EFFICIENT PARALLEL PATH CHECKING FOR LINEAR-TIME
TEMPORAL LOGIC WITH PAST AND BOUNDS

(PREPRINT)

LARS KUHTZ AND BERND FINKBEINER

Universitat des Saarlandes, 66123 Saarbriicken, Germany
e-mail address: kuhtzQcs.uni-sb.de

Universitat des Saarlandes, 66123 Saarbriicken, Germany
e-mail address: finkbeiner@Qcs.uni-sb.de

ABSTRACT. Path checking, the special case of the model checking problem where the
model under consideration is a single path, plays an important role in monitoring, testing,
and verification. We prove that for linear-time temporal logic (LTL), path checking can
be efficiently parallelized. In addition to the core logic, we consider the extensions of LTL
with bounded-future (BLTL) and past-time (Past) operators. Even though both extensions
improve the succinctness of the logic exponentially, path checking remains efficiently paral-
lelizable: Our algorithm for LTL, LTL4Past, and BLTL+Past is in AC' (logDCFL) C NC.

1. INTRODUCTION

Linear-time temporal logic (LTL) is the standard specification language to describe proper-
ties of reactive computation paths. The problem of checking whether a given finite path sat-
isfies an LTL formula plays a key role in monitoring and runtime verification [14] 12}, [7, 2, [5],
where individual paths are checked either online, during the execution of the system, or off-
line, for example based on an error report. Similarly, path checking occurs in testing [3]
and in several static verification techniques, notably in Monte-Carlo-based probabilistic
verification, where large numbers of randomly generated sample paths are analyzed [29].
Somewhat surprisingly, given the widespread use of LTL, the complexity of the path
checking problem is still open [24]. The established upper bound is P: The algorithms in
the literature traverse the path sequentially (cf. [12], 24 [14]); by going backwards from the

1998 ACM Subject Classification: F.4.1 [Mathematical Logic and Formal Languages]: Mathematical
Logic—Temporal logic, Modal logic; F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical
Algorithms and Problems—Computations on discrete structures, Pattern matching.

Key words and phrases: linear-time temporal logic (LTL), linear-time temporal logic with past, bounded
temporal operators, model checking, path checking, parallel complexity.

This work was partly supported by the German Research Foundation (DFG) as part of the Transregional
Collaborative Research Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14
AVACS).

© Lars Kuhtz and Bernd Finkbeiner
Creative Commons

2 LARS KUHTZ AND BERND FINKBEINER

Figure 1: Circuit resulting from unrolling the LTL formula ((a Ub) U (¢Ud)) U e over a path
p of length 5. We denote the value of an atomic proposition p at a path position
1=0,...,4 by p;.

end of the path, one can ensure that, in each step, the value of each subformula is updated
in constant time, which results in bilinear running time. The only known lower bound
is NC! [9], the complexity of evaluating Boolean expressions. The large gap between the
bounds is especially unsatisfying in light of the recent trend to implement path checking
algorithms in hardware, which is inherently parallel. For example, the IEEE standard
temporal logic PSL [15], an extension of LTL, has become part of the hardware description
language VHDL, and several tools [7, 5 [I1] are available to synthesize hardware-based
monitors from assertions written in PSL. Can we improve over the sequential approach by
evaluating entire blocks of path positions in parallel?

Parallelizing LTL path checking. We show that LTL path checking can indeed be par-
allelized efficiently. Our approach is inspired by work in the related area of evaluating
monotone Boolean circuits [13, 10, 20, 4, 23, [6]. Rather than sequentially traversing the
path, we consider the circuit that results from unrolling the formula in positive normal
form over the path using the expansion laws of the logic. Using positive normal form of the
formula ensures that the resulting circuit is monotone. Figure [I] shows such a circuit for
the formula ((aUb) U (¢Ud)) Ue and a path of length 5.

Yang [28] and, independently, Delcher and Kosaraju [§] have shown that monotone
Boolean circuits can be evaluated efficiently in parallel if the graph of the circuit has a
planar embedding. Unfortunately, this condition is already violated in the simple example
of Figure [1| as show in Figure Individually, however, each operator results in a planar
circuit: for example, d U e results in eg V (dp A (e1 V (dy A...)--+). The complete formula
thus defines a tree of planar circuits.

Our path checking algorithm works on this tree of circuits. We perform a parallel tree
contraction [I, 19, [I§] to collapse a parent node and its children nodes into a single planar
circuit. Simple paths in the tree immediately collapse into a planar circuit; the remaining

EFFICIENT PARALLEL PATH CHECKING FOR LTL WITH PAST AND BOUNDS 3

Figure 2: Circuit resulting from unrolling the LTL formula ((a Ub) U (¢Ud)) U e over a path
p of length 5. The red colored minor of the graph of the circuit is a K5. Thus
the circuit is not planar.

binary tree is contracted incrementally, until only a single planar circuit remains. The key
insight for this construction is that a contraction can be carried out as soon as one of the
children has been evaluated. Initially, all leaves correspond to atomic propositions. During
the contraction all leaves are evaluated. Because no leaf has to wait for the evaluation of
its sibling before it can be contracted with its parent, we can contract a fixed portion of the
nodes in every sequential step, and therefore terminate in at most a logarithmic number of
steps.

The path checking problem can, hence, be parallelized efficiently. The key properties
of LTL that are exploited in the construction are the existence of a positive normal form
of linear size and expansion laws that, when iteratively applied, increase the size of the
Boolean circuit only linearly in the number of iteration steps. The combinatorial structure
of the resulting circuit allows for an efficient reduction of the evaluation problem to the
evaluation problem of planar Boolean circuits. In addition to planarity, our construction
maintains some further technical invariants, in particular that the circuits have all input
gates on the outer face. Analyzing this construction, we obtain the result that the path
checking problem is in AC!(logDCFL).

The LTL path checking problem is closely related to the membership problems for
the various types of regular expressions: the membership problem is in NL for regular
expressions [16], in logCFL for semi-extended regular expressions [26], and P-complete for
star-free regular expressions and extended regular expressions [25]. Of particular interest
is the comparison to the star-free regular expressions, since they have the same expressive
power as LTL on finite paths [22]. With ACl(IogDCFL) vs. P, our result demonstrates a
computational advantage for LTL.

4 LARS KUHTZ AND BERND FINKBEINER

LTL with past and bounded-future operators. Practical temporal logics like PSL
extend LTL with additional operators that help the user to write shorter and simpler spec-
ifications. Such extensions often come at a price: adding extended regular expressions,
for example, makes the path checking problem P-complete [25]. We show that this is not
always the case: past-time and bounded operators are two major extensions of LTL, which
both improve the succinctness of the logic exponentially, and whose path checking problems
remain efficiently parallelizable.

Past-time operators are the dual of the standard modalities, referring to past instead
of future events. Past-time operators greatly simplify properties like “b is always preceded
by a”, which, in the core logic, require an unintuitive application of the Until operator, as
in G=(-aUb A —a). Furthermore, Laroussinie, Markey and Schoebelen [2I] proved that
the property “all future states that agree with the initial state on propositions p1, p2, - .. Pn,
also agree on proposition pg,” which can obviously be expressed as a simple past-time
formula, requires an exponentially larger formula if only future-time operators are allowed.
However, since past operators are the dual of future operators, they also result in planar
circuits; hence, the construction for LTL can directly be applied to the tree of circuits that
results from LTL formulas with unbounded past and future operators.

Bounded operators express that a condition holds at least for a given, fixed number of
steps, or must occur within such a number of steps. Bounded specifications are especially
useful in monitoring applications [I1], where unbounded modalities are problematic: if only
the finite prefix of a computation is visible, it is impossible to falsify an unbounded live-
ness property or validate an unbounded safety property. The succinctness of the bounded
operators is due to the fact that expanding the bounded operators into a formula tree repli-
cates subformulas, causing an exponential blow up in the formula size. Another exponential
blow-up is due to the logarithmic encoding of the bounds compared to an unary encoding
in the form of nested next-operators.

A naive solution for the path checking problem of the extended logic would be to simply
unfold the formula to the core fragment and then apply the construction described above
for the LTL operators. Because of the doubly exponential blow-up, however, such a solution
would no longer be in NC. If we instead apply the expansion laws for the bounded operators
to the original formula, we obtain a circuit of polynomial size, but with a more complex
structure. Because of this more complex structure, the path checking construction that we
described above for the core logic is no longer applicable. Consider the circuit corresponding
to the bounded formula ¢ Us 1, shown in Figure 3} Since the graph of the circuit contains a
K3 3 subgraph, it has no planar embedding. Translating a formula with bounded operators
to a tree of circuits would thus include non-planar circuits, which in general cannot be
evaluated efficiently in parallel.

The key insight of the construction for the extended logic is that, although the circuit for
the bounded operators is not planar a priori, an equivalent planar circuit can be constructed
as soon as one of the direct subformulas has been evaluated. Suppose, for example, that
the ¢;-gates in the circuit shown in Figure [3| are constants. Propagating these constants
eliminates all edges that prevent the shown embedding from being planar! In general, simple
propagation is not enough to make the circuit planar. This is illustrated in Figure |4, where
the same formula is analyzed under the assumption that the ;-gates are constant. While
the propagation of the constants replaces parts of the circuit (identified by the dotted lines)
with constants, there remain references to ¢;-gates, e.g., the two references to ¢, that
prevent the shown embedding from being planar. However, an equivalent planar circuit

EFFICIENT PARALLEL PATH CHECKING FOR LTL WITH PAST AND BOUNDS 5

Pe6

Figure 3: The circuit for the bounded formula ¢ Us. Since the red colored subgraph
is a K33, the circuit has no planar embedding. However, if the ¢;-gates are
constants, then propagating the constants eliminates the edges that prevent the
shown embedding from being planar.

exists: This circuit, shown in Figure [f] as a gray overlay, replaces the disturbing references
to the ¢;-gates by vertical edges to subcircuits. For example, the first occurrence of ¢9 in
d2 A (OV (d2 A (0V (103 A 1)) is replaced with an edge to the subcircuit ¢o A (0V (13 A 1)).
The resulting circuit is equivalent, because the additional conjunct is redundant.

Based on these observations, we present a translation from bounded temporal formulas
to circuits that is guaranteed to produce planar circuits, but requires that one of the direct
subformulas has already been evaluated. To meet this requirement, our path checking
algorithm generates the circuits on-the-fly: a circuit for a subformula ¢ is constructed only
when one direct subformula of ¢ is already evaluated. In this way, we avoid the construction
of circuits that cannot be evaluated efficiently in parallel. As in the algorithm for LTL, we
evaluate a fixed portion of the subformulas in every sequential step and thus terminate in
time logarithmic in the size of the formula (bounds are encoded in O(1)) plus the length of
the path.

2. PRELIMINARIES

2.1. Linear-Time Temporal Logic. We consider linear-time temporal logic (LTL) with
the usual finite-path semantics, which includes a weak and a strong version of the Next
operator [22]. Let P be a set of atomic propositions. The LTL formulas are defined
inductively as follows: every atomic proposition p € P is a formula. If ¢ and ¢ are formulas,
then so are

—¢, NG, VY, X4, X'¢, ¢Uy, and ¢RY .

LARS KUHTZ AND BERND FINKBEINER

V \% V \Y V V \% id
N N\ N N h\ N h\
A A N A A N FRA
Do \ D1 \‘ (,52 \‘ (53 \ (.i[\‘ (,53 \‘ : D6 \
V \% V V V V V i id
N\ N\ N\ N\ =\ N\ RN
A () A A A A A i A ()
(’)(,\ 01\‘ g)g\ ('7;7,\ <)1\ (55\ . (‘)(;\
V \% V V Vv V VoZ id
N\ N\ N N\ ‘\ N\ ‘\E\
A N N A A\ A e A
+ + ¥ ¥ + ¥ +
Do \ D1 \ 05) \ 03 \ o] O 0} \ d)(j \

id id id id id id id id
4 { 4 ! 4 ! + '
Yo U1 Wo Y3 (o2 Y5 (N W
0 0 0 0 1 0 1 0

Figure 4: The circuit for the bounded formula ¢ Us 1) from Figure|3| If the v;-gates evaluate
to the constants shown in the bottom line, then the circuit depicted as a gray-
colored overlay is an equivalent planar circuit.

The size of a formula ¢ is denoted by |||
LTL formulas are evaluated over computation paths. A path p = pg,..., pn—1 is a finite

sequence of states where each state p; for i = 0,...,n — 1 is a valuation p; € 2F of the
atomic propositions. The length of p is n and is denoted by ||p||. Given an LTL formula ¢,
a nonempty path p satisfies ¢ at position ¢ (0 < i < ||p||), denoted by (p,i) = ¢, if one of
the following holds:

e o € Pand ¢ € p;,

o 6= and (p,i) I b,

® ¢ =¢A¢rand (p,i) = ¢ and (p,1) | ¢r,

o« 6=V & and (p,i) = 61 or (p,i) = 6,

e p=XNandi+1<|p||and (p,i+1) =,

o 6=X%and i+ 1= o] or (p,i+1) =,

e p=¢;U¢p, and Ji < j < |p|| s.t. (p,7) = ¢r and Vi < k < 7, (p, k) = ¢y, or

e p=¢ R, and Vi < j < Hp||7(P,j) }Z ¢ror Ji <k <js.t. (p,k)): @1
An LTL formula ¢ is satisfied by a nonempty path p (denoted by p = ¢) iff (p,0) E ¢.
By ¢(p) we denote the Boolean sequence s € BlIPIl with s; = 1 if and only if (p,7) = ¢ for
0<i<|pll

An LTL formula ¢ is said to be in positive normal form if in ¢ only atomic propositions

appear in the scope of the symbol —. The following dualities ensure that each LTL formula
¢ can be rewritten into a formula ¢’ in positive normal form with ||¢'|| = O(]|#]]).

EFFICIENT PARALLEL PATH CHECKING FOR LTL WITH PAST AND BOUNDS 7

P = ¢
X' = X7
(oA or) = (=) V (2dr) ;
(¢ Uor) = (—1) R(=or) -
The semantics of LTL implies the expansion laws, which relate the satisfaction of a temporal

formula in some position of the path to the satisfaction of the formula in the next position
and the satisfaction of its subformulas in the present position:

o U = ¢ V(o AX (0 Ugy)) ;
G Ré = ¢ A1 VXY (B RD,)) -

We now extend LTL with the past-time operators Y= (strong Yesterday), Y" (weak Yester-
day), S (Since), and T (Trigger) with the following semantics:

(pi) E Y20 iff i — 1> 0A (p,i— 1) = 0,

(p,i) Y iff i — 1< 0V (p,i — 1) =,

(p,i) = 1S 6, iff 3i > j > 0.t (p,) = 6 AVi = k>, (p,k) = 61, and

(p.i) E Ty HEVi > j > 0,(p,5) | ¢, Vi > k> j st (p,k) = .

We call the resulting logic linear-time temporal logic with past (LTL+Past). The following
dualities ensure that each LTL+Past formula ¢ can be rewritten into a formula ¢ in positive
normal form with ||¢'|| = O(||¢|).

Y =Yg
~(¢1S¢r) = (=) T(=¢r) -

The expansion laws for the past operators are
ASGr = & V(B AY (1S ¢r)) 5

6T = e AN VY (0 Thy))

To obtain linear-time temporal logic with past and bounds (BLTL+Past) we further add the
bounded temporal operators Uy, Ry, Sy, and Ty, where b € N is any natural number.
For technical reasons the size of a formula is defined using unary encoding for the bounds.
However, in the end our results do not depend on the encoding of the bounds. The semantics
of the bounded operators is defined as follows:

o (pi) | 01Uy, iff 3 < j < min(i+ b, o]l — 1) s (p,]) = 6 AV < & < J,
(0, k) = 61,
(pri) =GRy Vi < j < min(i + b, o]l — 1), (pr7) | 6V 3i < b < j st
(0, k) = 61,
(p,Z)): &Sy iff Ji > 5 > max(i - b,O) s.t (p>])): or ANV 2 k>, (pak)): o1,
and

b (p,Z)): &1 Ty pp T Vi > j > max(i - bvo)a(paj)): Gr VI >k >jst (pak)): o1
The following dualities apply for the BLTL+Past operators:

(2 Uppr) = (me1) R(—ér) ;
(A Spdr) = (—d1) T(—¢r) -

8 LARS KUHTZ AND BERND FINKBEINER

The expansion laws for the bounded operators are for b € N

oy Uy, = {Z: V (¢ AX7 (¢ Uy br)) Ei Z i 8:
ot = {10t B
O ARSI O
ot =g T e

We are interested in determining if a formula is satisfied by a given path. This is the path
checking problem.

Definition 2.1 (Path Checking Problem). The path checking problem for LTL (LTL+Past,
BLTL+Past) is to decide, for an LTL (LTL+Past, BLTL+Past) formula ¢ and a nonempty
path p, whether p = ¢.

Later in this paper we will present a path checking algorithm for BLTL+Past. The
algorithm constructs a circuit that is of polynomial size in the length of the input compu-
tation path and in the size of the input formula including the sum of the bounds. However,
we do not want the complexity of the algorithm to depend on the encoding of the bounds.
The following lemma allows us to prune the size of the bounds that occur in a BLTL+Past
formula to the length of the computation path.

Lemma 2.2. Given a BLTL+Past formula ¢ and a finite computation path p. The BLTL+ Past
formula @' is obtained from ¢ by setting each bound n in ¢ to min(n,||p||). It holds that

Pl ¢ if and only if p = .
Proof. By induction over ¢. L]

2.2. Complexity classes within P. We assume familiarity with the standard complexity
classes within P. NC is the set of decision problems decidable in polylogarithmic time on a
parallel computer with a polynomial number of processors. L is the class of problems that
can be decided by a logspace restricted deterministic Turing machine. logDCFL is the class
of problems that can be decided by a logspace and polynomial time restricted deterministic
Turing machine that is additionally equipped with a stack. AC’,7 € N, denotes the class
of problems decidable by polynomial size unbounded fan-in Boolean circuits of depth log®.
AC is defined as | J;cyAC’. Throughout the paper, all circuits are assumed to be uniform.
Often we use functional versions of complexity classes. Since in our case the output size of
the functions is always polynomially bounded we can use a polynomial number of circuits
for the corresponding class of decision problems, each for computing a single bit of the
output. Thus, in the following we do not explicitly distinguish between decision problems
and functional problems [I7]. It holds that

AC’ C L ClogDCFL C AC' CAC*C---CAC=NCCP .
Further details can be found in the survey paper by Johnson [17].

EFFICIENT PARALLEL PATH CHECKING FOR LTL WITH PAST AND BOUNDS 9

Given a problem P and a complexity class C, P is AC' Turing reducible to C (denoted
as P € ACY(C)) if there is a family of AC' circuits with additional unbounded fan-in
C-oracle gates that decides P. It holds that

AC' C AC'(logDCFL) C AC? .

For further details on AC' reductions, we refer to [27].

2.3. Parallel Tree Contraction. The path checking algorithm presented in this paper
relies on efficient parallel tree contraction. Here we follow the approach of [I] and [19]. Let
To = (Vo, Eo) be a rooted, regular, binary tree. A contraction step on 7; takes a leaf [of
7T;, its sibling s, and its parent p and contracts these nodes into a single node s’ in the tree
Tit1 = Vi1, Eip1) with

Vig1 = (Vl \ {l,p}) , and

B E\A{(p,1),(p,s)} if p is the root of 7T;,
TETVEN DD, (p,s), (0p,p)}) U {(pp, 5)}, pp is parent of p otherwise.

Using the fact that a contraction step is a local operation it is possible to perform contraction
steps in parallel on non-overlapping subtrees.

A tree contraction on a rooted, regular, binary tree T is a process that iteratively applies
contraction steps on the tree T' until it is contracted into a singleton tree. Algorithm
from [I8] performs a tree contraction in [logn]| stages of parallel contraction steps.

Algorithm 2.3.
Input: a rooted, regular, binary tree T" with n leaves.
Effect: contracts T into a singleton tree.

Number the leaves in order from left to right as 1,...,n.

for [logn] iterations do
Apply the contraction step to all odd numbered leaves that are the left child of their
parent.
Apply the contraction step to all odd numbered leaves that are the right child of their
parent.
Shift out the rightmost bit in the numbers of the remaining leaves.

end for

The algorithm can be implemented on an EREW PRAM such that it runs in time O(logn)
with a total work of O(n) [I§]. It is well known that problems that can be solved on an
EREW PRAM in time O(logn) with polynomial total work are contained in AC' [27].
Figure [5] shows a tree contraction process for an example tree.

In order to use the parallel tree contraction algorithm to compute some function on a
labeled tree, the contraction step is piggybacked with a local operation on the labels of the
node involved in the contraction step. The complexity of AC! for the whole contraction
process assumes that a contraction step is performed in O(1). For our constructions this is
not the case. However, by piggybacking the contraction step with C-oracle gates, the tree
contraction problem is AC'-reduced to C. Hence, by showing that the complexity of the
contraction step is C, the overall complexity of the contraction algorithm is proven to be

AC!(C).

10 LARS KUHTZ AND BERND FINKBEINER

AN
«/9}\;/\@ A AN .

Figure 5: An parallel contraction process as produced by Algorithm

3. MONOTONE BOOLEAN CIRCUITS

A monotone Boolean circuit (I',) consists of a set I' of gates and a gate labeling v. The
gate labeling labels each gate either with a Boolean value or the symbol 7, with a tuple
(op, left, right), or with a tuple (id, suc), where op € {and, or}, and left, right, and suc are
gates.

A gate that is labeled with a Boolean value is called a constant gate. A gate that is
labeled with ? is called a variable gate. For a non-constant, non-variable gate a labeled with
(op,b,c) or (id,b), we say that a directly depends on b and ¢, denoted by a b, a + c. The
dependence relation is the transitive closure of . A gate on which no other gate depends
is called a sink gate. A circuit must not contain any cyclic dependencies.

For a circuit G = (I',v), const(G) denotes the set of all constant gates in I'. If T =
const(G), we call G constant. By var(G) the set of all variable gates of I is denoted. Finally
we define src(G) to be the set of all variable gates and all constant gates that are not sink
gates in I'. In the following, we assume that all circuits are monotone Boolean circuits. We
omit the labeling whenever it is clear from the context and identify the circuit with its set
of gates.

3.1. Circuit evaluation. The evaluation of a circuit (I',v) is the (unique) circuit (I',~')
where for each gate g € I" the following holds:

e 7/(g) = 0iff y(g) = (and,l,7) and v'(I) = 0 or +'(r) = 0,

e V' (g) =1iff v(g9) = (and,l,r) and 7/(I) =1 and /(1) = 1,

e V' (9) = (id,1) iff v(g9) = (and,l,r) and v'(I) & {0,1} and +'(r) = 1,
e 7(g) = (id,r) iff v(g) = (and,l,r) and +'(r) ¢ {0,1} and 4/(l) = 1,
* V' (9) = 0iff y(g) = (or,l,r) and v'(I) = 0 and +'(r) = 0,

e V' (g9) = 1iff y(g) = (or,l,r) and ¥'(I) = 1 or 7/(r) = 1,

e ' (9) = (id,1) iff v(g) = (or,1,7r) and v'(I) & {0,1} and +'(r) = 0,

e ' (9) = (id,r) iff v(g) = (or,l,7) and +'(r) & {0,1} and ~'(I) = 0,
e 7(g) =9/(s) iff v(g) = (id, s) and +/(s) € {0,1}, and

* 7' (g9) = v(g) otherwise.

A circuit is evaluated if all constant gates are sink gates. In an evaluated circuit, all gates
that do not depend on variable gates are constant. Hence, a circuit without any variable
gates evaluates to a constant circuit; for a circuit that contains variable gates, a subset of
the gates is relabeled: some and-/or-/id-gates are labeled as constant or id-gates.

The problem of evaluating monotone planar circuits has been studied extensively in
the literature. Our construction is based on the evaluation of one-input-face planar circuits:
Given a circuit G = (I', v) with variable gates X, the graph gr(G) of G is the directed graph

EFFICIENT PARALLEL PATH CHECKING FOR LTL WITH PAST AND BOUNDS 11

(', E), where E = {(a,b) € ' xT' | a»b}. A circuit C is planar if there exists a planar
embedding of the graph of C. A planar circuit G is one-input-face if there is a planar
embedding such that all gates of src(G) are located on the outer face. In the following,
we abbreviate evaluated circuit as EV and one-input-face planar as OIF, using the terms
EV and OIF for the circuits as well as for the corresponding property of a circuit. Note
that an EV circuit with all variable gates on the outer face is OIF. The evaluation of OIF
planar circuits can be parallelized efficiently. We make use of a result by Chakraborty and
Datta [6]:

Theorem 3.1 (Chakraborty and Datta 2006). The problem of evaluating an OIF planar
circuit without variable gates is in logDCFL.

Using standard techniques [20], the theorem generalizes to circuits that contain variable
gates:

Corollary 3.2. The problem of evaluating an OIF planar circuit is in l0gDCFL.

Proof. We first assign the Boolean constant 1 to all variable gates. Each gate that evaluates
to 0 is turned into a 0 constant gate. Next, we assign 0 to all variable gates. Each gate that
evaluates to 1 is turned into a constant gate with value 1. Since the values of the remaining
gates depend on the variables, they are simply copied. If one of the latter gates depends on
a constant gate, the dependency is removed by changing such a gate into an id-gate. []

3.2. Transducer Circuits. The central construction in our path checking algorithm is
circuit composition: circuits for larger subformulas are built from circuits for smaller sub-
formulas by connecting variable gates of one circuit to gates of another circuit. To facilitate
this operation, we introduce transducer circuits, which are circuits with a defined interface
of input and output gates that allow the circuit to transform a sequence of Boolean input
values, for example the values of a subformula at different positions of the path, into a
sequence of output values.

A transducer circuit is a tuple T' = (I',~,I,0) where G = (I',~) is a circuit, I is a
permutation of var(G), and O is a permutation of a subset of I'. I is called the input of T'
and O is called the output of T'. The input and output arity is the length of the input and
output, denoted as ||I|| and ||O||, respectively. We denote the i*" element of I and O by
I(7) and O(7), respectively. The transducer circuit 7" is planar if G has a planar embedding
such that the gates of I appear counter-clockwise ordered on the outer face, the gates of O
appear clockwise ordered on the outer face, and between any two gates of I on the outer
face there are either no or all gates of O, i.e., the gates of I and O do not appear interleaved
on the outer face.

Given two planar transducer circuits G = (I',~, I, O¢g) and D = (A,6,Ip,Op), G is
composable with D if the input arity of D equals the output arity of G. The composition
GoD of G with D is the planar transducer circuit £ = (E,¢,Ig,Op) with E = TUA,
IE = I(;, OE = OD and

_J(g), forgel,
«lg) = {5(9), for g € A\ var(A), and

e(Ip(i)) = (id, Og(i)), for 0 < i < [|Og].

12 LARS KUHTZ AND BERND FINKBEINER

A transducer circuit T' represents a function fr : B — BIOI where fr(s) for some
sequence s € Bl is computed by evaluating the composition of 1" with the constant circuit
that represents s. The values of the output gates of the resulting constant circuit define the
sequence fr(s).

Lemma 3.3. For two OIF planar transducer circuits G and D, such that G is composable

with D, the evaluation of G o D is an OIF EV planar transducer circuit and can be computed
within logDCFL.

Proof. Let G = (I',7,15,0¢) and D = (A,0,1p,0p). Let G' and D’ be copies of G and
D, respectively, where for each i, 0 < i < ||Og||, with Og(7) being a constant gate b in G
e b is removed from G, including O (1),
e bis added to D',
8 (Ip(i)) = b, and
e Ip(i) is removed from I7,.

In other words: all constant outputs of G are moved out of G’ into D’. Clearly, G’ is
composable with D’ and the evaluation of G’ o D’ equals the evaluation of G o D. Further,
G’ and D’ are both OIF and planar. Because G’ is OIF, all constants are either on the
outer face or are sinks. Since all constant gates that are sinks in G but not in Go D have
been moved out of G’ into D’ it holds that all constants in G’ are on the outer face or are
sinks also in G'oD’. G'o D’ generally is not OIF, because src(D’) can contain constant
gates that are neither sinks nor on the outer face of G’ o D’, thus preventing the application
of Theorem However, D' is OIF and planar and can thus be evaluated in logDCFL
using Theorem resulting in a circuit D” where all constants are sinks. Now, in the
composition of G’ with D” all constants are either on the outer face of G’ or are sinks.
Thus, G’ o D" is an OIF planar transducer circuit that can be evaluated in logDCFL. The
construction of G’, and D’, as well as the circuit compositions are computable in L. L]

4. CONSTRUCTING CirculTs ON-THE-FLY

We now describe the translation of BLTL+Past-formulas in positive normal form to planar
circuits. As discussed in the introduction, the translation is not done as a preprocessing step,
but rather delayed until one of the direct subformulas has been evaluated. We guarantee
that the resulting circuit is planar, OIF, and EV. The path checking algorithm, which will
be presented in the next section, composes the planar, OIF, and EV circuits in order to
represent larger partially evaluated subformulas.

Given a path p and a BLTL+Past formula ¢ in positive normal form with at most one
unevaluated direct subformula. The following construction provides a function cir, that
maps the top-level operator of ¢ and its evaluated subformulas to a planar, OIF, and EV
transducer circuit that represents a partial evaluation of ¢ on p. The output arity of the
circuit is ||p||, the input arity is ||p|| for all formulas except for atomic propositions, where
the circuit has input arity 0. The construction is in L. The full details of the construction
are provided in the appendix.

EFFICIENT PARALLEL PATH CHECKING FOR LTL WITH PAST AND BOUNDS 13

4.1. Atomic propositions. For an atomic proposition p, the circuit is a set of constant
gates, one for each path position. The value of a gate is the value of p at the respective
position of p: cir,(p) = ({00, ...,0n-1},l,€,0), where n = ||p||, O = 0q,...,0n—1, l(0;) =1
iff p € p;, and € denotes an empty input sequence. Clearly, a set of constant gates is a
planar, OIF, and EV transducer circuit.

4.2. Unary operators. For the unary operators X=,X",Y?, and Y", the circuit shifts the
value of the input by one position in the respective direction. The first (respective last)
position of the output is a constant with value 0 for strong operators and value 1 for weak
operators. Again, the circuits are obviously planar, OIF, and EV, and of input and output
arity ||p||. E.g. cir,(X?) = (G,1,1,0), where n = ||p||, I = vo,...,vn—1, O = 00, ...,0n_1,
G ={vo,...,vp—1}U{o00,...,0n—1}, and

o) = (id,vit1) for 0 <i<mn-—1,
o fori=n—1, and

l(v;) ="71for 0 <i<n.

4.3. Binary operators. The binary operators require two constructions, one for the case
where the left argument has been evaluated and one for the case where the right argu-
ment has been evaluated. For each operator op, we define two L-functions cir,(s, op) and
cir,(op, s), which compute the circuit given an evaluation s € Bl of the left and right
subformula, respectively.

For the Boolean operators, the two functions are the same, e.g., cir,(V, s) = ciry(s, V) =
(G,1,1,0), where n = ||p||, I = vo,...,vp-1, O = 0¢,...,0n-1, G = {vo,...,0p—1} U
{00,...,0n-1}, and

1(0;) =
(01) 1 for s; =1 A0<i<mn, and

l(v;))="7for 0 <i<n.

{(id,vi> for s; =0A0<1i<n,

For the unbounded temporal operators, the constructions are derived from the expansion
laws of the logic, such as ¢; U ¢, = ¢,V (¢ AX? (¢, U ¢,.) for the unbounded Until operator.
The expanded formula is transformed into a transducer circuit by substituting constants
for evaluated subformulas and variable gates for unevaluated subformulas. E.g. cir,(U, s) =
(G,1,1,0), where n = ||p||, I = vo,...,vp-1, O = 0g,...,0n-1, G = {vo,...,Vp—1} U
{00,...,0n-1}, and
(and,v;,0i41) for0<i<n-—1As; =0,
l(oj)) =41 for0<i<n—1As; =1,
Sn—1 fori=n—1, and
l(v;)=7for 0 <i<n,

14 LARS KUHTZ AND BERND FINKBEINER

ido,o Vio ida o V3,0 Vi V5.0 ids 0 idr
\

ido Vi1 ido V31 Va1 V51 idg,1 id7 1

ido.2 V12 idgo V3,2 Vg2 V5,2 ide,2 idy 2

%03 713 723 733 743 753 76,3 773

0 1 0 1 1 1 0 1

Figure 6: The circuit cir,(s, Us) for ||p|| = 8. The bottom line shows an example evaluation
$s=20,1,0,1,1,1,0,1 of the left subformula.

and cir,(s,U) = (G,1,I,0), where

(or,vi,0i41) for0<i<n—1As; =1,
l(oi) = < (id,v;) for0<i<n-—1As; =0,
(id, vp—1) fori=mn—1, and
l(v;) ="7for 0 <i<n.

The most difficult part of the construction is the translation for the bounded operators,
which we now present in detail for the bounded Until operator Uy . Figure [6]illustrates the
construction of cir,(s, Uy) for a valuation s = 0,1,0,1,1,1,0,1 of the left subformula. The
gates indexed by i, j compute the value of the formula at position ¢ and “remaining” bound
b—j. If, at some position, the left subformula evaluates to 0, then the formula simplifies to
the right subformula, independently of the remaining bound. This results in vertical edges
in the circuit. If the left subformula evaluates to 1, then the formula is true if it is either
true for bound j — 1 in position ¢ + 1 or for bound j — 1 in position i. In the circuit, this is
computed as a disjunction of the vertical and the diagonal neighbor.

We define cir,(s, Uy) = (G,1,1,0), where G = {v;; | 0 < i <n,0<j <b}, I =
V0,by + + + » Un—1,bs 0= 00,0y - - -5 Un—1,0, and

(id,vi j41) for0<i<n—1Aj<bAs; =0,
(o) = (or,vij41,Vig1,+1) for0<i<n—1Aj<bAs =1,
’ (id, v j+1) fori=n—1Aj<b, and
? for j =b.

The construction of cir,(Us,s) for the valuation s = 0,1,0,0,0,0,0,1 of the right sub-
formula is illustrated in Figure [7]] Here, the gates indexed by ¢ compute the value of the
formula at position 4. If the right subformula evaluates to 1 in position 4, then the value
of the formula is 1 in position ¢, and is computed by the conjunction over the values of the
left subformulas in positions ¢ —b to ¢ — 1. Further to the left from ¢ — b, the value is 0 until
another 1 occurs in the valuation of the right subformula.

EFFICIENT PARALLEL PATH CHECKING FOR LTL WITH PAST AND BOUNDS 15

N — 14 09 03 v N5 N6 17
%0 71 79 73 74 5 76 77
0 1 0 0 0 0 0 1

Figure 7: The circuit cir,(Us, s) for ||p|| = 8. The bottom line shows an example evaluation
$=20,1,0,0,0,0,0,1 of the right subformula.

The circuit is therefore defined as cir,(Uy,s) = (G,l,1,0), where I = vy,...,vp_1,
O=o00,...,0n-1, G={vo,...,vp—1}U{o00,...,0n-1}, and

1 for0<i<nAs =1,
l(0;)) =40 for 0 <i<nAVji<j<min(i+b,n).s; =0,

(and,vi,0i41) for0<i<n—1As;=0A3j,i<j<min(i+0b,n).s; =1, and
l(v;)="7for 0 <i<n.

We conclude the section with a lemma that formally states the existence of the L-function
cir, with the required properties. The complete construction of cir, is provided in Section
[6] in the appendix.

Lemma 4.1. Let ¢ and ¥ formulas and p an atomic proposition. Let p a path and s,t €
BlIPll with s = ¢(p) and t = (p). There is an L-function cir, mapping its arguments to
OIF EV planar transducer circuits such that p(p) = cir,(p)(), (0p@)(p) = feir,(op)(8) for
op € {X37XV7Y37YV}7 and (¢0p¢)(ﬂ) = fcirp(s,op)(t) and (¢0P¢)(P) = fcirp(op,t)(s) fOT’
Ope{\/)/\vU?UvaaRbaSaSbaTaTb}- [

5. PARALLEL TREE CONTRACTION FOR PATH CHECKING

The parallel path checking algorithm for BLTL+Past formulas is based on a bottom-up
evaluation of the formula converted to positive normal form starting with the atomic propo-
sitions. The central data structure is a binary tree, called the contraction tree, that keeps
track of the dependencies between the different evaluation steps. Initially, the contraction
tree corresponds to the formula tree where all simple paths (due to X7, X¥, Y7, and Y"
operators), have been collapsed into a single edge. The evaluation of the formula is per-
formed by contraction steps, which contract a node that has already been evaluated with
its parent into a new edge from its sibling to its parent. The resulting edge is labeled by a
planar circuit that represents the partially evaluated subformula.

Since no child needs to wait for the evaluation of its sibling before it can be contracted
with its parent, a constant portion of the nodes can be contracted in parallel, and, within
logarithmic time, the tree is evaluated to a single constant circuit. We now describe and
analyze this process in more detail.

16 LARS KUHTZ AND BERND FINKBEINER

5.1. Contraction tree. Given a formula ¢ in positive normal form and a path p, let
0, - - -, dm—1 be the subformulas of ¢ with ¢g = ¢. A contraction tree is an edge labeled tree
T = (T,t,1) where T C {¢o,...,¢m—1} U {root}, t C {(¢:, ¢;) | ¢; is a subformula of ¢;} U
{(root,¢)}, and [is a mapping that labels each edge of 7 with a planar, OIF, and EV
transducer circuit, such that the following conditions hold:

(1) T\ {root} is a regular binary tree,
(2) all edge labels of T are planar, OIF, and EV transducer circuits of arity ||p||, all leafs
are atomic propositions, and

(3) for 7 = (¢;, ¢;) € tit holds that fi)(¢;(p)) = ¥ (p), where) is the direct subformula
of ¢; that has ¢; as a subformula. Further, for the unique edge 7 = (root, ¢;) € t it

holds that fi)(¢;(p)) = ¢(p)-

The special node root and the corresponding edge (root, ¢) were added solely for technical
reasons.

The first condition ensures that the overall contraction process performs in a logarith-
mic number of parallel steps. The second condition provides the preconditions for a single
contraction step. Namely, the compositionality of the constructed circuits and the com-
plexity of logDCFL. The third condition states the induction hypothesis for the soundness
of the whole algorithm: When a transducer circuit is attached to an edge of the contraction
tree, it encodes the semantics of all partially evaluated subformulas contracted into that
edge.

5.2. Initialization step. The initial contraction tree T\ {root} is the formula tree ¢ where
all simple paths (due to X7, X¥, Y7, and Y" operators) are collapsed into single edges. The
edge is labeled by the transducer circuit that results from composing the circuits produced
by applying cir, to the corresponding BLTL+-Past operators of the eliminated nodes.

Lemma 5.1. Given a formula ¢ in positive normal form and a path p, a contraction tree
T can be constructed from ¢ and p in L.

Proof. Define parent(x) to be the subformula v of ¢ such that y is the maximal subformula
of in ¢. Let T = (T, t,1) with T = {¢; | ¢; is not of the form X3+, X 4, Y4, or Y"4),0 <
i <m}U{root}, t = {(¢i, ¢j) € TxT | ¢; is a maximal subformula in T" of ¢; }U{(root, ¢)},
and for 7 € ¢,

I(r) = {id for 7 = (root, ¢),

c(t) otherwise,

where for 0 < i < m,

cir,(X?) o c(parent(¢;)) for parent(¢;) = X7,
cir,(XY) o c(parent(¢;)) for parent(¢;) = X",

c({¢i,) = < cir,(Y?) o c(parent(¢;)) for parent(;) = Y>¢;,
cir, (YY) o c(parent(¢;)) for parent(¢;) = Y"¢;,
id otherwise,

where id is the identity transducer circuit of arity ||p||.

In 7, all simple paths (due to X7, X, Y7, and Y" operators) have been collapsed into
single edges. This ensures that 7 \ {root} is a regular binary tree. The circuits cir,(X7),
cir,(XY), cir,(Y?), and cir,(Y") are OIF EV planar transducer circuits that do not contain

EFFICIENT PARALLEL PATH CHECKING FOR LTL WITH PAST AND BOUNDS 17

any constants. Hence, any number of these circuits can be composed resulting in an OIF
EV planar transducer circuit. The whole procedure can be performed in L. From the above,
the first and the second condition for a contraction tree are clear. The third condition is
obtained by applying Lemma to the construction. []

5.3. Contraction step. In the following, we describe the contraction of the tree 7. During
a contraction step, a node that is labeled by a constant circuit is merged with its parent
node. The resulting node is contracted into the edge from its sibling to its grandparent.

Lemma 5.2. Let ¢; a node of a contraction tree T with child nodes ¢; and ¢y and parent
node p. Assume ¢; to be a leaf. Let s be the evaluation of ciry,(¢;) o l({(¢s, ¢j)). Let T' =
(T, '), where

T/ = T\ {¢j7 d)z}v
tl =ty {<¢p7 ¢k>} \ {<¢Za ¢j>v <¢zv ¢k>v <¢P? ¢l>}7

V(be) = evaluation of 1({(¢i, ¢x)) ocir,(fs(), :) o l((¢s,p) if ¢; is the left child of ¢,
* 7 evaluation of U({¢s, dr)) ociry (@i, fs() o l((¢isp) if ¢; is the right child of ¢;,

V() = 1(x) for z # o
T is a contraction tree and can be computed in logDCFL.

Proof. First, note that by construction of 7 it holds that ¢;,¢;, ¢, # root. Clearly, if
T \ {root} is a regular binary tree then 7'\ {root} is a regular binary tree, as well. By
construction of 77 a leaf in 7’ is a leaf in T as well. Thus, because 7T is a contraction tree,
each leaf in 7" is an atomic proposition. Since ¢; is a leaf ¢; is an atomic proposition. Due
to Lemma cir,(¢j) can be composed with [({¢;, ¢;)) resulting in an OIF circuit that
can be evaluated in logDCFL. Thus s is a constant circuit of arity ||p| and cir,(fs(), ¢i)
(respectively cir,(¢;, fs())) is well defined and of arity ||p||. Because 7T is a contraction tree
and by Lemma U'({p,¢x)) is an OIF EV planar transducer circuit. By the definition
of o the input arity of I'({p, ¢y)) is the input arity of I((¢;, ¢x)) and the output arity of
U'({p, 1)) is the output arity of I({p, ¢;)). Because T is a contraction tree it is ||p|| in both
cases. All remaining edge labels of 77 inherit the arities from 7. Considering the edge
(p, px) € t', the third condition for a contraction tree holds, since T is a contraction tree,
and due to the definition of o, and because of Lemma For all other edges, the property
is directly inherited from 7. 7’ can be computed in logDCFL because of Lemma and
Lemma L]

5.4. The path checking algorithm. Applying Lemmal5.1]and Lemma[5.2to ¢ and p, we
can use Algorithm to obtain an AC'(logDCFL) solution to the path checking problem.

Theorem 5.3. The BLTL+Past path checking problem is in AC'(logDCFL).

Proof. Given a BLTL+Past formula ¢ and a path p, in L convert ¢ into positive normal form.
A contraction tree 7 is initialized from ¢ in L by use of Lemma[5.1] and then Algorithm
is applied to T with the contraction step defined in Section Note, that the extra root
node and the edge (root, ¢) in T do not infer with Algorithm [2.3] The algorithm terminates
when there is only a single leaf node n and a single edge (root, n) left in the contraction tree.
By Lemma [5.2] the complexity of the contraction algorithm is AC*(logDCFL). The value of

18 LARS KUHTZ AND BERND FINKBEINER

the first output gate of the evaluation of the circuit ¢ = cir,(n) o l({root,n)) is the result.
By Lemmal5.2] ¢ is OIF EV and can hence be evaluated in logDCFL. The complexity of the
whole construction is AC*(logDCFL) in [¢|| + ||p||. Using Lemma [2.2] we can assume that
any bound occurring in ¢ has at most size ||p||. The sum of the bounds is thus polynomial
in the size of ¢ (without bounds) and the length of p. Thus, the overall complexity of
ACl(IogDCFL) is independent of the encoding of the bounds in ¢.]

6. CONCLUSIONS

We have presented a positive answer to the question whether LTL can be checked efficiently
in parallel on finite paths by giving an ACl(IogDCFL) algorithm for checking BLTL+Past
formulas over finite paths. This result is a significant step forward in the research program
towards a complete picture of the complexities of the path checking problems across the
spectrum of temporal logics, which was started in 2003 by Markey and Schnoebelen [24].
While other extensions of LTL, for example with Chop or Past+Now, immediately render
the path checking problem P-complete and, hence, inherently sequential [24], LTL with past
and bounds can be checked efficiently in parallel.

There is a growing practical demand for efficient parallel algorithms, driven by the
increasing availability of powerful (and inherently parallel) programmable hardware. For
example, tools that translate PSL assertions to hardware-based monitors [7, B, 1I] can
immediately apply our construction to evaluate subformulas consisting of bounded and
past operators in parallel rather than sequentially. Similarly, monitoring tools based on
LTL+Past can buffer constant chunks of the input and then evaluate the buffered input in
parallel using our construction.

The capability of our algorithm to absorb the exponential succinctness of past and
bounds is due to the use of planar circuits as a representation of partially evaluated subfor-
mulas, which allows the evaluation of the formula to efficiently stop and resume, as dictated
by the dependencies between the subformulas. We conjecture that the use of planar cir-
cuits as a data structure in parallel verification algorithms, following the pattern of our
construction, will find applications in other model checking problems as well.

There are several open questions that deserve further attention. Albeit small, there
is still a gap between AC!(logDCFL) and the known lower bound, NC'. There is some
hope to further reduce the upper bound towards NCl, the currently known lower bound,
because our construction relies on the algorithm by Chakraborty and Datta (cf. Theorem
for evaluating monotone Boolean planar circuits with all constant gates on the outer
face. The circuits that appear in our construction actually exhibit much more structure.
However, we are not aware of any algorithm that takes advantage of that and performs
better than logDCFL. An intriguing question along the way is whether the path checking
complexities of LTL and BLTL+Past are actually the same: while they are both in NC,
the circuits resulting from BLTL+Past formulas seem to be combinatorially more complex.
Finally, an interesting challenge is to exploit the apparent “cheapness” of the BLTL+Past
path checking problem beyond parallelization, for example in memory-efficient algorithms.

REFERENCES

[1] K. Abrahamson, N. Dadoun, D.G. Kirkpatrick, and T. Przytycka. A simple parallel tree contraction
algorithm. J. Algorithms, 10(2):287-302, 1989.

2]

3]

24]
(25]
(26]

27]

EFFICIENT PARALLEL PATH CHECKING FOR LTL WITH PAST AND BOUNDS 19

R. Armoni, D. Korchemny, A. Tiemeyer, M.Y. Vardi, and Y. Zbar. Deterministic dynamic monitors for
linear-time assertions. In Proc. FATES/RV’06, LNCS. Springer, 2006.

Cyrille Artho, Howard Barringer, Allen Goldberg, Klaus Havelund, Sarfraz Khurshid, Mike Lowry,
Corina Pasareanu, Grigore Rosu, Koushik Sen, Willem Visser, and Rich Washington. Combining test
case generation and runtime verification. Theoretical Computer Science, 336(2-3):209 — 234, 2005.
D.A.M. Barrington, Chi-Jen Lu, P.B. Miltersen, and S. Skyum. On monotone planar circuits. In Pro-
ceedings of the 14" Annual IEEE Conference on Computational Complezity (COCO ’99), pages 24-31,
Washington, DC, USA, 1999. IEEE Computer Society.

M. Boule and Z. Zilic. Automata-based assertion-checker synthesis of PSL properties. ACM Transactions
on Design Automation of Electronic Systems (TODAES), 13(1), 2008.

T. Chakraborty and S. Datta. One-input-face MPCVP is hard for L, but in LogDCFL. In Proc. FSTTCS,
volume 4337 of LNCS, pages 57-68. Springer, 2006.

A. Dahan, D. Geist, L. Gluhovsky, D. Pidan, G. Shapir, Y. Wolfsthal, L. Benalycherif, R. Kamdem,
and Y. Lahbib. Combining system level modeling with assertion based verification. In Proc. ISQED’05,
pages 310-315. IEEE Computer Society, 2005.

A.L. Delcher and S.R. Kosaraju. An NC algorithm for evaluating monotone planar circuits. SIAM J.
Comput., 24(2):369-375, 1995.

S. Demri and Ph. Schnoebelen. The complexity of propositional linear temporal logics in simple cases.
Inf. Comput., 174(1):84-103, 2002.

P.W. Dymond and S.A. Cook. Complexity theory of parallel time and hardware. Information and
Computation, 80(3):205-226, 1989.

B. Finkbeiner and L. Kuhtz. Monitor circuits for LTL with bounded and unbounded future. In Proc.
RV’09, LNCS. Springer, 2009.

B. Finkbeiner and H.B. Sipma. Checking finite traces using alternating automata. Formal Methods in
System Design, 24:101-127, 2004.

L.M. Goldschlager. A space efficient algorithm for the monotone planar circuit value problem. Inf.
Process. Lett., 10(1):25-27, 1980.

K. Havelund and G. Rosu. Efficient monitoring of safety properties. STTT, 2004.

IEEE Std 1850-2007. Property Specification Language (PSL). IEEE, New York, 2007.

T. Jiang and B. Ravikumar. A note on the space complexity of some decision problems for finite
automata. Information Processing Letters, 40:25-31, 1991.

D.S. Johnson. A catalog of complexity classes. In Handbook of Theoretical Computer Science, Volume
A: Algorithms and Complexity (A), pages 67-161. MIT Press, 1990.

Richard M. Karp and Vijaya Ramachandran. Parallel algorithms for shared-memory machines. In Hand-
book of Theoretical Computer Science, Volume A: Algorithms and Complezity (A), pages 869-942. MIT
Press, 1990.

S. Rao Kosaraju and Arthur L. Delcher. Optimal parallel evaluation of tree-structured computations by
raking. In VLSI Algorithms and Architectures: Proceedings of the 3rd Aegean Workshop on Computing,
pages 101-110. Springer-Verlag, 1988.

S.R. Kosaraju. On parallel evaluation of classes of circuits. In Proc. FSTTCS, volume 472 of LNCS,
pages 232-237. Springer, 1990.

F. Laroussinie, N. Markey, and Ph. Schnoebelen. Temporal logic with forgettable past. In Proc. LICS,
pages 383-392. IEEE Computer Society, 2002.

O. Lichtenstein, A. Pnueli, and L.D. Zuck. The glory of the past. In Proceedings of the Conference on
Logic of Programs, pages 196-218, London, UK, 1985. Springer.

N. Limaye, M. Mahajan, and J.M.N. Sarma. Evaluating monotone circuits on cylinders, planes and tori.
In B. Durand and W. Thomas, editors, Proc. STACS, volume 3884 of LNCS, pages 660-671. Springer,
2006.

N. Markey and Ph. Schnoebelen. Model checking a path (preliminary report). In Proc. CONCUR,
volume 2761 of LNCS, pages 251-265. Springer, 2003.

H. Petersen. Decision problems for generalized regular expressions. In Proc. DCAGRS’00, pages 22—29,
2000.

H. Petersen. The membership problem for regular expressions with intersection is complete in LOGCFL.
In Proc. STACS, volume 2285 of LNCS, pages 513-522. Springer, 2002.

Heribert Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer, 1999.

20 LARS KUHTZ AND BERND FINKBEINER

[28] H. Yang. An NC algorithm for the general planar monotone circuit value problem. In Proc. IPDPS,
pages 196-203, 1991.

[29] H.L.S Younes and R.G. Simmons. Probabilistic verification of discrete event systems using acceptance
sampling. In Proc. CAV, volume 2404 of LNCS. Springer, 2002.

EFFICIENT PARALLEL PATH CHECKING FOR LTL WITH PAST AND BOUNDS 21

APPENDIX: CONSTRUCTION OF cir,

Let n = ||p||. Let b € N. Let I = vg,...,v,—1 and O = 0p,...,0,—1. Let G = TUO. Let
H = {gi,j ‘ 0<1< n,O Sj < b} Let OH =30,05---,9n—1,0- Let IH =3g0b;---5>9n—1,b-
For an atomic proposition p cir,(p) = (O,l,e,0), where l(0;) = 1 iff p € p; and ¢
denotes an empty input sequence.
cir,(V,s) = (G,1,1,0), where
(o)) (id,v;) fors; =0A0<i<n,
0;) =
’ 1 fors; =1AN0<17¢<n,
l(v;))="7for 0 <i<m

(id,v;) fors;=1A0<1i<n,
0 for s; =0AN0< <mn,
l(v;)) ="71for 0 <i<m;

cir,(s, \) = cir,(A, s);
cir,(X?) = (G, 1,1,0), where

o) = (id, vit1) for9§i<n—1,
0 fori=n—1,
l(v;))="7for 0 <i<m

cir,(X¥) = (G, 1,1,0), where

{(zd ,Uip1) for0<i<n-—1,

fori=n—1,

—_

?for 0 <i<my
cir,(U,s) = (G,1,1,0), Where
(and,vi,0i41) for0<i<n—1As; =0,
l(oj)) =41 for0<i<n—1As; =1,
Sn—1 fori =n—1,
l(v;) ="7for 0 <i<m
cir,(s,U) = (G, 1,1, 0), where

(or,vi,0i41) for0<i<n—1As; =1,
l(oi) = < (id,v;) for0<i<n-—1As; =0,
<7"d7vn—l> fOI"L':TL—]_,

l(v;) =7 for 0 <i < m;

22 LARS KUHTZ AND BERND FINKBEINER

cir,(R,s) = (G,1,I,0), where
(or,v,0i41) for0<i<n—1As; =1,
l(0;)) =10 for 0 <i<n—1As; =0,
Sp—1 fori=n—1,
l(v;) =7 for 0 < i <m;
cir,(s,R) = (G,1,I,0), where
(and,vi,0i41) for0<i<n—1As; =0,
I(0i) = < (id,v;) for0<i<n—1As; =1,
(1d,vp—1) fori=n—1,
l(g)="7for g € I;
cir,(Usp,s) = (G,1,1,0), where
1 for0<i<nAs; =1,
l(0;) =10 for 0 <i<nAVji<j<min(i+b,n).s; =0,
(and,vi,0i41) for0<i<n—1As;=0A3j,i<j<min(i+b,n).s; =1,
l(v;))="7for 0 <i<n;
ciry(s, Up) = (H,1, Iy, Op), where

(id, gi j+1) for0<i<n—1Aj<bAs; =0,
lgi,) = (o, i j+1, git1,j+1) for0<i<n—1Aj<bAs; =1,
’ (id, gi j+1) fori=n—1Aj<b,
? for j = b,
cir,(Ry,s) = (G,1,1,0), where
0 for0<i<nAs; =0,
lloj)) =<1 for 0 <i<nAVji<j<min(i+b,n).s; =1,

(or,vi,0i41) for 0<i<n—1As;=1A3j,i<j<min(i+b,n).s; =0,
l(v;)) ="71for 0 <i<m
cir,(s, Ry) = (H,1, Iz, Op), where

(id, gij+1) for0<i<n—1Aj<bAs =1,
lgis) = (and, gi j+1,Git1,j+1) for0<i<n—1Aj<bAs; =0,
’ (id, i j+1) fori=n—-1Aj<b,
? for j = b;

cir,(Y?) = (G, 1, I, 0), where
o) = (id,v;—q) for 0 <i<mn,
0 for i =0,

l(v;)) ="7for 0 <i<m;

EFFICIENT PARALLEL PATH CHECKING FOR LTL WITH PAST AND BOUNDS

cir, (YY) = (G, 1,1,0), where
o) = {(id,vi_1> for 0 <i<mn,
1 for i =0,
l(v;))="7for 0 <i<m;
cir,(S, s) = (G,1,1,0), where
(and,vi,0;—1) for 0 <i<nAs; =0,
llo;)) =141 for0<i<nAs; =1,
S0 for i =0,
l(v;)) =7for 0 <i<my
ciry(s,S) = (G,1,1,0), where
(or,vi,0i—1) for0<i<mnAs; =1,
l(oi) = < (id,v;) for0<i<nAs; =0,
(id, vo) for i =0,
l(v;) ="71for 0 <i<m
cir,(T,s) = (G,1,1,0), where
(or,vj,0i—1) for0<i<nAs; =1,
l(0;)) =40 forO<i<nAs; =0,
S0 for ¢ =0,
l(v;) =7 for 0 <i < n;
cir,(s, T) = (G,1,I,0), where
(and,vi,0,—1) for 0 <i<nAs; =0,
l(o;) = < (id,v;) forO<i<nAs; =1,
(id, vo) for i =0,
l(g)="7"for g € I;
cir,(Sp,s) = (G,1,1,0), where
for0<i<nAs; =1,
for 0 <i<nAVj,i>j>max(i—b,—1).s; =0,

cirp(s, Sp) = (H,l, Iy, Op), where

1
l(0;)) =40
and,v;,0;—1) for 0 <i<nAs; =0A3j,i>j>max(i—b,—1).s; =1,
o

(id, gij+1)
or, gi,j+1, gz’—l,j+1>

(
I(g;) =
(g ’]) <id, 90,j+1>
?

for0<i<nAj<bAs; =0,
for0<i<nAj<bAs; =1,
for 7 < b,
for j = b;

23

24 LARS KUHTZ AND BERND FINKBEINER

cirp(Ty,s) = (G,1,1,0), where

0 for0<i<nAs; =0,

1 for 0 <i<nAVj,i>j>min(i —b,—1).s; =1,

(or,vi,0i—1) for0<i<nAs;=1A3j,i>j>max(i—b,—1).5; =0,
l(v;)) ="7for 0 <i<m;

cirp(s, Tp) = (H,1, I, O), where

l(0;) =

(id, gij+1) forO<i<nAj<bAs; =1,

lgis) = (and, giji1,9i-1411) for 0 <i<nAj<bAs; =0,
9id <id790,j+1> for j < b,
? for j =b.

	1. Introduction
	2. Preliminaries
	2.1. Linear-Time Temporal Logic
	2.2. Complexity classes within P.
	2.3. Parallel Tree Contraction

	3. Monotone Boolean Circuits
	3.1. Circuit evaluation
	3.2. Transducer Circuits

	4. Constructing Circuits On-The-Fly
	4.1. Atomic propositions.
	4.2. Unary operators.
	4.3. Binary operators.

	5. Parallel Tree Contraction for Path Checking
	5.1. Contraction tree
	5.2. Initialization step
	5.3. Contraction step
	5.4. The path checking algorithm.

	6. Conclusions
	References
	Appendix: Construction of circuits

