Weak Kripke Structures and LTL

Lars Kuhtz! and Bernd Finkbeiner?

1 Microsoft Redmond
2 Saarland University

Abstract. We revisit the complexity of the model checking problem for
formulas of linear-time temporal logic (LTL). We show that the classic
PSPACE-hardness result is actually limited to a subclass of the Kripke
frames, which is characterized by a simple structural condition: the model
checking problem is only PSPACE-hard if there exists a strongly con-
nected component with two distinct cycles. If no such component exists,
the problem is in coNP. If, additionally, the model checking problem
can be decomposed into a polynomial number of finite path checking
problems, for example if the frame is a tree or a directed graph with
constant depth, or the frame has an SCC graph of constant depth, then
the complexity reduces further to NC.

1 Introduction

Model checking, the automatic verification of a finite-state structure against
a formula of a temporal logic, is one of the key advances in systems theory
over the past decades. Many artifacts in modern computers, including hardware,
protocols, and operating system components, can be described as finite-state
structures. Model checking algorithms have also found numerous applications
beyond computer-aided verification, including XML data bases, planning, and
computational biology.

The complexity of the model checking problem has been the subject of inten-
sive investigation. The fundamental result, by Sistla and Clarke in 1985, is that
the model checking problem for linear-time temporal logic (LTL) is PSPACE-
complete [21]. A first refinement of this result, due to Lichtenstein and Pnueli,
separates the complexity in the length of the formula from the complexity in
the size of the Kripke structure. It turns out that the problem really is PSPACE-
complete only in the size of formula and linear in the size of the Kripke structure.
Much of the subsequent work has therefore focused on detailing the complexity
with respect to different classes of formulas [21,14,8,4,3].

However, the linear complexity in the size of the Kripke structure does not
mean that the impact of the Kripke structure should be neglected. Consider, for
example, Kripke structures that consist of a single state. The model checking
problem for such Kripke structures corresponds to the problem of evaluating
Boolean formulas, which is NC'-complete [6]. The PSPACE-hardness result relies
on the possibility to encode the computations of a Turing machine as paths in
the Kripke structure. What happens if the frame of the Kripke structure does



not allow for such an encoding? Examples of such restricted frames occur in
many different domains.

— Paths: The problem of checking whether a given finite path satisfies an
LTL formula plays a key role in monitoring and runtime verification (cf. [9]),
where individual paths are checked either online, during the execution of
the system, or offline, for example based on an error report. Similarly, path
checking occurs in testing [1] and in several static verification techniques,
notably in Monte-Carlo-based probabilistic verification, where large numbers
of randomly generated sample paths are analyzed [22].

— Trees: Model checking trees occurs in assertion checking, querying, debug-
ging, and searching in all kinds of parse trees, class hierarchies, thread or
process trees, abstract data types, file systems, and XML documents and
XML databases (cf. [5]).

— Restricted loops: Control and scheduling programs often enter, after some
initialization, an infinitely executed static loop [2]. The frame of the Kripke
structure thus is a lasso path. If the system proceeds in stages, where each
stage consists of the nondeterministically many iterations of a static loop,
then the Kripke frame has several loops, but no nested loops.

In this paper, we abstract from the possible LTL formulas and the possible
labelings of the Kripke structure, and instead focus entirely on the structure of
the frame. A key role in our analysis is played by the path checking problem
[19], i.e., the model checking problem where the frame is restricted to a single
path. We recently showed that, for LTL formulas, path checking is in NC [13].
We generalize this result to Kripke structures for which the model checking
problem can be deterministically reduced to a polynomial number of parallel
path checking problems: Kripke structures that are trees or directed graphs with
constant depth, or that have an SCC graph of constant depth, all have model
checking problems in NC.

Our main result is that the separation between Kripke structures with a
PSPACE hard model checking problem and Kripke structures with a model check-
ing problem in coNP is a strict dichotomy. The borderline between PSPACE and
coNP can in fact be characterized by a simple structural condition: We call a
Kripke structure weak if there are no two distinct cycles within a single strongly
connected component. The model checking problem for weak Kripke structures
can be decomposed into the path checking problems for an exponential number
of relevant paths. If a Kripke structure is weak then the model checking problem
is therefore in coNP; otherwise, the model checking problem is PSPACE hard.

Related Work. The subject of this paper, the model checking problem for
restricted classes of Kripke frames, is an extension of the path checking problem,
which was introduced as an open problem by Demri and Schnoebelen in [8]. In
addition to our recent work [13] on LTL path checking, Markey and Schnoebelen
investigate the path checking problem for various extensions and restrictions of
LTL [19] and also show that the complexity of the (finite) path checking problem



for the p-calculus is P-hard [20]. Markey and Raskin [18] study the complexity
of the model checking problem for restricted sets of paths for extensions of LTL
to continuous time.

Another area of investigation that is closely related is the study of the state
explosion problem. The state explosion problem occurs in compositional model
checking when the Kripke structure is represented as some kind of product
Kripke structure. Demri, Laroussinie, and Schnoebelen study the complexity
of model checking parameterized by the number of factors of the product Kripke
structure [7].

In classical modal logic, systems are defined via frame conditions. Starting
with Ladners seminal results in [16] there is a line of research about the com-
plexity of problems for modal logics systems under certain frame conditions
(cf. [11,10] for recent results and overview on past work).

2 Computation Paths and Kripke Structures

Linear-time temporal logic reasons about linearly ordered sequences of states,
which we call computation paths. In the following we define the semantic frame-
work for the logic: propositions, states, computation paths, Kripke frames, and
Kripke structures. Kripke structures symbolically represent sets of computations
paths in a compact way. Kripke frames represent the topology of transition re-
lation of a Kripke structure.

Given a set of atomic propositions AP. A state s € is an evaluation of
the atomic propositions in AP. For p € AP we say that p holds in s if and only
if p € s. We write s(p) to denote the value of p in s with s(p) = 1, if p holds in
s, and s(p) = 0 otherwise. An ordered sequence p = pg, p1, ... of states is called
a computation path over AP. The length of p is denoted by |p|. If p is infinite,
we set |p| = 00; i < oo for all ¢ € N. For a computation path p and 0 < i < |p|
we write p; for the state at position i; p; j, where 0 < ¢ < j < |pl|, denotes the
computation path p;, piy1,...,p; of length |p; ;| = j — i+ 1; p;, . denotes the
suffix of p at position i. The empty sequence is denoted € with || = 0. We denote
concatenation of computation paths as a product and write either op or o - p
for the concatenation of the computation paths o and p, where ¢ is finite. For

2AP

a finite computation path o we set o™ = ng o, 0% = { gil olne N}, and
0¥ = [Iy o. In the context of automata we will treat computation paths over
AP as words over the alphabet ¥ = 2°F where a letter is a state. The set of
all finite words over X' is denoted as X*. The set of infinite words is denoted
as X¥. A language over X is a subset of X* U X¥. A computation path (or a
word) p = po, p1,---,pPn,n € N canonically defines a (graph theoretic) path. In
the following we view p as a path whenever adequate.

A Kripke structure K is a four-tuple (K, k;, R, A) where K is a set of vertices,
k; C K are the initial vertices, R C K x K is a transition relation, and \: K —
24P is a labeling function on the vertices of K. The directed graph (K, R) is
called the frame of the Kripke structure K. By abuse of notation we sometimes



identify a state & € K with its labeling A(k), where we assume that A~1(k) is
determined from the context.

The SCC graph of a Kripke frame F is the graph that is obtained by collaps-
ing every strongly connected component of F into a single vertex.

The language of a Kripke structure KK = (K, k;, R, \), denoted as lang(K), is
the set of (finite and infinite) computation paths

{A(50), A(s1), -+ | 80 € ki, (s, 8i41) € R}

for i € N with 0 <7 or 0 < ¢ < n for some n € N.

A Kripke structure (respectively a Kripke frame) is called weak, if there are
no two distinct cycles within a single strongly connected component; in other
words: all cycles are pairwise disjoint. This implies that the cycles of a weak
Kripke strucutre (Kripke frame, respectively) are partially ordered with respect
to reachability.

3 Linear-Time Temporal Logic — LTL

We consider linear-time temporal logic (LTL) with the usual finite-path seman-
tics, which includes a weak and a strong version of the Next operator [17]. Let
AP be a set of atomic propositions. The LTL formulas are defined inductively as
follows: every atomic proposition p € AP is a formula. If ¢ and v are formulas,
then so are

~¢, oAU, oVY, X7 ¢, X74, ¢Uy, and ¢RY .

Let p € AP. We use true to abbreviate p V —p and false as an abbreviation for
p A —p. For a formula ¢ we write G ¢ to abbreviate falseR ¢ and F ¢ as an
abbreviation for true U ¢. The size of a formula ¢ is denoted by |¢|.

LTL formulas are evaluated over computation paths over the set of states
24P Given an LTL formula ¢, a nonempty computation path p satisfies ¢ at
position ¢ (0 < i < |p|), denoted by (p, %) |= ¢, if one of the following holds:

— ¢ € AP and ¢ € p;,

— ¢ =—¢ and (p, i) [~ ¢,

— ¢=¢ A ¢ and (p,i) | ¢ and (p,i) = ¢r,

— S =V b and (prd) = 1 or (1) b= b1,

—¢p=Xpandi+1<|p| and (p,i+ 1) 1,

—¢=X"and i+ 1=|p|or (p,i+1) 1,

—¢=¢;Ug, and Fi < j < |p| s.t. (p,J) E ¢r and Vi < k < j, (p, k) |E ¢y, or
—¢o=¢; R, and Vi < j < |p|.(p,J) = ¢ or Fi < k < js.t. (p,k) E ¢

For |p| = oo and for any i € N it holds that (p,i) = X7 if and only if
(p,4) = X¥1p. An LTL formula ¢ is satisfied by a nonempty path p (denoted by
p E ¢) if and only if (p,0) = ¢. A Kripke structure K satisfies the formula ¢
(denoted by K |= ¢) if and only if for all p € lang(K) it holds that p = ¢. Two



LTL formulas ¢ and ¢ are said to be equivalent (¢ = v) if and only if for all
paths p it holds that p = ¢ if and only p | .

An LTL formula ¢ is said to be in positive normal form if in ¢ only atomic
propositions appear in the scope of the symbol —. The following dualities ensure
that each LTL formula ¢ can be rewritten into an equivalent formula ¢’ in
positive normal form with |¢'| = O(|¢]).

g = ¢
X = X7~ ;
(A Pr) = (=) V (2¢r) 5
(a1 Udr) = (=¢1) R(—¢r) -

Given a class of Kripke structures J#. The model checking problem of LTL
over # (MCI[LTL, .¢) is defined by

MC[LTL, #| = {KE¢|K € #,p € LTL} .

In the following we often use classes of Kripke structures that are defined
through a class of Kripke frames. E.g. path denotes the class of all Kripke struc-
tures with a frame that is a (finite) path.

Model Checking a Path. Automata-based techniques have proved very suc-
cessful in establishing upper bounds on complexity of LTL model checking prob-
lems. However, there seems to be a barrier on proving sub-polynomial bounds
via automata constructions. In [13], we gave a construction that uses monotone
Boolean circuits in place of the usual automata-based constructions in order to
prove that the LTL path checking problem is in NC.

Theorem 1 (Kuhtz and Finkbeiner (2009)).
MC[LTL, path] is in AC* (logDCFL). 0

Generalized Stutter Equivalence. It is a well known property of the star
free regular languages, which is precisely captured by LTL, that those languages
can only count up to a threshold but are unable to do modulo counting. In
[15] Kucera and Strejéek introduce the notion of generalized stutter equivalence
which reflects the disability to count of LTL on a syntactic level.

Definition 1 (Generalized Stutter Equivalence). Given a computation path
p, a subsequence p; j of p is (m,n)-redundant if p(j 1), (j41)4m-(j—i)—m+14n 05 @
prefiz of pf;.

We say that two computation paths p and o are (m,n)-stutter equivalent if p
is obtained from o by removing non-overlapping (m,n)-redundant subsequences,
or vice versa.

Kucera and Strejcek prove the following generalized stuttering theorem for
LTL. Intuitively the theorem states that an LTL formula can not distinguish
between words that differ through repeated occurrence (stuttering) of a sub-word
beyond a certain threshold that depends on the nesting depth of the different
temporal operators.



Theorem 2 (Kucera and Strejcek (2005)). Given an LTL formula ¢ with
mazximal nesting depth of U and R modalities of m and with maximal nesting
depth of X3 and X modalities of n, the set of {p | p |= ¢} is closed under (m,n)-
stutter equivalence. O

Using this theorem, we will establish upper bounds for model checking of
weak Kripke structures.

Model Checking LTL with a single variable. In their seminal paper [21]
Sistla and Clarke prove general LTL model checking to be PSPACE-complete.
The result is obtained via a reduction of the satisfiability problem to the co-
model checking problem. In the same paper, LTL satisfiability is proved PSPACE-
complete by encoding the computations of a PSPACE Turing machine into an
LTL formula. In [8], Demri and Schnoebelen strengthen this result by showing
that satisfiability is hard even for the fragment of LTL with a single atomic
proposition.

Theorem 3 (Demri and Schnoebelen (2002)). Satisfiability of LTL with a
single atomic proposition is PSPACE-complete. a

Restricting our attention only to formulas with a single variable, we can rep-
resent the class of all possible models in a Kripke structure with just two vertices
and two different labels. When proving PSPACE-hardness of model checking of
non-weak Kripke frames, we will use the fact that this simple structure can be
embedded into any non-weak Kripke frame.

4 LTL Model Checking Problems in NC

We start with some theorems that are corollaries from Theorem 1. In general, any
class of Kripke structures for which the model checking problem can be deter-
ministically reduced to a polynomial number of parallel path checking problems
can be model checked in NC. In particular, trees can be decomposed into a linear
number of paths:

Theorem 4. MC[LTL, tree] is in AC' (logDCFL). O

DAGs of constantly bounded depth can be unfolded into trees with only
polynomial blowup:

Theorem 5. MC[LTL, DAG of depth O(1)] is in AC*(logDCFL). O

Markey and Schnoebelen present in [19] a reduction from the problem of
checking ultimately periodic paths to the finite path checking problem. We pro-
vide a more general reduction. We start with an observation about weak Kripke
structures:

Lemma 1. Let K be a weak Kripke structure. Any (finite or infinite) computa-
tion path p € lang(K) is of the form (H?:_Ol U; - vf") with



—n< |IC|7
—aq; €N fori<n—1and a,—1 € NU {0}, and
— u;,v; are finite paths in IC

for 0 <i<n.

Proof. The statement of the lemma follows from the fact that for a weak Kripke
structure all cycles are disjoint and the SCC graph is a directed acyclic graph.
O

The lemma implies that we can represent a computation path p in a weak
Kripke structure K as a path R in the SCC graph of K together with the coef-
ficient «; for each cycle v; that occurs in p. We denote this representation of p

by Raov“aanfl .

Lemma 2. Given an LTL formula ¢ and a weak Kripke structure K. If there
is a computation path p = Ray.. ., € lang(K) with p = ¢ then there is
a computation path p' = Rg, . g, , with B; < |¢p| + 1 such that p' = ¢. In
particular it holds that |p'| = O(|¢| - |K|)-

Proof. Represent the computation path p according to Lemma 1 and apply the
generalized stuttering theorem (Theorem 2) from Kucera and Strejcek. O

Lemma 2 subsumes the reduction from [19]. By reducing the problem of
checking an ultimately periodic path to the finite path checking problem we get
the following theorem:

Theorem 6. MC/LTL, ultimately periodic path] is in AC* (logDCFL).

Proof. The computation path p can be represented as R,,. Due to Lemma 2 it
is sufficient to enumerate and check all computation paths R, for a < |¢| + 1.
By Theorem 1 each check can be done in AC'(logDCFL). Since all checks are
independent we can do them all in parallel.

Remark: A more careful interpretation of Theorem 2 would reveal that a
single check for o = |¢| + 1 is actually sufficient. O

We can use Lemma 2 to generalize the result to Kripke structures with SCC
graphs of constantly bounded depth.

Theorem 7. MC[LTL, weak, SCC graph of depth O(1)] is in AC'(logDCFL).

Proof. Unfold the Kripke structure into a tree of polynomial size and constant
depth. Each computation path in the unfolded structure can be represented as
Rae....a,, Where n € N is a constant. Due to Theorem 2, it sufficient to enumerate
(in L) and check all computation paths for a; < |¢|+1 (0 < i < n). In total there
is a polynomial number of computation paths to be checked. Using Theorem 1,
all checks can be done in parallel in AC' (logDCFL). O



We can generalize the previous result a bit further: let G be the SCC graph of
a Kripke structure K. For a vertex v € V(G) let

(W)y=a@)+ Y B)-((w)

(w,w)EE(K)
where

1 if v is initial in K and
a(v) = .
0 otherwise,

{2 if v represents a cycle of X and

1 otherwise, and

the empty sum equals zero. Intuitively, the function ((v) counts the number of
paths that lead from an initial state to v, where each cycle occurs either zero or
one times in a path. Let ((K) = max,cy(g) ((v).

Theorem 8. For any class € of weak Kripke structures such that ¢ is polyno-
mial in the size of the structure it holds that MC[LTL, €] is in AC' (logDCFL).
O

5 coNP-Complete LTL Model Checking Problems

In favor of a more concise presentation, we exclusively consider LTL over infinite
paths throughout the remainder of this paper.

Theorem 9. LTL model checking of weak Kripke structures is coNP-complete.

Proof. We prove the upper bound by guessing a possibly infinite path and then
using Lemma 2 to reduce the problem to the finite path checking problem. Let
K be a weak Kripke structure. In order to decide if K & ¢ guess a path R in
the SCC graph of K such that there is a path p = Ry, 0, , € lang(K) with
p |E —¢. Use Lemma 2 to reduce this to checking p’ = —¢ for a finite path p’
of polynomial length. Do this check by use of Theorem 1 in ACl(IogDCFL) CcP.
Hence the model checking problem for weak Kripke structures is in coNP.

The proof of the lower bound reduces the satisfiability problem of proposi-
tional logic to the co-model checking problem of weak Kripke structures. The
reduction is very similar to the reduction used by [21] to show that the co-model
checking problem for the fragment of LTL that has F as the only modality is
NP-hard.

Given a propositional logic formula f over the set of variables {vo,...,v,},
n € N. We obtain the LTL formula ¢ from f by substituting for all 0 < ¢ < n each
occurrence of the variable v; by the LTL formula x3¥ p, where p € AP. The
formula f is satisfiable if and only if —¢ does not hold on the Kripke structure
K shown in Figure 1. O



Fig. 1. Kripke structure used to reduce propositional SAT to LTL model checking

The above proof actually provides a slightly stronger result than stated in The-
orem 9:

Corollary 1. The problem of model checking LTL on planar acyclic graphs is
coNP-hard. O

The hardness result from Theorem 9 can be sharpened to more restricted
classes with a coNP lower bound on the model checking problem. In order
to prepare the proof of the next theorem we show here the construction for
Kripke structures with an SCC graph that is a path. In fact self loops, i.e. state-
stuttering, is sufficient. The idea is similar to the lower bound from the previous
theorem, but the diamond shaped substructures are replaced by self loops. For a
propositional formula f with variables vy, ..., v,_1 we build a Kripke structure
KC that is a sequence of n self loops as shown in Figure 2 where each vertex is
labeled with a unique state (represented as a propositional formula) p;. The LTL
formula ¢ is obtained by substituting in f each variable v; with the LTL formula
F(p; A X p;). It is easy to check that f is satisfiable if and only if K j= —¢.

HE6 oo

Fig. 2. Kripke structure used to reduce SAT to LTL model checking of Kripke struc-
tures for which the SCC graph is a path.

The next theorem is a refined (though more technical) version of Theorem 9.
Recall that the function ¢ from Section 4 counts the number of paths in a weak
Kripke structure where each cycle occurs at most once.

Theorem 10. For any class € of weak Kripke structures for which ¢ is ex-
ponential in the size of the structure it holds that MC[LTL, €] is complete for
coNP.



The upper bound remains the same as in Theorem 9; the lower bound is
refined through a stronger constraint on the classes of structures.

Proof. The proof for the lower bound combines the proof for the lower bound
for planar DAGs and the lower bound for paths Kripke structures with an SCC
graph that is a path. Again, we reduce SAT to the co-model checking problem on
€. Let f a propositional formula with variables vy, ...,v,_1. There is a Kripke
structure K in ¢ such that the SCC graph of K contains sequence of vertices
Vg, - . -, Un_1, Where v; is reachable from v;_1. Due to the exponential growth of
¢ there are O(n) many ¢ with ((v;) = O(2-v;_1). Moreover, we know that either
there are two distinct paths from v;_; to v; with two distinguishing vertices v)
and v}, or v; represents a cycle. In the former case we label v with a unique label
p; (represented by a propositional formula) and substitute v; in f with the LTL
formula F p;. In the latter case we label v; with a unique label p; (represented
as a propositional formula) and substitute any occurrence of v; with the LTL
formula F(p; A X7 (true U p;)). We call the resulting LTL formula ¢. Again, it is
easy to check that K £ —¢ if and only if f is satisfiable. O

The classification of Kripke structures between NC and coNP-hardness is not
a complete dichotomy. There is a gap concerning the structures with n®) <«
C(k) < O(2™). This is illustrated via the following theorem.
Theorem 11. For any class € of weak Kripke structures with ¢ = O(nlog()(l) "y,
where n is the size of a Kripke structure, it holds that MC[LTL, €] is in polyL.

Proof. We can enumerate all computation paths of polynomial length that are
relevant according to Lemma 2 in polyL. Each computation path can be checked
in AC'(logDCFL) C polyL. i

6 PSPACE-Complete LTL Model Checking Problems

We now investigate the borderline between the frames whose model checking
problems are in coNP and those whose model checking problems are PSPACE-
hard. It turns out that LTL model checking is PSPACE-complete for any non-
weak Kripke frame. In contrast to the previous PSPACE hardness results, we get
a lower bound that does not depend on the asymptotic behavior of a class of
Kripke structures, but holds for each non-weak Kripke frame. Moreover, together
with Theorem 9 we obtain a dichotomic classification.

Theorem 12. The LTL model checking problem is PSPACE-complete for any
non-weak Kripke frame.

Proof. Given a non-weak Kripke frame F. We reduce the validity problem for
LTL to the co-model checking problem on a structure K with frame F.

We start by choosing an adequate labeling for K. Let s,t, u € 2P be pairwise
disjoint states represented as Boolean formulas. Because F is non-weak we know
that there are two distinct cycles that share a common vertex z. Label x with



state s. There is a vertex y that is present in only one of the two cycles. Label
y with state t. Label all remaining vertices of K with u. Figure 3 provides a
schematic view of K.

Fig. 3. Non-weak Kripke structure with the labeling used in the proof of Theorem 12

Given some formula ¢ with only a single variable. By Theorem 3, deciding
validity for an LTL formula with only a single atomic proposition is PSPACE-
hard. ¢ is valid if and only if —=( is not satisfiable. To decide if ¢ = —( is satisfiable
is the co-model checking problem on a universal Kripke structure. We will reduce
the latter for ¢ to the co-model checking problem on the Kripke structure IC with
the labeling given above for a formula ¢* that can be constructed from ¢ in L.
Since PSPACE is closed under complement, the model checking problem for K is
thus PSPACE hard.

We assume that the unique atomic proposition that occurs in ¢ is p. A
Kripke structure with two states, namely p and —p, that represents the universal
language {p, —p}“ is shown in Figure 4.

SCE0

Fig. 4. The Kripke structure that represents the universal language {p, —p}“.

In the following we call a suffix of a computation path an a-suffix if the first
state of the suffix is a. We call a cycle in a Kripke structure an a-cycle if it starts
in an a-state. We identify the cycle with the corresponding state sequence.

The construction of ¢* is as follows: First, transform ¢ into positive normal
form in L. Next, we define inductively a formula ¢’. For the cases that ¢ is either
an atomic proposition or a negated atomic proposition let

—p=s5AX3(uUs) and
— () = s AX? (uU (EAXE (U s))).

The idea is that the formula p’ holds exclusively on an s-cycle that does not
include the ¢ state, whereas (—p)’ holds on any s-cycle that visits the ¢ state.



This way, each s-cycle encodes a state of the original Kripke structure. The
formula will translate each single step in the original Kripke structure into an
s-cycle in K. The remaining cases for ¢’ are defined inductively as follows:

— Y AX for o =1 Ay,

— YV forp=1Vy,

— s ANX7 (ms U for ¢ = X7,
sA((s =) Uy) for ¢ =9 Uy, and
—sAN@WR(s—=x)) for p =19 Rx.

For any formula ¢ we want that a computation path that models ¢’ is “meaning-
ful” in the sense that it can be mapped to a computation path having only p and
—p states. Therefore we defined ’ such that a formula ¢’ holds on a computation
path p only if p starts in the s state.

Finally, we set ¢* = (GF s) A (-sU ¢'). By requiring that any computation
path p with p = ¢* returns to s infinitely often, we prevent that p “gets stalled”
in some “meaningless” loop. The formula allows the computation to reach s
initially, and then it forces the remaining computation path to satisfy ¢’ which
encodes on K the original meaning of ¢.

We claim that for each computation path p it holds that p |= ¢ if and only if
there is a computation path p* € lang(K) such that p* = ¢*. Let ¢ be a s-cycle
in IC that does not visit ¢t and let d an s-cycle in IC that visits ¢. For proving the
“only if” part of the claim assume that p |= ¢. Let p’ be defined as follows:

J = c-phy,.. if po(p), and
d-py,.. otherwise.

It holds that p’ € lang(K), every suffix of p’ contains an s-state, and p’ starts
with s. Further ’ induces a surjective mapping from the suffixes of p to s-suffixes
of p’. This mapping is monotonic with respect to the order of start position of
the suffixes.

Let e be the (possibly empty) sequence of states on a shortest path in K that
leads from an initial state to s. Let p* = e - p’. Every suffix of p* contains an s
state and therefore it holds that p* = GF s. Since all states in e contradict s
from the definition of p* it follows directly that p* | (=s)U¢' if p' E ¢'. We
prove this by induction over ¢:

— For ¢ = p it holds that if p starts with p then p’ starts with ¢ followed by
an s state. Hence p’ = s A X2 (uUs).

— For ¢ = —p it holds that if p starts with —p then p’ starts with d followed
by an s state. Hence p' = s A X7 (uU (¢t A X7 (wUs))).

— For ¢ € {¢p A x,¥ V x} the claim follows directly from the induction hypoth-
esis and the semantics of LTL.

— For ¢ = X7 4 it holds that p; . = +. By induction hypothesis (p1,...) = ¢’
and by definition of p’ it holds that p’ = s A X? (s U ).

— For ¢ =9 U x there is a position ¢ such that p; . |= x and p; . = ¢ for all
j < i. By induction hypothesis there is an [ such that p; = x’. Since ' is



surjective and monotonic on the s-suffixes of p’ from the induction hypothesis
it follows that p} =1’ for all s-suffixes with j < [. Further recall that ¢’
holds only on computation paths that start with s. Hence, for all non-s-suffix
P with j <[ the formula (s — ') holds trivially. Thus, for all j < [ it
holds that p; = (s — 1) and we get p' = s A (s — ¢") Ux'.

— The case for ¢ =1 R x is analogous to the previous case.

We now prove the “if” part of the claim. Given a computation path in o €
lang(KC) such that o = ¢*. There is a position iy such that for all j < 4 it holds
that o, | —s and 04, . | ¢'. Let 0° = 0y, ... We show that 0° = ¢’ implies
that there is a computation path ¢’ with o’ = ¢. We know that o contains only
s, t, and u states. Moreover, we know from the definition of ¢* that any suffix
of 0¥ contains an s state. The computation path o’ is defined as follows:

, {p Lol if 0§ ., contains no t state, and

otherwise,

where sq is the position of the first s-state in o1, .. Note that ’ induces a mono-
tonic and surjective mapping from the s-suffixes of ¢ to the suffixes of o. We
show by induction over ¢ that o’ |= ¢:

— For ¢ = p we have 0° | s A X7 (uUs). This implies that of ., does not
contain any ¢ state and therefore o()(p).

— For ¢ = —p we have 6° = s A X (uU (t AX? (uUs))). Therefore of .,
contains a t state and hence o(\,(—p).

— For ¢ € {¢p A x,¥ V x} the claim follows directly from the induction hypoth-
esis and the semantics of LTL.

— For ¢ = X749 we have ¢° |= s A X7 (s U¢’). This implies that o2 | ¢'.
From the induction hypothesis it follows that ¢} = ¢ and thus o’ = X7 4.

— For ¢ = ¢ Uy we have that 0% = s A ((s = ©') Ux/). Therefore there is an
i € N'such that of |= x" and for all j < it holds that 09 = (s — ¢). By
induction hypothesis there is an | € N such that o} = x. For all s-suffixes
of  with j < it holds that 0V, ... = ¢’. Recall that " induces a monotonic
and surjective function from the s-suffixes of ¢ to the suffixes of ¢’
Together with the induction hypothesis we deduce that for all j < [ it holds
that o) = 1. We conclude that o’ =4 Ux.

— The case for ¢ = ¥ Ry is analogous to the previous case. Note, however,

that there are infinitely many s-states in . a

7 Conclusions

We have developed a classification of Kripke structures with respect to the com-
plexity of the model checking problem for LTL. We showed that the model check-
ing problem for a Kripke frame is PSPACE-complete if and only if the frame is
not weak. The problem is coNP-complete for the class of all weak Kripke struc-
tures. The problem is in NC for any class of Kripke structures for which the



model checking problem can be reduced to a polynomial number of path check-
ing problems. Examples of such classes include finite paths, ultimately periodic
path, finite trees, directed graphs of constant depths, and classes of Kripke struc-
tures with an SCC graph of constant depth.

Open questions and future work. There are several open questions that
deserve further study. Albeit small, there is a gap between ACl(IogDCFL) and
the best known lower bound, NC' for LTL path checking. There is some hope to
further reduce the upper bound towards NC!, the currently known lower bound,
because the construction in [13] relies on the algorithms for evaluating monotone
planar Boolean circuits with all constant gates on the outer face. The circuits
that appear in the construction actually exhibit much more structure. Another
way to improve the upper bounds of the path and tree checking algorithms would
be to prove a better upper bound for the problem of evaluating one-input-face
monotone planar Boolean circuits.

Another area that requires more attention is the model checking problem on
restricted frames for branching-time temporal logic. In the first author’s the-
sis [12], it is shown that the model checking problem for CTL on finite trees
is in NC (more precisely, in AC?(logDCFL)). The gap between NC as an upper
bound and L as a lower bound for tree structures and P for general structures is
comparably small. Still, beyond finite trees we do know very little about other
classes for which the model checking problem for CTL is in NC. What are the
properties of Kripke structures that allow for efficiently parallel model checking
for CTL? What is the complexity of tree checking for CTL+past and CTL with
a sibling axis? What is the complexity of CTL" tree checking?

Finally, an important question concerns the translation of the improved com-
plexity bounds for restricted sets of frames into efficient practical model check-
ing algorithms. The proofs in this paper and the underlying proofs for the path
checking problem [13] are based on a variety of different computational mod-
els: Boolean circuits, space-restricted Turing machines, time-restricted Turing
machines, Turing machines with push-down store, and parallel random access
memory machines (PRAM). Are there practical parallel implementations for
parallel path and tree checking?

Complexity classes that are characterized by efficient parallel algorithms and
complexity classes that are characterized by space-efficient algorithms are tightly
coupled through simulation theorems. Considering that in modern hardware ar-
chitectures cache-efficiency and I/O-efficiency matter more than the simple num-
ber of computation steps, the following question seems even more important than
the previous one: Can we derive practical space-efficient implementations from
parallel path and tree checking algorithms? With the fast growing number of
available cores in modern computing devices, on the one hand, and the tight re-
source restrictions on mobile devices, on the other hand, good trade-offs between
cache-efficiency, I/O-efficiency, and CPU-usage become increasingly important.
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