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Abstract

Linear-time temporal logic (LTL) is a widely used formalism to express specifications for

runtime verification. By extending LTL with parameters (PLTL), monitoring algorithms

cannot only be used to verify behaviour, but also to collect data on how long certain

properties hold or how long it takes for a system to fulfil a property. The fact that

LTL (and PLTL) usually work with atomic propositions to express a system’s condition

is debilitating, since specifications may also depend on data - e.g. values of variables or

measurements to verify internal consistency - which is hard to model using solely absence

and presence of properties expressed as atomic propositions.

This work is dedicated to address this problem by first extending PLTL with data and after-

wards constructing a corresponding monitoring algorithm that also takes care of obtaining

measurements for the included parameters. In order to incorporate data, the atomic propo-

sitions in PLTL will be replaced by predicates over an arbritrary, possibly infinite domain.

Universally quantified variables ranging over this domain will facilitate the construction and

readability of data-aware specifications, lifting PLTL up to a first-order logic called First-

order PLTL (FO-PLTL). Then, an online monitoring algorithm for measuring a sysem’s

behaviour using FO-PLTL specifications is presented, together with the corresponding

implementation that shows detailed measuring capabilities.
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Introduction

Motivation

With the presence of computer based systems in almost every part of everyday life, an

increasingly high degree of reliability is expected. Thus behavioural verification of such

systems becomes one of the key focuses in computer science. But with growing complex-

ity and dependency on factors beyond the primal implementation (e.g. networks or user

interaction), many of these systems are hard to formalize - if possible at all - in order

to apply established verification methods like model checking. Especially for these sys-

tems, runtime verification is a prominent alternative for formal verification and behavioural

analysis, as it needs no information about the implementation or undelying model. So

called monitoring algorithms (or simply monitors) observe a particular execution and verify

behaviour by analyzing externally measurable events.

When talking about monitors, we distinguish between two types, ’online’ and ’offline’

monitors. Whereas the former observes the ongoing execution as it proceeds and thus

runs side-by-side with the monitored system, the latter has direct access to all positions

in the sequence of observed events, as it is triggered after the execution has already

terminated. Although offline monitors can be implemented particularly space-efficient [12],

online monitors have the advantage of being able to recognize violations early and intervene

e.g. by stopping or restarting the current process. This is particularly advantageous,

considering the fact that in order to analyze the entire system’s behaviour (instead of just

the one execution), a large number of monitored runs is desirable.

Most monitors are based on a formal logic to express the system’s desired behaviour. One

of the most frequently used formalizations for such specifications is the Linear-time Tem-

poral Logic (LTL, [22]). With growing complexity of software systems and more and more

unknown factors (e.g. unknown API implementations, network reliability etc.) though,

another part of analysis - besides verification - becomes interesting, namely measuring of

temporal behaviour. First introduced in [2], the LTL-extension called Parametric Linear-

time Temporal Logic (PLTL) adds parametrized bounds to LTL’s standard temporal oper-

ators in order to add the ability to gather information e.g. about internal execution time.

In [12], efficient online and offline monitors are presented that return detailed temporal

data by determining optimal values for the parameters included in the specification.

But PLTL still has some restrictions when it comes to the expressiveness of some specifi-

cations, as one can see in the following example PLTL-formula

2(request → 3≤k response)

which can be read as ”At every point in time, a request is getting a response in at most k

steps”. With the usage of PLTL monitoring (or model checking) algorithms, the optimal
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k can easily be determined and therefore information about the maximal duration between

request and response can be gathered. For example, a correct monitor determines for

the trace of events {request}{request}{response}, that the specification is met for

the parameter valuation that assigns 2 to k . This may however not be the desired result,

since there is only one response for two – most likely different – requests. The more

interesting specification would therefore be ”At every point in time, every request is getting

a corresponding response”. In order to express this specification, though, a formalism to

include some kind of reference between a response and the respective request is needed.

The source of this problem lies in the fact that LTL (and therefore PLTL) is based on

atomic propositions to express the system’s properties. In every event, each of these

properties either holds (i.e. the proposition is present) or does not hold (i.e. the proposition

is absent). This thesis is dedicated to adding the ability to extend PLTL in a way, that these

propositions can carry data (e.g. the request could carry a reference to the corresponding

request) and therefore express data-aware specifications, like the one above.

Outline

The aim of this work is to develop a PLTL extension that is able to express such data-

aware properties and a corresponding online monitoring algorithm. Besides the formal

introduction of those two parts in this thesis, there will also be an implementation for the

monitor with some optimizations for both time- and space-efficiency.

In order to extend PLTL with ”data”, we adapt mechanisms from first-order predicate

logic. By introducing quantifiers and variables to PLTL, we not only add the ability to

include identifiers as needed e.g. for the above specification, but also to handle arbitrary

data. The specification ”Every request ist getting a corresponding response” will then be

formalized as
2
(
∀id. request(id)→ 3≤k response(id)

)
.

Similar to the way it is done in [12], the aim of PLTL monitoring is to determine an optimal

parameter-valuation under which the specification is met for the given input. Since the

introduction of PLTL in [2] does not give any definition of this kind of optimality for such

valuations, we will consider a semantically modified variant of PLTL, like it is done for online

monitoring in [12]. This variant eliminates the ambiguity of the measuring component of

a PLTL monitor, as shown in the first chapter.

An advantage that comes in handy with the use of variables in the specification is the

ability to not only determine an overall measuring result, but also collect value-dependent

temporal information about the considered system. With the specification above, one

could e.g. not only determine a k such that every response follows in at most k steps, but

also determine an optimal value for every respective id .

This adds to the enhanced verification capabilities a strong measuring component that can

be used to gain detailed temporal information about the monitored trace and therefore

system, as well.

The thesis itself is split into three parts. Whereas the first part formally introduces PLTL

and its extension – namely First-order PLTL (FO-PLTL) – the second and third part are

dedicated to the development of the monitoring algorithm, giving the formal definition in

the former and implementation details and results in the latter one.

The first chapter not only introduces First-order PLTL, but also defines the correct mea-

suring behaviour that is needed for the construction of the monitoring algorithm. The
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second chapter then presents an automata-based algorithm that can be used for verifica-

tion and measuring of FO-PLTL specifications. Every component of the algorithm will be

introduced and proven formally.

The third chapter then presents some information about the corresponding implementation

that is develoed in Scala1. It covers important optimizations that are needed for processing

large amounts of data. There are also two sections about some results that are obtained

from using the monitoring algorithm that also show more information about the detailed

measuring capabilities.

At the end of this thesis, there will be a short conclusion of the presented work and a part

about some related work in this field.

In order to keep a clear and lucid structure, all formal proofs and lemmas are located in

the appendix of this thesis.

1see http://www.scala-lang.org
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Chapter 1

First-order Parametric LTL

In this chapter, we will lay the foundation for the measuring algorithm in the next chapter by

introducing the underlying temporal logic, called First-order Parametric LTL (FO-PLTL).

As we have briefly seen in the last chapter, we can use a temporal logic like LTL and

their extensions to formalize specifications that describe e.g. the desired behaviour of

a computer system. Such specifications can then be used with monitoring or model-

checking algorithms to verify that a system behaves correctly, i.e. in a way that meets

the specification. Naturally, each temporal logic has its advantages and disadvantages,

may it be in expressiveness or in the efficiency of the ways they can be checked. We will

use the basis that Parametric LTL ([2]) provides and develop a logic that has the same

capabilities, but is also able to express specifications that reason about data.

The chapter will be structured as follows: In the first section, there will be a brief intro-

duction to LTL and PLTL and we will introduce the basic notion that is used in these

two formalisms to express specifications. We will present neither their formal syntax nor

semantics, but rather focus on the intuitive meaning behind the operators and how they

can be used to describe specific behaviour. Afterwards, we will extend PLTL with data by

formally introducing First-order Parametric LTL, starting with the syntactic concept and

then continuing by giving the semantic definitions. At the end of this chapter, we will

define the measuring part of FO-PLTL and how to tweak optimal results.

1.1 A short introduction to LTL and PLTL

The Linear-time Temporal Logic (LTL) is a temporal logic that can be used to express

future-dependent properties on a discrete time model, whose notion first appeared in [22].

The simplified idea is that at every point in time, some properties ”hold”. These proper-

ties are formally expressed as atomic propositions (e.g. sensor on, request, start...).

At every point in time, each of these properties is either absent or present, altoghether

describing a system’s current state. The atomic propositions also form the lowest-level

LTL formulae, i.e. every atomic proposition is also an LTL formula that describes the

specification that requires the corresponding property of the system to hold. For example,

the LTL formula sensor on requires the system’s sensor to be activated.

LTL formulae can be constructed using a variety of operators. First of all, it allows the

usual boolean connectives as negation (¬), conjunction (∧), disjunction (∨) and implication

(→), each being interpreted in the usual manner, for example ¬request describing that
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CHAPTER 1. FIRST-ORDER PARAMETRIC LTL

2p

3p

pR q

pU q

#p

p

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·
p arbitrary arbitrary arbitrary arbitrary

parbitrary arbitrary arbitrary arbitrary

p ∧ ¬q p ∧ ¬q q arbitrary arbitrary

¬p ∧ q ¬p ∧ q ¬p ∧ q q ∧ q arbitrary

¬p ¬p p arbitrary arbitrary

p p p p p

Figure 1.1: LTL operator semantics

there must be no request at the time checked. Besides these operators, LTL uses temporal

operators to express specifications that describe behaviour in time. There are the unary

operators Next (#), Eventually (3) Globally (2) and the two binary operators Until (U )

and Release (R ). Before we describe their semantic meaning, we first need to define how

to interprete LTL specifications in general:

To check if an execution meets an LTL specification, we consider executions as sequences

of events, named traces. Each event represents a state at some point in time and is

fomalized as a subset of atomic propositions, namely the ones that describe the system’s

properties at that point in time. We can then check the satisfaction of an LTL specification

starting at a given point in time, since there are no operators that describe past behaviour.

An execution meets a LTL specification whenever the entire corresponding trace satisfies

the whole LTL formula, i.e. the formula is satisfied at the first position of the trace. As

briefly mentioned above, at some point, i.e. regarding a specific event, the LTL formula

p (where p is an atomic proposition) is satisfied if and only if p is present in the current

event, i.e. the property holds. The boolean connectives are interpreted as usual, whereas

the temporal operators have the following meaning:

• #ϕ is satisfied iff ϕ is satisfied in the next step.

• ϕU ψ is satisfied iff ψ is satisfied now or at some point in the future and until then,

in every step ϕ is satisfied.

• ϕRψ is satisfied iff ψ is satisfied until and including the point it is released when ϕ

is satisfied, or always, if no such point exists.

• 3ϕ is satisfied iff ϕ is eventually satisfied, i.e. now or in some later step.

• 2ϕ is satisfied iff ϕ is globally satisfied, i.e. in every step from now on.

The meaning of these operators is also depicted in Figure 1.1. As already mentioned

above, the formal syntax and semantics for LTL will not be introduced here, but they can

6



CHAPTER 1. FIRST-ORDER PARAMETRIC LTL

be found in [3], pp. 231-236 for infinite traces or in [10] for finite traces. It is interesting

to know that, in fact, only negation, conjunction, Next and Until are the operators that

are essential for the expressiveness of LTL, every other operator can be derived ([3], pp.

231f.).

Example 1.1.1. Consider the following LTL formula:

2(request → 3response)

which reads ”At every point in time it holds that, whenever there is a request, a response

will follow”, so ”Every reqeust eventually gets a response”.

Monitoring or model checking LTL focuses on qualitative verification of specifications that

decribe temporal behaviour, i.e. if some property holds or not, rather than being interested

in quantitative information about e.g. how long it takes until some property holds. In order

to easily express more restrictive and detailed specifications, temporally bounded operators

were introduced in [18] to enhance the standard LTL operators. For example aU≤5b is

only satisfied if b holds in at most five steps and until then a holds. The operators 3≤5a,

aR≤5b and 2≤5b work similarly, the latter two stating that b needs to hold at least for

the next five steps (unless released by an earlier a).

Is is easy to see that only adding constant bounds to the temporal operators in LTL in this

manner does not increase its expressiveness, since they can be replaced by iterations of

the #-operator. Nevertheless, they give advantages both when it comes to constructing

specifications and to building efficient model checking and monitoring algorithms.

Seizing on this idea, the Parametric Linear-time Temporal Logic (PLTL) was introduced

in [2]. It presents a way to not only verify, but also measure temporal behaviour by

determining such bounds for the LTL operators while checking a specification. It allows

replacing the temporal bounds with parameters whose values are to be determined by the

model checking or monitoring algorithm.

PLTL extends LTL with the formal introduction of the following two operators: 3≤k and
2≤k . The semantics correspond to their LTL counterparts by restricting the time interval

to k steps, i.e. for 3≤kϕ, ϕ needs to be satisfied in at most k steps and for 2≤kϕ, it

must be satisfied for at least the next k steps. Derived from these two operators, there

are parametric variants for U and R , as well as the respective counterparts with a lower

bound, e.g. 3>kϕ (ϕ needs to be satisfied in more than k steps). Their full semantic

definition can be found in [2] for infinite and [12] for finite traces.

As mentioned above, the main idea is to measure the temporal behaviour of a system

whilst verifying the correctness. This is achieved by determining values for the included

parameters. Determining values for each parameter, though, is a tricky task, since every

parametric temporal operator behaves monotonically, e.g. if 3≤ka holds for some k , it

holds for every greater k ′ as well. Defining which value is in fact optimal and how to obtain

it will be considered in detail later in this chapter.

Example 1.1.2. Consider the following PLTL formula:

2(request → 3≤k response)

which is obtained from the one in Example 1.1.1 by replacing the 3-operator with its para-

metric counterpart using a new parameter k . Now checking this property is not only about

7
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{request} {} {response} {request} {response} {request, response}

2 steps 1 step 0 steps

Figure 1.2: Determining a parameter value in PLTL

verifying that every request eventually gets a response, but also about determining how

long it takes at most until a request is followed by a response. As depicted in Figure 1.2,

the given trace satisfies the specification for k = 2 and every greater k , because every

request is followed by a response in at most 2 steps.

As mentioned in the introduction, we are aiming to develop an extension of PLTL that can

handle ”data”. This basically means that from now on we are interested in specifications

that talk about values of some computer system’s component. While PLTL and LTL only

consider properties that are either present or absent (formalized as atomic propositions),

we now want to be able to talk about data-aware properties (e.g. values of variables,

measurements, counters etc.). In order to reason about such properties, we first need to

formalize them. We will do this using well known concepts of first-order predicate logic

and first-order LTL extensions like the one in [7].

1.2 Syntax

To express data-aware properties, we will part from atomic propositions and substitute

predicates. Every predicate can carry a number of ”arguments” that can be of an arbitrary

kind of data. For example, we could use the predicate vars(”Hello World!”) to describe

the fact that the program variable s currently stores the string ”Hello World!”. We can

also use predicates to describe more general properties of data, e.g. a predicate leq(x, y)

that holds if and only if x ≤ y . While the former one depends on the current state of the

system, the latter is rigid, i.e. does not depend on the considered execution of the system.

We will refer to these two kinds of predicates as a priori uninterpreted and interpreted

predicates, respectively.

Formally, we adapt the syntactic concepts introduced in [7] and introduce first-order sig-

natures for First-order Parametric Temporal Logic:

Definition 1.1 (Parametric first-order signature).

A parametric first-order signature S is a tuple (F ,P,X ,K) together with an implicit

function arity : F ∪ P → N where:

• F is a finite set of function symbols with ∀f ∈ F . arity(f ) ≥ 0.

• P = P I ∪ PU is a finite set of predicate symbols where

– P I ∩ PU = ∅,
– ∀p ∈ PU . arity(p) ≥ 0 and ∀r ∈ P I . arity(r) > 0.

• X is a set of variables.

• K is a finite set of parameters.

• F , P, X and K are pairwise disjunct.

8



CHAPTER 1. FIRST-ORDER PARAMETRIC LTL

From now on, we call parametric first-order signatures simply signatures. As usual, we

refer to 0-ary function symbols as constants and 0-ary predicate symbols as propositions.

The partitioning of the predicate symbols into the sets P I and PU corresponds to the a pri-

ori interpreted and respecively uninterpreted predicate symbols, that have been mentioned

above. We use a, b, c, ... to denote constants, f , g, h, ... as function symbolds, p, q, r, ...

as predicate symbols and x, y , z, ... to name variables.

The parametric first-order signature gives us all components that are needed to construct

formulae in First-order PLTL. Since the lowest-level formulae in FO-PLTL are not as easy

as atomic propositions like they were for PLTL, we need to define the notion of terms:

Definition 1.2 (Terms). Terms over a parametric first-order signature S = (F ,P,X ,K)

are defined inductively as follows:

• For every x ∈ X , x is a term and for every a ∈ F with ar ity(a) = 0, a is a term.

• For every f ∈ F with arity(f ) = n > 0 and terms t1, ..., tn, f (t1, ..., tn) is a term.

We denote the set of terms over S as TS .

It is easy to see, that terms are defined in the same way as they are for non-temporal first-

order predicate logic. As the final step for the syntactic definition of First-order PLTL, we

introduce formulae.

Definition 1.3 (First-order PLTL fomulae).

First-order PLTL formulae ϕ over a parametric first-order signature S = (F ,P,X ,K) are

defined as follows:

ϕ ::= true
∣∣ p(t1, ..., tn)

∣∣ ¬ϕ ∣∣ ϕ ∧ ϕ ∣∣ ϕ ∨ ϕ ∣∣ #ϕ
∣∣ ϕU ϕ ∣∣ ϕRϕ ∣∣

3≤kϕ
∣∣ 2≤kϕ

∣∣ ∀(x1, ..., xm):r. ϕ
∣∣ ∃(x1, ..., xm):r. ϕ

where k ∈ K, p ∈ P, n = arity(p), t1, ..., tn ∈ TS , r ∈ PU , m = arity(r) > 0 and

x1, ..., xm ∈ X . We also allow the following derived operators:

f alse , → , 3 , 2 , 3>k , 2>k , U≤k , U>k , R≤k , R>k

The operators #, U , R ,3 and 2 are called temporal. Their subscripted variants, e.g.

3≤k are further called parametric. To avoid the need of fully-parenthesized formulae, we

define the following precedence order on the operators:

¬ = # = 3 = 2 > U = R > ∧ > ∨ > → > ∀ = ∃

where all parametric operators have the same precedence as the corresponding non-

temporal operator. We also declare that binary operators with the same precedence bind

from right to left, e.g. ϕ1 U ϕ2Rϕ3 = ϕ1 U (ϕ2Rϕ3).

Formulae containing a parametric operator are called parametric, such with a temporal

operator as its main connective are called temporal. The same way it is done for non-

temporal predicate logic, we call true, f alse and formulae of the type p(t1, ..., tn) atomic

and such atomic formulae that contain no variables atomic sentences.

We refer to formulae in which every variable is bound by a quantifier (i.e. appears within

the scope of a quantifier that introduces the variable) as ground formulae.

9



CHAPTER 1. FIRST-ORDER PARAMETRIC LTL

First-order PLTL formulae can be used to express a variety of specifications that describe a

temporal behaviour. But before we can talk in more detail about formulae aside from what

they look like, we need to give meaning to the syntactic components. For this purpose,

we will now introduce the formal semantics of FO-PLTL.

1.3 Semantics

In this section, we will define the semantics for FO-PLTL that our monitor is based on.

All in all, the semantics are more or less directly constructed as a combination of the finite

trace PLTL semantics (taken from [12]) and standard predicate-logic semantics for quan-

tification. Nevertheless, one can observe in Definition 1.3 that there is a modification of

standard quantification syntax. This is, in fact, a restriction to ensure efficient monitoring

and will be explained in the following.

1.3.1 Ensuring finite-domain quantification

A problem that arises with every first-order logic is the fact that checking quantifications

over infinite domains is hard. For example, consider examples as simple as:

∀x.p(x) ∃x.¬p(x)

It is nearly impossible for a monitor to check the truth value of these formulae efficiently

when there are infinitely many possible values for x . Since we do not want to restrict

FO-PLTL to finite domains1, we need to find another way to resolve this problem. The

same way it is done in [7] and for other first-order LTL extensions ([4],[15]), in order to

avoid this kind of quantification, we add some restrictions to our FO-PLTL definition.

First of all, we assume that every event is finite, i.e. at every point in time, only finitely

many properties hold. Since events formally represent a system’s state in time which usually

consists of finitely many properties, the affect of this restriction on the expressiveness of

FO-PLTL is negligible. Nevertheless, it ensures that the active domain, i.e. the set that

contains all values of the domain that have been ”seen” in the trace up to this point,

is finite. Now, in order to make sure we can monitor specifications efficiently, we want

to ensure that we only need to consider the values in the active domain to check if a

quantified property is satisfied. This problem of domain-independence has already been

extensively studied ([16],[17],[1]). Unfortunately, though, domain-indepence is in general

undecidable, even for non-temporal first-order logic ([1]), which means, that we need to

find a way to restrict FO-PLTL in a way that our specifications are domain-independent

by construction. This is where the ”unusual” syntax for quantification, that has been

introduced in the last section, originates. Similar to the way presented in [7], in FO-PLTL

we only allow quantification of the following kind:

∀x1...∀xn. p(x1, ..., xn)→ ϕ ∃x1...∃xn. p(x1, ..., xn) ∧ ϕ

1 By restricting FO-PLTL to finite domains, we get no more expressiveness than in propositional PLTL,

as illustrated in the following: With a finite domain and finitely many predicates, the set of atomic sentences

would be finite, as well. By setting AP to the set of all possible atomic sentences and replacing every

universal (and existential) quantification with a finite conjunction (and disjunction) over all possible values,

we could transform every FO-PLTL formula into an equivalend PLTL formula, that could be monitored

using PLTL-monitoring techniques.

10
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Under standard quantification semantics, satisfaction of these formulae only depends on

the values d1, ..., dn for which p(d1, ..., dn) holds, i.e. for which p(d1, ..., dn) is in the

current event. Since therefore they are in the active domain, we know these formulae

to be domain-independent. The predicate p (taken from the set of a priori uninterpreted

predicates PU) is called the guard of the quantification. To make it clear that p is a guard,

we will use the notation

∀(x1, ..., xn):p. ϕ ∃(x1, ..., xn):p. ϕ

that has already been introduced in the formal FO-PLTL syntax definition.

1.3.2 First-order structures

We will now start giving meaning to the syntactical constructs of First-order PLTL. As

already mentioned above, we want variables to range over an arbitrary, possibly infinite,

domain. Naturally, the constants and function also need to take values in these domain,

and therefore terms, as well. We will start by introducing first-order structures that are

used to give meaning to the invariable components of a parametric first-order signature,

i.e. functions, constants and interpreted predicate symbols:

Definition 1.4 (First-order Structure). A first-order structure over a signature S where

S = (F ,P,X ,K), or simply S-structure, is a tuple S = (D, I) where D is a nonempty set

called domain and I is an interpretation that maps

• every constant a ∈ F with arity(a) = 0 to a value aI ∈ D,

• every function symbol f ∈ F with arity(f ) = n > 0 to a function f I : Dn → D and

• every interpreted predicate symbol p ∈ P I to a countable set pI ⊆ Darity(p).

We will write p(d1, ..., dn) ∈ I instead of (d1, ..., dn) ∈ pI to express the notion that a

property p(d1, ..., dn) holds. The first-order structure builds the foundation for interpreting

FO-PLTL formulae. It states the domain from which values can be taken and defines

values for every component of the formulae for which the value or truth value does not

change during the execution. For constants and function symbols, this interpretation is

straightforward. It defines the semantic meaning by assigning specific values and functions

ranging over the given domain. Furthermore it gives meaning to the interpreted predicate

symbols whose interpretations do not change in time, either. As mentioned above, the idea

behind interpreted predicate symbols is to express properties that do not depend on the

computer system’s current state, e.g. comparison results between different values in the

domain. As an example, the aforementioned binary predicate leq would be interpreted via

the domain D = Z as leqI :=
{

(a, b) ∈ Z | a ≤ b
}

, which follows the intuitive meaning

of the less-or-equal property. It has been shown in [7] that this notion can be extended to

interpretations that are not rigid, i.e. change over time, but can still be computed at every

point in time. Since this extension does not change anything for the monitoring approach

itself, in this thesis, we assume every interpreted predicate to have an invariable meaning.

Another part that varies from the first-order LTL semantics defined in [7] is the fact that

we do not use ”sorted”, i.e. typed, signatures and structures. The reason for this is

the same as before; it does not change anything for the monitoring approach itself and
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can thus, for simplicity reasons, be omitted withouth changing the expressiveness of FO-

PLTL. Nevertheless, it shows that without much effort, a type checking component could

be integrated into this monitoring algorithm.

So far we have given meaning to every part of FO-PLTL that does not depend on the

monitored system’s current state. Since FO-PLTL is a temporal logic, though, we now

address the temporal properties of FO-PLTL, especially the notion of ”satisfaction” of

First-order PLTL formulae. Because we have already seen the informal understanding of

formula satisfaction for LTL and PLTL, we can now focus on the formal introduction.

1.3.3 Formula satisfaction

In this section, we will introduce the formal semantics for First-order PLTL. For the rest

of this chapter, let a signature S = (F ,P,X ,K) and a S-structure S = (D, I) be given.

As mentioned in the introduction of LTL, the idea behind a temporal logic like FO-PLTL

is to formally express specifications for which we can algorithmically check, if it is met by

the monitored system’s behaviour. When it comes to monitoring, we consider a specific

execution of the monitored system, formalized as a sequence of events which describe

the system’s state at some point in time. For First-order PLTL, we only consider finite

executions, as the main interest lies in the measuring result which is to be returned after

checking the entire execution. Therefore we will define a finite-trace semantics for FO-

PLTL that captures this idea, similar to the way it is done in [12] for PLTL. This means

in particular that at the end of monitoring a finite execution there is no information about

the possibility of satisfaction after processing further events. The result only captures

if the system’s behaviour up to this point follows the specification and if so, what are

the measured temporal bounds. This supports the idea behind PLTL which prioritizes the

measuring task and makes it a subordinate interest why a specification is not met, i.e.

if there have been violations or there are still unfulfilled obligations after reading a finite

trace of events.

We will look into the measuring behaviour, i.e. determining optimal parameter-values, in

section 1.3.4. For now, our main focus lies on the question when (depending on given

parameter-values) a specification is met and when it is not. For this purpose, we first

introduce traces and events formally:

Definition 1.5 (Actions, events and traces).

For any p ∈ PU with arity(p) = n and d ∈ Dn, we call the tuple (p, d) an action. A finite

set of actions is called an event. We denote the set of all actions as ActS and all events

as ES.

A trace σ is a finite sequence of events, i.e. for some n, a function σ : {0, ..., n−1} → ES,

where n is called the length of the trace and is denoted as |σ|. Whenever clear from

context, the subscript of ActS and ES is omitted.

For a trace σ and i < |σ|, we will write p(d1, ..., dn) ∈ σ[i ] instead of (p, (d1, ..., dn)) ∈ σ(i)

and σ[i ...] to denote the sub-trace starting at index i . Furthermore we define for every

p ∈ PU with arity(p) = n > 0 and i , the set σp[i ] :=
{
d ∈ Dn | (p, d) ∈ σ[i ]

}
of all values

for which the predicate p is present at point i .

Actions, events and traces give meaning to the a priori uninterpreted predicates and are

used to describe the system’s state and how it changes over time, e.g. the current value

of a program variable.

12
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Satisfaction of a FO-PLTL specification is defined inductively over the structure of the

formula, i.e. different subformulae need to be satisfied at different points in time. For this

reason, we will define satisfaction depending on the position in the trace. In First-order

PLTL, satisfaction does not only depend on the monitored trace, but also on the values

of the parameters and free variables in the specification. To capture these values formally,

we introduce valuations and assignments:

Definition 1.6 (Valuations and assigments).

1. A parameter-valuation is a, possibly partial, function α : K → N ∪ {∞}.

2. A variable-assignment is a, possibly partial, function β : X → D.

3. The interpretation Iβ : TS → D of a term t under a valuation β is defined as follows:

Iβ(t) :=


β(x) if t = x ∈ V
aI if t = a ∈ F with arity(a) = 0

f I
(
Iβ(t1), ..., Iβ(tn)

)
if t = f (t1, ..., tn)

We use variable-assignments and the corresponding term-interpretations to determine the

value of a term under the current circumstances. Using Iβ, we can consider every atomic

formula as an atomic sentence and therefore find out whether or not they currently hold.

For reasons of simpler notation, we extend term-interpretations to atomic formulae by

defining

Iβ
(
p(t1, ..., tn)

)
:= p

(
Iβ(t1), ..., Iβ(tn)

)
for every predicate p with arity(p) = n and terms t1, ..., tn. By having given meaning

to every syntactical component of First-order PLTL, we can now introduce the formal

semantics for formula satisfaction:

Definition 1.7 (First-order-PLTL formula satisfaction).

For a FO-PLTL formula ϕ, a trace σ, a position i with 0 ≤ i < |σ|, a parameter-valuation

α which is total on the set of parameters occuring in ϕ and a variable-assignment β which

is total on the set of variables occuring freely in ϕ, we inductively define the satisfaction

relation (σ, i , α, β) |= ϕ (in words: ”σ satisfies ϕ at position i under α and β”) as follows:

(σ, i , α, β) |= true

(σ, i , α, β) |= p(t1, ..., tn) iff

{
Iβ
(
p(t1, ..., tn)

)
∈ σ[i ] if p ∈ PU

Iβ
(
p(t1, ..., tn)

)
∈ I if p ∈ P I

(σ, i , α, β) |= ¬ϕ iff (σ, i , α, β) 6|= ϕ

(σ, i , α, β) |= (ϕ1 ∧ ϕ2) iff (σ, i , α, β) |= ϕ1 and (σ, i , α, β) |= ϕ2

(σ, i , α, β) |= (ϕ1 ∨ ϕ2) iff (σ, i , α, β) |= ϕ1 or (σ, i , α, β) |= ϕ2

(σ, i , α, β) |= #ϕ iff i + 1 < |σ| and (σ, i + 1, α, β) |= ϕ

(σ, i , α, β) |= ϕ1 U ϕ2 iff there exists j , i ≤ j < |σ| where (σ, j, α, β) |= ϕ2 and

(σ, j ′, α, β) |= ϕ1 for each j ′, i ≤ j ′ < j

(σ, i , α, β) |= ϕ1Rϕ2 iff for each j , i ≤ j < n, either (σ, j, α, β) |= ϕ2 or there

exists j ′, i ≤ j ′ < j where (σ, j ′, α, β) |= ϕ1

13
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(σ, i , α, β) |= 3≤kϕ iff there exists j with 0 ≤ j ≤ α(k) and i + j < |σ|
such that (σ, i + j, α, β) |= ϕ

(σ, i , α, β) |= 2≤kϕ iff (σ, i + j, α, β) |= ϕ for each j where 0 ≤ j ≤ α(k)

and i + j < |σ|

(σ, i , α, β) |= ∀(x1, ..., xn):p. ϕ iff
(
σ, i , α, β[d/(x1,...,xn)]

)
|= ϕ for each d ∈ σp[i ]

(σ, i , α, β) |= ∃(x1, ..., xn):p. ϕ iff
(
σ, i , α, β[d/(x1,...,xn)]

)
|= ϕ for some d ∈ σp[i ]

where β[d/(x1,...,xn)] denotes the function that for d = (d1, ..., dn) maps xi to di (for all i)

and x to β(x) for every other x .

The derived operators are assigned the following semantic interpretations:

f alse := ¬true ϕ1 → ϕ2 := ¬ϕ1 ∨ ϕ2

3ϕ := true U ϕ 2ϕ := f alse Rϕ

3>kϕ := 2≤k3#ϕ 2>kϕ := 3≤k2#ϕ

ϕ1 U≤kϕ2 := (ϕ1 U ϕ2) ∧3≤kϕ1 ϕ1 U>kϕ2 := 2≤k
(
ϕ1 ∧#(ϕ1 U ϕ2)

)
ϕ1R≤kϕ2 := (ϕ1Rϕ2) ∨2≤kϕ1 ϕ1R>kϕ2 := 3≤k

(
ϕ1 ∨#(ϕ1Rϕ2)

)
As mentioned above, this finite trace semantics is defined such that a formula is satisfied if

and only if there have been no violations in the trace and there are no unfulfilled obligations

after reading the entire trace, e.g. 3ϕ where ϕ was not yet satisfied.

The above satisfaction semantics for the basic LTL operators correspond to the ones

in [10], the PLTL operators are defined in the same way as in [12] and the first-order

component has been adapted from [7]. The interpretations of the boolean connectives

¬,∧,∨ and → also directly correspond to the standard predicate logic semantics and the

definition of the derived parametric operators supports the intuitive meaning of bounded

temporal operators that is introduced in [2].

Theorem 1.1 (Existence of positive normal form). For every FO-PLTL formula ϕ there

exists an equivalent (wrt. |=) FO-PLTL formula ϕ′ in positive normal form (PNF), i.e.

such that the negation operator ¬ only appears in front of atomic formulae, there are no

double-negations and no derived operators.

The monitoring approach presented in this thesis only works with FO-PLTL formulae

in positive normal form. Altough for the derived operators, the transformation into PNF

makes a formula grow exponentially, this has no greater effect on the monitoring algorithm,

since every subformula is considered only once. The usage of PNF in the monitoring

algorithm is also the reason for explicitly defining the operator-semantics of ∧, R and ∃,

even though they can be derived from the other operators.

For ground formulae, free variables only appear in quantified subformulae, which means

that satisfaction of a ground formula ϕ by a trace σ under a parameter-valuation α can

be defined as follows:

(σ,α) |= ϕ := (σ, 0, α, β∅) |= ϕ

where β∅ denotes the variable-assigment that is undefined for every variable in X .

With the above definition the meaning of every component of the FO-PLTL formulae is

formalized. The key feature of FO-PLTL monitoring, though, is not about checking if a

specification is satisfied under a given parameter-valuation, but rather about measuring

temporal behaviour by determining optimal values for these parameters.
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1.3.4 Measuring First-order PLTL

Properties. It is easily derivable from the above semantics, that there is not always a

unique parameter-valuation for which the formula is satisfied. In fact, there are multiple

factors that contribute to this unambiguity of FO-PLTL.

First of all is every parametric operator upward or downward monotone ([2]), e.g. the

operator 3≤k is upward monotone since if satisfaction holds for [k 7→ n], it holds for

every [k 7→ n′] with a greater n′, as well. This follows the intuitive meaning the operator:

Whenever some property holds in at most n, steps, it naturally holds in at most ”more

than n” steps, as well. 2≤k , though, is downward monotone, since whenever a property

holds for the next n steps, it naturally holds for the next n′ < n steps, as well. The same

is the case for every operator that is derived from one of those two. Negated parametric

formulae have respective opposing monotinicity behaviour, as illustrated in A.6 and A.7.

From now on, we assume that every formulae is in positive normal form, so we know that

3≤k behaves upward and 2≤k behaves downward monotonously.

Because of this property, choosing arbitrarily large values for parameters that appear in

the 3≤k operator and 0 for the ones that appear in 2≤k is a way to obtain satisfaction

(in most cases). In order to get detailed information about the temporal behaviour of our

system, though, we are aiming to get optimal parameter values. Therefore, for the 3≤k
operator, we want to minimize the value for k , such that satisfaction is given and for 2≤k
we want to maximize the value, respectively.

Restrictions. With the monotinicity of the parametric operators, a problem arises: In both

PTLT and FO-PLTL, we must not use the same parameter in both upward and downward

monotone operators. Allowing this, we would face the problem that the existence of a

parameter-valuation under which the specification is satisfied, becomes undecidable, as it

was shown in [2]. Furthermore, in order to ensure efficient monitoring, we use a parameter

only to measure the satisfaction of one unique subformula, i.e. for every FO-PLTL formulae

ϕ,ϕ′ and parameter k holds:

3≤kϕ′ subformula of ϕ⇒ ∀ϕ′′.2≤kϕ′′ not a subformula of ϕ (1.1)

2≤kϕ′ subformula of ϕ⇒ ∀ϕ′′.3≤kϕ′′ not a subformula of ϕ (1.2)

3≤kϕ′ subformula of ϕ⇒ ∀ϕ′′.(3≤kϕ′′ subformula of ϕ⇒ ϕ′ = ϕ′′) (1.3)

2≤kϕ′ subformula of ϕ⇒ ∀ϕ′′.(2≤kϕ′′ subformula of ϕ⇒ ϕ′ = ϕ′′) (1.4)

We denote the two disjunct sets of parameters k that occur in a 3≤k or 2≤k operator

as Kϕ,↑ or Kϕ,↓, respectively. Furthermore, we define the set of parameters occuring in a

formula ϕ altogether as Kϕ := Kϕ,↓∪Kϕ,↑. Additionally, we assume that every parameter-

valuation is only defined for the parameters that occur in the specification we currently

investigate. Whenever ϕ is clear from context, it is ommited in the subscipt.

We call a parameter-valuation that is maximized for upward monotone and minimized for

downward monotone parameters a measure. In order to introduce this measure-property

formally, we first define the the quality of a parameter-valuation:

Definition 1.8 (Valuation quality). For any FO-PLTL formula ϕ and parameter-valuations

α1 and α2, we define wϕ such that α1 wϕ α2 if and only if

∀k ∈ Kϕ,↑. α1(k) ≤ α2(k) and ∀k ∈ Kϕ,↓. α1(k) ≥ α2(k)

We further define α1 =ϕ α2 if and only if α1 wϕ α2 and α1 6= α2.

15



CHAPTER 1. FIRST-ORDER PARAMETRIC LTL

3≤03≤0q(1) 3≤13≤0q(2)

3≤0q(1)

∀x : p.3≤13≤0q(x) ∀x : p.3≤03≤0q(x)

3≤0q(2)

2
(
∀x : p.3≤13≤0q(x)

)

{
p(1), p(2), q(1)

} {
q(2)

}

3≤03≤0q(1) 3≤03≤1q(2)

3≤0q(1) 3≤1q(2)

∀x : p.3≤03≤1q(x) ∀x : p.3≤03≤0q(x)

2
(
∀x : p.3≤03≤1q(x)

)

{
p(1), p(2), q(1)

} {
q(2)

}

Figure 1.3: Ambiguity of measures

By definition, the relations =ϕ and wϕ are in general partial orderings on parameter-

valuations. Again, Whenever clear from context, the subscript ϕ is omitted. The quality

of a parameter-valuation is now used to describe the measure-property formally:

Definition 1.9 (Measure). For every FO-PLTL formula ϕ, trace σ and variable-assignment

β, a parameter-valuation α is called a measure for ϕ over σ under β if and only if

(σ, 0, α, β) |= ϕ and (σ, 0, α′, β) 6|= ϕ for all α′ where α′ = α. We denote the set of

all measures for ϕ over σ under β as Mϕ,σ,β.

It is proven that even for propositional PLTL, measuring of a specification is unambiguous,

meaning that there is not always a unique measure for every satisfiable specification ([12]).

This carries over to the first-order case, as well:

Theorem 1.2 (Ambiguity of measures). There exist ϕ, σ and β, such that |Mϕ,σ,β | > 1.

Example 1.3.1. Let ϕ be the First-order PLTL formula 2
(
∀x :p.3≤k3≤k ′q(x)

)
and σ be

the trace {p(1), p(2), q(1)}{q(2)}. As depicted in Figure 1.3, for x 7→ 1, q(x) holds in

the same step as p(x) and therefore we can minimize both k and k ′ to 0. But for x 7→ 2,

we have two ways. Either we set k 7→ 0 and k ′ 7→ 1 or we choose k 7→ 1 and k ′ 7→ 0.

Both valuations are measures of ϕ over σ under β∅.

This example briefly displays another characteristic of measures: Although the subformula

3≤k3≤k ′q(x) is satisfied by σ under [k 7→ 0, k ′ 7→ 0] and variable-assignment [x 7→ 1], it

is not a measure of ϕ. We have to find a valuation, under which satisfaction is given for

all instantiations of the quantifier. More generally, we need to consider every ”measuring

instance” to get a measure for the entire formula, i.e. the measure at every point in

time and for every quantifier instantiation, where the parametric subformula needs to be

satisfied. The monitoring algorithm in the next chapter measures the instantiations of a

quantifier separately. Therefore, we need to define a way to combine parameter-valuations

that maintains satisfaction and parameter-quality:

Definition 1.10 (Conjunction on valuations). For two of parameter-valuations α1 and α2,

we define the conjunction of valuations ∩ as follows:

(α1 ∩ α2)(k) =

{
max

{
α1(k), α2(k)

}
if k ∈ K↑

min
{
α1(k), α2(k)

}
if k ∈ K↓
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1.3.5 Unambiguous semantics

In general, we want to avoid ambiguity of measuring results. Especially in the first-order

case when it comes to existential quantification, the number of measures that need to be

considered, can explode easily. For this purpose, we aim to modify the measuring semantics

of FO-PLTL in such a way that we obtain a unique result, whenever a specification is

satisfiable. We will present two different ways to reach this goal, the latter one being used

in our monitoring algorithm.

Unambiguity through parameter priorities

One way to obtain a unique measure is used in the offline monitoring algorithm in [12]

and uses a precedence, under which parameter values need to be optimized primarily. This

precedence is given by a total priority ordering on the parameters in K. This ordering then

induces a total quality-ordering on paramater-valuations (and therefore measures) that is

used to determine the optimal measure.

Definition 1.11 (Optimal measure with regard to paramater priority).

Let � be a total order over K and k be the maximal element of K with respect to �. We

define for every FO-PLTL formula the ordering �w over parameter-valuations inductively as

follows: For parameter-valuations α1 and α2, α1 �w α2 holds if

• k ∈ K↑ and α1(k) < α2(k),

• k ∈ K↓ and α1(k) > α2(k) or

• α1(k) = α2(k) and α1 \ k �w α2 \ k .

We further define α1 �= α2 if and only if α1 �w α2 and α1 6= α2. We refer to the maximal

measure (with respect to �=ϕ) for a formula ϕ over a trace σ under a variable-assignment

β as the optimal measure for ϕ over σ with parameter-priority �.

As mentioned above, �= is a total ordering on parameter-valuation that extends = by using

� whenever α and α′ are incomparable with respect to =. In particular, this means that

for all priorities �, we have that α = α′ ⇒ α �= α′.

Example 1.3.2. We consider the formula and trace used in Example 1.3.1 and assume that

k � k ′ holds. The two determined measures are incomparable wrt. =, but by definition of

�, we give priority to the optimization of k and obtain [k 7→ 0, k ′ 7→ 1] �= [k 7→ 1, k ′ 7→ 0].

We then choose the valuation that is maximal wrt. �=, i.e. the measure that has the

minimal value for k and therefore obtain the optimal measure [k 7→ 0, k ′ 7→ 1].

Unambiguous semantics

A different way to obtain unique measures is by modifying the FO-PLTL semantics alto-

gether. As seen in [12], for (propositional) PLTL, it is sufficient to specify the behaviour

concerning disjunction, the Until, the Release and the Eventually operator. In FO-PLTL,

we also need to alter the semantics for the existential quantification.

When in comes to disjunction, for example, considering a specification ϕ1 ∨ ϕ2, it is

easily observable that whenever both ϕ1 and ϕ2 are satisfied, the chance of obtaining

multiple measures is given. Similarly for formulae like ϕ1 U ϕ2, whenever ϕ2 holds multiple
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times while ϕ1 keeps being satisfied, it may depend on the considered point at which

ϕ holds, how the measure looks like. Per definition, therefore the same holds for the

non-parametric 3-operator, as you can see in [12] (page 5, section ”Unique Measures”).

Since guarded existential quantification behaves similar to a finite disjunction, we can get

different measures for ∃x :p. ϕ whenever ϕ is satisfiable under β[d/x] for multiple d . To

tackle this ambiguous measuring behaviour, we introduce an unambiguous semantics by

adapting the definition introduced in [12] and extending it to cover ambiguity of measuring

existential quantifications. To obtain unique measures, we now give priority in these kinds

of formulae, i.e. for ϕ1∨ϕ2 we consider ϕ2 only if ϕ1 cannot be satisfied for any parameter-

valuation. For ϕ1 U ϕ2, we measure to the first occurrence where ϕ2 can be satisfied and

similarly for ϕ1Rϕ2 the first position where ϕ1 and ϕ2 can. For ∃x :p. ϕ, we use the

approach introduced on the previous page and determine the optimal d by looking at the

(unique) measures for ϕ[d/x] and choosing the one that is optimal with respect to a given

priority of the parameters that occur in ϕ. To express the notion of ”can or cannot be

satisfied” that we use in this approach, we define the FO-LTL-abstraction (see also [12]):

Definition 1.12 (FO-LTL-abstraction). For a FO-PLTL formula ϕ, the FO-LTL-abstraction

[ϕ] is defined inductively as follows:

[true] = true [ϕ1 U ϕ2] = [ϕ1]U [ϕ2]

[p(t1, ..., tn)] = p(t1, ..., tn) [ϕ1Rϕ2] = [ϕ1]R [ϕ2]

[¬p(t1, ..., tn)] = ¬p(t1, ..., tn) [3≤kϕ] = 3[ϕ]

[ϕ1 ∧ ϕ2] = [ϕ1] ∧ [ϕ2] [2≤lϕ] = [ϕ]

[ϕ1 ∨ ϕ2] = [ϕ1] ∨ [ϕ2] [∀(x1, ..., xn):p. ϕ] = ∀(x1, ..., xn):p. [ϕ]

[#ϕ] = #[ϕ] [∃(x1, ..., xn):p. ϕ] = ∃(x1, ..., xn):p. [ϕ]

The FO-LTL-abstraction of a formula ϕ eliminates all parametric operators and substitutes

in a way, such that [ϕ] is satisfied if and only if there exists a parameter-valuation, under

which ϕ is satisfied:

Theorem 1.3 (Satisfiability of the FO-LTL abstraction). For every ϕ, σ and β holds:

∀α.(σ, 0, α, β) |= [ϕ] iff ∃α.(σ, 0, α, β) |= ϕ

Since [ϕ] is parameter-free by construction, we know that satisfaction does not depend on

the choice of α. In particular, this means that if ¬[ϕ] is satisfied under some valuation,

ϕ cannot be satisfied under any valuation. We now use this abstraction to formally define

the unambiguous semantics that is described above.

Definition 1.13 (Unambiguous FO-PLTL formula satisfaction). Let a total ordering �
on K be given. We define the satisfaction relation |= under unambiguous semantics by

adapting the definition of |= from FO-PLTL formula satisfaction and modifying only the

semantics for the following operators:

(σ, i , α, β) |= (ϕ1 ∨ ϕ2) iff (σ, i , α, β) |= ϕ1 or (σ, i , α, β) |= ¬[ϕ1] ∧ ϕ2

(σ, i , α, β) |= ϕ1 U ϕ2 iff there exists j , i ≤ j < |σ|, such that (σ, j, α, β) |= ϕ2

and (σ, j ′, α, β) |= ϕ1 ∧ ¬[ϕ2] for each j ′, i ≤ j ′ < j

(σ, i , α, β) |= ϕ1Rϕ2 iff for each i ′, i ≤ i ′ < n. (σ, i ′, α, β) |= ¬[ϕ1]∧ϕ2 or there

exists j , i ≤ j < n such that (σ, j, α, β) |= ϕ1 ∧ ϕ2 and

(σ, j ′, α, β) |= ¬[ϕ1] ∧ ϕ2 for each j ′, i ≤ j ′ < j

(σ, i , α, β) |= 3≤kϕ iff there exists j with 0 ≤ j ≤ α(k) and i + j < |σ|, such

that (σ, i + j, α, β) |= ϕ and (σ, i + j ′, α, β) |= ¬[ϕ] for

each j ′, 0 ≤ j ′ < j
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(σ, i , α, β) |= ∃(x1, ..., xn):p. ϕ iff for some d ∈ σp[i ],
(
σ, i , α, β[d/(x1,...,xn)]

)
|= ϕ

and for each α′ where α′ �= α holds that(
σ, i , α′, β[d ′/(x1,...,xn)]

)
6|= ϕ for every d ′ ∈ σp[i ]

Whenever necessary, we use |=� to make clear that we consider satisfaction under the

unambiguous semantics.

It is important to notice that a measure under unambiguous semantics may not be a mea-

sure under the standard semantics from Definition 1.7, as is illustrated in [12] (p.15) for

propositional PLTL. Nevertheless, we can show that the restrictions in the unambiguous

semantics only modify the measuring behaviour, not satisfaction in general, i.e. when-

ever we can achieve satisfaction under the standard FO-PLTL semantics, we can find a

parameter-valuation which is satisfying under the unambiguous semantics:

Theorem 1.4 (Existence of a satisfying valuation under unambiguous semantics). For

every FO-PLTL formula ϕ, trace σ, variable-assignment β and total ordering � on K

∃α. (σ, 0, α, β) |= ϕ iff ∃α′. (σ, 0, α′, β) |=� ϕ

The purpose of the modifications we made in the unambiguous semantics compared to the

standard FO-PLTL semantics is to obtain an unanbiguous measuring behaviour. Although

the notion is already briefly explained above, we still need to prove that measures under

the unambiguous semantics are, in fact, unique:

Theorem 1.5 (Uniqueness of the measure under unambiguous semantics). For every First-

order PLTL formula ϕ, trace σ, variable-assignment β and total ordering � on K holds: If

α is measure for ϕ over σ under β, then it is unique, i.e. there is no different parameter-

valuation α′ 6= α that is also a measure.

If this unique measure exists, we will refer to it as the unambiguous measure with respect

to � for ϕ over σ under β and denote it as α�ϕ,σ,β.

Summary

In this chapter, we have introduced First-order Parametric LTL, a temporal logic with

measuring capabilities that can express data-aware specifications for monitoring or model-

checking purposes. We have stated some semantic restrictions – e.g. guarded quantifica-

tion or the requirement every parameter must not appear in both upward and downward

monotone operators – that are neccessary to ensure efficient monitoring.

We have also seen that in general, there is not a unique measuring result for a given

specification and trace and further information (e.g. parameter priorities) or even semantic

modifications (see unambiguous semantics) are needed to obtain an explicit measure.

By presenting the formal definition of First-order Parametric LTL, we have laid the foun-

dation of the monitoring algorithm and can therefore start its construction in the following

chapter.
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Chapter 2

A monitor for First-order PLTL

We will adapt the online-monitoring algorithms presented in [12] and [7] to construct a

monitor for First-order Parametric LTL, since both use a similar approach. The monitor

will be based on a special kind of automata that accepts an input – i.e. a trace – if and only

if the trace satisfies the formula. In [12], so called measuring automata were introduced,

which maintain counter variables for the parameters to be measured. The algorithm in

[7] uses spawning automata to handle the first-order component of the logic, by spawning

a new automaton for every instantiation of a quantification and modifying the accepting

condition accordingly.

Our monitoring algorithm uses atoms (in [7] they are called complete subsets of the clo-

sure), i.e. sets of subformulae, as states for the automata. Intuitively speaking, such an

atom contains every subformula that is satisfied at the current position in the trace. By

defining consistency conditions on such atoms and constructing the transition relation ac-

cordingly, violations with respect to the satisfaction semantics are ruled out and therefore

every atom represents a possibly satisfying future behaviour. Since there is in general no

unique way of satisfying a specification in LTL or PLTL, these automata are nondetermin-

istic. For the unambiguous semantics of PLTL, a deterministic measuring automaton can

used, whose states are sets of such atoms. ([12]) In First-order LTL, a nondeterministic

transition relation is used, meaning that in every step, possibly different successor states

can be reached and the existence of an accepting run is checked. ([7])

Each run maintains counters that are used to determine a measure for the given specifica-

tion. Since the meausuring behaviour is in general ambiguous for the standard FO-PLTL

semantics, we will develop an algorithm that computes the unambiguous measure for a

given specification and input-sequence. As mentioned above, we will use a combination of

the two automata presented in [12] and [7] and introduce a new kind of automaton.

We will slightly modify the notation introduced in the original algorithms and automata

constructions to provide optimal readability in this thesis. Nevertheless, we will present

every aspect of the monitoring algorithm formally and prove its correctness.

2.1 Measuring-spawning automata

In this section, we will formalize the type of automaton that is used for monitoring FO-

PLTL. We adapt the definition from spawning automata (see [7]) and measuring automata

(see [12]). For an arbitraty set X, let B+(X) denote the set of all positive boolean formulae
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over X, i.e. conjunctions and disjunctions of elements of X. For a subset Y ⊆ X and

b ∈ B+(X), we write Y ||= b if and only if the truth assignment that assigns true to all

elements in Y and false to all elements in X \ Y , satisfies b under the standard boolean

semantics. (see also [7])

Definition 2.1 (Measuring-spawning automaton). A measuring-spawning automaton (ms-

automaton) A is a tuple (Σ, l , Q, q0, P, θ, δ, γ, λ, F ) where

• Σ is an input alphabet,

• l ∈ N is a level,

• Q is a set of states, q0 ∈ Q the initial state,

• P is a set of measuring variables, θ : P → N is an initial measuring-assignment,

• δ : Q×Σ→ 2Q is a transition relation,

• γ : Q×Q→ (P → N)→ (P → N) is an update function,

• λ : Σ×Q→ B+(A<l) is a spawning function,

• F ⊆ Q is a set of final states,

where A<l denotes the set of spawning measuring automata with a level smaller than l .

Definition 2.2 (Run of a spawning measuring automaton). A run of a spawning measuring

automaton A = (Σ, l , Q, q0, P, θ, δ, γ, λ, F ) over an input sequence σ = σ0σ1...σn−1 ∈ Σ∗

is a sequence π = (s0, η0)(s1, η1)...(sn, ηn) of configuations, where each configuration is

a pair (si , ηi) consisting of a state si ∈ Q and a measuring-assignment ηi : P → N, such

that

• s0 = q0, η0 = θ,

• si+1 ∈ δ(si , σi) for i = 0, ..., n − 1 and

• ηi+1 = γ(si , si+1)(ηi) for i = 0, ..., n − 1.

We call λ(σi , si+1) the (spawning) obligation at point i . π is called locally accepting, if

sn ∈ F . If l = 0, π is called accepting if it is locally accepting. If l > 0, it is called

accepting if for each i = 0, ..., n− 1 there exists a set Y ⊆ A<l such that Y ||= λ(σi , si+1)

and all A′ ∈ Y have an accepting run π′ over σi ...σn−1. The set of all accepting runs π of

A over σ is denoted as ΠA(σ).

2.2 Atoms and successors

Atoms. As it has been briefly mentioned in the introduction of this chapter, we will use

sets of subformulae of the given specification, so called atoms, as states in the monitoring

automata. These sets will contain the subformulae that are satisfied at the time they are

visited or are assumed to be satisfied by some future behaviour. To handle the case of

quantified formulae, we use the spawning capabilities of the ms-automata to spawn a new

automaton for every instantiation of the quantification, e.g. whenever a formula ∀x :p.ϕ

is assumed to be satisfied, we spawn a new automaton that measures ϕ under β[d/x] for
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every d ∈ σp[i ] and then use the acceptance condition of ms-automata to make sure that

every such ”assumption” of satisfaction is, in fact, the case. Therefore, we do not need

to consider the subformulae of ϕ in the ”parent” automaton.

The measuring component of the ms-automaton uses this invariant to update the counters

for every parameter in the specification, whenever some parametric formula is present in the

current atom. In general, we make the assumption that whenever an atom does not contain

a subformula, it contains its negation – also in PNF. Since we need to avoid measuring

negations of parametric subformula, i.e. we do not measure k in 2≤k¬ϕ whenever 3≤kϕ
is not in the atom, we consider only the negations of non-parametric subformulae. We are,

in order to follow the unambiguous semantics, reliant upon the FO-LTL abstraction and

therefore we consider every subformula of the specification’s abstraction and its respective

negation, as well. The set of all such considered subformulae is called the closure.

In the following, we will denote the given specification that is to be monitored as Φ and

use ϕ for its subformulae.

Definition 2.3 (Closure). For a First-order PLTL formula Φ, we define the closure cl(Φ)

of Φ to be the set that contains every subformula of Φ or [Φ] that does not occur inside

the scope of a quantifier and the respective negation of every non-parametric such formula.

As mentioned before, we will treat formulae that start with a quantifier as if they were

propositions, i.e. either absent or present. We will now define atoms so that they follow

the FO-PLTL satisfaction semantics:

Definition 2.4 (Atom). An atom of a First-order PLTL formula Φ is a set A ⊆ cl(Φ) that

has the following properties:

1. Local consistency with respect to propositional logic, i.e.:

(ϕ1 ∧ ϕ2) ∈ A⇔ (ϕ1 ∈ A) ∧ (ϕ2 ∈ A) (At.1.1)

(ϕ1 ∨ ϕ2) ∈ A⇔ (ϕ1 ∈ A) ∨ (ϕ2 ∈ A) (At.1.2)

ϕ ∈ A⇒ ¬ϕ /∈ A (At.1.3)

true ∈ cl(Φ)⇒ true ∈ A (At.1.4)

2. Local consistency with respect to the Until operator, i.e.:

For each (ϕ1 U ϕ2) ∈ cl(Φ) holds:

ϕ2 ∈ A⇒ (ϕ1 U ϕ2) ∈ A and
(

(ϕ1 U ϕ2) ∈ A ∧ ϕ2 /∈ A
)
⇒ ϕ1 ∈ A (At.2)

3. Local consistency with respect to the Release operator, i.e.:

For each (ϕ1Rϕ2) ∈ cl(Φ) holds:

(ϕ1Rϕ2) ∈ A⇒ ϕ2 ∈ A and
(
ϕ1 ∈ A ∧ ϕ2 ∈ A

)
⇒ (ϕ1Rϕ2) ∈ A (At.3)

4. Local consistency with respect to the parametric Globally operator, i.e.:

For each 2≤kϕ ∈ cl(Φ) holds:

2≤kϕ ∈ A⇒ ϕ ∈ A (At.4)
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5. Unambiguity with respect to disjunction, i.e.:

For each (ϕ1 ∨ ϕ2) ∈ A holds:

[ϕ1] ∈ A ∧ ϕ1 ∈ A or ¬[ϕ1] ∈ A ∧ ϕ2 ∈ A (At.5)

6. Unambiguity with respect to the Until operator, i.e.:

For each (ϕ1 U ϕ2) ∈ A holds:

ϕ1 ∈ A ∧ ¬[ϕ2] ∈ A or ϕ2 ∈ A (At.6)

7. Unambiguity with respect to the Release operator, i.e.:

For each (ϕ1Rϕ2) ∈ A holds:

¬[ϕ1] ∈ A ∧ ϕ2 ∈ A or ϕ1 ∈ A ∧ ϕ2 ∈ A (At.7)

8. Maximality, i.e. for every non-parametric ϕ ∈ cl(Φ):

ϕ ∈ A or ¬ϕ ∈ A (At.8)

We will write AtΦ to denote the set of atoms of Φ.

Successors. Our monitor processes subsequent events step by step to determine viola-

tions and update measurements. To describe the transitions between atoms, we need a

successor relation that processes an event corresponding to the semantic definition of the

considered subformulae. Thereby, the invariant mentioned above saying that the current

atom contains every subformula which is satisfied at the time it is ”visited”, is maintained:

Definition 2.5 (Successor relation). For each Φ and β, let →β⊆ AtΦ × E × AtΦ be a

succesor relation between atoms of Φ. For each τ, τ ′ ∈ AtΦ and e ∈ E, we have τ
e−→β τ

′

if τ ′ is the smallest set such that the following conditions hold:

∀.p(t1, ..., tn) ∈ AtΦ where p ∈ PU . p(t1, ..., tn) ∈ τ ′ ⇔ Iβ
(
p(t1, ..., tn)

)
∈ e (S.1)

∀.p(t1, ..., tn) ∈ AtΦ where p ∈ P I . p(t1, ..., tn) ∈ τ ′ ⇔ Iβ
(
p(t1, ..., tn)

)
∈ I (S.2)

#ϕ ∈ τ ⇒ ϕ ∈ τ ′ (S.3)

(ϕ1 U ϕ2) ∈ τ ⇒ (ϕ2 ∈ τ) ∨
(
ϕ1 ∈ τ ∧ (ϕ1 U ϕ2) ∈ τ ′

)
(S.4)

(ϕ1Rϕ2) ∈ τ ⇒ (ϕ2 ∈ τ) ∧
(
ϕ1 ∈ τ ∨ (ϕ1Rϕ2) ∈ τ ′

)
(S.5)

3≤kϕ ∈ τ ⇒ (ϕ ∈ τ) ∨ (3≤kϕ ∈ τ ′) (S.6)

The definition of this successor relation corresponds to the expansion laws for the LTL op-

erators that can be found in [3] (p. 248) or [14] and has already been introduced similarly

in [12] and [7]. We will drop the subscript β whenever clear from context.
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2.3 Construction of the monitoring automaton

We now begin the construction of the automata that are used to monitor a FO-PLTL

specification. As mentioned above, we treat a quantification just like an atomic proposition

and check satisfaction using the spawned sub-automata. It is easy to see that formulae

containing no quantification can be monitored using the same approach as presented in

[12].

We now define the monitoring automaton for a FO-PLTL formula Φ under a variable

assignment β, formally AΦ,β := (Σ, l , Q, q0, P, θ, δ, γ, λ, F ). The automaton takes care

of different parts of the monitoring tasks: it checks satisfaction, measures optimal results

and spawns sub-automata. Each of these components will be defined in the following:

LTL Component

The LTL component of the monitor takes care of checking satisfiability of the specification,

i.e. whether or not some parameter-valuation exists, under which satisfaction is given.

Since our monitor processes events, we first of all set the input alphabet to the set of

possible events, i.e.

Σ := E (A.1)

As mentioned above, we use the atoms as states of the automaton, aiming to get the

invariant that an atom is visited at some point in an accepting run whenever all contained

formulae are satisfied at that point in the trace. Therefore, similar to [12], we use a

dedicated initial state which is not an atom:

Q := AtΦ ∪ {q0} (A.2)

The transition relation δ is now defined in such a way that the above invariant is maintained.

For this purpose, we use the successor-relation that we defined above. Since the initial

state is not an atom, we define its successors to be the atoms that contain the monitored

formula ϕ and that are consistent with the first event of the trace. In fact, altough q0

is not an atom, it behaves just like an atom that contained only #Φ. Formally, for every

τ ∈ Q and e ∈ E

δ(τ, e) :=

{{
τ ′ ∈ AtΦ | Φ ∈ τ ′ and conditions S.1, S.2 hold} if τ = q0{
τ ′ ∈ AtΦ | t

e−→ τ ′
}

otherwise
(A.3)

Since satisfaction at some point may depend on future behaviour, every run makes assump-

tions about the future behaviour that is later satisfied during the monitoring process or

not. In order to correllate with the semantics of FO-PLTL, we must define the accepting

states such that no more unfulfilled temporal obligations are contained, i.e.:

F :=
{
τ ∈ AtΦ | #ϕ /∈ τ ∧ 3≤kϕ ∈ τ ⇒ ϕ ∈ τ ∧ (ϕ1 U ϕ2) ∈ τ ⇒ ϕ2 ∈ τ

}
(A.4)

Measuring Component

We want our monitor to calculate measures for the given formula over the input trace. In

order to calculate these measures, we maintain counters for every parameter k ∈ Kϕ that

are updated in every step:

25



CHAPTER 2. A MONITOR FOR FIRST-ORDER PLTL

Example for k ∈ P↑:

· · · 3≤ka , ¬a 3≤ka , ¬a 3≤ka , a a 3≤ka , ¬a 3≤ka , a · · ·
nk 0 1 2 0 0 1 0 · · ·
mk 0 0 0 2 2 2 2 · · ·

Example for k ∈ P↓:

· · · 2≤ka , a a 2≤ka , a a a ¬a 2≤ka , a a ¬a a · · ·
ak 0 1 1 1 1 1 0 1 1 0 0 · · ·
nk 0 0 1 0 1 2 0 0 1 0 0 · · ·
mk ∞ ∞ ∞ ∞ ∞ ∞ 2 2 2 1 1 · · ·

Figure 2.1: The update function

For parameters k occuring in an upward-monotone operator, namely 3≤k , we need two

measuring variables mk and nk . The latter one is a counter used to determine the number

of steps it takes from the first assumption that 3≤kϕ holds to the first position where ϕ

holds. mk is then used to store the maximum of these values for each iteration of 3≤k .

Intuitively, we update the counters as follows:

As long as 3≤kϕ is present in the visited atom, meaning that is assumed to be satisfied

later, we increment nk in every step. At the first position where ϕ is present, we compute

the maximum of the previously measured instance (namely mk) and the current instance

nk and store it in mk .

For parameters k occuring in a downward-monotone operator, namely 2≤k , we need three

measuring variables mk , nk and ak . The first two are used in a similar fashion as for

upward-monotone k , with nk counting the number of steps until ϕ does not hold anymore,

instead. ak is used to store whether the counter is currently active or not. We activate

the counter for k at the first position where 2≤kϕ is present and start incrementing nk as

long as ϕ is present, as well. Whenever a new instance of 2≤kϕ is started, i.e. is present

again in the current atom, we need to reset nk to zero, since we need to make sure that

the counted value is satisfying for every instance of the formula. The first time where ϕ

(and by At.4 therefore 2≤kϕ) is not present anymore, we take the minimum of nk and

the previously measured value mk and store it in mk . Assuming initially that there is no

position where ϕ is not present anymore, we set k to ∞ in the initial assignment.1

The workings of the update function are illustrated in Figure 2.1. It is important to

understand the need of the activity flag ak for the downward monotonous parameters.

They are neccessary to know whether or not nk needs to be incremented when a is present.

Formally, we define the following:

P := {mk , nk | k ∈ K} ∪ {ak | k ∈ K↓} (A.5)

θ(ν) :=

{
∞ ν = mk for some k ∈ K↓
0 otherwise

(A.6)

We then define the update function γ, such that for each τ, τ ′ ∈ AtΦ and η : p → N

holds: γ(τ, τ ′)(η) = η′ where

1Technically, ∞ is not a member N, making the initial assignment ill-formed by definition. But since it

can be chosen arbitrarily large, we assume that it is not reachable by any counter.
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for each (3≤kϕ) ∈ cl(Φ): (A.7)

if (3≤kϕ) ∈ τ ′ and ϕ ∈ τ ′ then η′(mk) = max
{
η(mk), η(nk)

}
; η′(nk) = 0

else if (3≤kϕ) ∈ τ ′ then η′(mk) = η(mk) ; η′(nk) = η(nk) + 1

else η′(mk) = η(mk) ; η′(nk) = η(nk)

and for each (2≤kϕ) ∈ cl(Φ): (A.8)

If η(ak) = 1

if (2≤kϕ) ∈ τ ′ then η′(mk) = η(mk) ; η′(nk) = 0 ; η′(ak) = 1

else if ϕ ∈ τ ′ then η′(mk) = η(mk) ; η′(nk) = η(nk) + 1 ; η′(ak) = 1

else η′(mk) = min
{
η(mk), η(nk)

}
; η′(nk) = 0 ; η′(ak) = 0

else

if (2≤kϕ) ∈ τ ′ then η′(mk) = η(mk) ; η′(nk) = η(nk) + 1 ; η′(ak) = 1

else η′(mk) = min
{
η(mk), η(nk)

}
; η′(nk) = 0 ; η′(ak) = 0

Spawning Component

To measure quantified subformulae of the specification, we spawn sub-automata for every

instantiation of the quantifier. More precisely, whenever a quantified subformula ∀x :p.ϕ

(or ∃x :p. ϕ) is assumed to be satisfied in the visited atom, we spawn sub-automata Aϕ,β[d/x]

for every neccessary d and require acceptance of all (or one) of these automata over the

sub-trace starting at the spawning-position. The monitoring automaton for a quantifier-

free FO-PLTL specification Φ will have level 0 and therefore no spawning capabilities.

To determine the level of a monitoring automaton for an arbitrary FO-PLTL formula, we

define the quantifier-depth (see [7]):

Definition 2.6 (Quantifier-depth). For a FO-PLTL formula, we define the quantifier-depth

inductively as follows:

dep(true) = dep(p(t1, ..., tn))

= dep(¬p(t1, ..., tn)) := 0

dep(#ϕ) = dep(2≤lϕ)

= dep(3≤kϕ) := dep(ϕ)

dep(ϕ1 ∨ ϕ2) = dep(ϕ1 ∧ ϕ2)

= dep(ϕ1 U ϕ2)

= dep(ϕ1Rϕ2) := max
{
dep(ϕ1), dep(ϕ2)

}
dep

(
∀(x1, ..., xn):p. ϕ

)
= dep

(
∃(x1, ..., xn):p. ϕ

)
:= 1 + dep(ϕ)

We then use this definition in the construction of our monitoring automaton to determine

the level:

l := dep(Φ) (A.9)

We spawn sub-automata to verify the satisfaction of quantified subformulae. Correlating to

the semantic definition of the respective quantifier, for universal quantification we require

every sub-automaton to be accepting and for existential quantification only one suffices.

This is captured in the spawning function which uses conjunction for universal and disjunc-

tion for existential quantification, similarly to the way it is done in [7]. Consequently, for
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every event e and destination atom τ ′, we have:

λ(e, τ ′) :=

 ∧
(∀x :p. ϕ)∈τ ′

 ∧
p(d)∈e

Aϕ,β[d/x]

 ∧
 ∧

(∃x :p. ϕ)∈τ ′

 ∨
p(d)∈e

Aϕ,β[d/x]

 (A.10)

Although this definition does not capture the unambiguity of the measure for existential

quantification, we know by Theorem 1.4 that the acceptance condition is chosen correctly.

In order to make sure we compute the correct measure, we have to define the result

accordingly.

Measuring result

Before we define how the correct result is determined, we show the following property.

Theorem 2.1 (Uniqueness of the accepting run). For every FO-PLTL formula Φ, trace σ

and variable-assignment β holds: ∣∣ΠAΦ,β
(σ)
∣∣ ≤ 1

This means that there is at most one accepting run for every specification and variable-

assignment. Whenever existent, we refer to it as πΦ,σ,β. The measure of Φ over σ is then

obtained by evaluating the measuring-assigment at the end of an accepting run, taking

results of the spawned sub-automata into account.

Definition 2.7 (Result of the measuring automaton). For an accepting run π ∈ ΠAΦ,β
(σ)

where π = (τ0, η0) · · · (τn, ηn), we define the local result for every k ∈ K as follows:

resloc(π)(k) := ηn(mk)

We then define the result of a spawning measuring automaton mutually recursively as

follows:

res(AΦ,β, σ) := res(πΦ,σ,β)

where for every π = (τ0, η0) · · · (τn, ηn) ∈ ΠAΦ,β
(σ):

res(π) :=

resloc(π) if dep(Φ) = 0

resloc(π)
⋂[ n⋂

i=1

res(πi)

]
otherwise

res(πi) :=

 ⋂
(∀x :p. ϕ)∈τi

 ⋂
d∈σp [i−1]

res
(
Aϕ,β[d/x], σ[i − 1...]

) ⋂
 ⋂

(∃x :p. ϕ)∈τi

max
d∈σp [i−1]

{
res
(
Aϕ,β[d/x], σ[i − 1...]

)
where ∩ is the valuation conjunction and max is determined wrt. �=, considering only

existing results.

This definition captures in particular the unambiguous semantics for the existential quan-

tification by choosing the best result under all accepting instantiations. Now that we have

formalized the measuring automaton and procedure to obtain measures from accepting

runs, it remains to show the correctness of our algorithm.
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q0AΦ

Φ , [Φ] , Ψ , [Ψ]

arbitrary

arbitrary ; spawn A3≤kq(x)

q0A3≤kq(x)

3≤kq(x) ,
(
>U q(x)

)
, q(x)

3≤kq(x) ,
(
>U q(x)

)
, ¬q(x)

(
>U q(x)

)
, ¬q(x)

(
>U q(x)

)
, q(x)

(
⊥R¬q(x)

)
, ¬q(x)

q(x) ; mk := max(nk , mk)

¬q(x) ; nk := nk + 1

q(x) ; mk := max(nk , mk)

¬q(x) ; nk := nk + 1

¬q(x)

q(x)

¬q(x)

q(x)

¬q(x)

q(x)¬q(x)

¬q(x)

¬q(x)

Figure 2.2: Examples of monitoring automata

Theorem 2.2 (Correctness of AΦ,β). For every First-order PLTL formula Φ, trace σ and

variable-assignment β holds that – whenever existing –

res
(
AΦ,β, σ

)
= α�Φ,σ,β.

Example 2.3.1. An example of ms-automata for monitoring Φ = 2
(
∀x :p.3≤kq(x)

)
can

be found in Figure 2.2. The upper right automaton is the toplevel-automaton that spawns

an automaton A3≤kq(x) for every instantiation of the quantification Ψ = ∀x :p.3≤kq(x).

AΦ uses default-transitions, since cl(Φ) does not contain any atomic formulae besides

> := true and ⊥ := f alse. Since 2Ψ is only an abbrevation of f alse RΨ, by S.5 and

the fact that f alse is absent in every atom, we need to assume that Ψ holds at every point

in time. Therefore we only have one atom2, namely the one which contains both Φ, Ψ

and their respective abstractions, and one default transition that spawns the corresponding

obligation in every step.

One can easily observe that A3≤kq(x) measures only one instance of the parametric opera-

tor. As soon as q(x) is present for the first time, we don’t need to measure 3≤k anymore.

In fact, this is where the condition for the successor relation, that τ ′ needs to be the

smallest respective set (see Definition 2.5), has its roots.

2Actually, we have more than this one atom as states in the automaton, but they are either not

reachable or can be ommited since they cannot appear in an accepting run (see 3.1.2)
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Summary

In this chapter we have developed an automaton for measuring a FO-PLTL specification

under unambiguous semantics. We use sets of subformulae of the specification as states

to verify the described behaviour and various counters and other variables to obtain a

measuring result. The monitor is constructed in such a way that, whenever a specification

is satisfied by an input-trace, there exists exactly one accepting run which can be used

to determine the optimal paramever-valuation, i.e. the measure under the unambiguous

semantics. This automaton construction is the foundation for the implementation of the

monitoring algorithm which will be considered at in the following chapter.
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Chapter 3

Implementation and results

This chapter is dedicated to the implementation of the monitoring automaton developed

in the last chapter. We will present implementation details and optimizations, and discuss

some results afterwards.

3.1 Implementation details

The implementation (fopltlmon1) is written in Scala2, a functional and object-oriented

programming language that combines functional and imperative programming paradigms

and is therefore optimal for the implementation of the formal notions in the last chapter,

using imperative methods to implement the first-order component. As Scala runs on a

Java Virtual Machine, it can be used cross-platform.

fopltlmon supports both strings and integers as data types, coming with the standard

comparison predicates. One can use = and 6= for every two values; for integers, the

standard comparison operators <,>,≤,≥ are implemented as interpreted predicates, as

well.

3.1.1 The basic approach

We maintain possible runs for every automaton that is considered. Each run carries the

current state (intially q0), the current measuring-assignment (initially θ) and the obligations

that have been spawned up to this point in this run (initially none). When processing an

event e, we eliminate runs for which the state has no successor and create new runs when

a state has more than one successor. Depending on the destination state, we update the

measuring-assignment and add obligations to the run. After processing the last event,

we consider the (unique) accepting run and compute the result using the meausuring-

assignment and the sub-results of the spawning obligations. Whenever there is no run

anymore, a violation of the specification is reported.

1fopltlmon can be found here: https://github.com/KaiHornung/fopltlmon
2see http://www.scala-lang.org
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3.1.2 Optimizations

Automaton Prototypes

The problem with monitoring a first-order logic is always how to handle a great number of

quantifier instantiations. In our monitoring approach, we need to consider a possibly large

number of spawned sub-automata at every position of the trace. It is clear that we cannot

create an entirely new instance of the sub-automaton with every spawning. Therefore,

we use automaton prototypes. These prototypes are constructed independently of the

variable-assignment an can be used for every β. The transitions of the prototype are

therefore not labelled with events, but with sub-sets of the closure that contain every

atomic formula which is an uninterpreted predicate or its respective negation.

Therefore, when it comes to spawning a new automaton, we only need to store the

valuation and references to the current state in the corresponding prototype for every run.

To process an event, we then determine which of the Iβ(ϕ) (where ϕ is an uninterpreted

predicate formula) is present in the event and take the corresponding prototype transitions

that are labelled with these ϕ. Since the computation of all atoms can be costly, we

precompute all possibly needed prototypes before processing a trace.

The usage of automaton prototypes eliminates the need to both reinstantiate and recalcu-

late every state and transition for every instantiation of quantified subformulae. In fact, the

example in Figure 2.2 shows the prototype A3≤kq(x) that can be used for every A3≤kq(x),β.

Early detection of acceptance and violations

As mentioned in the introduction, an advantage of online monitors is that violations can

be detected early on. Therefore, we can eliminate non-satisfiable sub-automata – and

correspondingly, runs that contain these sub-automata as obligations – during the process-

ing of the trace. By minimalizing the measuring automaton, the algorithm detects when

an automaton is accepting and will stay accepting for every possible upcoming event and

stops updating them in every step. To save memory, the respective result is stored in a

database-like environment and the automaton itself is deallocated.

Abstractions and spawnings

As mentioned above, we maintain the invariant that in an accepting run every visited

atom contains exactly those subformulae which are satisfied at that point in the trace.

In particular, this means that an atom which contains ϕ and ¬[ϕ] – altough possibly

well-defined as an atom – cannot be part of such an accepting run, since ϕ and [ϕ] are

equally satisfiable by Theorem 1.3. To decrease the number of states, we therefore add

the following restriction which needs to hold for every atom τ and formula ϕ.

If ϕ ∈ τ , then [ϕ] ∈ τ .

It is easy to see that the need of the FO-LTL abstraction can also drastically increase the

number of spawnings per step, because it is possible that e.g. for ϕ = ∀x :p. ϕ′ both ϕ

and [ϕ] are contained in the current atom. To avoid the use of unneccessary spawnings,

we add the following: Let ϕ be of the form ∀x :p. ϕ′ or ∃x :p. ϕ′ and τ be an atom.

If ϕ ∈ τ , [ϕ] ∈ τ and ϕ 6= [ϕ], then don’t spawn an obligation for [ϕ].
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3 processes 5 processes 10 processes

trace length time mem time mem time mem

10k events 3081 85 3169 85 3212 85

100k events 11211 85 11767 85 13210 85

1M events 86674 85 95065 85 115823 85

Figure 3.1: Run-time and memory result for the mutex experiment

Since [ϕ] is non-parametric and therefore has no measuring capabilities, it is sufficient to

consider ϕ in the spawning obligations to compute the correct measure without violating

the acceptance condition by Theorem 1.3.

3.2 Experiments

To test the efficiency of this implementation, two benchmarks were generated. The system

that ran the tests was an 3.4GHz Intel Core i5 Quad Core with 8GB of available memory.

The implementation (version 0.1) has been run on a Java 1.6 runtime environment, reading

traces from and writing results to an internal solid state drive. Each test generated a

number of results that will partially be presented in this section:

Mutex experiment

The first measuring experiment analyzed a number of processes trying to enter a critical

section. The specification was chosen in such a way such that verification of the mutual

exclusion and measuring of the time between requesting access to the critical section and

being granted access are covered. Each process is first active in the non-critical region,

then waiting for access to the critical section, then active in the critial section and then

leaves the critical section to start over. We considered the corresponding update actions

wait(i), enter(i) and exit(i) for a process with the id i . The FO-PLTL input specification

was therefore defined as follows:

2
(
∀x :enter.#

(
exit(x)R (∀y :enter. f alse)

)︸ ︷︷ ︸
Veryfing mutual exclusion

∧ ∀z :wait.3≤kenter(z)︸ ︷︷ ︸
measuring waiting time

)

The tested input traces have been generated by randomly chosing a process and updating

its status to the next one (if possible). We have tested trace lengths of 10.000 to 1.000.000

events for up to 10 processes. The run-times in milliseconds and needed memory in MB

is shown in Figure 3.1.

It is important to know that the figure shows only the run-time of the actual trace pro-

cessing, the time needed to construct the prototype automata is not included. For the

specification above, 8 prototypes have been constructed, altogether in about 380ms. The

most significant observation with the above numbers, though, is that there is no mea-

surable difference in the memory usage regarding different domain sizes. This displays

an enormous advantage to prospotional PLTL, where each added process would result in

growth of the formula and therefore the measuring automaton.
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Figure 3.2: Example results of the memory controller experiment

Memory controller experiment

In this experiment, we have used the FO-PLTL monitoring algorithm to measure the

retention period of a memory cell. The same simulator as used in the memory controller

experiment in [12] has been used to generate the input traces. The input specifiaction

is of greater size and can be found inside the downloadable implementation. Figure 3.2

shows a graphical presentation of the measured data, depending on the location (loc) in

the memory. It shows minimal, maximal and an average of all measured times between two

write instructions to the same memory location as the number of processor steps. As in

the mutex experiment, we have measured traces of lengths between 10.000 and 1.000.000

events, considering up to 10 different memory locations.

Summary

We have seen a number of example results of the implementation of the monitoring algo-

rithm presented in the last chapter. This implementation not only determines the (overall)

unambiguous measure, but also collects and stores detailed measuring results which can

be used to analyze a system’s temporal behaviour.

Due to optimizations in the implementation, the algorithm can be used scalably in the

size of the considered active domain, in particular when it comes to memory consumption.

This gives a great advantage to propositional approaches that need to cope with growing

specification size when considering a larger amount of considered objects. A larger spec-

ification means in particular that the monitoring automata explode in size, wherease the

FO-PLTL measuring automaton remains constant with growing domain size.
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Conclusion and related work

We have presented a framework for runtime analysis of computer systems, covering both

verification of correct behaviour and the collection of detailed temporal information about

a given execution. By providing FO-PLTL with quantified variables and predicates, we

created a powerful specification language with the ability to reason about data-dependent

properties. Future work could include extending this work to an infinite-trace semantics

and a more general way to obtain domain-independent specifications.

Formal methods for runtime verification of temporal properties have already been exten-

sively studied. A variety of different approaches to verify LTL properties has been devel-

oped, either automata based like in this thesis ([13],[8],[24]) or using different approaches

([14],[23]). Many ways to express data-aware properties using first-order temporal logic

and corresponding monitoring algorithms have been developed. While [20] only covers

finite domains, [4] and [5] even cover verification of traces with infinite events over an

arbitrary domain, using database-approaches based on [9]. Different approaches for first-

order monitoring can be found in [11] and [21]. The first-order extension in this thesis

is mainly based on the results presented in [7], whose development also aims to develop

a runtime verification framework for software systems like the Android operating systems

and respective applications ([6],[19]).

Altough first-order monitoring has already been studied, this thesis presents the first ap-

proach for not only rutime verification, but also ”measuring” using first-order properties.

The basis for PLTL can be found in [2] and corresponding monitoring approaches are

presented in [12].
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Appendix A

Detailed proofs

Proof of Theorem 1.1

PNF is reached by first resolving every occurence of derived operators using their defi-

nition from Definition 1.7. Afterwards, we push negations downward using the following

equivalences for non-atomic formulae:

¬(ϕ1 ∧ ϕ2) ≡ ¬ϕ1 ∨ ¬ϕ2 (A.1)

¬(ϕ1 ∨ ϕ2) ≡ ¬ϕ1 ∧ ¬ϕ2 (A.2)

¬#ϕ ≡ #¬ϕ (A.3)

¬(ϕ1 U ϕ2) ≡ ¬ϕ1R¬ϕ2 (A.4)

¬(ϕ1Rϕ2) ≡ ¬ϕ1 U ¬ϕ2 (A.5)

¬3≤kϕ ≡ 2≤k¬ϕ (A.6)

¬2≤kϕ ≡ 3≤k¬ϕ (A.7)

¬∀(x1, ..., xn) : p.ϕ ≡ ∃(x1, ..., xn) : p.¬ϕ (A.8)

¬∃(x1, ..., xn) : p.ϕ ≡ ∀(x1, ..., xn) : p.¬ϕ (A.9)

A.1 and A.2 correspond to the De-Morgan laws, the rewrite rules for A.3, A.4 and A.5

can be found in [3], A.6 and A.7 in [2]. Equivalences A.8 and A.9 also follow directly from

the definition of |= and of the De-Morgan laws. Afterwards, double negations can easily

be eliminated using the equivlalence

¬¬ϕ ≡ ϕ (A.10)

that follows directly from the semantic interpretation of ¬. �

Proof of Theorem 1.2

An example of such a formula and trace under β∅ can be found in Example 1.3.1 and is

illustrated in Figure 1.3. �
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Proof of Theorem 1.3

We show the claim by induction over the structure of ϕ for the stronger claim where the

position is not 0, but an arbitrary i . The base cases and the cases for the non-parametric

connectives are either trivial or follow directly from the inductive hypothesis. Therefore we

only consider the following two cases:

• case ϕ = 3≤kϕ′:

Assume ∀α.(σ, i .α, β) |= [ϕ]. Therefore by definition of [·], for all α exists j ≥ i s.t.

(σ, j, α, β) |= [ϕ′]. Since satisfaction of [ϕ′] does not depend on α, we know that

there is a j such that for all α, (σ, j, α, β) |= [ϕ′]. By the inductive hypothesis exists

a j such that there is an α′ s.t. (σ, j, α′, β) |= ϕ′. By definition of |= and the fact

that k /∈ Kϕ′ , we obtain (σ, i , α′[j/k], β) |= ϕ.

Assume there is an α s.t. (σ, i , α, β) |= ϕ. Therefore there is a ≤ j ≤ α(k) s.t.

(σ, j, α, β) |= ϕ′. By the inductive hypothesis, we get that there is a j such that

for all α′, (σ, j, α′, β) |= [ϕ′]. Therefore for all α′ holds that there is a j such that

(σ, j, α′, β) |= [ϕ′], so by definition of [·] and |=, for all α′, (σ, i , α′, β) |= [ϕ].

• case ϕ = 2≤kϕ′:

Assume ∀α.(σ, i .α, β) |= [ϕ]. Therefore by definition of [·], ∀α.(σ, i .α, β) |= [ϕ′].

By the inductive hypothesis we know that there is an α′ s.t. (σ, i .α′, β) |= ϕ′. By

definition of |=, we get (σ, i .α′[0/k], β) |= ϕ.

Assume there is an α s.t. (σ, i , α, β) |= ϕ. Therefore, in particular (σ, i , α, β) |= ϕ′.

By the inductive hypothesis, we get that for all α′ that (σ, i , α′, β) |= [ϕ′]. Therefore,

by definition of [·], for all α′, (σ, i , α′, β) |= [ϕ].

�

Proof of Theorem 1.4

We show this theorem by induction over the structure of ϕ where the position is not 0,

but an arbitrary i . By definition of the unambiguous semantics we can omit the cases

ϕ = p(· · · ), ϕ = ¬p(· · · ), ϕ = ϕ1 ∧ ϕ2, ϕ = #ϕ′ and ∀x :p. ϕ′, since they have the same

definition for satisfaction. For the other cases, we have the following inductive hypothesis:

For every subformula ϕ′ of ϕ, position i , σ and β holds:

∃α. (σ, i , α, β) |= ϕ′ iff ∃α′. (σ, i , α′, β) |=� ϕ′ (IH)

Since the unambiguous semantics is stronger than the respective counterpart for every

considered operator, the ”if”-direction follows easily. Therefore, we focus on the ”only

if”-part. We use α |= ϕ′ to abbreviate (σ, i , α, β) |= ϕ′ and j, α |= ϕ′ to abbreviate

(σ, j, α, β) |= ϕ′.

• case ϕ = ϕ1 ∨ ϕ2:

Let α s.t. α |= ϕ. Therefore, by Def. |=, we have α |= ϕ1 or α |= ϕ2. We consider

two cases:

If α |= ϕ1, by IH, we know that there is an α′ such that α′ |=� ϕ1. Therefore, by

Def. |=�, we have that ∃α′. α′ |= ϕ.
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Otherwise, assume α |= ϕ2, we consider two sub-cases. If α |= ¬[ϕ1], we know

by Theorem 1.3 that ∀α′. α′ 6|= ϕ1. By IH follows ∀α′. α′ 6|=� ϕ1. Since by IH,

there is an α′0 with α′0 |=� ϕ2, α′0 |=� ϕ follows directly. If α |= [ϕ1], we know

by Theorem 1.3 that there is an α′ s.t. α′ |= ϕ1. With the same argumenation as

above, the existence of a satisfying valuation under unambiguous semantics follows.

• case ϕ = ϕ1 U ϕ2:

Let α s.t. α |= ϕ. Therefore, by Def. |=, there is a j s.t. j, α |= ϕ2 and

∀j ′ < j. j ′, α |= ϕ1. If α |= ¬[ϕ2] for all such j ′, α |=� ϕ follows by Def. |=�.

Otherwise, set j0 to the minimum j ′ s.t. j ′, α |= [ϕ2].

Therefore we know by the fact that [ϕ2] is non-parametric and Theorem 1.3 that

∃α0. j0, α0 |= ϕ2 and for each j ′ < j0 and αj ′ . j
′, αj ′ |= ¬[ϕ2] (∗).

By existence of α,α0 and IH, we know that there is an α′0 s.t. j0, α
′
0 |=� ϕ2 and for

every j ′ < j0 exists α′j ′ s.t. j ′, α′j ′ |=� ϕ1.

Let α′ be the conjunction of α′0 and these α′j ′ . Then we have j0, α
′ |=� ϕ2 and

for each j ′ < j0, α′ |=� ϕ1. By (∗), we get j0, α
′ |=� ϕ2 and for each j ′ < j0,

α′ |=� ϕ1 ∧ ¬[ϕ2], which is α′ |=� ϕ by Definition of |=�.

• case ϕ = ϕ1Rϕ2 follows almost directy the same argumentation as the Until-case.

• case ϕ = 3≤kϕ′:

Let α s.t. α |= ϕ. Therefore, by Def. |=, there is a j ≤ α(k) s.t. j, α |= ϕ′. Let j0
be the minimal j ≥ i s.t. j, α |= [ϕ′].

Then we know by Theorem 1.3 that there is a α0 s.t. j0, α0 |= ϕ′ and for each

j ′ < j0 and α′0, j ′, α′0 |= ¬[ϕ′]. By IH, we get that there is an α′0 s.t. j0, α0 |=� ϕ′
and for each j ′ < j0, α′0 |= ¬[ϕ′]. By setting α′ := α′0[j0/k], we know since k /∈ Kϕ′
that α′ |=� ϕ.

• case ϕ = ∃x :p. ϕ′:

Let α s.t. α |= ϕ. Therefore, by Def. |=, there is a d ∈ σp[i ] s.t. α, β[d/x] |= ϕ′.

By IH, we have the existence of an α0, s.t. α0, β[d/x] |=� ϕ′. Therefore the set

A :=
{
α0 | ∃d ∈ σp[i ]. α0, β[d/x] |= ϕ′

}
is non-empty. By setting α′ to the maximum

of A with respect to �=, we obtain α′ |=� ϕ.

�

Proof of Theorem 1.5

For the proof of this theorem, let α 6vw α′ denote the fact that α and α′ are incomparable

with respect to w, i.e. neither α w α′ nor α′ w α holds.

In this proof, we need some properties of this incomparability which are stated in the

following lemma. As above, we use α |= ϕ′ to abbreviate (σ, i , α, β) |= ϕ′ and j, α |= ϕ′

to abbreviate (σ, j, α, β) |= ϕ′.:

Lemma A.1. For every α, α′, α′′ and αi with i ∈ I holds:

1. If α 6w α′ and α′′ w α′, then α 6w α′′.
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2. For all i ∈ I, αi w
⋂
i∈I
αi .

3. a. If α w
⋂
i∈I
αi , then there is a j ∈ I s.t. α w αj ∨ α 6vw αj .

b. If α =
⋂
i∈I
αi , then there is a j ∈ I s.t. α = αj ∨ α 6vw αj .

c. If α 6vw
⋂
i∈I
αi , then there is a j ∈ I s.t. α 6vw αi .

4. For every α,α′ ∈ Mϕ,σ,β: If α 6= α′, then α 6vw α′.

5. If α ∈ Mϕ,σ,β, α 6vw α′ and α′ |= ϕ, then there is an α′′ ∈ Mϕ,σ,β s.t. α 6= α′′.

Proof. All claims follow almost directly from their respective definition.

We now show Theorem 1.5 by showing that if there is an α0 s.t. (σ, i , α0, β) |= ϕ, then

there is a unique measure for ϕ over σ under β. The base cases follow directy from the

fact that they are non-parametric. We have the following inductive hypothesis: for every

ϕ′ subformula of ϕ, position i ′ and assignment β′ holds:

If ∃α′0. (σ, i ′, α′0, β
′) |= ϕ′, then there is a unique measure α�

ϕ′,σ[i ...],β′ . (IH)

Assume that ∃α0. α0 |= ϕ. (∗)

• case ϕ = ϕ1 ∧ ϕ2:

By (∗) and Def. |=, we know that α0 |= ϕ1 and α0 |= ϕ2. By IH, we have the

existence of α1 = α�
ϕ1,σ[i ...],β and α2 = α�

ϕ2,σ[i ...],β. Let α1 and α2 be fix. Set

α := α1 ∩ α2.

Claim: α is the unique measure for ϕ over σ[i ...] under β.

α |= ϕ follows directly from the definition of ∩, remains to show that there is no

satisfying α′ w α. Assume there is and let it be fix. By Def. |=, we have α′ |= ϕ1

and α′ |= ϕ2. By Lemma A.1.3a and the definition of α, we know that there is a

i ∈ {1, 2} s.t. α′ = αi ∨ α 6vw αi . Let such an i be fix. If α′ = αi , then αi is not a

measure, otherwise if α′ 6vw αi , then by Lemma A.1.5, αi is not unique. Both cases

contradict the assumption. Therefore we know that α is a measure.

To show that it is unique, assume that there is an α′ 6= α that is a measure. By

Lemma A.1.4, therefore α′ 6vw α. By Lemma A.1.3c, we have α′ 6vw α1 ∨ α′ 6vw α2.

In both cases, since α′ |= αi , by Lemma A.1.6, we get that αi is not unique which

contradicts the assumptiom.

• case ϕ = ϕ1 ∨ ϕ2:

By (∗) and Def. |=, we have α0 |= ϕ1 or α0 |= ϕ2 ∧ ¬[ϕ1].

– If α0 |= ϕ1, then by IH there is α = α�
ϕ1,σ[i ...],β. Let such α be fix.

Claim: α is the unique measure for ϕ over σ[i ...] under β.

α |= ϕ follows directly from Def. |=. Similar, to above, both for the measure-

property and the uniqueness, assuming the opposite directly leads to contradic-

tions to the fact that α is the unique measure for ϕ1.
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– If α0 |= ϕ2 ∧ ¬[ϕ1], then by IH and the properties of the FO-LTL abstraction,

there is a α = α�ϕ2,σ[i ...],β and ∀α′. α′ 6|= ϕ1. (∗∗)
Claim: α is the unique measure for ϕ over σ[i ...] under β.

α |= ϕ follows from (∗∗) and the definition of |=. To show the measure property,

assume there is an α′ = and α′ |= ϕ. Therefore by (∗∗) α′ |= ϕ2 ∧ ¬[ϕ1] and

therefore α′ |= ϕ2, which contradicts the fact that α is a measure for ϕ2. To

show uniqueness, assume there is a different measure α′ for ϕ. Again, by (∗∗),

we know that it is also a measure for ϕ2. This contradicts the fact that α is

the unique measure for ϕ2.

• case ϕ = #ϕ′:

Since for all α′, α′ |= ϕ iff. i + 1, α′ |= ϕ′, we know that Mϕ,σ[i ...],β = Mϕ′,σ[i+1...],β,

the claim follows directly from the inductive hypothesis.

• case ϕ = ϕ1 U ϕ2:

By (∗), we know that there is a j s.t. j, α0 |= ϕ2 and for all j ′ < j , j ′ |= ϕ1 ∧ ¬[ϕ2].

Let such j be fix. By the property of [·], we know that this position j is unique. (∗∗)
By IH we know there are αi , ..., αj s.t. αj = α�

ϕ2,σ[j...],β and for each j ′, i ≤ j ′ < j ,

αj ′ = α�
ϕ1,σ[j ′...],β.

Set α :=
⋂

i ′=i ...j

αi ′ . Claim: α is the unique measure for ϕ.

The claim is proven similarly to the cases above by assuming the opposite and ap-

plying Lemma A.1 and (∗∗).

• case ϕ = ϕ1Rϕ2 is proven almost identically to the Until-case, since whenever ex-

istent, the release-position is unique.

• case ϕ = 3≤kϕ′:

By (∗), we know that there is a j ≤ α(k) s.t. j, α0 |= ϕ′ and for all j ′ < j , j ′ |= ¬[ϕ′].

Let such j be fix. By the property of [·], we know that this position j is unique. By

IH we know there is αj = α�ϕ′,σ[j...],β. Let α := α[j/k].

The claim that α is the unique measure for ϕ follows directly from the fact that j is

the minimal satisfiable position for ϕ′ by properties of [·] and the same argumentation

as for the other cases.

• case ϕ = 2≤kϕ′:

Set j := max{j | ∀j ′ ≤ j. i + j ′, α0 |= [ϕ′]}. Therefore, for all i > j , i , α0 |= ¬[ϕ′].

(∗∗) By IH we have αi , ..., αi+j s.t. αj ′ = α�
ϕ′,σ[j ′...],β for each j ′ = i , ..., i + j . Let

α =
⋂

j ′=i ,...,i+j

αj ′ .

The claim that α is the unique measure for ϕ follows directly from (∗∗) and the

same argumentation as for the other cases.

• case ϕ = ∀x :p. ϕ′:

By (∗) and the IH, we have αd := α�
ϕ′,σ[i ...],β[d/x] for every d ∈ σp[i ]. It follows directly

from Lemma A.1 that α =
⋂

d∈σp [i ]

αd is the unique measure for ϕ.

• case ϕ = ∃x :p. ϕ′ follows directly from the definition of |=. �
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Proof of Theorem 2.1

We show this theorem using three lemmas. The second and third then directly imply

the claim. For every atom τ , let [τ ] denote the subset of τ that contains only the non-

parametric subformulae.

Lemma A.2. For every τ, τ1, τ2 ∈ Q and e ∈ E holds:

If τ
e−→ τ1 ∧ τ

e−→ τ2 ∧ [τ1] = [τ2], then τ1 = τ2.

Proof. Assume all conditions hold, but τ1 6= τ2. Wlog., let ϕ ∈ τ1 \ τ2. Since [τ1] = [τ2]

by assumption, we know that ϕ is parametric. Because of the minimality condition of
e−→,

we know that there is a condition from Definition 2.5 that requires ϕ to be present. Since

all these conditions depend on τ alone, the same holds for τ2 and therefore ϕ ∈ τ2 which

contradicts the assumption.

Lemma A.3. For every two accepting runs π, π′ ∈ ΠAΦ,β(σ) where π = (τ0, η0) · · · (τn, ηn)

and π′ = (τ ′0, η
′
0) · · · (τ ′n, η′n) holds:

If τn−1 = τ ′n−1, then τn = τ ′n.

Proof. Let such π and π′ be fix. Assume τn−1 = τ ′n−1. By Lemma A.2, it suffices to show

that [τn] = [τ ′n] We show only that for every ϕ ∈ [τn], ϕ ∈ [τ ′n] holds, the other direction

is identical. Let ϕ ∈ [τn]. The base cases for the induction follow directly from S.1 and

S.2. The case ϕ = #ϕ′ can be ommited by definition of F .

• case ϕ = ϕ1 ∧ ϕ2: Therefore by At.1.1, ϕ1 ∈ τn and ϕ2 ∈ τn. By IH, therefore

ϕ1 ∈ τ ′n and ϕ2 ∈ τ ′n. So by At.1.1, ϕ ∈ τ ′n.

• case ϕ = ϕ1 ∧ ϕ2: Therefore by At.1.2, ϕ1 ∈ τn or ϕ2 ∈ τn. Wlog. ϕ1 ∈ τn. By

IH, therefore ϕ1 ∈ τ ′n. So by At.1.2, ϕ ∈ τ ′n.

• case ϕ = ϕ1 U ϕ2: By definition of F , we know that ϕ2 ∈ τn. By IH, we get ϕ2 ∈ τ ′n
and therefory by At.2, ϕ ∈ τ ′n.

• case ϕ = ϕ1Rϕ2: Assume ϕ /∈ τ ′n. Therefore ¬ϕ = ¬ϕ1 U ¬ϕ2 ∈ τ ′n. Therefore by

definition of F , ¬ϕ2 ∈ τ ′n, so ϕ2 /∈ τ ′n by At.8 and At.1.3. By IH, therefore ϕ2 /∈ τn,

which contradicts the consistency condition At.3.

• case ϕ = ∀x :p. ϕ′ and case ϕ = ∃x :p. ϕ′ follow from the definition of accepting runs

and the fact that Aϕ′,β and A¬ϕ′,β cannot be both accepting on the same run.

Lemma A.4. For every two accepting runs π, π′ ∈ ΠAΦ,β(σ) where π = (τ0, η0) · · · (τn, ηn)

and π′ = (τ ′0, η
′
0) · · · (τ ′n, η′n) and every i , 0 ≤ i < n holds:

If τi+1 = τ ′i+1, then τi = τ ′i .

Proof. This lemma is shown similarly to the last one, the only difference is that the Next-

case is obligatory. The base cases and the cases for conjunction, disjunction and quantifiers

are the same as in Lemma A.3, the other cases are shown here:
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• case ϕ = #ϕ′. Assume ϕ /∈ τ ′i , therefore ¬ϕ = #¬ϕ′ ∈ τ ′i . Therefore by S.3, both

ϕ′ ∈ τi+1 = τ ′i+1 and ¬ϕ′ ∈ τ ′i+1 = τi+1 which contradicts At.1.3.

• case ϕ = ϕ1 U ϕ2: If ϕ2 ∈ τi , by IH, we know that ϕ2 ∈ τ ′i . Therefore by At.3,

¬ϕ1R 6= ϕ2 = ¬ϕ /∈ τ ′i . By At.8, ϕ ∈ τ ′i follows.

Otherwise, if ϕ2 /∈ τi , by S.4, we know that ϕ1 ∈ τi and ϕ ∈ τi+1. By IH, we know

that ϕ1 ∈ τ ′i . Assume ϕ /∈ τi , then ¬ϕ1R¬ϕ2 = ¬ϕ ∈ τ ′i . Therefore, by S.5, we

know that ¬ϕ ∈ τ ′i . This contradicts At.1.3, since ϕ ∈ τ ′i , as well.

• case ϕ = ϕ1Rϕ2: If ϕ1 ∈ τi , we know by At.3 and IH that ϕ1 ∈ τ ′i and ϕ2 ∈ τ ′i .
By At.3, therefore ϕ ∈ τ ′i .
Otherwise, we know that ¬ϕ1 ∈ τi . Therefore, by S.5 ϕ ∈ τi+1. Assume that

ϕ /∈ τ ′i . Therefore ¬ϕ1 U ¬ϕ2 = ¬ϕ ∈ τ ′i . Since ϕ2 ∈ τi by At.3, ϕ2 ∈ τ ′i follows by

IH. Therefore, by S.4, ¬ϕ ∈ τ ′i+1 = τi+1 wich contradicts At.1.3.

The non-parametric cases can, again, be omitted since it suffices to show [τi ] = [τ ′i ].

Lemma A.2 and Lemma A.3, together with the fact that every accepting run starts in the

same state (namely q0) and the fact that the ηi only depend on the τi show the uniqueness

of the accepting run. �

Proof of Theorem 2.2

Since we know by Theorem 2.1 that there is at most one accepting run and by Theorem 1.5

that there is at most one measure, it remains to show that whenever αΦ,σ,β exists, there

is an accepting run with result αΦ,σ,β. First, we construct a state-sequence and then show

that the corresponding measuring-assignments and updates compute the right values for

every parameter.

Assume that αΦ,σ,β exists and let α := αΦ,σ,β. Let n := |σ|.
We define the state-sequence τ0, ..., τn with τ0 = q0 and for every i , 1 ≤ i ≤ n:

τi :=
{
ϕ ∈ cl(Φ) | (σ, i − 1, α, β) |= ϕ

}
It is easy to show that every τi is a well-defined atom and that for every i , τi−1

σ[i−1]−−−−→ τi .

It remains to show that the corresponding measuring computes the result α.

For this purpose, let π := (τ0, η0) · · · (τn, ηn) such that for every i and ϕ ∈ cl(Φ). ϕ ∈ τi iff

(σ, i−1, α, β) |= ϕ′. (∗) The fact that π is accepting follows directly from its construction

and the definition of F . Remains to show that res(π) = α.

We show this claim by induction over the level of AΦ,β, but first we need some properties

of the local result. Let K∗ denote the set of all parameters in Φ that don’t occur inside

the scope of a quantifier.

Lemma A.5.

1. ∀k ∈ K↑. resloc(π)(k) = max{j − i | 3≤kϕ ∈ τi ∧ ϕ ∈ τj ∧ ∀j ′, i ≤ j ′ < j.ϕ /∈ τj ′}

2. ∀k ∈ K↓. resloc(π)(k) = min{j − i + 1 | 2≤kϕ ∈ τi ∧ ϕ /∈ τj}

Proof. Follows directly from the construction of the update function.
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Lemma A.6.

For every accepting run π = (τ0, η0) · · · (τn, ηn) where ϕ ∈ τi iff. (σ, i − 1, α�ϕ,σ,β, β) |= ϕ

holds:

α�Φ,σ,β |K∗ = resloc(π)

Proof. Let α := α�ϕ,σ,β, res := resloc(π) and ϕ ∈ τi iff. (σ, i − 1, α, β) |= ϕ. (∗)
Assume that there is a k ∈ K∗ s.t. α(k) 6= res(k).

• case k ∈ K↑:

– case α(k) < res(k): Therefore there are j, i s.t. j − i = res(k), 3≤kϕ ∈ τi ,
ϕ ∈ τj and for each j ′, i ≤ j ′ < j . ϕ /∈ τj ′ by Lemma A.5.1. Let i , j be fix.

Since 3≤kϕ ∈ τi , we know by (∗) that (σ, i−1, α, β) |= 3≤kϕ. By definition of

|= this means that there is a i ′ ≤ α(k) s.t. (σ, i + i ′ − 1, α, β) |= ϕ. Therefore

by (∗), ϕ ∈ τi+i ′ . Since i ′ ≤ α(k) < res(k) = j − i , we know that there is a j ′

with i ≤ j ′ < j with ϕ ∈ τj ′ . Contradiction!

– case α(k) > res(k): By Lemma A.6.1, we know that for every i where 3≤kϕ ∈
τi holds that α(k) > min{j | ϕ ∈ τi+j}. Let i such that 3≤k ∈ τi be arbitrary,

but fix.

Therefore there is a j < α(k) with ϕ ∈ τi+j , i.e. by (∗), there is a j ≤ α(k)−1

s.t. (σ, i + j − 1, α, β) |= ϕ. Therefore (σ, i + j − 1, α[α(k)−1/k], β) |= 3≤kϕ.

Since i is chosen arbitrarily and α[α(k)−1/k] = α by definition, we know that α

cannot be a measure. Contradiction!

• case k ∈ K↓ is shown almost identically using Lemma A.5.2

Lemma A.6 directly shows the base case for the induction over the level of the measuring

automaton. Because of the restrictions for parameters 1.3 and 1.4, it also shows the

inductive step for every parameter not occuring inside the scope of a quantifier. Remains

to show that parameters occuring inside the scope of a quantifier have the correct value.

Assume there is a k that appears inside the scope of a quantified subformula and that

res(π)(k) 6= α(k). We consider only the case that k ∈ K↑, the other case is alsmost

identical.

• case k is in the scope of ∀x :p. ϕ.

If res(π)(k) > α(k), by IH this means that there is a position i and a d ∈ σp[i ] s.t.

∀x :p. ϕ ∈ τi+1 and α�
ϕ,σ[i ...],β(k) = res(π)(k). Since by (∗) therefore (σ, i , α, β) |=

∀x :p. ϕ, we know that α�
ϕ,σ[i ...],β is not optimal for k and therefore no measure.

Contradiction!

Otherwise, if res(π)(k) > α(k), it can be easily shown similarly to the proof of

Lemma A.6 that the specification is also satisfied under α[α(k)−1/k] which means

that α is not a measure. Contradiction!

• case k is in the scope of ∃x :p. ϕ follows from the inductive hypothesis and the con-

struction of the result, since every existential obligation takes the optimal sub-result

wrt. �= which follows directly the semantical definition of the existential quantifica-

tion.

�
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