ρ := init
4−→ push−−−→ prod

2−→ wait−−→ prod
3−→ wait−−→ coffee.

Now, we can analyze the cause behind the effect that coffee is produced: {(push, 1)} is a
minimal but-for cause for ϕ1 := ρ |= ♢ coffee in ρ of TA.

Furthermore, we can also reason about time related effects and analyze, for instance,
the cause why coffee is produced in a maximum of 10 time units, i.e., for the effect
ϕ2 := ρ |= ♢[0,10] coffee. For ϕ2, we now also have {(4, 1)} as minimal but-for cause. △

Note how our notion of but-for causality identifies in the above example causes for
real-time behaviors in perfect accordance with our intuition: For the supply of coffee
in a particular time interval, we would regard both the performed action leading to the
production of coffee as well as the timing of the start of the production as singleton
causes.

3.1.3 Actual Causality in Real-Time Systems

As discussed in Section 2.1, the concept of but-for causality comes with the issue of : Section 2.1, p. 7

2As ϕ2 is not expressible in the restricted language of Uppaal, this is example is as the only one in the
course of the thesis not fully handled by the developed causality tool (cf. Chapter 5).

37

3. Formal Definitions of Counterfactual Causality in Real-Time Systems

preemption: if the causal events preempt a further potential cause, but-for causality
will not be able to identify the events as a cause. This issue appears in fact not only in
the foundational setting, it can also be observed for our notion of but-for causality in
real-time systems.

Example 3.1.7. Consider again the automaton TA in Figure 2.1 modeling a coffee machine:Figure 2.1, p. 14

and now its run

ρ := init
2−→ push−−−→ prod

5−→ push−−−→ coffee
5−→ wait−−→ init

in which the effect ϕ := ♢ coffee appears. The set of events C := {(push, 1)} is no but-for
cause for ϕ on ρ of TA:

With corresponding trace ξ, the counterfactual trace automaton TAC
ξ allows an alter-

native action for the first transition but enforces the action push for the second transition:

{push,wait} push wait
{push,wait}

d ⩽ 2
d = 2
d := 0 d ⩽ 5

d = 5
d := 0 d ⩽ 5

d = 5
d := 0

Hence, the only candidate for a prefix of a time-divergent counterfactual run is the
one with corresponding trace ⟨2,wait⟩⟨5,push⟩⟨5,wait⟩. The corresponding run in the
intersection TA ∩ TAC

ξ of this trace is however

⟨init, 0⟩ 2−→ wait−−→ ⟨init, 1⟩ 5−→ push−−−→ ⟨prod, 2⟩ 5−→ wait−−→ ⟨coffee, 3⟩

such that there cannot exist a counterfactual run in which ϕ does not appear. Hence,
the set of events C does not fulfill the CFBF-condition. △

Similar to Example 2.1.3 in the foundational setting, also in this situation the first:Example 2.1.3, p. 11

push of the coffee machine button is not identified as but-for cause due to the preempted
second push. Only both push events together are identified as but-for cause. This is,
however, again in contradiction to our intuition: intuitively we would argue that the
first push alone caused the coffee to be made. In particular, the second push actually
results only in traversing the self-loop in the "prod"-location but has no influence on
reaching the effect and should therefore not be identified as cause.

Following the ideas of Halpern and Pearl in the foundational setting (cf. Definition 2.2),:Definition 2.2, p. 12

we extend the basic notion of but-for causality with the concept of contingencies to
receive the more advanced notion of actual causality now also for our real-time context.
Recall that contingencies allowed to fix parts of the counterfactual world to be as they
had been in the actual world. This means for our setting that contingencies should
allow to let parts of the counterfactual run to be as they had been in the actual run.
Concretely, we want to allow in every step the configuration of the counterfactual run,
i.e., its location and clock assignment, to be as it had been in the corresponding step of

38

3.1. Delay Causality in Real-Time Systems

the actual run. As already done to represent the possible counterfactual traces and again
inspired by Coenen et al. [22], we use also for modeling contingencies an automata-based
approach. More precisely, we extend the initially given timed automaton to a so called
contingency automaton that preserves the structure of the initial automaton but enables
contingencies with respect to the given run.

We demonstrate the construction of this contingency automaton exemplary for the
situation in Example 3.1.7, so consider the coffee automaton from Figure 2.1 with its run :Example 3.1.7, p. 38

ρ := ⟨init, {x 7→ 0}⟩ 2−→ push−−−→ ⟨prod, {x 7→ 0}⟩ 5−→ push−−−→ ⟨coffee, {x 7→ 5}⟩ 5−→ wait−−→ ⟨init, {x 7→ 10}⟩.

We proceed as follows:

1. We start with the given initial timed automaton, so in our case:

init prod coffee

x ⩽ 5

wait

push

x := 0

x < 5 : {push, wait}

{push, wait}

x = 5

{push, wait}

2. We duplicate the automaton by the number of transitions in the given run, so in
our case we copy the automaton three times to obtain four copies overall:

init prod coffee

x ⩽ 5

wait

push

x := 0

x < 5 : {push, wait}

{push, wait}

x = 5

{push, wait}

init prod coffee

x ⩽ 5

wait

push

x := 0

x < 5 : {push, wait}

{push, wait}

x = 5

{push, wait}

init prod coffee

x ⩽ 5

wait

push

x := 0

x < 5 : {push, wait}

{push, wait}

x = 5

{push, wait}

init prod coffee

x ⩽ 5

wait

push

x := 0

x < 5 : {push, wait}

{push, wait}

x = 5

{push, wait}

39

3. Formal Definitions of Counterfactual Causality in Real-Time Systems

3. We redirect the transitions in all copies but the last to now lead to its target location
in the respective next copy. The transitions in the last copy remain unchanged.
The automaton of this step is given in Figure 3.2 depicted below.

4. We add the transitions for allowing contingencies: With every step, the automaton
should be able to reset exactly to the configuration the given run had in this step.
To do so, we add transitions to the respective location and enforce the clock
assignment using a suitable clock expression. The final contingency automaton is
depicted in Figure 3.3. To the right, we specify the actions and expressions of the
contingency transitions distinguished by different colors.

init prod coffee

x ⩽ 5

x := 0

{push,
wait}

x < 5 :

{push,
wait}

{push,
wait}

init prod coffee

x ⩽ 5

wait push x = 5

init prod coffee

x ⩽ 5

x := 0

{push,
wait}

x < 5 :

{push,
wait}

{push,
wait}

wait push x = 5

init prod coffee

x ⩽ 5

x := 0

{push,
wait}

x < 5 :

{push,
wait}

{push,
wait}

wait push x = 5

wait

push

x := 0

{push, wait}; x < 5

{push, wait}

x = 5

{push, wait}

Figure 3.2: Step 3

init prod coffee

x ⩽ 5

x := 0

{push,
wait}

x < 5 :

{push,
wait}

{push,
wait}

init prod coffee

x ⩽ 5

wait push x = 5

(⋆)

(⋆) (⋆)

init prod coffee

x ⩽ 5

x := 0

{push,
wait}

x < 5 :

{push,
wait}

{push,
wait}

wait push x = 5(⋆)
(⋆)

(⋆)

init prod coffee

x ⩽ 5

x := 0

{push,
wait}

x < 5 :

{push,
wait}

{push,
wait}

wait push x = 5
(⋆) (⋆)

(⋆)

wait

push

x := 0

x < 5 : {push, wait}

{push, wait}

x = 5

{push, wait}

(∗)−−→ =
Act−−−→
x:=0

(∗)−−→ =
Act−−−→
x:=5

(∗)−−→ =
Act−−−−→

x:=10

Figure 3.3: Step 4 (Final Automaton)

The construction described in Steps 1-3 is a well-known technique to count and store
the number of transition the automaton has already taken: By always proceeding in the
next copy, we know that exactly i transitions must have been taken when the automaton
is in copy i, for i = 1, . . . , n− 1. Only this knowledge then allows us to add contingency
transitions, whose target location dependents on the current step, correctly. This yields
the for our purpose desired result as we allow the automaton to reset its location and
clock setting exactly to what they actually were in the respective step. Note that we
want this reset to be always possible, hence, we do have outgoing transitions from every
location of the previous copy, allow every action for this transition and do not restrict

40

3.1. Delay Causality in Real-Time Systems

the transition with a guard. Finally, the clocks are reset by using the clock expression of
composed assignments that sets all clocks exactly to the value they had in the respective
configuration.

Formally, the contingency automaton is defined as follows.

Definition 3.6 (Contingency Automaton)
Let ρ = ⟨l0, u0⟩

δ1−→ α1−→ ⟨l1, u1⟩
δ2−→ α2−→ . . .

δn−→ αn−−→ ⟨ln, un⟩ be a finite run of a timed
automaton TA = (Loc, l0, C,Act,→, I). The contingency automaton of timed automaton TA Def. contingency

automatonand run ρ is defined as TAcon
ρ := (Loc ′, l ′0, C

′, Act,→ ′, I ′) with

• Loc ′ := Loc× {0, . . . , n}

• l ′0 := ⟨l0, 0⟩

• C ′ := C

• the transition relation→ ′ is defined by the following rules:

l
g: α, E−−−−→ l ′ i = 0, . . . , n− 1

⟨l, i⟩ g: α, E−−−−→ ⟨l ′, i+ 1⟩

l
g: α, E−−−−→ l ′

⟨l, n⟩ g: α, E−−−−→ ⟨l ′, n⟩

i = 0, . . . , n− 1 α ∈ Act

⟨l, i⟩ ⊤: α, E(ui+1)−−−−−−−−−→ ⟨li+1, i+ 1⟩

where in the last rule, li+1 is the respective location of ρ, ui+1 is the respective
clock assignment of ρ, and E(u) is the expression enforcing the clock assignment
to be exactly u, i.e., E({c1 7→ v1, . . . , cn 7→ vn}) := c1 := v1; . . . ; cn := vn

• I(⟨l, i⟩) := I(l)

• If TA has a labeling function L, the labeling function of TAcon
ρ is defined as L ′(⟨l, i⟩) :=

L(l).

For a lasso-shaped run

ρ = ⟨l0, u0⟩
δ1−→ α1−→ . . .

δn−→ αn−−→
(
⟨ln, un⟩

δn+1−−−→ αn+1−−−→ . . .
δp−1−−−→

αp−1−−−→ ⟨lp−1, up−1⟩
δp−→

αp−−→
)ω

the construction of the contingency automaton TAcon
ρ works as above only with using as

set of locations Loc ′ := Loc× {0, . . . , n, n+ 1, . . . , p− 1}, with identifying in the definition
of the transition relation → index p with n, and with omitting the second rule in the
definition of the transition relation.

41

3. Formal Definitions of Counterfactual Causality in Real-Time Systems

Again the three rules defining the transition relation mirror the three types of transi-
tions that we want to have in the contingency automaton:

• In the first n − 1 copies, we redirect the transitions from the initial automaton to
lead to the next copy.

• In the n-th copy, we leave the transitions from the initial automaton unchanged.

• The third rule takes care of the contingency transitions and allows to reset the
system when entering copy i+ 1 to the configuration ⟨li+1, ui+1⟩ of the given run.

Note that the contingency automaton is no longer necessarily timewise action-deterministic
– in fact the automaton is almost always and also in the above example of the coffee
machine not action-deterministic. Either a contingency transition can be traversed, that
is, that the contingency is taken, or the "normal" transitions from the initial automaton
can be traversed, that is, that the contingency is not taken. This non-determinism will,
however, not cause any major formal problems. For more details of this aspect, we refer
to the proof of Proposition 12 and the discussion in Section 3.3. Like in the construction:Proposition 12, p. 46

: Section 3.3, p. 55 of the intersection automata, we also define the labeling function of the contingency
automaton exactly as the projection to the label of the initially given automaton such
that run effects transport again as desired.

Using the contingency automaton, we can now define a notion of actual causality in
our real-time setting. The definition reads exactly as the one for but-for causality, except
for the detail that we intersect in the CF-condition no longer the given initial automaton
with the counterfactual trace automaton but that we now consider the intersection
TAcon

ρ ∩ TAC
ξ of the contingency automaton and the counterfactual trace automaton as

model for the counterfactual simulation.

Definition 3.7 (Actual Causality in Real-Time Systems)
Let TA be a timed automaton, ρ a run of TA with corresponding delay trace ξ, and ϕ a

run effect. A set of events C ⊆ E is an actual cause for ϕ in ρ of TA, if the following threeDef. actual cause

conditions hold:

SAT ξ |= C and ρ |= ϕ.

CFAct There is a time-divergent run ρ ′ in TAcon
ρ ∩ TAC

ξ with ρ ′ ̸|= ϕ.

MIN C is minimal, i.e., no strict subset of C satisfies SAT and CFAct.

The non-determinism of the contingency automaton and, therefore, also the non-
determinism of the intersection is now in fact a crucial detail ensuring that we obtain
a notion of actual causality that is in accordance with the foundational concept. We
will discuss this relationship and the differences to Coenen et al.’s techniques [22] for
obtaining a faithful modeling of contingencies in more depth in Section 3.3.: Section 3.3, p. 55

42

3.1. Delay Causality in Real-Time Systems

Recall that, in contrast to our definition, the CFAct-condition in the foundational setting
asked explicitly for the existence of a set of contingencies that are then fixed in the count

As desired, the notion of actual causality does indeed solve the problem of preemption
also now in the real-time setting.

Example 3.1.8. We recall the situation from Example 3.1.7 with timed automaton TA :Example 3.1.7, p. 38

from Figure 2.1 and run :Figure 2.1, p. 14

ρ := init
2−→ push−−−→ prod

5−→ push−−−→ coffee
5−→ wait−−→ init.

We discussed that the set of events C := {(push, 1)} is no but-for cause for the effect
ϕ := ♢ coffee, C is, however, an actual cause for ϕ in ρ of TA:

When intersecting the contingency automaton TAcon
ρ (cf. Figure 3.3) with the counter- :Figure 3.3, p. 40

factual trace automaton, we can find the time-divergent counterfactual run

ρ ′ := init
2−→ wait−−→ init

5−→ push−−−→ prod
5−→ wait−−→

(
init

5−→ wait−−→
)ω

in which the effect ϕ does not appear3. Hence the CFAct condition is fulfilled. △

The counterfactual run ρ ′ in the above example was indeed only enabled due to
the additional contingency transitions as it takes the contingency in the last step to
traverse from location "prod" to location "init", a transition that does not exist in the
initial automaton.

We present a further example for the improved capability of actual causality in which
a delay event now preempts another potentially causal delay event.

Example 3.1.9. We consider the following timed automaton TA:

l0

x ⩽ 10

l1

x ⩽ 20

l2
α

x ⩾ 3

x < 3 : α , x := 0

α
α

In the run

ρ := l0
3−→ α−→ l1

2−→ α−→ l2
4−→ α−→ l2

the effect ϕ := ♢ l1 appears. The set of events C := {(3, 1)} is no but-for cause, it is,
however, an actual cause for ϕ in ρ of TA:

3Like here, we might also in the future abuse notation in contingency automata as well as in the coun-
terfactual runs and simply write for the locations only the component with the name of the location
in the initial timed automaton and omit the further components of the tuple-locations generated by
composition.

43

3. Formal Definitions of Counterfactual Causality in Real-Time Systems

C violates the CFBF-condition, since the delay of 4 at the third position remains en-
forced, so every potential counterfactual run will again reach location l1 after the third
transition such that the effect still appears.

The CFAct-condition is, however, fulfilled: To see this, we consider the contingency
automaton TAcon

ρ :

l0

x ⩽ 10

l1

x ⩽ 20

l2

l0x ⩽ 10 l1x ⩽ 20 l2

l0x ⩽ 10 l1x ⩽ 20 l2

l0x ⩽ 10 l1

x ⩽ 20

l2

αx
⩾
3

x < 3 : α , x := 0
α

α

αx
⩾
3

x < 3 : α , x := 0
α

α

αx
⩾
3

x < 3 : α , x := 0
α

α

α

x ⩾ 3

x < 3 : α , x := 0

α
α

(⋆)

(⋆)

(⋆)

(⋆) (⋆)
(⋆)

(⋆) (⋆)
(⋆)

(∗)−−→ =
Act−−−→
x:=3

(∗)−−→ =
Act−−−→
x:=5

(∗)−−→ =
Act−−−→
x:=9

Taking the contingency in the third step allows to take a transition from l0 to l2 and
thereby to avoid traversing location l1 with the counterfactual run

ρ ′ := l0
2−→ α−→ l0

2−→ α−→ l0
4−→ α−→

(
l2

1−→ α−→
)ω
.

Checking the SAT- and MIN-condition is again straightforward. △

Also in this example we would argue that the concept of actual causality matches
more precisely with the intuition on what event(s) should be identified as cause: In
the above situation, we have the minimal but-for cause {(3, 1), (4, 3)} – it seems however
unreasonable to say that the third delay in run ρ is causal for traversing l1 since the
specific delay of 4 has firstly no impact at all on the course of the run and appears
secondly temporally even after the considered effect appears. Again, the event (4, 3)

must be included in the but-for cause only because it is preempted by the first delay
event (3, 1). And again, only by taking a contingency, we can solve this issue since the
contingency automaton allows transitions that have not existed in the originally given
automaton. With this, we can find a counterfactual run even though we still have a

44

3.1. Delay Causality in Real-Time Systems

delay of 4 in the third step.

Lastly, we want to discuss some theoretical results regarding our notion of actual
causality and also its connection to but-for causality. We start by lifting the statement
from Proposition 1 to our real-time setting. This needs, however, first an auxiliary result :Proposition 1, p. 12

regarding the runs of the contingency automaton.

Lemma 10. Let TA be a labeled timed automaton and ρ a finite or lasso-shaped run of TA. Then
there is for every time-divergent run ρ ′ of TA a time-divergent run ρ ′con of TAcon

ρ with the same
corresponding signal.

Proof. Let ρ be a finite run of TA with length n and

ρ ′ = l0
δ1−→ α1−→ l1 . . .

δi−→ αi−→ li . . . i = 2, 3, . . .

a time-divergent run of TA. By the definition of the transition function of TAcon
ρ , there is

then also the time-divergent run

ρ ′con = ⟨l0, 0⟩
δ1−→ α1−→ ⟨l1, 1⟩ . . .

δn−→ αn−−→ ⟨ln, n⟩
δn+1−−−→ αn+1−−−→ ⟨ln+1, n⟩ . . .

δi−→ αi−→ ⟨li, n⟩ . . .

i = n+ 2, n+ 3, . . .

of TAcon
ρ that has by definition of the labeling function of TAcon

ρ the same corresponding
signal as ρ. For lasso-shaped ρ, there is analogously a lasso-shaped run ρ ′con in TAcon

ρ .

This allows to lift the foundational result stating the connection between but-for and
actual causality:.

Proposition 11. If a set of events C is a (minimal) but-for cause for a run effect ϕ in a run ρ of
a timed automaton TA, then there is a subset C ′ ⊆ C that is an actual cause for ϕ in ρ of TA. In
particular, every singleton but-for cause is also an actual cause.

Proof. Analogously to the proof of Proposition 1 it suffices to show that if C fulfills :Proposition 1, p. 12

the CFBF-condition it does also fulfill the CFAct-condition. So let C fulfill CFBF, that is,
that there is a time-divergent run ρ ′ of TA ∩ TAC

ξ with ρ ′ ̸|= ϕ. As shown in the proof
of Corollary. 4, the projection runs ρ ′1 and ρ ′2 are, consequently, runs of TA and TAC

ξ :Corollary. 4, p. 19

respectively. By Lemma 10, there is then also the run ρ ′1con
in TAcon

ρ and again as in the :Lemma 10, p. 45

proof of Corollary. 4, we have, therefore, a run of TAcon
ρ ∩ TAC

ξ (namely the run pointwise :Corollary. 4, p. 19

composed from ρ̂ ′1 and ρ ′2). Since the corresponding signal is by construction of the
labeling functions not changed by all those run operations (projection, pairing, building
of the contingency automaton), ϕ does still not appear in the time-divergent run of
TAcon

ρ ∩ TAC
ξ such that C fulfills CFAct.

For but-for causality, we established two sanity results, namely that the empty set is
never a cause and an existence statement of causes. We can show both results also for
the notion of actual causality.

45

3. Formal Definitions of Counterfactual Causality in Real-Time Systems

Proposition 12. ∅ is never an actual cause for a run effect ϕ in a run ρ of a time-wise action-
deterministic timed automaton TA.

Proof. The proof works similar to the proof of Proposition 8. In the case of ρ |= ϕ, we
however used that TA is action-deterministic to conclude that a potential counterfactual
run agrees with the actual run ρ. Even though TAcon

ρ is no longer action-deterministic
in general and, therefore, Proposition 2 no longer applicable, we can still draw the:Proposition 2, p. 17

necessary inference for ρ: The non-determinism in the contingency automaton results
from the additional contingency transitions

⟨l, i⟩ ⊤: α, E(ui+1)−−−−−−−−−→ ⟨li+1, i+ 1⟩,

where ⟨li+1, ui+1⟩ are the configurations of ρ. Therefore, the contingency transitions
only allow to traverse exactly the locations of ρ such that we can still use that all runs of
the corresponding trace of ρmust agree with ρ. Hence, the overall inference still works
as in the proof of Proposition 8 and the result follows.

Proposition 13. Let ϕ be a run effect and TA a timed automaton. If there exists a time-divergent
run ρ ′ of TA with ρ ′ ̸|= ϕ, then for every run ρ in which ϕ appears, there is an actual cause for
ϕ in ρ of TA.

Proof. Follows directly with Proposition 9 and Proposition 11.:Proposition 9, p. 31

:Proposition 11, p. 45
Recall again, that we do not know how to formally prove causality definitions to

be "correct definitions"4. Moreover, we will report on some limitations and problems
our definitions struggle with in following sections. We still think that the presented
theoretical results together with the numerous considered examples, in which our
notions of but-for and actual causality work as desired, provide solid reasons for the
meaningfulness and usefulness of our definitions.

3.2 Timestamp Causality

In the last section, we introduced an approach towards counterfactual causality in
real-time systems that looks at a given run and its corresponding trace from a delay
perspective, that is, the delay values in the run were considered as causal events. This
choice is by far not canonical: In Chapter 6, we discuss multiple other concepts in:Chapter 6, p. 105

the related work of others, where we will see even settings in which one does – in
contrast to our work – not even starts with a given run or trace. In this section now, we
want to discuss an alternative to the delay perspective and look instead at the absolute
timestamps of actions in timed traces. It turns out that the intuition is not sweeping in
support of either one of the two perspectives alone. Instead, we will see both examples,

4See in this regard also again the remark by Halpern quoted in Chapter 1.

46

3.2. Timestamp Causality

in which we intuitively prefer a delay perspective, as well as examples, in which a
timestamp perspective seems to match our intuition way better.

We want to start with an everyday example that motivated us in the first place to take
a different perspective than that of delay events:

Example 3.2.1. Consider the following (very simplified) description of an agricultural
field in the course of the year.

• The agricultural field is cultivated and is therefore sown, fertilized, watered and
finally harvested throughout the year.

• In order to have a successful harvest it is necessary that the sowing, fertilizing,
watering and harvesting is done exactly in the right months of the year:

– The field must be sown in March,
– the field must be fertilized in April,
– the field must be watered in July, and
– the field must be harvested in September.

• If just one of the actions is not done in the right month, the harvest will fail.

Now imagine a scenario in which a farmer mistakenly fertilizes the field not in April but
only in June while he sows the field correctly in March, waters it correctly in July, and
harvests it correctly in September. Intuitively, we would suggest that the wrong point
of time at which the farmer fertilized the field and nothing else caused the harvest to fail.

We want to model the agricultural field as a real-time system. We do so with a timed
automaton TA, using the set of actions Act := {sow, fertilize,water,harvest}, and a clock
mwhose value represents the current month of the year. The automaton TA is depicted
in Figure 3.4 on the next page. The above scenario of a faulty fertilizing in June can be :Figure 3.4, p. 48

rediscovered in the timed automaton as the run

ρ := l0
3−→ sow−−→ l1

3−→ fertilize−−−−→ fail
1−→ water−−−→ fail

2−→ harvest−−−−→ fail,

in which the effect ϕ := ♢ fail appears. Applying now however our notion of causality
from the previous section yields the set of events {(3, 2), (1, 3)}, i.e., the second and third
delays of the run as minimal but-for cause (and as well as actual cause) for ϕ in ρ of
TA. In particular, the singleton set C := {(3, 2)} of only the delay after which the field is
fertilized is not identified as a cause on its own. The counterfactual trace automaton
TAC

ξ for this singleton event set looks as follows:

d ⩽ 3 d ⩽ 1 d ⩽ 2

sow

d = 3
d := 0

fertilize

d := 0

water

d = 1
d := 0

harvest

d = 2
d := 0

Act

47

3. Formal Definitions of Counterfactual Causality in Real-Time Systems

l0

m ⩽ 12

l1

m ⩽ 12

l2

m ⩽ 12

l3

m ⩽ 12

succ

fail

sow

m = 3

fertilize

m = 4

water

m = 7

harvest

m = 9

Act \ {sow}

A
ct \

{fertilize}

A
ct
\
{w

ater}

A
ct

\
{h

a
rve

st}

sow
m ̸= 3

fertilize
m
̸=
4

w
ater

m
̸=
7

h
a
rv

e
st

m
̸=
9

Act

Act

Figure 3.4: Timed automaton modeling an agricultural field

Although TAC
ξ allows an alternative to 1 for the second delay – which means it allows to

"correctly" fertilize in April – it then enforces a delay of 1 before the third action water.
This then results in a faulty watering already in the month May, therefore, again in a
failed harvest, and hence, there is no counterfactual run without effect ϕ. △

This example gives rise to a whole class of scenarios in which the notion of causality
that takes a delay perspective fails to match with our intuition: for cases in which
the total time of certain actions since the start of the timed automaton is of interest
and not the time between certain actions, the delay perspective on causality might fail
to precisely analyze the causal connections. This is due to the propagation of time:
changing the time of a certain action by changing its preceding delay also shifts the
absolute times since the start of the timed automaton of all following actions.

If now, however, the absolute time is of importance for how the run continues (as it
is in our example, as the absolute time of when the field is watered and harvested is of
importance) and if, in the actual run, the absolute times of the following actions were
already "correct"5 (as it was in our example, as the time of watering and harvesting was
"correct" in July and September respectively), then a shift of the absolute times of those
actions leads to "incorrect" times of the actions and, therefore, again to an appearance of
the effect. In the delay perspective, the effect can therefore only be avoided by making
also the successor delay causal, which then allows to shift the absolute times of the
following actions back to how they were in the actual run (that is why in the above
example the second and its successor delay, the third delay, are only together identified

5"Correct" in the sense that the absolute times were such that they could lead to an avoidance of the effect.

48

3.2. Timestamp Causality

as a cause).

This observation suggests that there are scenarios in which it might be better for the
causal analysis to allow changing the absolute time – or in the following also called
timestamp – of certain actions in a run without shifting the timestamp of following
actions. We can obtain such a notion of causality by taking a timestamp perspective to
runs and its corresponding traces: Instead of considering delay traces, we now look at
timestamp traces (cf. Definition 2.5) that have the form :Definition 2.5, p. 15

ξ = ⟨t1, α1⟩ . . . ⟨tn, αn⟩,

where ti ⩽ ti+1 for all 1 ⩽ i ⩽ n − 1. Instead of taking the delay spent in a location
as an event, we now consider the absolute time that has passed since the start of the
automaton as an event. Consequently, Definition 3.1 of sets of events is adapted. :Definition 3.1, p. 24

Definition 3.8 (Events – Timestamp Perspective)

1. The set of timestamp events is defined as TE := {(t, i) ∈ R⩾0 × N}, the set of action Def. timestamp and
action eventevents as AE := {(α, i) ∈ Act× N}}.

2. The whole set of events E is then obtained by the disjoint union of TE and AE, i.e., Def. set of events

E := TE ∪̇AE.

The principle ideas of our notion of causality in real-time systems remain, however,
the same also now for the timestamp perspective and we proceed very similar as we
did in the previous section for the delay perspective to obtain a definition of (minimal)
but-for causality. The development must only be slightly adapted accordingly to the
changed setting of considering timestamp traces and timestamp events instead of delay
traces and delay events. This starts with Definition 3.2 of event satisfaction. :Definition 3.2, p. 25

Definition 3.9 (Event Satisfaction – Timestamp Perspective)
A finite timestamp trace ξ = ⟨t1, α1⟩ . . . ⟨tn, αn⟩ satisfies a set of events C ⊆ E, if Def. event satisfaction

• for every timestamp event (t, i) ∈ C, we have t = ti, and

• for every action event (α, i) ∈ C, we have α = αi.

We denote this by ξ |= C.

While the changes in the definitions of events and event satisfaction are minor and
straightforward, the construction of counterfactual trace automata for timestamp traces
and events requires as the only step in the adaption a little more discussion. Recall
that given a trace and set of events the idea of counterfactual trace automata was to
represent possible counterfactual traces, which was done by enforcing the non-causal

49

3. Formal Definitions of Counterfactual Causality in Real-Time Systems

events of the given trace while allowing alternatives for the causal events. In advance
of Definition 3.3, we explained in detail how to fix delay and action events and how the:Definition 3.3, p. 27

resulting constraints are then again relaxed for the causal events. The construction now
in the timestamp perspective works similar: for action events, we can proceed exactly
as already in the delay perspective. For the enforcement of timestamp events we need
a slightly differing idea and use no longer a clock d measuring the delay spend in the
current location but a clock t that measures the absolute time since the start of the timed
automaton.

So consider again the demonstration example as already in the delay perspective with
given trace

ξ = ⟨t1, α1⟩⟨t2, α2⟩ . . . ⟨tn−1, αn−1⟩⟨tn, αn⟩

and a given set of events

C = {(t1, 1), (tn, n), (α2, 2), (αn, n)}.

We proceed in the following way:
1. We enforce all timestamps and actions to be exactly as in the given actual trace

using a clock t measuring the time since the start of the automaton:

. . .α1 α2 αn−1 αn
Act

t ⩽ t1
t = t1

t ⩽ t2
t = t2 t = tn−1

t ⩽ tn
t = tn

2. We relax the timestamp constraints as we did it for the delay constraints in the
delay perspective by omitting guards and invariants:

. . .α1 α2 αn−1 αn
Act

t ⩽ t2
t = t2 t = tn−1

3. We relax the action constraints exactly as we did already in the delay perspective:

. . .Act α2 αn−1 Act
Act

t ⩽ t2
t = t2 t = tn−1

4. We allow arbitrary continuations again as in the delay perspective:

. . .Act α2 αn−1 Act
Act

t ⩽ t2
t = t2 t = tn−1

The described construction results in the following adaptions of the formal definition
of counterfactual trace automata.

50

3.2. Timestamp Causality

Definition 3.10 (Counterfactual Trace Automaton – Timestamp Perspective)
Let ξ = ⟨t1, α1⟩ . . . ⟨t1, αn⟩ be a finite timestamp trace over a finite set of actions Act

and let C ⊆ E be a finite set of events. The counterfactual trace automaton of trace ξ for the Def. counterfactual
trace automatonset of events C is defined as TAC

ξ := (Loc, l0, C,Act,→, I) with

• Loc := {0, . . . , n},

• l0 := 0,

• C := {t},

• the transition relation→ is defined by the following rules:

(ti, i) /∈ C (αi, i) /∈ C

i− 1
t=ti: αi−−−−−→ i

(ti, i) ∈ C (αi, i) /∈ C

i− 1
⊤: αi−−−→ i

(ti, i) /∈ C (αi, i) ∈ C β ∈ Act

i− 1
t=ti: β−−−−−→ i

(ti, i) ∈ C (αi, i) ∈ C β ∈ Act

i− 1
⊤: β−−−→ i

β ∈ Act

n
β−→ n

• I(i) :=

 t ⩽ ti+1, (ti+1, i+ 1) ̸∈ C,

⊤, otherwise.

Therewith, we can then again define (minimal) but-for causality in real-time systems
now from a timestamp perspective.

Definition 3.11 (But-For Causality – Timestamp Perspective)
Let TA be a timed automaton, ρ a run of TA with corresponding timestamp trace ξ,

and ϕ a run effect. A set of events C ⊆ E is a but-for cause for ϕ in ρ of TA, if the following Def. but-for cause

two conditions hold:

SAT ξ |= C and ρ |= ϕ.

CFBF There is a time-divergent run ρ ′ of TA ∩ TAC
ξ with ρ ′ ̸|= ϕ.

We call the cause minimal but-for cause if furthermore the following condition holds: Def. minimal but-for
cause

MIN C is minimal, i.e., no strict subset of C satisfies SAT and CFBF.

51

3. Formal Definitions of Counterfactual Causality in Real-Time Systems

In fact, we have thereby only changed a single word in comparison to Definition 3.5:Definition 3.5, p. 30

as we now consider the corresponding timestamp trace instead of the corresponding
delay trace. All further adaptions happen then implicitly as we now refer with C ⊆ E to
a subset C of a differing whole set of events E, the satisfaction predicate ξ |= C is defined
differently for this differing set of events C and trace ξ, and also the counterfactual trace
automaton TAC

ξ is now defined differently for the timestamp trace ξ.

As desired, this perspective on causality now yields a different causal analysis for
scenarios like the agricultural field from Example 3.2.1, that is now in accordance with:Example 3.2.1, p. 47

our intuition.

Example 3.2.2. Consider again the timed automaton TA given in Figure 3.4 modeling an:Figure 3.4, p. 48

agricultural field and its run

ρ := l0
3−→ sow−−→ l1

3−→ fertilize−−−−→ fail
1−→ water−−−→ fail

2−→ harvest−−−−→ fail

in which the effect ϕ := ♢ fail appears. From the timestamp perspective, the singleton
set of events C := {(6, 2)} is now a but-for cause for ϕ on ρ of TA:

We consider the corresponding timestamp trace

ξ = ⟨3, sow⟩⟨6, fertilize⟩⟨7,water⟩⟨9,harvest⟩

of run ρ. At first, we have ξ |= C such that the SAT-condition is fulfilled. Next, we
construct the counterfactual trace automaton TAC

ξ that looks for the timestamp trace ξ
and set of timestamp events C as follows:

t ⩽ 3 t ⩽ 7 t ⩽ 7 t ⩽ 9

sow

t = 3

fertilize water

t = 7

harvest

t = 9
Act

This counterfactual trace automaton now allows an alternative for the time of fertilizing
but fixes the absolute timestamp of all other actions, in particular the timestamp of
the following watering and harvesting. Hence, the alternative of fertilizing at absolute
time 4 without changing the other timestamps is now possible and we can find in the
intersection TA ∩ TAC

ξ the counterfactual run

ρ ′ := l0
3−→ sow−−→ l1

1−→ fertilize−−−−→ l2
3−→ water−−−→ l3

2−→ harvest−−−−→ succ ∞−→
with ρ ′ ̸|= ♢ fail. Therefore, ϕ does not appear in ρ ′ and the CFBF-condition is fulfilled.

△

This shows that in the timestamp perspective, it is now possible to shift the time of
the fertilizing from the "faulty" month of June to the "correct" month of April while the

52

3.2. Timestamp Causality

absolute timestamps of the other actions are not shifted. Hence, we can now identify
the "faulty" time of the fertilizing alone as but-for cause for the failed harvest. There
are numerous other real-world examples where this timestamp perspective to causality
seems to be the perspective of choice: when modeling a school bell that should ring
at specified times, when simulating a supermarket in the course of the week in which
product deliveries take place on fixed days, or streetlights that are to be switched on at
sunset and switched off at sunrise.

However, there are conversely also just as many examples in which the timestamp
perspective is not suitable but in which the delay perspective results in an analysis
that corresponds better to intuition: a cooking process in which it is important that
the ingredients should be mixed in with correct temporal delays between each other, a
chemical process to which energy, heat or chemicals must be added at the right intervals,
or a railway crossing where traffic lights and barriers should behave in the correct time
delay with respect to the crossing train.

We demonstrate how the two perspectives apply differently well in different scenarios
with the following synthetic minimal example.

Example 3.2.3. We consider two timed automata: Firstly the timed automaton TA1:

l0

x ⩽ 5

l1

x ⩽ 10

succ

fail

α

x = 4

α

x = 6

αx ̸=
4

α

x
̸=
6

α

α

Secondly the very similar timed automaton TA2 in which the basic difference is simply
that the clock x is reset after the first transition:

l0

x ⩽ 5

l1

x ⩽ 10

succ

fail

α
x = 4
x := 0

α

x = 2

αx ̸=
4

α

x
̸=
2

α

α

We look again at the effect ϕ := ♢ fail. In both automata, we have the same "successful"
run ρ ′ := l0

4−→ α−→ l1
2−→ α−→ succ in which ϕ does not appear. Consider now, however,

53

3. Formal Definitions of Counterfactual Causality in Real-Time Systems

runs in which the effect appears, so, for instance, the run

ρ1 := l0
3−→ α−→ fail

3−→ α−→ fail

of TA1 as well as the run

ρ2 := l0
3−→ α−→ fail

2−→ α−→ fail

of TA2. We observe the following: Using the delay perspective, we obtain as minimal
but-for cause for ϕ in ρ1 of TA1 the set of events {(3, 1), (3, 2)}, while the timestamp
perspective yields, however, the minimal but-for cause {(3, 1)}. For TA2 and ρ2 the
perspectives behave exactly conversely: With the delay perspective we get {(3, 1)} as
minimal but-for cause for ϕ in ρ2 of TA2, with the timestamp perspective we, however,
need the larger set {(3, 1), (5, 2)} to obtain a minimal but-for cause. △

The difference between the two scenarios lies exactly in the question whether we are
interested in the time since the start of the automaton (as in TA1, where the clock x is not
reset) or whether we are interested in the time spent in the current location (as in TA2,
where x is reset).

Remark 3.2.1. Also allowing contingencies does not solve the discussed issue in Exam-
ple 3.2.1 and Example 3.2.3, that in the delay perspective the singleton sets with only:Example 3.2.1, p. 47

:Example 3.2.3, p. 53 one delay event are not identified as but-for cause, as they are neither actual causes.
This is since by taking a contingency in a certain step, we can only fix both the clock
values together with the location in which the actual run was in this step. Therefore,
even though the contingency allows to set the clocks to the desired values, the effect is
not avoided since the contingency sets the run to the undesired "fail" location. △

Therefore, it really depends on the particular application scenario which perspective
yields the causal analysis closer to our intuition. Actually, it is sometimes already in the
first place a philosophical question of the perspective whether one considers in a real-
time process certain delays of actions or their timestamps to be causal for a certain effect6.

Besides the question to what extent the two presented perspectives are in accordance
with intuition, there are however further differing aspects between the perspectives that
all speak in fact rather in favor of the delay perspective. First of all, the attentive reader
might have noticed that we considered always only finite timestamp traces. This is due
to the fact, that it is difficult (or basically even unclear at all) how to represent infinite
timestamp traces suitably since defining lasso-shaped timestamp traces seems not to be
possible in a proper way. Therefore, also the complete development in the timestamp
perspective as well as the final notion of causality can only handle finite traces and runs.

6Maybe, philosophers or lawyers could come up at this point with thrilling examples in which the moral
responsibility or legal debt depends on whether one takes a delay or a timestamp perspective to the
scenario.

54

3.3. Remarks, Limitations, and Discussion

Consequently, effects that talk about the infinite behavior of runs cannot be analyzed
from a timestamp perspective.

Secondly, we also have, in contrast to the delay perspective, not defined a notion of
actual causality for the timestamp perspective. While it seems formally well-defined to
copy the definition of actual causality, that is, to intersect the contingency automaton
constructed exactly as stated in Definition 3.6 with the counterfactual trace automaton :Definition 3.6, p. 41

for timestamp traces, this approach leads to undesired and counter-intuitive results: In
particular, this notion identifies sets of events as actual causes that should not be causes
at all. This is because taking a contingency can manipulate clocks and thereby adjust the
absolute time that is needed to reach for instance certain locations. We simultaneously
measure, however, exactly this absolute time with clock t in the counterfactual trace
automaton and seem to have no possibility to properly adjust this clock accordingly
such that we obtain unfaithful runs in the intersection automaton.

Lastly, we would also argue from a philosophical point of view that a delay perspective
is way more in the flavor of real-time systems in general. Real-time systems are often
used for reactive and non-terminating systems in which it is not really of importance
how much time has passed since the system was activated but how much time has
passed since certain real-time events.

All those advantages of the delay perspective in comparison to the timestamp per-
spective together prompted us to present the delay perspective in the previous section
as our notion of choice for counterfactual causality in real-time. Nonetheless, we think
that the discussion of the differing timestamp perspective yielded several theoretical as
well as philosophical insights. Furthermore, it raises some interesting questions and
possible future lines of research, for instance, on whether and how it might be possible
to combine both perspectives in one notion. Those further ideas will be discussed in
more detail in Chapter 7. :Chapter 7, p. 111

3.3 Remarks, Limitations, and Discussion

We want to give some further remarks on theoretical aspects surrounding our formal-
ization and report in this course also on shortcomings of the developed notions. To this
end, we start by discussing the assumptions that we have (not) to make on the real-time
setting we work in.

We assume the given timed automaton to be timewise action-deterministic. As-
suming timewise action-determinism is in various regards crucial for our development.
Notice firstly, that Propositions 8 and 12, which state the empty set of events to never :Propositions 8, 12,

p. 30 and 46be a cause, would become false: If the automaton has a run ρ ′ differing from the given
actual run ρ, however, with the same corresponding trace, it could well happen that
ρ |= ϕ while ρ ′ ̸|= ϕ, in which case ρ ′ would a witnessing run for the empty set to be
a cause. As also generally for causal models, we want instead that the occurrence of

55

3. Formal Definitions of Counterfactual Causality in Real-Time Systems

effects is fully determined by the occurring events. For our setting, which considers only
events of timed traces, this consequently means, that the occurrence of effects should be
determinable from a given trace. Due to Proposition 2, this can be enforced by assuming:Proposition 2, p. 17

timewise action-determinism of the automaton we are working in.
We assume the actual run to be given in a concrete form. Having a concrete run with

concrete real-time delays at hand is the starting point in our causal setting. This differs
in fact from other approaches to causality in real-time systems as we will discuss in more
depth in Chapter 6. Our choice was in particular guided by the targeted application to:Chapter 6, p. 105

obtain very concrete explanations of an observed system behavior.
We assume the effect to be described in MITL. Evidently necessary for the decid-

ability of meaningful causality notions is in general to consider decidable effects. We
do so in our real-time setting by specifying effects in MITL, a decidable real-time logic.
Moreover, MITL is a trace-based logic (or in the terminology of the real-time setting,
a signal-based logic), that is, MITL specifies a system by describing properties of the
corresponding signals of its runs. This signal-based nature of MITL turned out to be
well-suitable for our causal reasoning, as they firstly transport easily through different
automata operations, and matched secondly with our causal setting that considers ef-
fects occurring in certain runs of the system. On the contrary, it does not seem that our
approach can be easily adapted to apply also to branching-time logics, as they specify a
system by rather specifying its locations with regard to all the possible runs originating
from a location.

We cover both finite as well as lasso-shaped runs. The flexibility in our formaliza-
tions and constructions to handle both finite as well as lasso-shaped runs makes our
development applicable to different scenarios. Finite runs enable us, for instance, to
gain explanations for (finite) bad prefixes of safety properties, supporting lasso-shaped
runs extends our development to provide also explanations for infinite violations of
liveness properties.

We do not require the transition relation of the timed automaton to be total. Not
necessary is to require some kind of totality property for the transition relation, that
is, we do not assume actions to always be or become enabled. Going further, we do
not even require the automaton to be deadlock-free, and hence, allow locations without
any outgoing transition at all. In practice however, the causal analysis of such systems
seems to be oftentimes inappropriate as disabled actions result quickly in timelocks
or deadlocks in the constructed intersections. A phenomenon also related to the in
Section 3.2 discussed the difficulty of time propagation, i.e., that changes in one delay: Section 3.2, p. 46

induce timing changes also in the whole remainder of the run. Consequently, guards
might become unsatisfiable resulting also in a blocking behavior of the counterfactual
simulation.

Next, we want to discuss in more detail how our developed real-time notions are
related to the foundational causal work of Halpern and Pearl and justify more concretely

56

3.3. Remarks, Limitations, and Discussion

that our definitions are – as claimed several times – indeed in the flavor of Halpern and
Pearl’s causality concept [37]. We therefore argue, how our setting can be described in a
causal model and that the foundational and real-time notions of causality do then widely
agree. However, we do therefore not claim to provide complete formal arguments but
rather focus on the intuitive connections.

Recall that Halpern and Pearl used causal models, that is, different variables and
structural equations over those variables, for describing the considered parts of the
world (cf. Section 2.1.1). Our considered "world" is given by the timed automaton. A : Section 2.1.1, p. 7

causal model describing the execution of a timed automaton TA for n steps could be
designed in the following way:

• Endogenous variables Di and Ai for i = 1, . . . , n represent the delays and actions
in the course of the execution. Hence,Di range overR⩾0 andAi overAct, whereby
Act is the set of actions of TA.

• Endogenous variables Configi for i = 0, . . . , n describe the configuration of the sys-
tem in step i, that is, its location and clock assignment. Hence, Configi ranges over
values of the form ⟨l, u⟩, whereby l are locations of TA and u a clock assignment.

• For i = 1, . . . , n, the variables Di, Ai, and Configi−1 determine the value of con-
figuration Configi. The concrete structural equation of Configi is induced by the
concrete structure of TA, that is, that the formula encodes the transitions of TA.

D1 A1

Config1

Config2

D2 A2

..
.

Confign

Dn An

In the causal formulas used in the foundational setting to specify effects, we could as
Boolean combinations over the primitive events Config1 = ⟨li, ui⟩ then express certain
run effects as well.

57

3. Formal Definitions of Counterfactual Causality in Real-Time Systems

If we now restrict the endogenous variables, that are considered as events of potential
causes only to the variablesAi andDi, then the causal analysis induced by foundational
but-for causality does indeed coincide with the developed real-time notion: delay and
actions events (D⃗, A⃗) = (⃗δ, α⃗) are identified as cause for an effect, if there exists an alter-
native setting (D⃗, A⃗) = (⃗δ ′, α⃗ ′) such that the effect does not occur in the counterfactual
simulation – exactly in accordance to the real-time definition of but-for causality asking
for the existence of a counterfactual run if alternative delays and actions are allowed.

Even more, if we restrict the endogenous variables considered for contingencies con-
versely to the variables Configi, also the notions of actual causality show large com-
monalities as they both allow to fix the configurations of the actual run. Our real-time
notion encodes the foundational propositional definition asking for the existence of a
set of contingency variables Configi in the contingency automaton.

Notice how the in Section 3.1.3 already mentioned non-determinism of the contin-: Section 3.1.3, p. 37

gency automaton is for this encoding in fact essential: If there exists a set of contingencies
W⃗ = {Configi | i ∈ {i = 1, . . . , n}} witnessing a set of events to be an actual cause, we know
that it is found in the runs of the contingency automaton as they can choose in each step
non-deterministically either to take or not to take a contingency. If we know conversely
that there is a counterfactual run in the contingency automaton, the steps in which
the run non-deterministically chose to take a contingency induce again the set W⃗ of
contingencies that witness in the foundational notion the cause. In contrast, Coenen
et al. [22] capture the question of the existence of contingencies not by using a non-
deterministic transition relation, but by extending the set of possible inputs (of Moore
machines that are considered in their setting) by auxiliary contingency variables and
choose contingencies accordingly to the "non-deterministic" occurrence of those inputs.

We want to remark on an important detail in the formal modeling above: for the delays
as well as for the configurations of automata (as they contain clock assignments) it is
essential to allow them to have an infinite range of possible values as there are infinitely
many possible alternatives to the real-time behavior of the automata. Allowing, for
instance, only finitely many alternatives {δ ′1, . . . , δ

′
k} to a causal delay δ would result

in an incomplete causal theory in the sense that there might be causes that are not
identified as such since the witnessing counterfactual relies on an alternative delay
δ ′ ̸∈ {δ ′1, . . . , δ

′
k}. Moreover, as discussed in the previous sections, it is, also crucial for a

faithful causal analysis to analyze the counterfactual runs not only up to the length of
the given actual run but to look at their infinite behavior. And also in the first place, we
describe the effects in timed-automata based on MITL for time-divergent, and hence,
mainly infinite runs. Therefore, the above model should actually be extended by further
variables Configi with i = n+1, n+2, . . . , resulting in a model even with infinitely many
variables7.

7Tempted by considerations of dynamical systems, Halpern and Peters extend in a recently published
work in fact (finite) causal models to generalized structural equation models [42] that can handle
infinitely many variables over infinite ranges.

58

3.3. Remarks, Limitations, and Discussion

Known decidability and complexity results of causality notions in the sense of
Halpern and Pearl do, however, only consider causal models with finitely many vari-
ables ranging over a finite set of possible values [30, 7]. As further discussed in the
next chapter, we could in our setting tackle both issues that endanger decidability
– the necessary consideration of infinitely many counterfactual alternatives as well
as the infinite simulation of the counterfactual world – through the automata-based
approach to the causal reasoning: automata yield a finite representation of infinitely
many traces and model-checking can analyze the infinite behavior of automata. This
will yield new decidability and complexity results for deciding actual causality in a
theory with possibly infinite many variables that partially range over an infinite domain.

The introduced causal model describing our real-time setting helps us also to illustrate
a last aspect that we want to discuss in more detail, namely, that the contingencies, that
our notion of actual causality allows to be taken, are relatively coarse-grained. Coarse-
grainedness – in contrast to fine-grainedness – means in the context of contingencies,
that choosing to take a single contingency (i.e., choosing to add a single variable to the set
of contingencies) already fixes a relatively large part of the world. In our case, choosing
to take a contingency Configi = ⟨li, ui⟩ in step i already fixes the complete configuration
of the automaton in this step. A more fine-grained notion of contingencies would in our
setting, for instance, be induced by a notion that allows to fix also only the location li or
only the clock assignment ui without fixing the other component as well.

There might, however, be applications of actual causality in which we want to fix
exactly a particular part of the world to its actual value (in our setting, for instance, to fix
the clock assignment ui) without fixing at the same time a particular other part of the
world (in our setting, for instance, without fixing location li). Such a situation occurred
in fact exactly in Example 3.2.3 as already indicated in Remark 3.2.1. We think that a :Example 3.2.3, p. 53

:Remark 3.2.1, p. 54more fine-grained notion of contingencies could, hence, allow to partly solve the issue
of time propagation.

Going even further, there might also occur examples in which we want to fix only
a certain aspect of a clock assignment (for instance only the value of a single clock)
or to fix only a certain aspect of a location (for instance in product automata with
product locations only the first component of the location). Since we do not allow this
in our notion of actual causality, we can in fact only solve the preemption problem in
the particular cases, in which the considered effect occurs "temporarily" in the actual
run (in Example 3.1.7, the actual run stays only temporarily in the "coffee"-location; in :Example 3.1.7, p. 38

Example 3.1.9, the run stays only temporarily in the crucial location l1). In Section 7.1, :Example 3.1.9, p. 43

: Section 7.1, p. 111we remark on a future approach to extend our work to networks of timed automata
which might also induce a more fine-grained notion of contingencies. There, also
various further ideas for refining or adapting the in this chapter presented definitions
of counterfactual causality in real-time systems will be discussed.

59

Chapter 4
Algorithms for Cause
Checking and Computation

While we have already discussed several theoretical results regarding our developed
notions of causality in the last chapter, we have not yet looked at the aspects of decid-
ability and computability of causes. The numerous presented examples in which we
checked whether a given set of events is indeed a but-for or actual cause suggest that
our definitions of causality should be decidable by computational manners. In fact,
we can substantiate this conjecture and will in this chapter now present algorithms
for cause checking as well as for the computation of causes and prove the correctness
of those algorithms. Furthermore, we take a look at the computational complexity of
those tasks. We present the development for the setting of the delay perspective, all of
the work applies, however, exactly analogously for the timestamp perspective.

When looking again at our definitions of causality, it is evident that algorithms check-
ing those definitions need to apply model checking with respect to the considered run
effects. As we specified our effects using MITL, Theorem 5 yields that such model- :Theorem 5, p. 22

checking procedures do indeed exist. Therefore, we can assume for the whole chapter a
computable model-checking functionM that takes a timed automaton TA and an MITL
formula ϕ, and checks whether the automaton satisfies the formula, that is,

M(TA, ϕ) :=

 true, if TA |= ϕ, i.e., ∀ρ ∈ Runsdiv. ρ |= ϕ,

false, otherwise.

We will not look into the details of this model-checking process but simply apply the
assumed function without further discussion in the presented algorithms.

61

4. Algorithms for Cause Checking and Computation

Before heading to the algorithms themselves, we have to remark an important result
regarding the conditions in our causality definitions, as the algorithms will crucially
rely on this observation.

Lemma 14 (Monotonicity). For every timed automaton TA, run ρ, and effect ϕ, we have that

1. if a set of events C fulfills SAT also every subset C ′ ⊆ C fulfills SAT.

2. if a set of events C fulfills CFBF (fulfills CFAct) also every superset C ′ ⊇ C fulfills CFBF (ful-
fills CFAct).

Proof. Let ξ be the corresponding trace of ρ.

1. If C fulfills SAT, we have that ξ |= C and ρ |= E. Directly by the definition of event
satisfaction (cf. Definition 3.2) it follows that also for every subset C ′ ⊆ C we have:Definition 3.2, p. 25

ξ |= C such that also C ′ fulfills SAT.

2. Let C fulfill CFBF, that is, that we have a time-divergent run ρ ′ of TA ∩ TAC
ξ with

ρ ′ ̸|= E and let C ′ ⊇ C. Furthermore let→ be the transition relation of TAC
ξ and let→ ′

be the transition relation of TAC ′
ξ . From the defining rules of the transition relation

it follows that→⊆→ ′, such that every run of TAC
ξ is also a run of TAC ′

ξ . Therefore,
also TA ∩ TAC ′

ξ has with ρ ′ a time-divergent run in which ϕ does not appear such
that C ′ fulfills CFBF. The proof for CFAct works analogously for the time-divergent
run in intersection of the contingency and counterfactual trace automata.

Those monotonicity properties of the SAT-, CFBF-, and CFAct-condition will be of high
advantage in particular with regard to the necessary computational work.

4.1 Cause Checking

We start by discussing the algorithms for checking whether a given set of events is a cause
for an effect in a run of a timed automaton. As suspected and also already practiced
in all the examples in the previous chapter, we will proceed with checking this cause
property by checking all the respective defining conditions one after another. For the
SAT-condition, we have to verify that firstly the corresponding trace of the given run
indeed satisfies the tested events and secondly whether the effect did indeed appear
in the run. While checking the event satisfaction is a straightforward task, checking
whether in the particular given run the effect appears requires more effort.

The first issue occurs as we assumed that the model-checking function M decides
whether a whole system satisfies an effect (i.e., whether all its time-divergent runs
satisfy the effect), and not whether a given single run does so. Secondly, for non time-
divergent runs, the satisfaction of effects specified as MITL formulas is defined via the
notion of good prefixes (cf. Definition 2.10). According to this, we have to check whether:Definition 2.10, p. 21

all time-divergent extensions of a given prefix satisfy the effect.

62

4.1. Cause Checking

We solve both issues together in one carefully composed construction: The key idea
is to apply the model checker to an automaton in which the run on which we want
to check the effect is enforced. Fortunately, this corresponds exactly to a construction
we have already access to, namely the intersection of our given automaton with the
counterfactual trace automaton for the empty set of events. Similar to the reasoning
already in Proposition 8, we know due to the properties of the counterfactual trace :Proposition 8, p. 30

automaton for empty event sets as well as due to the assumed action-determinism that
the runs in the intersection automaton TA ∩ TA∅ξ must agree with ρ (whereby ξ denotes
again the corresponding trace).

To handle now also prefixes, we adapt the usual intersection construction particular
for our purpose and allow after the enforcement of the prefix arbitrary time-divergent
extensions, that is, that we concatenate the intersection with an automaton that allows
for a given set of atomic propositions the signal prefix to be extended in all possible
ways. For a two elementary set of atomic propositions AP = {p1, p2}, this extension
automaton looks, for instance, as follows:

{ }

{p1}

{p1, p2}

{p2}

α

α

αα

α

α

α

α

α

α

α

α

Here, α is an arbitrary element from Act of the initially given automaton. Generally
speaking, this extension automaton is constructed by first taking for each element of the
powerset ofAP, that is, for each possible label, a unique location. All those locations are
then pairwise connected via transitions. The sets written inside the locations specify
the label of the location.

Formally, this whole construction described above will be called "satisfiability in-
tersection" and is formally defined as an extension of the intersection operator (cf.
Definition 2.7). :Definition 2.7, p. 18

63

4. Algorithms for Cause Checking and Computation

Definition 4.1 (Satisfiability Intersection)
Let TA be a timed automaton, ρ a finite or lasso-shaped run with corresponding trace ξ.

The satisfiability intersection automaton TA∩SAT TA∅ξ of TA and ξ is defined for lasso-shapedDef. satisfiability
intersection
automaton

ξ simply as the intersection

TA ∩SAT TA∅ξ := TA ∩ TA∅ξ.

For finite ξ, we let TA ∩ TA∅ξ = (Loc, l0, C,Act,→, I, AP, L) and define the satisfiability
intersection automaton of TA and ξ in the following way as an extension of the intersec-
tion:

TA ∩SAT TA∅ξ := (Loc ∪̇LocAP, l0, C,Act,→ ∪̇ → ′, I ′, AP, L ′),

whereby

• LocAP := {lP |P ∈ P(AP)}, where we assume those locations to not already occur
in Loc,

• → ′ := {(⟨ln, n⟩,⊤, α, ϵ, lP) | l ∈ Loc, lP ∈ LocAP} ∪ {(lP,⊤, α, ϵ, lP ′) | lP, lP ′ ∈ LocAP},
where ln is the last location of ρ, n the length of ρ, and α some action in Act,

• I ′(l) :=

 I(l), l ∈ Loc

⊤, l ∈ LocAP,
and

• L ′(l) :=

 L(l), l ∈ Loc

P, l = lP ∈ LocAP.

The additional set of locations LocAP contains exactly the locations corresponding
to possible labels P ∈ P(AP) allowing as desired arbitrary extensions. The additional
transitions in→ ′ handle the concatenation of the intersection automaton and the exten-
sion automaton (first set of the union) and the arbitrary traveling through the extension
automaton (second set of the union).

With this operation in hand we are set to define Algorithm 1 for checking the SAT-:Algorithm 1, p. 65

condition in our definitions of causality, which is depicted on the next page.

As mentioned, the algorithm simply checks one after another all the necessary prop-
erties that must be fulfilled in order for the SAT-condition to be fulfilled. This rigorous
proceeding justifies then also its correctness.

Lemma 15. Algorithm 1 works as stated, that is, that we have:Algorithm 1, p. 65

Check_SAT(TA, ρ, ϕ,C) = true if and only if C fulfills SAT

for every timed automaton TA, run ρ, effect ϕ, and set of events C.

64

4.1. Cause Checking

Algorithm 1: Check_SAT
Input: timed automaton TA, run ρ with corresponding trace

ξ = ⟨δ1, α1⟩ . . . ⟨δn, αn⟩, effect ϕ, set of events C

Output:

 true, if SAT is fulfilled, i.e., if ξ |= C and ρ |= ϕ

false, otherwise
1 for delay event (δ, i) ∈ C do /* checks delay event satisfaction */

2 if δ ̸= δi then
3 return false
4 end
5 end
6

7 for action event (α, i) ∈ C do /* checks action event satisfaction */

8 if α ̸= αi then
9 return false

10 end
11 end
12

13 return M(TA ∩SAT TA∅ξ, ϕ) /* checks effect satisfaction */

Proof. The for-loop from Line 1 to Line 5 checks whether we have for every delay event
(δ, i) ∈ C that δ = δi, the for-loop from Line 7 to Line 11 checks whether we have for
every action event (α, i) ∈ C that α = αi, and Line 13 checks whether ρ |= ϕ.

For the later property, we know again by Lemma 7 and Proposition 2 that the corre- :Lemma 7, p. 29

:Proposition 2, p. 17sponding intersection run of ρ is the only run in TA ∩ TA∅ξ. For ρ lasso-shaped, we know
the intersection run of ρ to be the only time-divergent run in TA∩SAT TA∅ξ = TA∩ TA∅ξ and
therefore

ρ |= ϕ⇔ TA ∩SAT TA∅ξ |= ϕ

⇔M(TA ∩SAT TA∅ξ, ϕ) = true.

For a finite ρ, we know again by Lemma 7 and Proposition 2 together with the chosen
construction of the satisfiability intersection automaton that the time-divergent runs in
TA∩SAT TA∅ξ |= ϕ are exactly all possible extensions of the intersection run of ρ. Therefore,
we have again

ρ |= ϕ⇔ ∀ ρ ′ time-divergent extension of ρ. ρ ′ |= ϕ

⇔ TA ∩SAT TA∅ξ |= ϕ

⇔M(TA ∩SAT TA∅ξ, ϕ) = true.

65

4. Algorithms for Cause Checking and Computation

Hence, SAT is fulfilled if and only if Check_SAT(TA, ρ, ϕ,C) = true.

The CFBF-condition is checked simply by applying the model checker M to the ap-
propriate automaton. Notice that all our automata constructions are computable such
that they can indeed be constructed and represented by computational manners:

Algorithm 2: Check_CF_BF
Input: timed automaton TA, run ρ with corresponding trace ξ, effect ϕ, set of

events C

Output:


true, if CFBF is fulfilled, i.e., if there is an time-divergent run ρ ′

of TA ∩ TAC
ξ with ρ ′ ̸|= ϕ

false, otherwise
1 return ¬M(TA ∩ TAC

ξ , ϕ)

The algorithm for checking the CFAct-condition works exactly analogously, except for
the detail that we check now the intersection of the contingency and the counterfactual
trace automaton for the existence of a time-divergent run ρ ′.

Algorithm 3: Check_CF_Act
Input: timed automaton TA, run ρ with corresponding trace ξ, effect ϕ, set of

events C

Output:


true, if CFAct is fulfilled, i.e., if there is an time-divergent run ρ ′

of TAcon
ρ ∩ TAC

ξ with ρ ′ ̸|= ϕ

false, otherwise
1 return ¬M(TAcon

ρ ∩ TAC
ξ , ϕ)

The correctness of those algorithms follows simply by the defining property of the
model-checking function M.

Lemma 16. Algorithms 2 and 3 work as stated, that is, that we have

Check_CF_BF(TA, ρ, ϕ,C) = true if and only if C fulfills CFBF

and

Check_CF_Act(TA, ρ, ϕ,C) = true if and only if C fulfills CFAct

for every timed automaton TA, run ρ, effect ϕ, and set of events C.

Proof. Follows with the equivalence chain

66

4.1. Cause Checking

Check_CF_BF(TA, ρ, ϕ,C) = true

⇔M(TA ∩ TAC
ξ , ϕ) = false

⇔ ¬∀ time-divergent runs ρ ′ of TA ∩ TAC
ξ . ρ

′ |= ϕ

⇔ ∃ time-divergent run ρ ′ of TA ∩ TAC
ξ . ρ

′ ̸|= ϕ

⇔ C fulfills CFBF

The result for CFAct follows analogue with TAcon
ρ ∩ TAC

ξ instead of TA ∩ TAC
ξ .

The last condition that needs to be checked is the minimality of a set of events C.
Thereby, we take for the first time advantage of the monotonicity observation from
Lemma 14: Under the invariant that the algorithm is only used for causes fulfilling the :Lemma 14, p. 62

SAT-condition, we know that also all its subsets will fulfill SAT. Furthermore, we know
again by monotonicity that if there is a strict subset C ′ ⊊ C fulfilling CFBF, that then also
all sets between C ′ and C (i.e., all sets C ′′ with C ′ ⊆ C ′′ ⊊ C) do so. Therefore, it suffices
to check whether none of the sets with one element less than C fulfills CFBF:

Algorithm 4: Check_MIN
Input: timed automaton TA, run ρ, effect ϕ, set of events C fulfilling SAT

Output:


true, if MIN is fulfilled, i.e., if there is no strict subset of C

satisfying SAT and CFBF

false, otherwise
1 for event e ∈ C do
2 if Check_CF_BF(TA, ρ, ϕ,C \ {e}) then /* checks smaller event set */

3 return false
4 end
5 end
6 return true

The algorithm for checking the minimality condition for actual causality, i.e., whether
there is no strict subset of C satisfying SAT and CFAct works analogously, except that we
call Check_CF_Act instead of Check_CF_BF in Line 2. Also the following correctness
proof works exactly analogously.

Lemma 17. Algorithm 4 works as stated, that is, that we have

Check_MIN(TA, ρ, ϕ,C) = true if and only if C fulfills MIN

for every timed automaton TA, run ρ, effect ϕ, and set of events C that fulfills SAT.

67

4. Algorithms for Cause Checking and Computation

Proof. Let C fulfill SAT, we show the result by proving the contradictory equivalence

Check_MIN(TA, ρ, ϕ,C) = false ⇔ ∃C ′ ⊊ C.C ′ fulfills SAT and CFBF.

"⇒ ": Let Check_MIN(TA, ρ, ϕ,C) = false, then we must have due to Line 2 and 3 an
event e ∈ C such that Check_CF_BF(TA, ρ, ϕ,C\{e}) = false. Hence, C\{e} is a strict
subset of C that fulfilling SAT by Lemma 14 and CFBF by Lemma 16.:Lemma 14, p. 62

:Lemma 16, p. 66
"⇐ ": Let there be C ′ ⊊ C fulfilling SAT and CFBF. Then, there is an event e ∈ C \ C ′ such

thatC ′ ⊆ C\{e} ⊊ C. Therefore, Lemma 14 implies thatC\{e} also fulfills CFBF which
then again implies by Lemma 16 that Check_CF_BF(TA, ρ, ϕ,C\{e}) = false. Line 2
and 3 result therefore in Check_MIN(TA, ρ, ϕ,C \ {e}) = false.

From those correctness results we can finally derive the decidability of all our notions
of causality in real-time systems.

Theorem 18. Given a set of events C it is decidable whether C is a but-for cause, whether C is
a minimal but-for cause, as well as whether C is an actual cause for an effect ϕ in a run ρ of a
timed automaton TA.

Proof. Follows directly with the respective conjunctions of Algorithms 1 to 4 together
with their correctness statements in Lemmas 15 to 17.

We denote the decision problems addressed in this theorem as CCBF, CCBF-Min, and
CCAct respectively.

Lastly, we want to discuss the computational effort that it takes to decide instances
of these decision problems. As our notions crucially rely on solving certain model-
checking problems, it appears evident that cause checking is at least as hard as model
checking. In fact, we will establish that cause checking is, exactly as model checking,
EXPSPACE-complete (cf. Theorem 6).:Theorem 6, p. 22

To do so, we first show the cause-checking problems to be decidable in exponential
space by analyzing the complexity of our above presented algorithms. Thereby, the
by far most expensive parts in the computations are the respective model-checking
problems that need to be solved.

Lemma 19. CCBF, CCBF-Min, and CCAct are in EXPSPACE.

Proof. Recall Theorem 6 stating the MITL model-checking problem to be in EXPSPACE.
The algorithms used to decide the cause-checking problems have to solve the following
model-checking problems:

• Algorithm 1: Check_SAT(TA, ρ, ϕ,C) has to decide a model-checking problem for:Algorithm 1, p. 65

formula ϕ and the automaton TA ∩SAT TA∅ξ, that is, an automaton with the size of
TA times the length of ρ.

68

4.1. Cause Checking

• Algorithm 2: Check_CF_BF(TA, ρ, ϕ,C) has to decide a model-checking problem :Algorithm 2, p. 66

for formula ϕ and the automaton TA ∩ TAC
ξ , that is, again an automaton with the

size of TA times the length of ρ.

• Algorithm 3: Check_CF_Act(TA, ρ, ϕ,C) has to decide a model-checking problem :Algorithm 3, p. 66

for formula ϕ and the automaton TAcon
ρ ∩ TAC

ξ , that is, an automaton with the size
of TA times the length of ρ squared.

• Algorithm 4: Check_MIN(TA, ρ, ϕ,C) in the but-for causality case calls in the worst :Algorithm 4, p. 67

case |C| times Check_CF_BF and has therefore in the worst case to decide |C| times
a model-checking problem for formula ϕ and automata with the size of TA times
the length of ρ. Analogously in the case of actual causality, |C| model-checking
problems for formula ϕ and automata with the size of TA times the length of ρ
squared need to be decided in the worst case.

All remaining computations in the algorithms are clearly dominated by the complexity
of solving the model-checking problem. Hence, this analysis shows all the cause-
checking problems CCBF, CCBF-Min, and CCAct to be in EXPSPACE.

For showing EXPSPACE-hardness of cause checking, we will establish a reduction
from the model checking to the cause-checking problem, or more precisely a reduction
from the complement of the model-checking problem1. For this end, we need a further
automaton construction: Given a timed automaton TA, we add a new dummy initial
location snew and a further fresh location lnew with unique fresh label {pnew}. lnew and
the original initial location l0 of TA are reachable from snew via two fresh actions αnew

and βnew respectively, furthermore, we do not allow the automaton to spend time in its
new dummy location:

snew

x ⩽ 0

lnew

TA

{pnew}

β ne
w

αnew

Formally, we define for a timed automaton TA = (Loc, l0, C,Act,→, I, AP, L) its reduc-
tion automaton as

TAred := (Loc ∪̇ {snew, lnew} , snew , C ∪̇ {xnew} , Act ∪̇ {αnew, βnew} , → ′ , I ′ , AP ∪̇ {pnew} , L
′),

1Deriving hardness from this reduction will still be a valid inference as EXPSPACE is closed under com-
plementation.

69

4. Algorithms for Cause Checking and Computation

whereby snew and lnew/αnew and βnew are fresh locations/actions, xnew/pnew is a fresh
clock/proposition, and

• → ′ :=→ ∪ {(snew,⊤, αnew, ϵ, lnew) , (snew,⊤, βnew, ϵ, l0)},

• I ′(l) :=


I(l), l ∈ Loc,

xnew ⩽ 0, l = snew,

⊤, l = lnew,

• L ′(l) :=


L(l), l ∈ Loc,

{ }, l = snew,

{pnew}, l = lnew.

The idea of the reduction is now, that the original automaton TA does not satisfy a
specification ϕ, that is, that it has a run without appearing effect ϕ if and only if taking
αnew as first action in the reduction automaton is a cause for a slightly modified effect.

Lemma 20. CCBF, CCBF-Min, and CCAct are EXPSPACE-hard.

Proof. Theorem 6 also stated the MITL model-checking problem to be EXPSPACE-hard.
EXPSPACE-hardness of cause checking follows now by a reduction from the complement
of the model-checking problemMCMITL via the following reduction function rmapping
instances (TA, ϕ) of the model-checking problem to instances of the cause-checking
problems:

r : (TA, ϕ) 7→ (TAred, ρred, ϕred, Cred)

with ρred := snew
0−→ αnew−−−→ lnew, ϕred := ϕ∨ ♢pnew, and Cred := {((αnew, 1)}.

In fact, the reduction via r works as desired and reduces MCMITL to CCBF: Let
(TA, ϕ) ∈ MCMITL. Since we have ξ |= Cred, whereby ξ is the corresponding trace of
ρred, and ρred |= ϕred the instance r(TA, ϕ) fulfills the SAT-condition. From TA ̸|= ϕ, we
furthermore obtain a time-divergent run ρ ′ of TA with ρ ′ ̸|= ϕ such that snew

0−→ βnew−−−→ ρ ′ is a
run of TAred in whichϕ does also not appear. Hence, there is as well a time-divergent run
in TAred∩TACred

ξ without appearing effect ρred such that the CFBF-condition is fulfilled and
r(TA, ϕ) ∈ CCBF. Since Cred is singleton, we have r(TA, ϕ) ∈ CCBF-Min and r(TA, ϕ) ∈ CCAct
as well. For (TA, ϕ) ̸∈MCMITL, we have TA |= ϕ and, hence, TAred |= ϕred such that CFBF is
not fulfilled as there is no counterfactual run without appearing effect ρred. Therefore,
r(TA, ϕ) ̸∈ CCBF and r(TA, ϕ) ̸∈ CCBF-Min. Since the only contingency transition added
in TAcon

redρred
leads to lnew, we also have TAcon

redρred
|= ϕred and the same argument yields

r(TA, ϕ) ̸∈ CCAct.

This lets us conclude the EXPSPACE-completeness of the cause-checking problem.

70

4.2. Cause Computation

Theorem 21. CCBF, CCBF-Min, and CCAct are EXPSPACE-complete.

Proof. By Lemmas 19 and 20.

4.2 Cause Computation

We head to the question of how to compute causes for a given effect in a run of a timed
automaton. Thereby we aim in most cases at computing all minimal but-for causes
or respectively all actual causes (that are already by definition minimal). We will first
present briefly a naive approach to this task but will improve on this in various ways
to end up with a more involved algorithmic procedure, that we prove to be correct and
analyze again its complexity. We thereby concentrate on but-for causality, actual causes
are again computed exactly analogously by checking CFAct instead of CFBF.

As only the events that really occur in a run might contribute to the occurrence of an
effect it suffices to focus for the computation of causes only on those events. Also other
events than the ones occurring in the given run cannot be part of a cause as this would
violate the SAT-condition. As there are in a finite or lasso-shaped run only finitely many
events, also the number of potential causes that can be built out of these events is finite
– an observation already suggesting that the sets of events that form causes should be
computable.

And indeed, a naive approach (basically a brute-forcing approach) that enumerates
all the possible sets of events, checks whether they are a cause, and computes then in a
second step the minimal elements from all identified causes has the desired output. For
the notion of but-for causality, the algorithm computing all causes (also non-minimal)
looks as follows:

Algorithm 5: Compute_But-For_Causes
Input: timed automaton TA, run ρ with corresponding trace ξ, effect ϕ
Output: set of all but-for causes for ϕ in ρ of TA

1 if ¬M(TA ∩SAT TA∅ξ, ϕ) then /* checks effect sattisfaction */

2 return { }

3 end
4

5 Res := {}

6 for set of events C ∈ P(Cξ) do /* enumerates the set of events */

7 if Check_CF_BF(TA, ρ, ϕ,C) then
8 Res := Res ∪ {C}

9 end
10 end
11 return Res

71

4. Algorithms for Cause Checking and Computation

As it is not a priori clear, that the considered effect does indeed appear in the given
run, the algorithm checks as done in Algorithm 1 firstly this prerequisite for having:Algorithm 1, p. 65

causes at all. If this is the case, the algorithm considers all possible subsets of the set
of all events Cξ, checks whether they fulfill the CFBF-condition, which then suffices to
know that the set of events is a but-for cause.

To obtain the minimal causes, we can then simply filter for the minimal elements:

Algorithm 6: Compute_Minimal_But-For_Causes (Naive)
Input: timed automaton TA, run ρ, effect ϕ
Output: set of all minimal but-for causes for ϕ in ρ of TA

1 BF_Causes := Compute_But-For_Causes(TA, ρ, ϕ)
2 Res := {}

3 for set of events C ∈ BF_Causes do /* enumerates but-for causes */

4 if ¬∃C ′ ∈ BF_Causes.C ′ ⊊ C then
5 Res := Res ∪ {C}

6 end
7 end
8 return Res

While it is easy to see that this method works as intended, the computational effort
to obtain all the minimal causes is for this naive approach enormously large: already
for the computations in Algorithm 5 one has to consider all elements of the powerset
P(Cξ). For each of those 22n many sets (whereby n is the length of the given run), one
has then to do the expensive check of the CFBF-condition. And also Algorithm 6 iterates
once again over a potentially large part of the powerset.

We want to improve on this time-consuming naive algorithm by taking use of two
key ideas:

• Combine the computation sets fulfilling the CFBF-condition (CFAct-condition) di-
rectly with the filtering for minimal causes in order to iterate only once over the
powerset.

• Start with checking small causes in order to exclude in the case of a found cause
already all its supersets by exploiting monotonicity.

We realize these ideas in the following way: Instead of computing the full powerset
P(Cξ) right at the start, we dynamically build the set in stages and interweave the com-
putation of causes in this process. For this step-by-step construction of the powerset, we
use an algorithmic idea from functional programming as powersets can be constructed
using the following recursive pattern:

P(∅) := {∅}

P({e} ∪̇C) := P(C) ∪ {{e} ∪̇P |P ∈ P(C)}

72

4.2. Cause Computation

Thereby, the idea in the step case P({e} ∪̇S) is to first compute the powerset P(S) of the
one element smaller set S, that is, all sets in the powerset not containing e, and add then
the fresh element e to the sets in P(S) to obtain all sets in the powerset containing e.
Accordingly, the powerset construction for an exemplary set S = {e1, e2, e3} with three
elements proceeds like this:

Step 0: {∅}

Step 1: {∅, {e1}}

Step 2: {∅, {e1}, {e2}, {e1, e2}}

Step 3: {∅, {e1}, {e2}, {e1, e2}, {e3}, {e1, e3}, {e2, e3}, {e1, e2, e3}}

We observe how the sets of the powerset from the previous step are used to build
larger sets, i.e., supersets, belonging to the powerset. If we think now again about the
occurring elements e as events in the sense of our causal setting and, consequently,
about the sets C of the powerset as sets of events for which we want to check whether
they are minimal causes for some effect, we notice how to take advantage of this obser-
vation: if a set of events is identified as cause, we do not have to consider its supersets
anymore since the supersets cannot be a minimal cause. Hence, it suffices to continue
the construction of the powerset only with the elements that are not identified as cause.
That is, that it suffices to construct a partial powerset, which will save us in practice a
significantly amount of computational work.

And also a closely related further observation regarding this construction technique
will be of large use for us: we see that if a set C is added to the partial powerset, all the
sets added afterwards will be no subsets of C. Or conversely stated: when considering
a set of events C its subsets were already considered previously in the computation.
Heading back to our goal of computing causes, this means that if we identify a set of
events C to fulfill SAT and CFBF, we know that it suffices to ensure that none of the
sets considered up to this point in the computation is a strict subset fulfilling SAT and
CFBFin order to conclude that C is a minimal cause.

According to the first observation, we know, however, also that sets from previous
steps that have been identified as a cause are no longer used to build supersets. Hence
sets from previous steps will be no subsets fulfilling SAT and CFBF. All in all, it therefore
even suffices to check only the sets that were considered so far in the current step of the
partial powerset construction.

As in those considerations the order of the sets in which they are processed throughout
the computation plays a crucial role and will be part of essential invariants ensuring
the correctness of the computation, we will collect the sets from the partial powerset
construction not as a set but as a list. This enables us also to refer in the correctness
proof to the positions of certain sets in the partial powerset construction. The described

73

4. Algorithms for Cause Checking and Computation

procedure finally results in the following improved algorithm for the computation of
minimal causes:

Algorithm 7: Compute_Minimal_But-For_Causes
Input: timed automaton TA, run ρ with corresponding trace ξ, effect ϕ
Output: set of all minimal but-for causes for ϕ in ρ of TA

1 if ¬M(TA ∩SAT TA∅ξ, ϕ) then /* checks effect sattisfaction */

2 return { }

3 end
4

5 Res := {}

6 Power := [∅]
7

8 for event e ∈ Cξ do /* enumerates eligible events */

9 Cur_Res := {}

10 for cause C ∈ [{e} ∪̇P |P ∈ Power] do /* next step of the powerset */

11 if ∃C ′ ∈ Cur_Res.C ′ ⊊ C then /* smaller minimal cause? */

12 continue
13 end
14 if Check_CF_BF(TA, ρ, ϕ,C) then /* cause found? */

15 Cur_Res := Cur_Res ∪ {C}

16 else
17 Power := Power@ [C]

18 end
19 end
20 Res := Res ∪ Cur_Res ; /* this step’s causes to overall result */

21 end
22

23 return Res

The algorithm again starts in Line 1 to check whether the given run fulfills the effect.
After initializing the set Res storing the result, i.e., the identified minimal causes, and
the list Power in which we will build the partial power set, we start by processing the
events e ∈ Cξ step by step. We will refer to this loop from Line 8 to Line 21 as outer
loop and to the events successively processed in this loop as outer loop events. As
mentioned, we will only have to check for strict subsets from the current step, which we
will store for this purpose temporarily in the separate set Cur_Res. At the end of each
step in Line 20, those identified causes are then added to the overall result.

Following the above discussed method to construct powersets, we build in each step
the new sets [{e} ∪̇P |P ∈ Power] containing the fresh event e and check in the inner loop
from Line 10 to Line 19 whether they are a minimal cause: Therefore, we first check

74

4.2. Cause Computation

for such a set of events C whether there exists a strict subset from the current step that
was already identified as cause (cf. Line 11). If so, C is no minimal cause and also its
supersets can be excluded to be a minimal cause, such that we simply continue.

If there is no such strict subset, we check whether C fulfills the CFBF-condition using
Algorithm 2. If this is the case, we can directly conclude by all our previous consid-
erations, that C is indeed a minimal cause. Otherwise, C is added to partial powerset
Power such that its supersets will be considered in the following steps of the outer loop.

We demonstrate the computation procedure of the algorithm on an exemplary exe-
cution study.

Example 4.2.1. We consider the following timed automaton TA:

l0

x ⩽ 10

l1

x ⩽ 20

l2

x ⩽ 20

l3

l4

l5

x < 8

α

x ⩾
3

α
x < 3

α

β

α
x ⩾ 8

α

β

{α,β}

{α,β}

{α,β}

For the effect ϕ := ♢ l4 in run ρ := l0
2−→ α−→ l1

5−→ α−→ l4, there are (from the delay
perspective) two minimal but-for causes, namely {(5, 2)} and {(2, 1), (α, 2)}. Algorithm 7
proceeds as follows to compute those causes:

As we have ρ |= ϕ, the events of Cξ = {(2, 1), (5, 2), (α, 1), (α, 2)}, with ξ the correspond-
ing trace of ρ, are started to be processed step by step, where we let the order in which
the events are processed be the order in which they are listed in the set Cξ:

Step 0: Res and Power are initialized:
⇒ Res = { }

Power =
[
∅
]

Step 1: Event (2, 1) is processed, the following new set of events constructed:
– {(2, 1)}: violates CFBF ⇒ {(2, 1)} is added to Power

⇒ Res = { }

Power =
[
∅, {(2, 1)}

]

75

4. Algorithms for Cause Checking and Computation

Step 2: Event (5, 2) is processed, the following new sets of events constructed:
– {(5, 2)}: fulfills CFBF ⇒ {(5, 2)} is added to Cur_Res
– {(2, 1), (5, 2)}: has a subset in Cur_Res⇒ continue

⇒ Res = {{(5, 2)}}

Power =
[
∅, {(2, 1)}

]
Step 3: Event (α, 1) is processed, the following new sets of events constructed:

– {(α, 1)}: violates CFBF ⇒ {(α, 1)} is added to Power
– {(2, 1), (α, 1)}: violates CFBF ⇒ {(2, 1), (α, 1)} is added to Power

⇒ Res = {{(5, 2)}}

Power =
[
∅, {(2, 1)}, {(α, 1)}, {(2, 1), (α, 1)}

]
Step 4: Event (α, 2) is processed, the following new sets of events constructed:

– {(α, 2)}: violates CFBF ⇒ {(α, 2)} is added to Power
– {(2, 1), (α, 2)}: fulfills CFBF ⇒ {(2, 1), (α, 2)} is added to Cur_Res
– {(α, 1), (α, 2)}: violates CFBF ⇒ {(α, 1), (α, 2)} is added to Power
– {(2, 1), (α, 1), (α, 2)}: has a subset in Cur_Res⇒ continue

⇒ Res = {{(5, 2)}, {(2, 1), (α, 2)}}

Power =
[
∅, {(2, 1)}, {(α, 1)}, {(2, 1), (α, 1)}, {(α, 2)}, {(α, 1), (α, 2)}

]
The final result Res = {{(5, 2)}, {(2, 1), (α, 2)}} is returned. △

The example shows how all our considerations from above play out: In Step 2, we
identify {(5, 2)} as a cause and, hence, do not consider its supersets in the following
steps anymore. Conversely, we know without further computations at the points were
we identify {(5, 2)} and {(2, 1), (α, 2)} as causes that they are minimal. Notice, however,
the necessity to check for the occurring sets of events whether there was a strict subset
identified as cause previously in the current step: Omitting this check would lead to
classifying {(2, 1), (5, 2)} in Step 2 and {(2, 1), (α, 1), (α, 2)} in Step 4 mistakenly as minimal
causes.

While we have explained and justified in detail the correctness of the algorithm
intuitively, we now also want to prove formally that Algorithm 7 computes indeed all:Algorithm 7, p. 74

minimal causes. This will require a certain technical effort.

Therefore, we fix for now the given run ρ with its corresponding trace ξ and let
e1, e2, . . . , el ∈ Cξ be the order in which the outer loop events are processed. Regarding
this order, we then denote for a set of events C ⊆ Cξ the index of its largest event as
max(C), i.e.,

76

4.2. Cause Computation

max(C) :=

 max{k ∈ N | ek ∈ C}, if C ̸= ∅

0, if C = ∅.

With regard to this order, we furthermore introduce notations for the sets Cur_Res
and Res as well as for the list Power at certain points in the execution of the algorithm,
more precisely for the values of those sets and lists at the end of each event loop pass
after executing Line 20. Hence, we denote

Cur_Resk := Cur_Res after Line 20 with current outer loop event ek, k = 1, . . . , l

Res0 := ∅

Resk := Res after Line 20 with current outer loop event ek, k = 1, . . . , l

Power0 := [∅]

Powerk := Power after Line 20 with current outer loop event ek, k = 1, . . . , l

In order to prove the correctness of the algorithm computing minimal but-for causes,
we will have to show various and strong invariants of those sets and lists. In particular,
we state and prove formally that Res, Cur_Res, and Power contain indeed exactly those
sets of events we intuitively described above. We start the formal proof, however, with
two simple properties directly following from the construction of the algorithm.

Lemma 22. 1. For each k = 1, . . . , l, we have Resk =
⋃k

i=1 Cur_Resi.

2. For each k = 1, . . . , l − 1, there is a sublist L ⊆ [{ek+1} ∪̇P |P ∈ Powerk] such that
Powerk+1 = Powerk @L.

Proof. 1. Follows easily by induction on k with regard to Line 20, the only point at
which Res is changed.

2. Follows with the sublist L of [{e} ∪̇P |P ∈ Powerk] that contains exactly the sets of
events C not filtered out by Line 11 and 14 and that are, hence, added in Line 17 to
Power.

As discussed, the order in which the sets of events are processed plays a crucial role
for the correctness of the algorithm. We state formally the above mentioned property
of the partial powerset that subsets always occur only at lower positions.

Lemma 23. For k = 1, . . . , l, we have Powerk[j] ⊊ Powerk[i]⇒ j < i.

Proof. We prove the contraposition

j ⩾ i⇒ ¬(Powerk[j] ⊊ Powerk[i])

77

4. Algorithms for Cause Checking and Computation

again by induction on k. For k = 0we have due to Power0 = [∅] nothing to prove. In the
induction step k⇝ k+ 1, let j ⩾ i and we have to show ¬Powerk+1[j] ⊊ Powerk+1[i]. For
j = i the claim follows easily, such that we can even assume j > i. By using the equation
Powerk+1 = Powerk @L with L ⊆ [{ek+1} ∪̇P |P ∈ Powerk] from Lemma 22, we obtain:Lemma 22, p. 77

three possible cases:

1. Powerk+1[j], Powerk+1[i] ∈ Powerk: The claim follows by the induction hypothe-
sis.

2. Powerk+1[j] ∈ L, Powerk+1[i] ∈ Powerk: Since L ⊆ [{ek+1} ∪̇P |P ∈ Powerk],
we have ek+1 ∈ Powerk+1[j] by induction, however, ek+1 ̸∈ Powerk, such that
¬Powerk+1[j] ⊊ Powerk+1[i].

3. Powerk+1[j], Powerk+1[i] ∈ L: Then we can write the sets as Powerk+1[j] =

Powerk[j
′] ∪ {ek+1} as well as Powerk+1[i] = Powerk[i

′] ∪ {ek+1} with indices
j ′ > i ′ . By induction we then obtain ¬Powerk[j

′] ⊊ Powerk[i
′] such that also

¬Powerk+1[j] ⊊ Powerk+1[i] holds.

Those results allow us to prove the necessary strong invariants regarding the sets of
events in Cur_Res and Power: Cur_Res contains at the end of each step of the outer loop
with loop event ek exactly those sets of events that are a minimal cause and have as
maximal element ek. Powerk contains exactly those sets of events with maximal element
at most ek that have no minimal cause as a subset and that have hence no subset in Resk.

Lemma 24. For k = 1, . . . , l, we have

Cur_Resk = {C | max(C) = k ∧ C is minimal but-for cause}

and

Powerk = {C | max(C) ⩽ k ∧ ¬∃C ′ ⊆ C. C ′ ∈ Resk}.

Proof. We prove the two equations together by complete induction on k:

k = 0: Since we have max(C) = 0 ⇔ C = ∅ and know ∅ to be never a but-for cause by
Proposition 8, we have:Proposition 8, p. 30

Cur_Res0
Def.
= ∅ = {C | max(C) = 0 ∧ C is minimal but-for cause}

as well as

Power0
Def.
= [∅] = {C | max(C) ⩽ 0 ∧ ¬∃C ′ ⊆ C. C ′ ∈ Res0}.

k+ 1: By the inductive hypothesis, we can assume the claim to hold for all r < k+ 1 and
start to prove the set equality

Cur_Resk+1 = {C | max(C) = k+ 1 ∧ C is minimal but-for cause}

by proving the inclusions separately:

78

4.2. Cause Computation

"⊆": Let C ∈ Cur_Resk+1, that is, by construction of the algorithm, that C =

Powerk[i] ∪ {ek+1} for some index i, that ¬∃C ′ ∈ Cur_Resk+1,C.C
′ ⊆ C

whereby Cur_Resk+1,C denotes the set before the inner loop run in which C

is added to Cur_Resk+1 and that Check_CF_BF(TA, ρ, ϕ,C) = true. Thereby,
we can immediately conclude that max(C) = k + 1 since we know by induc-
tion that max(Powerk[i]) ⩽ k, that SAT is fulfilled since we only consider
events from Cξ at all, and that CFBFis fulfilled. It remains to show that also
MIN is fulfilled. Towards a contradiction assume that C is not minimal, that
is, that there is a minimal but-for cause C ′ ⊊ C. We consider two cases:
If ek+1 ̸∈ C ′, we have C ′ ⊆ Powerk[i] and therefore max(C ′) = r < k + 1

for some r. Hence by induction C ′ ∈ Cur_Resr ⊆ Resk, a contradiction to-
wards C ′ ⊆ Powerk[i] since we know again by induction that there is no
such subset for elements of Powerk. If however ek+1 ∈ C ′, then again by
induction and since C ′ is minimal we have C ′ = Powerk[j] ∪ {ek+1} for some
index j. C ′ ⊊ C then implies also Powerk[j] ⊊ Powerk[i] and by Lemma 23 :Lemma 23, p. 77

we obtain j < i. Therefore, we know that C ′ was considered in an earlier
inner loop run then C and thereby added to Cur_Resk+1, such that due to
Line 11 C /∈ Cur_Resk+1. Again a contradiction, such that MIN is fulfilled
and C ∈ {C | max(C) = k+ 1 ∧ C is minimal but-for cause}.

"⊇": Let now C be a minimal but-for cause with max(C) = k + 1 such that C =

C ′ ∪ {ek+1} for some set of events C ′ with max(C ′) ⩽ k. Since furthermore
C ′ has no subset that is a minimal but-for cause and, hence, by induction
no subset in Resk, we have again by induction C ′ ∈ Powerk. Hence, C

is considered in the inner loop and indeed also added to Cur_Res since C

fulfills a minimal but-for cause CFBFbut has no subset that is a minimal but-
for cause, hence, no subset that fulfills CFBFand, hence, by construction of
the algorithm no subset that was added to Cur_Res such that it is not filtered
out by Line 11.

Also the second equation

Powerk+1 = {C | max(C) ⩽ k+ 1 ∧ ¬∃C ′ ⊆ C. C ′ ∈ Resk+1}

is shown by proving both inclusions:
"⊆": ForC ∈ Powerk+1, by Lemma 22 and induction again max(C) ⩽ k+1. Further- :Lemma 22, p. 77

more, we know that due to Line 14 C does not fulfill CFBF. By monotonicity
also no subset of C does so and, hence, no subset of C is a minimal but-for
cause. Hence by the already proven equation, no subset of C is in Resk+1

such that we have C ∈ {C | max(C) ⩽ k+ 1 ∧ ¬∃C ′ ⊆ C. C ′ ∈ Resk+1}.
"⊇": Now let C be such that max(C) ⩽ k + 1 and that ¬∃C ′ ⊆ C. C ′ ∈ Resk+1.

Therefore, C does not fulfill the CFBF-condition, since otherwise C would have
a minimal but-for cause as subset and, hence, there would exists C ′ ⊆ C with

79

4. Algorithms for Cause Checking and Computation

C ′ ∈ Resk+1. Now we distinguish again two cases: First if ek+1 ∈ C, we can
write C as C = C ′ ∪ {ek+1} with max(C ′) ⩽ k and also ¬∃C ′′ ⊆ C ′. C ′ ∈ Resk+1.
Hence also ¬∃C ′′ ⊆ C ′. C ′ ∈ Resk and by induction C ′ ∈ Powerk. Therefore,
we obtain C = C ′ ∪ {ek+1} ∈ Powerk+1 by adding in Line 17 since otherwise
there would be due to Line 11 a subset in Resk+1. If however ek+1 ̸∈ C, we
have C ∈ Powerk: max(C) < k + 1 and assuming the existence of C ′ ⊆ C

with C ′ ∈ Resk would imply that we also have C ′ ∈ Resk+1, a contradiction.
Therefore, C ∈ Powerk+1.

With those invariants established we can finally prove the correctness of our algorithm
computing minimal but-for causes.

Theorem 25. Algorithm 7 works as stated, that is, that we have:Algorithm 7, p. 74

Compute_But-For_Causes(TA, ρ, ϕ) = {C | C is minimal but-for cause for ϕ in ρ of TA}

for every timed automaton TA, run ρ, and effect ϕ.

Proof. The above considerations yield

Compute_But-For_Causes(TA, ρ, ϕ)

= Resl Def. Resl

=

l⋃
k=1

Cur_Resk Lemma 22.1

=

l⋃
k=1

{C | max(C) = k ∧ C is minimal but-for cause} Lemma 24

= {C | C is minimal but-for cause}.

Therefore, we can after showing the decidability in the previous section now also con-
clude the computability of but-for and actual causes, recalling again that all presented
results apply analogously to the notion of actual causality.

Corollary 26. Given a timed automaton TA, run ρ, and effect ϕ, the minimal but-for causes as
well as the actual causes for ϕ in ρ of TA are computable.

Proof. Directly by Theorem 25.:Theorem 25, p. 80

As already for the checking of causes, we finally want to have a brief look on the
computational complexity. Therefore, recall our analysis in (the proof of) Lemma 19:Lemma 19, p. 68

particularly of the computations necessary for deciding the CFBF- and CFAct-condition
as those conditions play also in the computation of causes a major role.

We can again show that solving the task takes exponential space. However, with a
significant increase in computational effort: the number of model-checking problems
that have to be solved now also grows exponentially in the length of the given run.

80

4.2. Cause Computation

Theorem 27. The set of minimal but-for causes and the set of actual causes can be determinis-
tically computed in exponential space.

Proof. We analyze the complexity of the computation of minimal causes in Algorithm 7. :Algorithm 7, p. 74

The size of the constructed powerset is 22|ρ|, whereby |ρ| denotes the length of the given
run. In the worst case, the algorithm has, therefore, to decide 22|ρ| model-checking
problems for formula ϕ and automata with the size of the given timed automaton TA

times |ρ| in the case of minimal but-for causality, and 22|ρ| model-checking problems for
formula ϕ and automata with the size of the given timed automaton TA times |ρ|2 in the
case of actual causality.

Regarding a lower bound for the computation of causes we content with the following
remark.

Remark 4.2.1. Showing that exponential space is also necessary for the computation
works using a similar argument as in Lemma 20 via a reduction from model-checking. :Lemma 20, p. 70

Informally, it is as well easy to convince oneself that the computation of causes must be
at least as complex as checking causes. △

Notice, that we talk about the worst case behavior of our algorithms occurring when
no set of events can be identified as cause. Conversely, the computational effort in the
case of multiple and in particular also small causes is indeed measurably lower. We
report on concrete runtime measurements for the checking as well as the computation
of causes for varying parameters like cause numbers, run length or automaton size in
Section 5.3. : Section 5.3, p. 90

81

Chapter 5
Causality Tool

Based on the algorithms presented in the previous chapter, we developed a Python tool
for cause checking and computation that is accessible under

https://github.com/FelixJahnFJ/Real-Time-Causality-Tool.

The tool relies on Uppaal, a software for modeling and verifying real-time systems, as
well as on the Python library Pyuppaal allowing to use of most of the Uppaal function-
alities within Python. We will focus in this chapter on discussing the important aspects
of our tool, for more details on Uppaal, we refer to the documentation of Uppaal1, and
regarding details on Pyuppaal to the project page of the library2.

5.1 Usage and Functionalities

For installing and running the tool, it is basically only required to have a current Python
version installed, to install Uppaal, and to install the Python library Pyuppaal. The
tool can then be executed by executing its main-file causality_tool.py in the command
line. The script takes as its first two command line parameters two arguments spec-
ifying, firstly, whether causes should be checked or computed, and secondly, which
kind of causality notion should be worked with. In addition, paths to the files of the
Uppaal-system, of the trace, and (in the case of cause checking) of the set of events that
should be processed must be given as program arguments. In Uppaal-system, both the
timed automaton as well as the causal effect to consider are specified. For more detailed
instructions on the installation and usage of the tool, see the readme-file in the project
repository.

1https://docs.uppaal.org/ [3]
2https://pypi.org/project/pyuppaal/1.0.0/ [1]

83

https://github.com/FelixJahnFJ/Real-Time-Causality-Tool

5. Causality Tool

Figure 5.1: Tool Output

The tool checks or computes
causes in the sense of our defi-
nitions for the given automaton,
trace, effect, and set of events. Fig-
ure 5.1 shows the output of the
tool for the computation of mini-
mal but-for causes in the situation
of Example 4.2.1. Recall that it suffices due to our assumption of action-determinism:Example 4.2.1, p. 75

to give a trace as argument to the program as the unique corresponding runs can be
reconstructed from its trace. Dependent on whether a delay trace or a timestamp trace
is supplied, the tool applies the theoretical definitions either from the delay or from the
timestamp perspective. In the tool development, we were driven by the goal to provide
automated counterexample explanations, hence, the tool proceeds conversely to our
theoretical development: As actual runs, the tool considers runs violating the effect and
searches than for counterfactual runs satisfying the effect.

(a) Initial automaton TA

(b) Counterfactual Trace Automaton TAC
ξ

(c) Intersection automaton TA ∩ TAC2

ξ

Figure 5.2: Automata Constructions

The automaton and the effect are
given as a Uppaal-system. Fig-
ure 5.2 shows the Uppaal-models
constructed in the process of cause
checking, here demonstrated for
the processing of Example 3.1.2.:Example 3.1.2, p. 31

As our theoretical causality no-
tions apply only to single automata
and not to networks of automata,
also the tool supports causal analy-
sis only for a single timed automa-
ton. Uppaal is, however, particu-
larly designed to model networks
of timed automata. As a, for our
purposes, undesired artifact of this
actually intended use of Uppaal,
automata modeled in this tool can
only perform internal actions by
just itself, further actions are only
performed as synchronized actions
with other automata in a hand-
shaking manner. Hence, a sin-
gle automaton can only perform
indistinguishable internal actions,

84

5.1. Usage and Functionalities

which is unsuitable for our desired causal analysis considering actions and real-time
behavior.

We address this issue by adding a dummy handshaker to the system that allows
synchronizations of all declared actions at all times. The handshaker automaton can
either be given as an additional template already within the Uppaal input-file itself or
is automatically added by the tool.

Also further limitations of Uppaal regarding supported automata transport to our
tool, for instance does Uppaal only allow restricted location invariants and guard ex-
pressions. Conversely, the tool only supports those system features of Uppaal that we
included in our theoretical formalism of timed automata in this thesis as well. Conse-
quently, it does not support features like (global) variable declarations and assignments,
the use of parameters, urgent locations, other kinds of channels, etc. As a rule of thumb,
the tool does, therefore, roughly support exactly those timed automata expressible in
both our theory as well as in Uppaal.

A large restriction of the tool arises from the relatively less-expressive specification
language that Uppaal provides. Uppaal only supports to model check the following
small fragment of MITL

ϕ := □Iφ | ♢Iφ | ¬□Iφ | ¬♢Iφ,

whereby φ is a Boolean combination of atomic propositions.
Actually, Uppaal represents this fragment in a different, rather branching-time man-

nered syntax, whose semantics does then, however, coincide with the above-stated
MITL formulas. We refer to the documentation of Uppaal’s specification language for
more details on the concrete representation in Uppaal [4].

Also very unfavorable for our work is in this context that Uppaal allows, speaking
in MITL terminology, only unique location labeling, that is, different locations cannot
be assigned to the same label. Actually, Uppaal uses, again deviating from MITL, no
atomic propositions and location labeling at all but refers in the specification formulas
to the names of locations. The thereof induced uniqueness confronted us with serious
issues in the implementation and, far more unpleasant, causes a clearly perceptible
deterioration in the performance of the tool. We will discuss those aspects again in
more detail in the following two sections.

Lastly, we want to remark that Uppaal allows, in contrast to MITL, also time-
convergent and particularly timelocking runs to qualify as counterexamples to specifi-
cations. While timelocks are generally considered as modeling flaws and do therefore
usually not receive any major attention, this aspect of Uppaal can result in undesired
deviations of the causal analysis provided by the tool from the theoretical causal
analysis.

85

5. Causality Tool

5.2 Implementation Remarks

We discuss our implementation in more detail, point out important design decisions,
and comment on challenges and problems that occurred in the programming process.

As already mentioned, we rely our causality tool on Uppaal and its Python library
Pyuppaal that enabled us to develop our causality tool in the first place. Nonetheless,
we want to remark, that we were a little surprised about the overall paucity of available
modeling and verification tools working on real-time systems. While Uppaal was chosen
to be used as it seemed to offer overall the best and most functionalities among the easily
accessible and usable tools, we still missed at various points certain features we would
have expected to exist for model checkers also of real-time systems.

Besides the aforementioned restricted MITL fragment that Uppaal supports, we miss
in particular for our purposes the possibility to obtain concrete counterexample traces
from the model checker in a case of a formula violation. Uppaal only produces symbolic
traces consisting of symbolic locations, that is, sets of locations described by a number
of clock constraints [5]. Those symbolic traces, called also timed diagnostic traces,
do however not yield directly concrete delay values of counterexamples. Due to the
thereof arising compatibility issues between the produced model checking results and
the required inputs to our causality notions, it is not ruled out that we will switch for
future versions of the tool to at least a different model checker, see for this also the
discussions in Section 7.2.: Section 7.2, p. 115

In the following, we will discuss the concrete object-oriented implementation in more
detail and subdivide this according to the file organization of the source code.

Comprehensive Data Structures for Real-Time Systems

Corresponding Python File: src\ta_structs.py

In particular and relevant for our work, Pyuppaal allows to parse and write xml-files,
the common file format in which Uppaal stores and processes real-time systems and,
allows to call the Uppaal’s model checking functionalities of from Python. Pyuppaal
represents the parsed xml-files as a so-called ElementTree, a data structure from Python
basically mirroring the tree-like structure of an xml-file with its possible keys, labels,
and items at every node. Furthermore, Pyuppaal features a small number of editing
options for those real-time systems, which are, however, not even close to allow the
elaborate constructions and operations on real-time systems that are required for the
implementation of our causality notions.

As this is as we would claim also not properly possible using the ElementTree data
structure at all, we wrote in a first step suitable and comprehensive data structures for
real-time systems as well as translations from and to the ElementTree format. Combined
with the functionalities of Pyuppaal, we thereby then also obtained the possibility to

86

https://github.com/FelixJahnFJ/Real-Time-Causality-Tool/blob/main/src/ta_structs.py

5.2. Implementation Remarks

parse xml-files to our data structure, write systems from our data structure to xml-files,
and to model check those systems in Uppaal.

From the bottom up, we wrote Python classes for positions (used for the visual dis-
placement in the Uppaal-GUI), locations, transitions, (timed automata) templates, and
finally whole systems. For each of those classes, the constructor method can be used
as a translator from the ElementTree representation to the representation in our data
structures. For the back translation, the classes contain methods called to_ET, whereby
most of the work is at those points handled by constructors existing in Pyuppaal.

Also in those classes, we implemented the intersection of timed automata (cf. Defi-
nition 2.7). Again in a bottom-up approach, we implemented the product construction :Definition 2.7, p. 18

starting with building product locations, building the product of transitions, composed
then in the product of templates and systems. As this was for the most parts a technical
but relatively straightforward implementation of the formal definition, we encountered
a big issue with regard to the goal of designing the intersection in a way that the logical
specifications transports to the intersection.

Recall that in the theoretical development, we constructed the labeling function as the
projection to the labels of the first location yielding the necessary transport properties.
Uppaal and its logic, however, do as mentioned not work with atomic propositions
and labeling functions, but the specifications refer to the name of locations that have
to be unique among the locations. Hence, lifting the specifications by naming product
locations simply after their first component is not possible in Uppaal.

Therefore, we were forced to the following unpleasant solution: we indexed the name
of the first location with the id of the second location and then adapt the specification
accordingly. Unfortunately, this adaption leads, in addition, inevitably to a factorial
blow up of the specification by the number of locations of the second automaton:
The in the specification occurring location names l are replaced with the disjunction
l1∨ · · ·∨ lt of all corresponding indexed location names, whereby t denotes the number
of locations of the second automaton.

The last functionality implemented in the classes of src\ta_structs.py that we want to
point out is the construction of the contingency automaton. Again, the implementa-
tion of the formal Definition 3.6 is for the most parts straightforward and uses similar :Definition 3.6, p. 41

techniques as the implementation of the intersection operator. In particular, we again
have to resort to the described transforming of location names and specifications. As we
will use the contingency automaton also in intersections, this even results in a further
factorial blowup of the specification size.

Data Structures for Traces, Runs, and Causes

Corresponding Python File: src\trace_structs.py

Besides the data structures capturing real-time systems we also had to represent the

87

https://github.com/FelixJahnFJ/Real-Time-Causality-Tool/blob/main/src/trace_structs.py

5. Causality Tool

different kinds of runs, kinds of timed traces, and strongly connected kinds of causes.
Recall that by our assumption of considering only timewise action-deterministic au-
tomata, the corresponding trace of a run is a unique representation of its run such that
it sufficed in the implementation to mainly work with timed traces.

In fact, there is exactly only one point at which we need concrete run configurations,
that is, locations and clock assignments of the considered run, namely for the construc-
tion of its contingency automaton. We capture this necessary information in a class
for configurations, which provides, furthermore, most of the functionalities required
for the reconstruction of the run from a given trace. In particular, we therefore had
to write methods that check whether guards are satisfied and methods updating clock
assignments according to a clock expression.

We represent the different kinds of traces in separate classes for finite delay traces,
lasso-shaped delay traces and finite timestamp traces. In each of these classes, we in-
clude methods for checking whether the trace satisfies a given set of events and, most
importantly, methods for constructing the counterfactual trace automaton of the trace
for a given set of events. The implementation of the construction from Definition 3.3 was:Definition 3.3, p. 27

an easy finger exercise where we took advantage in particular of our object-oriented pro-
gramming approach, as the exact constructions of the counterfactual trace automaton
vary only slightly for the different kinds of traces.

The implementation of the aforementioned sets of events forms the last part of the
file, we wrote classes for sets of events in the delay perspective and for sets of events in
the timestamp perspective named as DelayCause and TimestampCause.

Functionalities for Cause Checking and Computation

Corresponding Python File: src\cause_checker.py

The major part of the implementation of the algorithms from Chapter 4 is contained:Chapter 4, p. 61

in the file src\cause_checker.py. A class named CauseChecker provides for each of
the conditions of the causality notions (cf. Definitions 3.5 and 3.7) a method checking:Definitions 3.5, 3.7,

p. 30 and 42 whether the particular condition is fulfilled. This is again a mainly straightforward
implementation of the pseudo code presented in Chapter 4, we only want to comment
on two aspects:

Firstly, recall that we consider in the tool counterexamples to specifications, that is,
runs that do not satisfy a given effect ϕ. In the counterfactual simulation, we therefore
have to decide whether there exist counterfactual runs satisfying ϕ. This can be done
by model checking the negation of ϕ. As Uppaal allows in its restricted specification
language, however, no top-level negations ¬ϕ, we had to implement a propagation of
the negation to the inside of the formula that flips the temporal operators.

Secondly, for checking whether a finite run satisfies the given effect, we had to de-
viate from the construction in the theoretical development. Recall that we defined the
satisfiability of an effect for finite runs via the notion of good prefixes what was then

88

https://github.com/FelixJahnFJ/Real-Time-Causality-Tool/blob/main/src/cause_checker.py

5.2. Implementation Remarks

verified by considering all possible run extensions. We did so by using the construction
from Definition 4.1, where we allowed the extension to be arbitrarily labeled. As we :Definition 4.1, p. 64

cannot properly mirror this idea in Uppaal again due to its lack of location labeling, we
must help ourselves by exploiting a special peculiarity of the Uppaal model checker. As
mentioned above Uppaal considers also time-locking runs as counterexamples to spec-
ifications (in contrast to MITL that only considers time-divergent runs). By enforcing a
time lock at the end of the run, we achieve an at least for the restricted logical fragment
of Uppaal suitable solution for checking the effect satisfiability also in finite runs.

The advanced Algorithm 7 computing minimal but-for and actual causes for a given :Algorithm 7, p. 74

effect in a run of timed automata is implemented in a separate CauseComputer class,
taking as expected use of the functionalities of cause checking.

Executable Main-File

Corresponding Python File: causality_tool.py

At the top-level of the repository, we placed as mentioned a standard main-file for the
execution of the causality tool. It includes a basic command line parsing and handles
the method calls for cause checking and computation accordingly to the given program
arguments.

Further Implementation Remarks

In the further files and directories we included scripts and code used for the experi-
ments, use studies and measurements with our tool, which we will also discuss in more
detail in the following two sections. We want to conclude this section with adding some
remarks about further challenges and specifics in the development of the tool.

As mentioned, Pyuppaal converts real-time systems from xml-format only to a rep-
resentation in terms of ElemenTrees. Even though we, hence, decided as discussed to
write for our purposes better suited own data structures for real-time systems, those
structures have one major shortcoming: most of the attributes stored as strings in the
ElementTree, like for instance guards, expressions, system declarations, queries etc., are
not parsed to a representation as abstract syntax trees but simply copied to our struc-
tures as strings. Consequently, we dealt for all of those attributes in the whole following
computations just with strings without any further syntactic or semantic information.

The therefore numerous necessary string operations for editing transition guards,
setting transition expressions, changes in the (system) declarations, or adaptions of
specification formulas turned out to be one of the biggest challenges in the whole
development. In fact, here lies also one of the main weaknesses in the tool: we imple-
mented those string operations as mentioned firstly only for the parts of Uppaal that
are also part of our formal setting and secondly, we assumed the occurring attributes
likes guards, expressions, declarations or formulas to be valid attributes in Uppaal. For

89

https://github.com/FelixJahnFJ/Real-Time-Causality-Tool/blob/main/causality_tool.py

5. Causality Tool

invalid attributes, the behavior is not further defined and very likely we do also not
intercept at every point all possible invalid inputs. Thirdly, we require certain aspects
of the models like the (system) declarations to be specified in a very particular format
(cf. usage instructions in the project repository), as this tremendously simplified the
implementations of the string operations.

In retrospect, it might have been the better choice to invest the time for implementing
data structures and parsing functionalities at least for some particular of the string
stored attributes, we refrained from it as the expression language of Uppaal is a quite
expressive one which would have required to write a rather elaborate parser, a complex
task not directly located in our intended field of research.

5.3 Experiments and Measurements

We report on various experiments and measurements we have carried out on the de-
veloped tool. First of all, recall that all the presented examples from the previous
Chapters 3 and 4 are as Uppaal files together with the respective considered traces and
causes available in the project repository. On all those examples, the tool proceeds as
expected and computes exactly the causes we also obtain on paper.

5.3.1 Experiments on Examples from the Literature

init req

waitcsp

id := p
x := 0

id = 0
x := 0

x ⩾ 8∧ id == p

id := 0

id = 0
x := 0

x ⩽ 4

Figure 5.3: Fischer’s Protocol, Process TAi

Existing examples and popular
benchmarks for real-time systems
in the literature deal almost en-
tirely with network scenarios and
can, hence, not directly be han-
dled by our tool. Nonethe-
less, we want to present two
use studies on literature exam-
ples that we made suitable for
our tool by manually construct-
ing corresponding product au-
tomata. Both examples are again
provided also for own testing in
the repository.

As a first use study, we look at
the famous Fischer’s protocol, a
mutual exclusion protocol for real-time systems [51]. In the protocol, processes TAp

with p = 1, . . . , n as depicted in Figure 5.3 are considered.:Figure 5.3, p. 90

90

5.3. Experiments and Measurements

Hereby, the processes use a common global variable id and assign it when entering
the "wait"-location with their individual process index3.

For n = 2, we constructed the product automaton in Uppaal using actions τ1 and τ2
to distinguish which one of the processes takes a transition. The global variable idwith
finite domain (id ∈ {0, 1, 2}) is encoded in distinguished locations. Overall, we obtained
an automaton with 21 reachable locations. We test our tool on multiple runs that satisfy
the effect ϕ = □¬cs2, that is, runs in which the second process never reaches the critical
section (a kind of fairness violation effect).

Experiment 1. We consider the runs ρ1, ρ2, and ρ3 of the product system that have the
following corresponding traces respectively:

ξ1 :=
(
⟨1, τ1⟩⟨1, τ1⟩⟨8, τ1⟩⟨1, τ1⟩

)ω

ξ2 := ⟨1, τ2⟩
(
⟨1, τ1⟩⟨1, τ1⟩⟨8, τ1⟩⟨1, τ1⟩

)ω

ξ3 := ⟨1, τ1⟩⟨1, τ2⟩⟨1, τ2⟩
(
⟨1, τ1⟩⟨8, τ1⟩⟨1, τ1⟩⟨1, τ1⟩

)ω

Those runs have for the effectϕ each with different causes, whereby the minimal but-for
and actual causes coincide:

Causes for ϕ in ρ1: C1 = {(τ1, 1), (τ1, 2), (τ1, 3)}

C2 = {(1, 1), (8, 3), (τ1, 1), (τ1, 4)}

C3 = {(1, 1), (8, 3), (τ1, 2), (τ1, 3)}

Causes for ϕ in ρ2: C1 = {(1, 3), (τ1, 2), (τ1, 3)}

C2 = {(8, 4), (τ1, 2), (τ1, 3)}

Causes for ϕ in ρ3: C1 = {(1, 3), (τ1, 1)}

C2 = {(τ2, 3), (τ1, 4), (τ1, 5)}

C3 = {(τ1, 4), (τ1, 5), (τ1, 7)}

C4 = {(8, 5), (1, 7), (τ1, 6), (τ1, 7)}

C5 = {(8, 5), (1, 7), (τ1, 4), (τ1, 5)}

C6 = {(1, 3), (1, 7), (τ2, 2), (τ2, 3), (τ1, 5), (τ1, 6), (τ1, 7)}

We furthermore measure the time that it takes to decide some of those causes with
differing sizes and measure the time that it takes to compute the causes, both for but-for

3Global variables are a feature that is not included in our formalism of timed automata, but can be added
without losing decidability and is present in Uppaal as well.

91

5. Causality Tool

as well as actual causality. Timeout (TO): after 1 hour.
Results: Table 5.4 and Table 5.5.

Run Run
Length

Checking
BF-Cause

Checking
Min. BF-Cause
Cause size = 2

Checking
Min. BF-Cause
Cause Size = 3

Checking
Min. BF-Cause
Cause Size = 4

Computing
BF-Causes

ρ1 4 0.17s – 0.46s 0.54s 19.0s

ρ2 5 0.20s – 0.51s 0.60s 87.1s

ρ3 7 0.18s 0.35s 0.46s 0.52s 1248s

Table 5.4: Fischer’s Protocol – But-For Causality

Run Run
Length

Checking
Act-Cause

Cause size = 2

Checking
Act-Cause

Cause size = 3

Checking
Act-Cause

Cause size = 4

Computing
Act-Cause

ρ1 4 – 1.76s 1.62s 66.9s

ρ2 5 – 1.91s 2.15s 348.7s

ρ3 7 1.61s 2.93s 3.02s TO

Table 5.5: Fischer’s Protocol – Actual Causality

△

Overall, the cause analysis in the above experiment identifies sets of events as causes
that we would also intuitively expect to be causes. In particular with increasing run
length, the analysis yields, however, also further sets that were manually less obvious
to discover. Also with increasing run length, we can already investigate despite the
still relatively small run length the rapidly increasing computational effort that the
computation of causes requires.

s0

{n}

s1

{n}

s2

{o}

s3

{o}

hi

nhi
hi

nhi

{hi,nhi}

{hi,nhi}

Figure 5.6: Coenen et al.’s HyperLTL Example

As a second example from the
literature, we consider the run-
ning example in Coenen et al.’s
paper on explaining HyperLTL
violations [22] considering the au-
tomaton in Figure 5.6.

As they work in a discrete set-
ting, time will play no crucial role
in this application. It is still a
particularly interesting example
to test on our work as the authors

92

5.3. Experiments and Measurements

give for this automaton a preemption example that can be handled by their definition
of actual causality and what we desire from or notion our as well. Coenen et al. ex-
plain as mentioned hyperlogic properties, i.e., properties that express relations between
multiple system executions. Concretely, they consider for this example violations of
the hyperproperty of observational determinism, stating simplified and transported to
the real-time setting that ∀s1, s2.□ (os1 ↔ os2), whereby s1 and s2 are signals and os
expresses that o holds on the signal s.

We transport this consideration of hyperproperties to our setting again by a product
automaton construction. Furthermore, we encode the in each step independently taken
actions in the two runs in indexed actions Act = {hi1,nhi1,hi2,nhi2} and their separate
labels as paired atomic propositions AP = {⟨o, o⟩, ⟨o, n⟩, ⟨n, o⟩, ⟨n,n⟩}. We then consider
in the product automaton the effect ϕ = ♢⟨o, n⟩∨ ⟨n, o⟩4.

We mimic the consideration of the hyperproperty of the two runs by enforcing alter-
nating actions between the actions in {hi1,nhi1} (representing actions in the first run) and
the actions in {hi2,nhi2} (representing actions in the second run). As this enforcement
is encoded in the automaton, the number of locations in the automaton is enlarged to
overall 18 reachable locations.

Experiment 2. We consider the run ρ that has the corresponding trace

ξ := ⟨1,nhi1⟩⟨1,hi2⟩⟨1,nhi1⟩⟨1,hi2⟩⟨1,nhi1⟩⟨1,nhi2⟩

The causal analysis based on our notions of but-for and actual causality coincides as
desired exactly with the analysis of Coenen et al.’s notions as also we obtain the following
causes:

Minimal but-for causes for ϕ in ρ: C1 = {(nhi1, 1)}

C2 = {(hi2, 2), (hi2, 4)}

C3 = {(hi2, 2)(nhi1, 3)}

Actual causes for ϕ in ρ: C4 = {(nhi1, 1)}

C5 = {(hi2, 2)}

In particular, we observe a typical preemption case: C5 = {(hi2, 2)} is identified as
actual cause but not as minimal but-for cause since (hi2, 2) preempts (hi2, 4). Hence,
only together those two events form the but-for cause C2.

Again, we measure the time that it takes the tool to check and compute but-for and
actual causes.
Results: Table 5.7 (on the next page). △

4Notice that Coenen et al. considered as effect violations of the property. We instead look for effects for
satisfied formulas, hence, our formula is modulo encoding the negation of the hyperproperty formula.

93

5. Causality Tool

Run Run
Length

Checking
BF-Cause

Checking
Min. BF-Cause
Cause size = 2

Computing
BF-Cause

Checking
Act-Cause

Cause size = 1

Computing
Act-Causes

ρ 6 0.19s 0.37s 124.1s 0.18s 582.5s

Table 5.7: Coenen et al.’s HyperLTL Example

For both examples, we refer to the Uppaal-files for details on the concrete adaption
via product encodings to our setting.

5.3.2 Cause Checking Measurements

Going beyond the above use studies, we want to systematically analyze the runtime and
efficiency of our implementations and the underlying algorithms from Chapter 4 in more:Chapter 4, p. 61

detail. In particular, we want to investigate the dependencies on varying parameters like
the size of the automaton, the length of the given run, or the cause size. Therefore, we
present synthetic experiments constructed exactly designed to run measurements with
the mentioned varying parameters. The corresponding Python scripts are available
under

https://github.com/FelixJahnFJ/Real-Time-Causality-Tool/tree/main/src/Experimenter_Scripts.

We aim to measure both the checking of a cause as well as the computation of causes
both for (minimal) but-for as well as for actual causality. As the runtime in particular
of the computation of causes highly dependents on where the events forming causes
appear in the order of the processed events, we want to include a randomization of
which events form causes and then look at the average over a sample of measurements.

To efficiently achieve the aim of checking-measurements with varying parameters and
randomized causes, we use the following construction: For a parameter t specifying the
size of the timed automaton, we consider the following timed automaton TA:

l0 l1 . . . lt−1 succ

x ⩽ 2 x ⩽ 2 x ⩽ 2

fail

x ⩽ 1
x := 0

α

x ⩽ 1
x := 0

α

x ⩽ 1
x := 0

α

x ⩽ 1
x := 0

α

α
x >

1

α
x
>
1

α
x
>
1

β

β

β

{α,β}

{α,β}

94

https://github.com/FelixJahnFJ/Real-Time-Causality-Tool/tree/main/src/Experimenter_Scripts

5.3. Experiments and Measurements

The idea is that the only run in the automaton reaching the "succ"-location is the run
ρ ′ := l0

1−→ α−→ l1
1−→ α−→ . . .

1−→ α−→ lt−1
1−→ α−→ succ. We now, however, consider runs with a

deviating delay of 2 or a deviating action β at randomized points, that hence, lead the
run to the "fail"-location. More formally, for a certain run length r ⩽ t (the run should
not be longer as the automaton), we pick two random index sets ID ⊆ {1, . . . , r} and
IA ⊆ {1, . . . , r} and consider the run ρ with corresponding trace

ξ = ⟨δ1, α1⟩ . . . ⟨δr, αr⟩,

whereby

δi :=

 1, i /∈ ID,

2, i ∈ ID,
αi :=

 α, i /∈ IA,

β, i ∈ IA,
i = 1, . . . , r.

By this construction, we then obtain as the only minimal but-for as well as actual
cause for the effect ϕ := ♢ fail in run ρ of TA exactly the set of events

C = {(2, i) | i ∈ ID} ∪ {(α, i) | i ∈ IA},

for which we will then measure how long it takes to verify its cause property. Notice
furthermore, that the cause has size |ID|+ |IA|, i.e., the size of the randomly picked index
sets, which allows us to also vary the size of the cause using a third parameter c.

This approach results in the following measurements series:

Measurement 1. We increase the size t of the timed automaton TA together with the
length r of run ρ (we let r = t) and consider varying sizes c of the cause. We measure but-
for, minimal but-for and actual causality checking separately. Sample size per parameter
combination: 10.
Results: Table 5.8, Table 5.9, and Table 5.10 (on the next page).

c = 2 c = 5 c = 10 c = 15 c = 20

t = r = 10 0.21s 0.20s 0.20s 0.21s 0.19s

t = r = 25 0.74s 0.74s 0.72s 0.73 0.72s

t = r = 50 4.29s 4.35s 4.37s 4.33s 4.27s

t = r = 75 16.2s 16.0s 15.9s 15.7s 15.6s

t = r = 100 45.5s 45.3s 45.3s 44.8s 44.4s

Table 5.8: Min. But-For Causality

c = 2 c = 5 c = 10 c = 15 c = 20

t = r = 10 0.49s 0.84s 1.51s 2.13s 2.83s

t = r = 25 1.59s 2.61s 4.56s 6.20s 8.19s

t = r = 50 8.22s 14.3s 24.7s 35.0s 45.7s

t = r = 75 28.4s 50.0s 86.2s 123s 160s

t = r = 100 76.8s 135s 232s 329s 427s

Table 5.9: Checking Actual Causality

△

95

5. Causality Tool

c = 2 c = 4 c = 6 c = 8

t = r = 5 0.78s 1.35s 1.92s 2.58s

t = r = 10 3.43s 5.90s 8.78s 11.7s

t = r = 15 17.4s 30.2s 44.6s 60.1s

t = r = 20 65.9s 116s 168s 218s

t = r = 25 216s 373s 522s 704s

Table 5.10: Actual Causality

We observe multiple things: First of all, the measurements reflect the analysis on the
algorithmic complexity in Lemma 19. Unsurprisingly, the computational effort of cause:Lemma 19, p. 68

checking increases in general with increasing automaton and run size. Furthermore,
the effort of checking minimal causes increases with the cause size as for larger causes
there are more subsets that need to be considered to verify minimality. Lastly, Table 5.8
suggests that checking but-for causality (i.e., without checking minimality) gets, in
particular for large automata and runs, less expensive for increasing cause sizes.

All those observations can be further confirmed, whereby we refine at first the latter
suggestion.

Measurement 2. We fix the automaton and run size (t = r = 100) and measure for
increasing cause sizes c the computational effort it takes to check the SAT- and CFBF-
condition. Sample size per cause size: 10.
Results: Table 5.11.

0 40 80 120 160 200
0

5

10

15

20

25

Cause size c

Ru
nt

im
e

[s
]

SAT
CFBF

Table 5.11: Checking SAT and CFBF △

96

5.3. Experiments and Measurements

The measurement locates the decreasing computational effort of but-for cause check-
ing in a decreasing runtime of checking the SAT-condition. The reason for this lies hid-
den in the model checking process: Recall that we model check for the SAT-condition
the satisfaction of the effectϕ. For the case at hand, the effect is the reachability property
♢ fail . As the model checking proceeds in a breadth first manner, the reachability can
be confirmed faster for runs that reach in fewer steps the searched location. For the
present experiment setup, this happens with the first appearing deviation from timed
actions ⟨1, α⟩. Hence, an earlier occurring of the first causal events, which correlates
with a larger size of the considered causes, results in a faster satisfiability check. We
do not believe that this observation can be fully generalized to arbitrary scenarios with
arbitrary automata and specifications.

Apart from this, the crucial parameters affecting the necessary computational effort
are the automata size and run length. We investigate their influence on the counterfac-
tual reasoning.

Measurement 3. We compare the time that it takes to check CFBF- and CFAct-condition
in dependence to the size t of the automaton and length run r (we let r = t). The cause
size remains fixed (c = 2). Sample size per automaton size: 10.
Result: Table 5.12.

0 20 40 60 80 100 120
0

20

40

60

80

Automaton size t

Ru
nt

im
e

[s
]

CFBF

CFAct

Table 5.12: Checking CF-Conditions △

The measurement shows the expected exponential growth in both conditions,
whereby checking CFAct grows enormously much faster and times out already for
a relatively small automaton size. Again, this is perfectly in line with the complexity
analysis: We know model checking to grow exponentially and discussed that the size

97

5. Causality Tool

of the checked automaton increases due to the contingency construction in the CFAct-
condition with an additional factor of the run length r. Furthermore, we think that the
runtime of the tool explodes even stronger due to the in the previous section discussed
blowup of the specification (and model checking is usually extremely sensitive to the
specification size).

The results regarding the counterfactual conditions combine to the following overall
measurements for cause checking.

Measurement 4. We compare the time that it takes to check the three notions of but-for,
minimal but-for, and actual causality in dependence to the automaton size t and run
length r (we let again r = t). We fix the cause size (c = 2). Sample size per automaton
size: 10.
Results: Table 5.13.:Table 5.13, p. 98

0 20 40 60 80 100 120
0

30

60

90

120

Automaton size t

Ru
nt

im
e

[s
]

BF-Cause
Min-BF-Cause

Act-Cause

Table 5.13: Checking Causality Notions △

The measurements show ideally how cause checking is composed out of multiple
model-checking problems: For checking but-for causes, we have to solve two model-
checking problems, for checking minimal causes of size 2, there are four problems to
solve. Hence, checking minimal causes of this size takes about twice as long which is
reflected very accurately in the measurements. Similar relations for further cause sizes
can also be observed in Measurement 1.:Measurement 1,

p. 95 Finally, we examine the influence of the run length varied independently to the
automata.

98

5.3. Experiments and Measurements

Measurement 5. We vary the run length r for different fixed values of the automaton
size t. We again fix the cause size (c = 2) and measure the time it takes to check the
CFBF- and CFAct-condition. Sample size per parameter combination: 10.
Result: Table 5.14 and Table 5.15.

r = 5 r = 10 r = 25 r = 50 r = 75 r = 100

t = 10 0.08s 0.11s – – – –

t = 25 0.13s 0.18s 0.37s – – –

t = 50 0.20s 0.32s 0.79s 2.20s – –

t = 75 0.26s 0.46s 1.44s 4.08s 7.66s –

t = 100 0.33s 0.64s 2.21s 6.35s 12.3s 20.3s

Table 5.14: Checking CFBF

r = 5 r = 10 r = 15 r = 20 r = 25

t = 10 0.32s 1.14s – – –

t = 15 0.46s 2.03s 5.96s – –

t = 20 0.59s 2.93s 9.38s 22.8s –

t = 25 0.76s 4.24s 13.7s 34.4s 75.0s

Table 5.15: Checking CFAct △

This last measurement on cause checking shows that the necessary computational
effort grows indeed in the size of the automaton as well as in the length of the actual
run. However, the run length seems thereby to be the by far more influential factor. This
is probably again due to the discussed shortcoming of our implementation in which
the model-checked formula grows in the length of the run. Also clearly visible is in
all the measurements that this growth is sharper for the checking of actual causes.
This reflects the complexity analysis, in which we discussed that with the contingency
automaton also the model-checked intersections grow by an additional factor of the
run length. Additionally, again also the formula grows for actual causality as discussed
with a factor of r2 instead of only r in the but-for case.

5.3.3 Cause Computation Measurements

We head over to the computation of causes and again present randomized experiments
for varying parameter, whereby for the computation now rather the number of causes
for a given effect instead of their size will become of importance.

99

5. Causality Tool

We use a similar idea for the test setup, proceed, however, in some sense conversely
as for the checking of causes: While it is analogously to the construction above again
the particular trace ξ := ⟨1, α⟩ . . . ⟨1, α⟩ whose corresponding run ρ leads through a
particular sequence of locations, we construct the setting now no longer in a way, that
this run becomes the searched counterfactual run, but conversely in a way, that this run
is the given run in which the effect ϕ := ♢ fail appears. For a given randomized choice
of events, we then design the automaton in such a way that a deviation from exactly
these events in ξ prevents the effect.

More concretely, we proceed in the following way: in a step whose delay and action
events are not in the randomly selected set of events, deviation from ξ should still only
allow to continue in the same successor location as ρ. Hence, the transition allows
all actions and is not guarded. If, however, the delay event at this point is selected,
a deviating delay of 2 instead of 1 should change the successor location. Hence, the
α-transition to the successor becomes guarded and an alternative transition enabled for
a delay of 2 is added. Similarly for a selected action event, a deviating action of β instead
of α at this point should change the successor location and hence, the β-transition is
redirected to an alternative successor location. The whole construction reminds of the
construction of the counterfactual trace automaton, as for each possible combinations
of selecting or unselecting delay or action events at a certain position we do obtain
differing transitions.

For an example set of events C := {(β, 2), (1, r−1)}, the considered TA automaton looks,
for instance, as follows:

l0 l1 . . . lr−1 fail

x ⩽ 2 x ⩽ 2 x ⩽ 2

lrlr+1. . .lt

x ⩽ 2x ⩽ 2

x := 0

{α,β}

x := 0

α

x := 0

{α,β}

x ⩽ 1
x := 0

α

β

x := 0
x
:=
0β

x := 0

{α,β}

x := 0

{α,β}

x := 0

{α,β}

α

x
>
1

{α,β}

{α,β}

For this example set, we obtain both as minimal but-for and as actual causes for ϕ in ρ
of TA the two singleton sets {(β, 2)} and {(1, r−1)}. Also in general for a randomly picked

100

5.3. Experiments and Measurements

set of c events {e1, . . . , ec}, the construction results in having exactly the c singleton
causes {e1}, . . . , {ec} as minimal but-for and actual causes. Notice as last aspect of the
construction that the locations lr+1, . . . lt have no influence at all for the causality anal-
ysis but are added to allow varying the automaton size t independently to the run size r.

We make similar measurements as for checking now for the computation of causes:

Measurement 6. Similar to Measurement 1, we measure for varying automata sizes t :Measurement 1,
p. 95together with run lengths r (r = t) on the one hand and varying numbers of causes c on

the other hand now the computation of minimal but-for and actual causes. Sample size
per parameter combination: 10. Timeout (TO): after 600 seconds.
Results: Table 5.16 and Table 5.17.

c = 2 c = 4 c = 6 c = 8 c = 10 c = 12

t = r = 2 0.27s 0.23s – – – –

t = r = 4 3.92s 1.27s 0.64s 0.59s – –

t = r = 6 102s 33.6s 9.75s 3.40s 2.02s 1.90s

t = r = 8 TO 531s 176s 47.5s 13.5s 5.15s

Table 5.16: Computing Min. But-For Causes

c = 2 c = 4 c = 6 c = 8 c = 10 c = 12

t = r = 2 0.82s 0.69s – – – –

t = r = 4 14.8s 4.43s 2.16s 1.96s – –

t = r = 6 339s 83.1s 23.6s 7.07s 4.04s 3.78s

t = r = 8 TO TO 663s 170s 43.6s 15.5s

Table 5.17: Computing Actual Causes

△

As expected, we observe a rapid runtime explosion with increasing size of the au-
tomaton and length of the run while the number of causes decreases the necessary
computational effort. The upcoming two measurements address these two aspects in
more detail. Furthermore, the higher complexity in checking the CFAct-condition in
comparison to checking the CFBF-condition induces also a significantly larger runtime
in the computation of actual causes compared to minimal but-for causes.

Measurement 7. We increase the automaton size t together with the run length r and
let the number of causes c be fixed (c = 2). Sample size per cause size: 10.
Results: Table 5.18 (on the next page).

101

5. Causality Tool

0 2 4 6 8
0

25

50

75

100

Automaton size t and run length r

Ru
nt

im
e

[s
]

Min-BF-Cause
Act-Cause

Table 5.18: Cause Computation – Increasing Automaton Size

△

The measurement shows again the rapid exponential blow-up in the runtime of cause
computations with increasing run length. This is above all due to the exponential growth
of the powerset of event sets we have to consider as potential causes. For run length r,
we have precisely 22r possible sets of events for which the CF-conditions are checked.
Recall however, that our optimized algorithm for the computation of causes allows in the
case of detected causes to exclude its supersets from the further computation. Indeed,
the positive impact of this optimization on the runtime, especially in scenarios with a
large number of causes, can be confirmed experimentally.

Measurement 8. We increase the number of causes c for fixed automaton size and run
length (t = r = 5) and measure the computation of minimal but-for and actual causes.
Sample size per cause size: 10.
Results: Table 5.19 (on the next page). △

Lastly, we confirm our suggestion and the complexity analysis in Theorem 27, that it:Theorem 27, p. 81

is in fact especially the run length and less the automaton size that leads to the runtime
explosion in the computation of causes.

Measurement 9. Similar to Measurement 5, we vary the run length r and automaton:Measurement 5,
p. 99 size t independently of each other, while the cause size remains fixed (c = 2). Sample

size per parameter combination: 10.
Result: Table 5.20 and Table 5.21 (on the next pages). △

102

5.3. Experiments and Measurements

This concludes the discussion of the developed causality tool. As observed at several
points, the tool still comes with a number of shortcomings, limitations, and restricted
functionalities, and is hence, as further detailed in Section 7.2, definitely a major subject : Section 7.2, p. 115

in intended future improvements of our work.

0 2 4 6 8 10
0

20

40

60

80

Cause number c

Ru
nt

im
e

[s
]

Min-BF-Cause
Act-Cause

Table 5.19: Cause Computation – Increasing Cause Number

103

5. Causality Tool

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6

t = 2 0.23s 0.45s – – – –

t = 3 0.22s 0.47s 1.60s – – –

t = 4 0.23s 0.53s 1.65s 6.76s – –

t = 5 0.27s 0.55s 1.87s 7.43s 31.3s –

t = 6 0.25s 0.63s 1.96s 6.41s 23.3s 117s

Table 5.20: Computing Min. But-For Causes

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6

t = 2 0.32s 0.79s – – – –

t = 3 0.34s 0.83s 2.99s – – –

t = 4 0.34s 0.86s 3.15s 14.8s – –

t = 5 0.35s 0.90s 3.37s 14.8s 72.4s –

t = 6 0.35s 0.93s 3.52s 15.3s 76.6s 328s

Table 5.21: Computing Actual Causes

104

Chapter 6
Related Work

We report on previous work related to this thesis. In Section 6.1, we give in a first step : Section 6.1, p. 105

an overview of the research on causality in the area of computer science and verification
in general and look then, in Section 6.2, in more detail into causality-related work : Section 6.2, p. 108

particularly for real-time settings.

6.1 Causality in Computer Science

With the aim of explaining and understanding the behavior of computer systems, the
originally philosophical concept of causality was started to be applied to computer
science contexts. The also in this thesis followed idea of counterfactual causality –
going back to first thoughts of Hume [46], retrieved by Lewis [53], and then established
through Halpern and Pearl’s influential formalizations of actual causality [40, 41, 37, 38],
became one of the most important approaches for integrating causality in computer
science contexts. This is particularly the case for research areas focusing on verification.

The principle of counterfactual reasoning was thereby – sometimes implicitly – used
from early on in many approaches. One of the first approaches in this manner was
so-called program slicing, which tries to analyze dependencies between different parts
of a program [65, 44, 43].

For component-based systems, their individual components are considered as (parts
of) possible causes for a certain system behavior [33, 32, 64, 36]. Already well before
the formal work of Halpern and Pearl, Reiter searched for minimal sets of components,
that explain a discrepancy between an observed faulty and the desired correct system
behavior [58]. Similarly for configurable systems, which in the meantime have not only
gained in importance but also in terms of complexity, it was tried to detect the features
responsible again for specification violations, finding nowadays crucial applications in
the debugging process of such configurable systems [10].

105

6. Related Work

The concepts of vacuity and coverage are used to gain knowledge specifically in the
case of a successful verification: While vacuity tries to rule out that an undesired trivial
behavior of the system caused the positive result [15, 13], coverage analysis proceeds
conversely and tries to identify parts of a system that were irrelevant for a positive result
[45, 20]. Coverage takes as one of only a few counterfactual reasoning approaches a
forward-looking perspective on causality: system parts are analyzed in terms of their
global ability to affect the verification result.

This approach differs from the perspective taken in our work, which can be classified
as a representative of the rather backwards-oriented field of error localization. Error
localization [14, 63, 47] tries to reduce a counterexample to the relevant parts that were
causal for the violation, a backward perspective in the sense that its starting point is
an already finished system execution, whose events are then analyzed in terms of their
effect on the observed outcome. Thereby an important advantage of model checking in
contrast to, for instance, deductive verification methods is exploited, as model checking
algorithms cannot only answer the question of specification satisfaction but provide as
well a certificate or counterexample justifying the model checking result. Those system
executions form then the starting point of error localization1.

Early tries in the subject of error explanation used distance metrics, that measure,
loosely speaking, the similarity of system executions. Given, for instance, a coun-
terexample trace, the, with respect to this metric, closest traces leading to a successful
execution are then computed [35]. Those closest traces then in turn induce minimal
causal events by choosing exactly the events that differ between the closest successful
and the originally violating trace.

One of the most groundbreaking works in the field was the one of Beer et al. [16],
in which the violation of an LTL formula in paths in Kripke structures is explained
by formally applying Halpern and Pearl’s causality notion to their setting. Their basic
approach to explaining the behavior of discrete systems strongly inspired us in the
choice of the setup in our work. But also many works before us took the work of Beer
et al. as a model for developing a notion of causality in the sense of Halpern and Pearl for
different kinds of systems or specifications: Datta et al. consider, for instance, concurrent
systems [25] and Gössler and Stefani lift the ideas to abstract hyperproperties [36].

Coenen et al. then concretize this to explanations of HyperLTL violations. Therefore,
they use in the counterfactual reasoning the conceptual idea of counterfactual automata
[22]. We closely followed this approach and represent, as explored by Coenen et al.,
all the possible counterfactual system execution as an automaton and reduce cause
checking in this way to the model-checking problem. Also Gössler and Stefani in [36]

1Note that the term "error localization" originated from the major use case of this kind of methods, namely
to explain violations of specification. As demonstrated also in this thesis, the technique can be applied
also to explain the satisfaction of a specification in a system execution.

106

6.1. Causality in Computer Science

proceed similarly and define for their component-based systems so-called counterfac-
tual builders, in which the possible counterfactual simulations were represented.

Based on counterfactual trace automata, Coenen et al. include, to the best of our
knowledge, as the first authors working with reactive system contingencies in the coun-
terfactual reasoning [22], resulting in not only an implementation of but-for causality
but true actual causality in the flavor of Halpern and Pearl. Coenen et al. generalize
in a further publication their notion of actual causality to general systems [23]. Again
inspired by their work, also we include contingencies to the reasoning enabled by
carefully composed automata constructions. As discussed in Section 3.3, we chose to : Section 3.3, p. 55

this end, however, a differing technique: While Coenen et al. allow contingencies by ex-
tending the possible inputs of their systems, we do so by adding contingency transitions.

Another notable discovery from working with hyperproperties is that causality can be
elegantly defined in hyperlogics, only with the increase in complexity of one additional
quantifier alternation [22]. This also leads us to a last and again very different approach
to counterfactual causality in verification contexts, that we want to discuss: the idea to
describe causality in terms of logical formulas. To give a brief, superficial impression of
how such a description can look like, notice that besides implicative relations express-
able in temporal logics also their temporal operators are well suited to formalize the
intuitions behind the single causality conditions: ♢C and ♢E exactly express, that a
cause C and effect E occur in a system execution, that is, exactly the requirement in the
SAT-condition. The until-operator helps in approaching the counterfactual principles
in the CF-condition: ¬EUC for instance expresses that the effect E does not occur until
the cause C occurs2. Temporal logics are, furthermore, exactly designed to specify
relations between events in the course of a system execution. Consequently, formulas
in, for instance, a so-called event order logic might be considered by themselves as
possible causes for a system behavior [52, 18, 31].

Lastly, we briefly report on two further approaches, differing fundamentally from
counterfactual explanations, both again also applied in various works in computer
science contexts. First, Chockler and Halpern extend the notion of actual causality to
the concept of responsibility [19]. While counterfactual causality is a qualitative notion
(a set of events is either a cause for an occurring effect or it is no cause), notions of
responsibility add a quantitative measure to the analysis (to what degree is a set of
events responsible for an occurring effect). For these kinds of concepts, especially using
the so-called Shapley value [59], measuring the influence of events on effects led to suc-
cessful explanation techniques for system behaviors [26, 60, 6]. Secondly, probabilistic
causation analyzes events and effects with regard to the probability of their occurrence.
In a nutshell, events that increase with their occurrence the probability of the occurrence

2One has, however, to be aware of the well-known pitfall that such a temporal dependence does not
necessarily imply a causel dependence.

107

6. Related Work

of an effect are then identified as causes for this effect [61, 29]. Naturally, this approach
to causality plays a major role in particular for the work with probabilistic systems
[48, 12].

For further details on research about causality in verification-related work, we also
recommend the excellent overview paper by Baier et al. [11]. For a closer discussion of
methods and approaches summarized under the popular term of "explainable AI", we
refer to the systematic review of this field by Vilone and Longo [62].

6.2 Causality in Real-Time Systems

While the range and progress of research on causality in the computer science context is
as seen in general already quite large and still continues to expand rapidly, we are only
aware of a small number of publications considering real-time systems. We discuss
the in Chapter 1 already briefly addressed state of the current research on causality in:Chapter 1, p. 1

real-time system in more detail and compare previous works to the one in this thesis.

Dierks et al. develop an automated abstraction refinement technique for timed au-
tomata [28]. Verification of various systems, in particular also of real-time systems,
often proceeds by checking not the given system directly, but instead a simplified ab-
straction of it. As those abstractions are designed in a way that they over-approximate
the concrete system, the correctness of the abstractions implies also the concrete system
to behave as intended. In the case of a reported specification violation of the abstract
system, the detected counterexample might, however, be spurious, that is, that there
exists for the abstract counterexample no corresponding concrete counterexample in
the concrete system. In this case, the abstraction needs to be refined in a way that the
spurious counterexample is excluded and is then again started to be model checked,
resulting in a so-called refinement loop until a valid verification result is found [21, 24].

The crucial step in this verification process is the refinement of the abstractions – a step
whose automation can, however, strongly benefit from causality concepts, as they might
help to analyze why the detected counterexample was spurious and, consequently, how
the abstraction must be refined. For the abstractions of real-time systems, Dierks et al.
try to identify variables and clocks causing the spuriousness. Besides the differing
application context, as we do not work on abstraction refinements but in the direction
of error localization, our causal reasoning differs, therefore, in particular regarding the
considered objects for causes: we look for events in a given run while in [28] parts of
the real-time system are considered.

This also marks the main difference to the work of Wang et al., who develop a
framework for the causal analysis of component-based real-time systems [64]. As briefly
mentioned in the previous section, works on component-based systems mainly try to
identify faulty components that contributed to a faulty system behavior. Based on

108

6.2. Causality in Real-Time Systems

this consideration of causes and effects, Wang et al. then introduce a counterfactual
reasoning that simulates the system with the causal ("faulty") components replaced
with alternative ("good") components. Identification of faulty components can then
ease the repair of component-based systems.

Kölbl et al. follow a similar direction and propose a repairing technique of timed sys-
tems focusing on the repair of its clock bounds [49]. Again, also they gain knowledge
on what system parts might have caused a violation of a specification by considering
a counterexample trace. More precisely, they process counterexamples represented as
timed-diagnostic traces, that include timing constraints arising from different guards
and invariants of the system (cf. Section 5.2). They encode those constraints from the : Section 5.2, p. 86

timed diagnostic trace in linear real arithmetic and search then for admissible alterna-
tive clock bounds preventing the violation (admissibility here means the possibility to
change those clock bounds in the timed system without crashing the overall functional
behavior of the system). As timed diagnostic traces can describe executions of system
networks as well, the development of Kölbl et al. handles, in contrast to our work, also
networks of timed automata.

An advantage that is present also in a further contribution of Kölbl et al.: While in their
previously discussed work, syntactic features of the systems like their clock bounds are
considered as causes, and hence, called static actual causes, now in [50] the at runtime
non-deterministically chosen delay values of timed systems are considered causal for
the system behavior, consequently called dynamic actual causes. More precisely, they
compute causal delay values and causal delay ranges in timed diagnostic traces violating
reachability properties [50]. Those values and ranges can thereby not only refer to a
single delay in the trace but also to sums of multiple delays, a feature allowing to detect
certain mathematical relations between delays as causes.

While we allow no such delay relations as causes, we consider, however, the performed
actions of traces as part of possible causes as well. In particular, we are able to detect
a combination of certain delays and actions as causal for system behaviors. In contrast
to the approaches of Kölbl et al., the handled system behaviors are in our work also not
limited to reachability properties.

Mari et al. propose an explaining technique for the violation of safety properties in
real-time systems [56]. The approach is fully based on their corresponding work on
explaining discrete systems [34]: Given a real-time system, they construct in a very first
step a finite discrete abstraction of the semantic transition system, consisting of action
and delay transitions (cf. Definition 2.4). Then, their in [34] developed effective choice :Definition 2.4, p. 15

explanations for discrete event systems are applied to this abstraction. Their effective
choice explanations are, however, not concluded from counterfactual reasoning in its
original Halpern and Pearl flavor, but rather computed, based on a so-called level of
choice function, describing which transitions have brought the system closer to the
violation.

109

6. Related Work

While similar to our work, Mari et al. can identify both actions as well as delays (and
also arbitrary combinations of those events) to be causal for a certain system behavior,
the approaches differ in particular in the kind of causality concept underlying the causal
reasoning. Furthermore, we present an approach defining the counterfactual reasoning
fully on the side and in terms of real-time systems and do not start with a translation to
the discrete setting.

110

Chapter 7
Future Work

In this chapter, we want to sketch several possible lines of future research resulting from
questions that were raised as a result of our work. We thereby divide the discussion
in two parts and comment firstly in Section 7.1 on possible future theoretical work and : Section 7.1, p. 111

address secondly in Section 7.2 possible upgrades and further developments of the : Section 7.2, p. 115

causality tool.

7.1 Future Theoretical Work

A first steadily ongoing task arises from Joseph Halpern’s words already quoted in
Chapter 1. With regard to causality notions in general he remarked: :Chapter 1, p. 1

"The way you show your definition is good is to show that – gee! – look at
how well it does it all in all the examples."

And goes on to say:

"And that works fine until somebody comes along and constructs an example to show
your definition maybe wasn’t as good as you thought it was..."

– Joseph Y. Halpern1 –

It remains, therefore, also in our setting desirable to continue considering further and
new kinds of examples, to investigate how our notions handle these and whether they
behave in accordance with our intuition, and, in the case of detected counter-intuitive
phenomena, to further improve the notions. In this regard however, one has to point out
that refining the notions to capture a further class of scenarios without deteriorate on
currently captured examples seems in particular in our setting hard, if not sometimes

1Recording of his talk at AAAI 2018: Actual Causality: A Survey [39]

111

7. Future Work

even impossible. In fact, we made in some sense such an observation already in the
course of this thesis: As discussed in large detail in Section 3.2, neither the introduced: Section 3.2, p. 46

delay nor the alternative timestamp perspective can suitably capture different kinds of
everyday examples as a singular approach.

Therefore, it might, however, be particularly interesting to think about ways to com-
bine the two perspectives into one notion. The most natural idea for this would be
to investigate what happens when choosing as the whole set of events E the union of
delay events, timestamp events, and unchanged action events, i.e., E := DE ∪̇TE ∪̇AE (cf.
Definitions 3.1 and 3.8). Besides the technical aspect that we would need to adapt our:Definitions 3.1, 3.8,

p. 24 and 49 definitions of delay and timestamp events in order to obtain indeed disjoint unions of
DE and TE, the first occurring question would again be how to construct the counterfac-
tual trace automaton for these combined sets of events. We think that simply combining
the ideas for the constructions in the delay as well as in the timestamp perspective
into one construction should result in an again faithful and meaningful definition of a
counterfactual trace automaton. We have, however, not yet carried out and investigated
this construction in detail.

Furthermore, one might want to rethink what qualifies as minimal causes in this
approach. Probably, the minimality condition should be sharpened in a way, that not
only all the strict subsets of a cause C are checked, but also those sets with less elements
than C for which there exists for each of their delay and timestamp events a delay or a
timestamp event with the same position in C (the action events should of course still be
completely contained in C). Only this might enable an analysis of scenarios like the one
of the agricultural field (cf. Example 3.2.1) in which the set with multiple delay events:Example 3.2.1, p. 47

is not identified as minimal cause but only the singleton timestamp event set.

Another, much more "radical" idea for extending our notion of causality in real-time
systems is an approach, that allows causal timestamp events to change the position, at
which its corresponding action is performed, in the order of action events. Recall again
Example 3.2.1 of the agricultural field and imagine now a scenario in which the farmer:Example 3.2.1, p. 47

does everything as required for a successful harvest, except for the fact that he forgets
to sow the field in March but does it only in October2. Intuitively one could blame
the incorrect time, at which the field was sown, to be a cause for the failed harvest, as
only changing the month of sowing from October to March would result in a successful
harvest.

Our notions of causality (both the delay as well as the timestamp perspective) will,
however, not identify the time of sowing as singleton cause as they do not allow to change
the order of the performed actions. The actions in possible counterfactual traces would
still be in the "incorrect" order, i.e., for this example in the order fertilize, water, harvest,

2For whatever reason he still sows the field in October, coming up with a reasonable everyday scenario is
by this footnote also declared as future work.

112

7.1. Future Theoretical Work

sow. Changing the order of actions to the "correct" one sow, fertilize, water, harvest

would require in our causality notions to make all actions causal, a large deviation from
intuition.

An idea for the construction of a counterfactual trace automaton in the timestamp
perspective that allows changing the position of timed actions with causal timestamps
could work as follows: While the non-causal timestamps, and thereby the timing of their
respective actions, are again enforced by the known construction, actions with causal
timestamps can be executed arbitrarily in between. For the above example, this could
be expressed with the following counterfactual trace automaton for the set of events
C := {(10, 4)} (i.e, the singleton cause only containing the too late time of sowing):

fertilize water harvest
t ⩽ 4

t = 4

t ⩽ 7

t = 7

t ⩽ 9

t = 9

fertilize water harvest
Act

t ⩽ 4
t = 4

t ⩽ 7
t = 7

t ⩽ 9
t = 9

sow sow sow sow

In this counterfactual trace automaton, we can indeed find the desired counterfactual
timestamp trace ⟨3, sow⟩⟨4, fertilize⟩⟨7,water⟩⟨9,harvest⟩. In general for sets of events
with n causal timestamps, the counterfactual trace automaton would have the shape
of an (1 + n)-dimensional cuboid: Along the first dimension, the timed actions with
non-causal timestamp are enforced (speaking in terms of a usual coordinate system,
this corresponds in the above depiction to the x-direction), the execution of the timed
actions with causal timestamp is then allowed in one of the remaining n dimensions
(in the above depiction the execution of the only action with causal timestamp sow is
handled in the y-direction).

For both of the sketched approaches, the combination of delay and timestamp events
as well as the idea of changing the order of actions for causal timestamp events, it
would be of increased interest to find a way to process not only finite but also infinite
timestamp traces. Therefore, the entry point might be to look again at the possibility
of representing infinite timestamp traces in a lasso-shaped form as well, and to then
exploit, for instance, the concept of repeated unrolling of the lasso-part up to the
positions of interest for the causal analysis. However, we fear that this approach of
(possibly infinitely many) unrollings could break the decidability and computability of
our notions.

113

7. Future Work

Talking about considering further or different objects as the events in a system ex-
ecution, it might be suitable in our real-time setting to deviate from starting with a
run containing concrete delays, but to look at symbolic trace descriptions like timed
diagnostic traces and work with their timing constraints (cf. the remarks on the work of
Kölbl et al. [50] in Section 6.2). In the flavor of setting up our counterfactual simulation,: Section 6.2, p. 108

interval constraints could in the counterfactual trace automaton then probably be en-
forced again by describing them in terms of guards, alternatives for causal constraints
could then again be allowed by omitting these guards. Going even further, one could
follow the idea of specifying events and, therefore, causes also in the real-time setting
fully in terms of temporal formulas, which, as mentioned in Chapter 6, could already:Chapter 6, p. 105

be demonstrated for other settings in previous works [22, 31].

The enhancement, we definitely wish to accomplish the most, is to extend our notions
to networks of timed automata. It thereby seems for our run- and trace- based approach
necessary to carefully develop a notion of projected traces, that is, given a global trace
in the full network we want to extract the sequence of timed actions performed locally
by the individual agents. Inspiration on how to obtain and work with such projections
might be found in the work of Datta et al.: They compute in a discrete setting causal
actions in concurrent systems and consider to this end projections of the global log to
the individual threads [25].

Based on such a notion for projected traces, we might then be able to formalize
the counterfactual reasoning agent-wise: Given a network TA1 || . . . || TAn of timed au-
tomata TA1, . . . , TAn (whereby "||" denotes the usual parallel composition of automata),
we consider agent-specific sets of events C1, . . . ,Cn, that is, one set of events particular
for each of the agents. Given now a trace ξ in the network, we firstly compute the pro-
jected traces ξ1, . . . , ξn and use these then to construct the counterfactual trace automata
TAC1

ξ1
, . . . , TACn

ξn
again agent-wise. Exactly following the approach in this work, we would

then search for a counterfactual run in the network composed of the intersections, i.e.,
TA1 ∩ TAC1

ξ1
|| . . . || TAn ∩ TACn

ξn
. This notion would then allow to conclude events like "the

fourth delay of 7 in the second agent and the action β as first action in the third agent"
as causes for a certain behavior of the network.

Extending our work to networks might also improve on a further limitation: As dis-
cussed in Section 3.3, our allowed contingencies are relatively coarse-grained leading: Section 3.3, p. 55

to the inability of our actual causality notion to handle certain kinds of preemption
scenarios. The above proposed approach for lifting the causality notions to networks
might, however, yield the possibility of taking contingencies in a more fine-grained way
as the contingency automata could be constructed, analogously to the counterfactual
trace automata, agent-wise and not globally. Therefore, it might then be possible to
fix the configuration of only certain agents and thereby especially the locations of only
certain agents at the respective points in the run.

114

7.2. Desired Upgrades of the Causality Tool

A last line of future theoretical research, we want to mention, is the work on further
optimizations of the presented algorithms. While we see no proper room for improve-
ments in the process of cause checking, the computation of causes can possibly be
further optimized: By now, we use the monotonicity of the CF-conditions only to gain
knowledge in one direction, by excluding in the case that a set of events is identified as
cause all its supersets from the computation. While this speeds things up, the algorithm
still has to consider all the sets not fulfilling CF – a quite expensive task, particularly in
scenarios with a small number of causes compared to the length of the run.

Exploiting monotonicity in the converse direction as well could improve on this issue:
If we detect a large set of events to not fulfill the CF-condition, monotonicity implies
that neither do all its subsets and can, hence, be excluded from the computation as
well. Therefore, an algorithm working not solely in a bottom-up or top-down approach,
but proceeds in a back-and-forth like manner to alternatingly propagate knowledge
both from small sets to their supersets as well as from large sets to their subsets, could
significantly improve the performance of cause computations.

7.2 Desired Upgrades of the Causality Tool

Heading to the developed causality tool, we wish as a natural first goal to keep pace
with possible future refinements of the causality definitions, that is, that we want further
developed causality notions to be implemented as well in the tool.

In particular, we would like to extend the tool to cover based on a respective causality
notion also networks of timed automata. This would enable us not only to test the
tool more extensively on examples from the literature, but would also be way more
in accordance with the contemplated modeling of systems in Uppaal. Challenges in
implementing the approach sketched above might thereby especially arise in the extrac-
tion of projected traces from the global system execution as well as in the handling of
synchronizations between processes.

In general for causality notions considered in the future, their suitability for practical
implementation will remain a compelling criterion.

Moreover, we also desire to overcome current shortcomings of the tool. As an ultimate
goal, we would, for instance, like to provide the functionality of fully explainable
model checking, that is, that we can decide a specification on a system and return
in the case of a violation a counterexample together with an explanation (e.g., again
by highlighting causal events in the counterexample). By now, this is if at all only
possible by manually composing functionalities from Uppaal and our tool. For this end,
Uppaal lacks, however, as discussed in Chapter 5 of the possibility to reliably return :Chapter 5, p. 83

concrete counterexamples, but provides in certain scenarios only a sequence of clock
constraints. Hence, we desire to find a way of extracting the concrete delays of run from

115

7. Future Work

those constraints, maybe achievable based on ideas from existing works, e.g., on finding
causal delay values and ranges [50].

A different solution for obtaining concrete counterexamples might also be to use
another model checker for the verification process that offers this functionality. One
of the tools we have in mind for this purpose is the TACK tool developed by Menghi
et al. [57]. As this model checker covers, in addition, full MITL, an exchange could also
eliminate a further limitation of the current tool version, namely, that it is restricted for
the specification of effects to Uppaal’s language expressing as discussed only a small
fragment of MITL.

Lastly, it would be highly desirable to find ways to improve the runtime of the
developed tool, especially for the computation of causes. Besides the aforementioned
algorithmic optimizations, in particular tackling the problem of the blow up in the
Uppaal-formula could contribute to this goal. While it is unclear, whether this can
be done at all for automata modeled in Uppaal, it might also for this reason become
necessary to consider software alternatives.

116

Chapter 8
Summary

Guided by the aim of explaining the behavior of real-time systems, this thesis developed
different notions of counterfactual causality in the flavor of Halpern and Pearl in the
real-time setting. As a major contribution, our causality notions consider both the
performed actions and the real-time behavior as potential causal events. We argued for
the usefulness and meaningfulness of our definitions by discussing their application
to numerous examples, which demonstrated how the causality concepts yield desired
explanations. We further supported our notions by showing them to fulfill commonly
required properties of causality.

The key for setting up formal counterfactual reasoning in the real-time setting was to
represent the possible counterfactual system behavior in terms of automata. Using
counterfactual trace automata, we can in particular capture the infinite number of
possible alternatives to real-time events without losing the decidability of our notions.
Instead, the automata-based approach enables us to define real-time causes in terms of
decidable model-checking problems. Extending on the basic notion of but-for causality,
we added contingencies to the causal reasoning resulting in a real-time notion of actual
causality that can solve (at least for some cases) the problem of preemption.

We observed that adopting a different perspective on time results in differing causal
analyzes. Thereby, neither the delay perspective nor the timestamp perspective revealed
themselves to be the generally better-performing notion, both showed their suitability
for a precise causal analysis in particular scenarios. Also, apart from the particular
perspective on time, the wide range of possible real-time examples seems difficult to be
captured in one universal causality notion.

It was crucial for counterfactual causality in real-time systems to analyze not only
finitely large or finitely many counterfactual simulations. Hence, we work in a causal
theory with infinitely many variables that do, moreover, partially range over an infinite
domain. Nonetheless, we are still able to establish causes to be decidable and com-
putable and could as well analyze the complexity of those problems. This gives rise

117

8. Summary

to new decidability and complexity results for causality in infinite theories as previous
works addressing decidability and complexity focus only on finite causal models.

The genesis of this thesis was characterized by a persistent balance between providing
a clean theoretical development on the one side and its practical implementability on
the other side. More than once, we had to decide on details in the notions that either
would have led to losses in the theoretical contribution, or that would have evoked
additional issues in Uppaal and the developed tool. Nonetheless, we were able to set up
a rather clean, coherent, and expressive theory on causality in real-time systems, that,
at the same time, could be implemented with Uppaal for practical applications.

The tool features automated explanations for counterexamples of Uppaal specifica-
tions, for instance, by computing causal events in a given violating run. For being
deployed in real practical contexts, we see a particular need in improving on the yet
relatively vast restrictions of handleable systems and specifications and to address the
enormous runtime explosion, especially in the computation of causes. The latter chal-
lenge might be approached by further research on the algorithmic side as well as opti-
mizations in the tool, for instance, by getting rid of the blowup in the model-checked
formula.

Despite its limitations, the causality tool is useful for basic experiments on real-
time causality, which in fact already helped us at some points to improve our causal
understanding of real-time systems. Furthermore, the designed data structures and
implemented functionalities the tool relies on might form a good technical starting
point for further attempts in gaining automated real-time system explanations. The
importance of this will only continue to increase.

118

Bibliography

[1] Pyuppaal library webpage. URL https://pypi.org/project/pyuppaal/1.0.0/.

[2] Uppaal webpage, . URL uppaal.org.

[3] Uppaal documentation, . URL https://docs.uppaal.org/.

[4] Uppaal language reference, . URL https://docs.uppaal.org/

language-reference/requirements-specification/symb_queries/.

[5] Uppaal language reference, . URL https://docs.uppaal.org/gui-reference/

symbolic-simulator/symbolic-traces/.

[6] Kjersti Aas, Martin Jullum, and Anders Løland. Explaining individual predic-
tions when features are dependent: More accurate approximations to shapley
values. Artificial Intelligence, 298:103502, 2021. ISSN 0004-3702. doi: https:
//doi.org/10.1016/j.artint.2021.103502. URL https://www.sciencedirect.com/

science/article/pii/S0004370221000539.

[7] Gadi Aleksandrowicz, Hana Chockler, Joseph Y. Halpern, and Alexander Ivrii. The
computational complexity of structure-based causality, 2014.

[8] Rajeev Alur. Timed automata. In Nicolas Halbwachs and Doron Peled, editors,
Computer Aided Verification, pages 8–22, Berlin, Heidelberg, 1999. Springer Berlin
Heidelberg. ISBN 978-3-540-48683-1.

[9] Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. The benefits of relaxing
punctuality. J. ACM, 43(1):116–146, jan 1996. ISSN 0004-5411. doi: 10.1145/227595.
227602. URL https://doi.org/10.1145/227595.227602.

[10] Uwe Aßmann, Christel Baier, Clemens Dubslaff, Dominik Grzelak, Simon Hanisch,
Ardhi Putra Pratama Hartono, Stefan Köpsell, Tianfang Lin, and Thorsten Strufe.

119

https://pypi.org/project/pyuppaal/1.0.0/
uppaal.org
https://docs.uppaal.org/
https://docs.uppaal.org/language-reference/requirements-specification/symb_queries/
https://docs.uppaal.org/language-reference/requirements-specification/symb_queries/
https://docs.uppaal.org/gui-reference/symbolic-simulator/symbolic-traces/
https://docs.uppaal.org/gui-reference/symbolic-simulator/symbolic-traces/
https://www.sciencedirect.com/science/article/pii/S0004370221000539
https://www.sciencedirect.com/science/article/pii/S0004370221000539
https://doi.org/10.1145/227595.227602

Bibliography

Tactile computing: Essential building blocks for the Tactile Internet, page 293–317. Aca-
demic Press, 2021. ISBN 978-0-12-821343-8. doi: 10.1016/B978-0-12-821343-8.
00025-3. 46.23.01; LK 01.

[11] Christel Baier, Clemens Dubslaff, Florian Funke, Simon Jantsch, Rupak Majumdar,
Jakob Piribauer, and Robin Ziemek. From verification to causality-based explica-
tions. CoRR, abs/2105.09533, 2021. URL https://arxiv.org/abs/2105.09533.

[12] Christel Baier, Florian Funke, Simon Jantsch, Jakob Piribauer, and Robin Ziemek.
Probabilistic causes in markov chains. CoRR, abs/2104.13604, 2021. URL https:

//arxiv.org/abs/2104.13604.

[13] Thomas Ball and Orna Kupferman. Vacuity in testing. In Bernhard Beckert and
Reiner Hähnle, editors, Tests and Proofs, pages 4–17, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg. ISBN 978-3-540-79124-9.

[14] Thomas Ball, Mayur Naik, and Sriram K. Rajamani. From symptom to cause:
Localizing errors in counterexample traces. In Proceedings of the 30th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’03,
page 97–105, New York, NY, USA, 2003. Association for Computing Machinery.
ISBN 1581136285. doi: 10.1145/604131.604140. URL https://doi.org/10.1145/

604131.604140.

[15] Ilan Beer, Shoham Ben-David, Cindy Eisner, and Yoav Rodeh. Efficient detection
of vacuity in actl formulas. In Orna Grumberg, editor, Computer Aided Verification,
pages 279–290, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg. ISBN 978-3-
540-69195-2.

[16] Ilan Beer, Shoham Ben-David, Hana Chockler, Avigail Orni, and Richard Trefler.
Explaining counterexamples using causality. In Ahmed Bouajjani and Oded Maler,
editors, Computer Aided Verification, pages 94–108, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg. ISBN 978-3-642-02658-4.

[17] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and
tools. In Jörg Desel, Wolfgang Reisig, and Grzegorz Rozenberg, editors, Lec-
tures on Concurrency and Petri Nets, Advances in Petri Nets [This tutorial volume
originates from the 4th Advanced Course on Petri Nets, ACPN 2003, held in Eich-
stätt, Germany in September 2003. In addition to lectures given at ACPN 2003, addi-
tional chapters have been commissioned], volume 3098 of Lecture Notes in Computer
Science, pages 87–124. Springer, 2003. doi: 10.1007/978-3-540-27755-2_3. URL
https://doi.org/10.1007/978-3-540-27755-2_3.

[18] Georgiana Caltais, Sophie Linnea Guetlein, and Stefan Leue. Causality for general
LTL-definable properties. Electronic Proceedings in Theoretical Computer Science, 286:

120

https://arxiv.org/abs/2105.09533
https://arxiv.org/abs/2104.13604
https://arxiv.org/abs/2104.13604
https://doi.org/10.1145/604131.604140
https://doi.org/10.1145/604131.604140
https://doi.org/10.1007/978-3-540-27755-2_3

Bibliography

1–15, jan 2019. doi: 10.4204/eptcs.286.1. URL https://doi.org/10.4204%2Feptcs.

286.1.

[19] Hana Chockler and Joseph Y. Halpern. Responsibility and blame: a structural-
model approach. CoRR, cs.AI/0312038, 2003. URL http://arxiv.org/abs/cs/

0312038.

[20] Hana Chockler, Joseph Y. Halpern, and Orna Kupferman. What causes a system to
satisfy a specification? ACM Trans. Comput. Logic, 9(3), jun 2008. ISSN 1529-3785.
doi: 10.1145/1352582.1352588. URL https://doi.org/10.1145/1352582.1352588.

[21] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In E. Allen Emerson and Ar-
avinda Prasad Sistla, editors, Computer Aided Verification, pages 154–169, Berlin,
Heidelberg, 2000. Springer Berlin Heidelberg. ISBN 978-3-540-45047-4.

[22] Norine Coenen, Raimund Dachselt, Bernd Finkbeiner, Hadar Frenkel, Christopher
Hahn, Tom Horak, Niklas Metzger, and Julian Siber. Explaining hyperproperty
violations, 2022.

[23] Norine Coenen, Bernd Finkbeiner, Hadar Frenkel, Christopher Hahn, Niklas
Metzger, and Julian Siber. Temporal causality in reactive systems. In Ahmed
Bouajjani, Lukás Holík, and Zhilin Wu, editors, Automated Technology for Ver-
ification and Analysis - 20th International Symposium, ATVA 2022, Virtual Event,
October 25-28, 2022, Proceedings, volume 13505 of Lecture Notes in Computer Sci-
ence, pages 208–224. Springer, 2022. doi: 10.1007/978-3-031-19992-9_13. URL
https://doi.org/10.1007/978-3-031-19992-9_13.

[24] Dennis Dams and Orna Grumberg. Abstraction and Abstraction Refinement, pages
385–419. Springer International Publishing, Cham, 2018. ISBN 978-3-319-
10575-8. doi: 10.1007/978-3-319-10575-8_13. URL https://doi.org/10.1007/

978-3-319-10575-8_13.

[25] Anupam Datta, Deepak Garg, Dilsun Kaynar, Divya Sharma, and Arunesh Sinha.
Program actions as actual causes: A building block for accountability. In 2015
IEEE 28th Computer Security Foundations Symposium, pages 261–275, 2015. doi:
10.1109/CSF.2015.25.

[26] Anupam Datta, Shayak Sen, and Yair Zick. Algorithmic transparency via quan-
titative input influence: Theory and experiments with learning systems. In
2016 IEEE Symposium on Security and Privacy (SP), pages 598–617, 2016. doi:
10.1109/SP.2016.42.

[27] Alexandre David and Kim Larsen. A tutorial on uppaal 4.0. 01 2006.

121

https://doi.org/10.4204%2Feptcs.286.1
https://doi.org/10.4204%2Feptcs.286.1
http://arxiv.org/abs/cs/0312038
http://arxiv.org/abs/cs/0312038
https://doi.org/10.1145/1352582.1352588
https://doi.org/10.1007/978-3-031-19992-9_13
https://doi.org/10.1007/978-3-319-10575-8_13
https://doi.org/10.1007/978-3-319-10575-8_13

Bibliography

[28] Henning Dierks, Sebastian Kupferschmid, and Kim Larsen. Automatic abstraction
refinement for timed automata. pages 114–129, 10 2007. ISBN 978-3-540-75453-4.
doi: 10.1007/978-3-540-75454-1_10.

[29] Ellery Eells. Probabilistic Causality. Cambridge Studies in Probability, Induc-
tion and Decision Theory. Cambridge University Press, 1991. doi: 10.1017/
CBO9780511570667.

[30] Thomas Eiter and Thomas Lukasiewicz. Complexity results for structure-based
causality. Artificial Intelligence, 142:53–89, 11 2002. doi: 10.1016/S0004-3702(02)
00271-0.

[31] Bernd Finkbeiner and Julian Siber. Counterfactuals modulo temporal logics. In
Ruzica Piskac and Andrei Voronkov, editors, LPAR 2023: 24th International Confer-
ence on Logic for Programming, Artificial Intelligence and Reasoning, Manizales, Colom-
bia, June 4-9, 2023, volume 94 of EPiC Series in Computing, pages 181–204. EasyChair,
2023. doi: 10.29007/qtw7. URL https://easychair.org/publications/paper/

sWZw.

[32] Gregor Gössler and Daniel Le Métayer. A General Trace-Based Framework of
Logical Causality. Research Report RR-8378, INRIA, October 2013. URL https:

//inria.hal.science/hal-00873665.

[33] Gregor Gössler, Daniel Le Métayer, and Jean-Baptiste Raclet. Causality analysis in
contract violation. In Howard Barringer, Ylies Falcone, Bernd Finkbeiner, Klaus
Havelund, Insup Lee, Gordon Pace, Grigore Roşu, Oleg Sokolsky, and Nikolai
Tillmann, editors, Runtime Verification, pages 270–284, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg. ISBN 978-3-642-16612-9.

[34] Gregor Gössler, Thomas Mari, Yannick Pencolé, and Louise Travé-Massuyès. To-
wards Causal Explanations of Property Violations in Discrete Event Systems. In
DX’19 - 30th International Workshop on Principles of Diagnosis, pages 1–8, Klagenfurt,
Austria, November 2019. URL https://inria.hal.science/hal-02369014.

[35] Alex Groce. Error explanation with distance metrics. In Kurt Jensen and Andreas
Podelski, editors, Tools and Algorithms for the Construction and Analysis of Systems,
pages 108–122, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. ISBN 978-3-
540-24730-2.

[36] Gregor Gössler and Jean-Bernard Stefani. Causality analysis and fault ascrip-
tion in component-based systems. Theoretical Computer Science, 837:158–180,
2020. ISSN 0304-3975. doi: https://doi.org/10.1016/j.tcs.2020.06.010. URL
https://www.sciencedirect.com/science/article/pii/S0304397520303510.

122

https://easychair.org/publications/paper/sWZw
https://easychair.org/publications/paper/sWZw
https://inria.hal.science/hal-00873665
https://inria.hal.science/hal-00873665
https://inria.hal.science/hal-02369014
https://www.sciencedirect.com/science/article/pii/S0304397520303510

Bibliography

[37] Joseph Y. Halpern. A modification of the halpern-pearl definition of causality.
CoRR, abs/1505.00162, 2015. URL http://arxiv.org/abs/1505.00162.

[38] Joseph Y. Halpern. Actual Causality. MIT Press, 2016.

[39] Joseph Y. Halpern. Actual Causality: A Survey: Joseph Halpern, 2018. URL
https://www.youtube.com/watch?v=hXnCX2pJ0sg.

[40] Joseph Y. Halpern and Judea Pearl. Causes and explanations: A structural-model
approach. part i: Causes. Proc. Seventeenth Conference on Uncertainty in Artificial
Intelligence (UAI 2001), pages 194–202, 2001.

[41] Joseph Y. Halpern and Judea Pearl. Causes and explanations: A structural-model
approach. part i: Causes. The British Journal for the Philosophy of Science, 56(4):843–
887, 2005. ISSN 00070882, 14643537. URL http://www.jstor.org/stable/3541870.

[42] Joseph Y. Halpern and Spencer Peters. Reasoning about causal models with
infinitely many variables. Proceedings of the AAAI Conference on Artificial Intel-
ligence, 36(5):5668–5675, Jun. 2022. doi: 10.1609/aaai.v36i5.20508. URL https:

//ojs.aaai.org/index.php/AAAI/article/view/20508.

[43] Mark Harman and Robert Hierons. An overview of program slicing. Software Focus,
2, 12 2001. doi: 10.1002/swf.41.

[44] Susan B. Horwitz, Thomas Reps, and Dave Binkley. Interprocedural slicing using
dependence graphs. SIGPLAN Not., 23(7):35–46, jun 1988. ISSN 0362-1340. doi:
10.1145/960116.53994. URL https://doi.org/10.1145/960116.53994.

[45] Yatin Hoskote, Timothy Kam, Pei-Hsin Ho, and Xudong Zhao. Coverage estimation
for symbolic model checking. pages 300–305, 02 1999. ISBN 1-58113-092-9. doi:
10.1109/DAC.1999.781330.

[46] David Hume. Philosophical Essays Concerning Human Understanding. Andrew Millar,
1748. URL https://books.google.de/books?id=LB4VAAAAQAAJ.

[47] Manu Jose and Rupak Majumdar. Cause clue clauses: Error localization using
maximum satisfiability, 2011.

[48] Samantha Kleinberg and Bud Mishra. The temporal logic of causal structures.
In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelli-
gence, UAI ’09, page 303–312, Arlington, Virginia, USA, 2009. AUAI Press. ISBN
9780974903958.

[49] Martin Kölbl, Stefan Leue, and Thomas Wies. Clock Bound Repair for Timed Systems,
pages 79–96. 07 2019. ISBN 978-3-030-25539-8. doi: 10.1007/978-3-030-25540-4_5.

123

http://arxiv.org/abs/1505.00162
https://www.youtube.com/watch?v=hXnCX2pJ0sg
http://www.jstor.org/stable/3541870
https://ojs.aaai.org/index.php/AAAI/article/view/20508
https://ojs.aaai.org/index.php/AAAI/article/view/20508
https://doi.org/10.1145/960116.53994
https://books.google.de/books?id=LB4VAAAAQAAJ

Bibliography

[50] Martin Kölbl, Stefan Leue, and Robert Schmid. Dynamic Causes for the Violation of
Timed Reachability Properties, pages 127–143. 08 2020. ISBN 978-3-030-57627-1. doi:
10.1007/978-3-030-57628-8_8.

[51] Leslie Lamport. A fast mutual exclusion algorithm. ACM Trans. Comput. Syst., 5(1):
1–11, jan 1987. ISSN 0734-2071. doi: 10.1145/7351.7352. URL https://doi.org/

10.1145/7351.7352.

[52] Florian Leitner-Fischer and Stefan Leue. Causality checking for complex system
models. 01 2013. doi: 10.1007/978-3-642-35873-9_16.

[53] David Lewis. Causation. Journal of Philosophy, 70(17):556–567, 1973. doi: 10.2307/
2025310.

[54] David K. Lewis. Counterfactuals. Cambridge, MA, USA: Blackwell, 1973.

[55] Jane W. S. Liu. Real-Time Systems. Always Learning. Pearson Education, 2006. ISBN
9788177585759. URL https://books.google.de/books?id=ZVd6U_DXnSAC.

[56] Thomas Mari, Thao Dang, and Gregor Gössler. Explaining Safety Violations in
Real-Time Systems. Research Report RR-9420, INRIA ; Verimag, Université Greno-
ble Alpes, September 2021. URL https://inria.hal.science/hal-03348046.

[57] Claudio Menghi, Marcello M. Bersani, Matteo Rossi, and Pierluigi San Pietro.
Model checking mitl formulae on timed automata: A logic-based approach. ACM
Trans. Comput. Logic, 21(3), apr 2020. ISSN 1529-3785. doi: 10.1145/3383687. URL
https://doi.org/10.1145/3383687.

[58] Raymond Reiter. A theory of diagnosis from first principles. Artificial In-
telligence, 32(1):57–95, 1987. ISSN 0004-3702. doi: https://doi.org/10.1016/
0004-3702(87)90062-2. URL https://www.sciencedirect.com/science/article/

pii/0004370287900622.

[59] Lloyd S. Shapley. A Value for N-Person Games. RAND Corporation, Santa Monica,
CA, 1952. doi: 10.7249/P0295.

[60] Mukund Sundararajan and Amir Najmi. The many shapley values for model ex-
planation. CoRR, abs/1908.08474, 2019. URL http://arxiv.org/abs/1908.08474.

[61] Patrick Suppes. A Probabilistic Theory of Causality. Amsterdam: North-Holland
Pub. Co., 1968.

[62] Giulia Vilone and Luca Longo. Notions of explainability and evaluation approaches
for explainable artificial intelligence. Information Fusion, 76:89–106, 2021. ISSN
1566-2535. doi: https://doi.org/10.1016/j.inffus.2021.05.009. URL https://www.

sciencedirect.com/science/article/pii/S1566253521001093.

124

https://doi.org/10.1145/7351.7352
https://doi.org/10.1145/7351.7352
https://books.google.de/books?id=ZVd6U_DXnSAC
https://inria.hal.science/hal-03348046
https://doi.org/10.1145/3383687
https://www.sciencedirect.com/science/article/pii/0004370287900622
https://www.sciencedirect.com/science/article/pii/0004370287900622
http://arxiv.org/abs/1908.08474
https://www.sciencedirect.com/science/article/pii/S1566253521001093
https://www.sciencedirect.com/science/article/pii/S1566253521001093

Bibliography

[63] Chao Wang, Zĳiang Yang, Franjo Ivančić, and Aarti Gupta. Whodunit? causal
analysis for counterexamples. In Susanne Graf and Wenhui Zhang, editors, Auto-
mated Technology for Verification and Analysis, pages 82–95, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg. ISBN 978-3-540-47238-4.

[64] Shaohui Wang, Anaheed Ayoub, BaekGyu Kim, Gregor Gössler, Oleg Sokolsky, and
Insup Lee. A causality analysis framework for component-based real-time systems.
In Axel Legay and Saddek Bensalem, editors, Runtime Verification, pages 285–303,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. ISBN 978-3-642-40787-1.

[65] Mark Weiser. Program slicing. IEEE Transactions on Software Engineering, SE-10(4):
352–357, 1984. doi: 10.1109/TSE.1984.5010248.

125

	Introduction
	Preliminaries
	Counterfactual Causality
	Causal Models and Formulas
	But-For Causality
	Actual Causality à la Halpern and Pearl

	Real-Time Systems
	Real-Time Logics

	Formal Definitions of Counterfactual Causality in Real-Time Systems
	Delay Causality in Real-Time Systems
	Causal Setting: Events and Effects in Real-Time Systems
	But-For Causality in Real-Time Systems
	Actual Causality in Real-Time Systems

	Timestamp Causality
	Remarks, Limitations, and Discussion

	Algorithms for Cause Checking and Computation
	Cause Checking
	Cause Computation

	Causality Tool
	Usage and Functionalities
	Implementation Remarks
	Experiments and Measurements
	Experiments on Examples from the Literature
	Cause Checking Measurements
	Cause Computation Measurements

	Related Work
	Causality in Computer Science
	Causality in Real-Time Systems

	Future Work
	Future Theoretical Work
	Desired Upgrades of the Causality Tool

	Summary
	Bibliography

