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Abstract

Runtime monitoring is a safety assurance mechanism that validates a system’s behav-
ior against a formal specification at runtime. In stream-based monitoring, a monitor
aggregates and transforms input streams, such as sensor readings or system metrics,
into output streams that provide temporal or statistical assessments of system health.
In practice, input streams may arrive at different rates because sensors operate at dif-
ferent frequencies, requiring the monitor to correctly handle asynchronous data arrival.
Frameworks such as RTLola address this through pacing annotations, which specify
precisely when streams must be evaluated.

Since the monitor is part of a safety-critical system, preventing runtime errors is
essential. However, inconsistent pacing annotations can introduce subtle errors that
result in attempts to access unavailable stream values.

This thesis extends RTLola’s type-based analysis to support periodic and conditionally
evaluated streams, both of which are needed to specify complex real-time behavior.
Conditionally evaluated streams use when clauses to refine evaluation time points based
on boolean conditions. This allows, for example, the exclusion of time points where a
division by zero would occur. Periodic streams emit values at fixed intervals, enabling
the monitor to compute system verdicts independently of input arrival, such as for
detecting deadlocks or failed sensors. We encode periodically paced streams as a
special case of when clauses and prove type-system soundness with respect to RTLola’s
relational semantics. This guarantees that pacing annotations are consistent such that
specifications can be safely monitored without invalid data accesses.
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Chapter 1
Introduction

Cyber-physical systems are safety-critical systems at the boundary of the physical and
digital world. They range from power plants to self-driving cars and autonomous
drones. Runtime verification is a safety assurance mechanism that observes the behavior
of a system at runtime and validates it against a predefined set of rules describing known
bad behavior. In runtime monitoring, a so-called monitor is automatically derived from
a formal safety specification.

In stream-based runtime monitoring, as visualized in Fig. 1.1, the monitor captures
the observations of the system through input streams representing a possible infinite
sequence of (sensor) values. Output streams transform and aggregate input and other
output streams through stream expressions to derive an assessment of the system’s
health. Special output streams, called triggers, notify the system’s operator about the
system’s state based on boolean conditions. In practice, observations of the system stem
from a variety of sensors of the system. Different sensors usually produce values at
different frequencies. As a result, the monitor must handle the asynchronous arrival of
input data. High-level specification frameworks such as RTLola provide fine-grained

Monitor

Stream-Based

Specification

CPS VerdictSpeed

RPM

Input Streams Output Streams

RTLola

Figure 1.1.: A High-Level Overview of Stream-based Monitoring
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1. Introduction

synchronization primitives called pacing annotations for this. While significantly easing
the specification of monitors, inconsistent pacing annotations are also a source of subtle
errors, such as requiring the monitor to access unavailable stream values.

As monitors become part of the cyber-physical system, they also become safety-
critical. Hence, ensuring that they are free of runtime errors such as those stemming
from inconsistent pacing annotations is of uttermost importance. Recently, a type-
based analysis for the consistency of pacing annotations has been explored [Koh+25].
However, the presented analysis lacks the real-time and conditional evaluation features
of RTLola. Yet, it was shown that these features are crucial for monitoring real-world
systems [Bau+24b].

The real-time features of RTLola include periodic pacing annotations, which declare
that a stream must evaluate at a fixed frequency. These are essential for the monitor to
proactively produce verdicts such as detecting sensor failures, which is impossible, if the
monitor can only react to its inputs as it cannot react to non-existing data. Conditional
evaluation adds when clauses to streams that refine their evaluation time points at
runtime based on a boolean condition. These capture a variety of use cases such as
restricting the evaluation of a stream to the time points where the divisor of a division
is unequal zero.

This thesis extends the existing type based analysis of pacing annotations in RTLola
with when conditions. For this, we provide a relational semantics for RTLola with
when conditions and show that the extended type system is sound, meaning that type
safety proofs the absence of runtime errors, using logical relations. We demonstrate
how the real-time features of RTLola can be encoded with when conditions and present
a case study analyzing the capabilities and limitations of the presented extension. As
an objective measure we compare the performance of a native implementation of the
real-time features of RTLola against their encoded pendants.

2



1.1. Motivation

1.1. Motivation

To motivate stream-based monitoring and the benefit of pacing annotations, consider
the following simple RTLola specification monitoring the velocity of a car:

1 input position: Float

2
3 output velocity @position := (position - position.offset(by: -1).defaults(to:

position)) * 36.0

4
5 trigger @position velocity > 150 "Driving too fast"

The input stream declared in line one of the specification captures the current position
the car as a floating point number. To compute the velocity of the car, the output stream
velocity computes the difference between the current position and the previous one.
The previous position is obtained using anoffset access to theposition stream, with the
default operator providing a fallback value when no previous value exists. Assuming
the car’s position is sampled approximately every 100ms, the resulting velocity is scaled
to kilometers per hour by multiplying with the constant factor 36. Finally, the trigger in
line five compares the velocity to the maximum permitted speed. Both the trigger and
the velocity stream are updated whenever the position input receives a new value, as
specified by the pacing annotation @position.

1.1.1. Asynchrony

In practice, the monitor must observe multiple sensors to provide meaningful verdicts
about the system’s health. To illustrate this, we extend the example with an additional
rpm input stream that records the engine’s revolutions per minute.

1 input rpm: Float

2 input position: Float

3
4 output velocity @position := (position - position.offset(by: -1).defaults(to:

position)) * 36.0

5
6 trigger @position velocity > 150.0 "Driving too fast"

7
8 output shift @position && rpm := velocity < 30.0 && rpm.hold(or: 0.0) > 3000.0

9 trigger @position && rpm shift "Shift to higher gear"

Specification 1.1: An RTLola Specification with two Input Streams.

The RPM values allow the monitor to compute more elaborate verdicts. For instance, the
shift stream indicates that the driver should switch to a higher gear if the engine’s RPM
is excessive while the vehicle speed is low. Unlike before, the pacing annotation now
requires both the position and rpm streams. Consequently, the shift stream evaluates
only when new position and RPM values arrive simultaneously. This behavior is visu-
alized in Fig. 1.2a. There, dots symbolize the presence of stream values while arrows

3



1. Introduction

position

rpm

velocity

shift

time1 2 3 4 5

(a) Timing Diagram for Spec. 1.1.

position

rpm

velocity

shift

time

0

1 2 3 4 5

(b) Timing Diagram for Spec. 1.2.

Figure 1.2.: Timing Diagrams for the Specification in Spec. 1.1 and Spec. 1.2.

show the dependency between these values. Light-grey arrows represent dependencies
stemming from default values.

In reality, however, different sensors produce values at different pace which can cause
the stream and with that the trigger to not detect critical system states. This can be
observed in Fig. 1.2a, where the shift stream does not evaluate at time points one, two,
four and five, because the rpm and position inputs do not coincide.

The Hold Operator. To address such asynchrony, RTLola provides the hold operator.
Unlike synchronous stream accesses, which refer to a stream’s value in the current cycle,
the hold operator refers to its most recent value, which may originate from an earlier
time point. If no previous value exists, a default must be provided, similar to the offset
operator. With the hold operator, the above specification is modified as follows:

1 input rpm: Float

2 input position: Float

3
4 output velocity @position := (position - position.offset(by: -1).defaults(to:

position)) * 36.0

5
6 trigger @position velocity > 150.0 "Driving too fast"

7
8 output shift @position := velocity < 30.0 && rpm.hold(or: 0.0) > 3000.0

9 trigger @position shift "Shift to higher gear"

Specification 1.2: An RTLola Specification featuring the Hold Operator.

The shift stream now accesses the RPM values via the hold operator. This removes the
requirement that an RPM measurement must be present in the current evaluation cycle.
Accordingly, its pacing annotation is adapted so that the stream evaluates whenever
a new position is received. This ensures that the issue illustrated above is avoided.
In Fig. 1.2b, dashed arrows denote dependencies from hold accesses. Compared to
Fig. 1.2a, the shift stream now also evaluates at time points one and five. However,
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position

rpm

drain

shift

time

0

1 2 3 4 5

Figure 1.3.: A Timing Diagram for the Specification in Spec. 1.3.

pacing annotations serve purposes beyond merely capturing dependencies between
streams.

Disjunctive Pacing Annotations A monitor synthesized from the above specification
may still miss critical events, such as high RPM values without vehicle movement (e.g.,
when the engine is revved while stationary). To address this, the monitor should
evaluate the shift stream whenever either a position or an RPM reading is received. In
RTLola this behavior is expressed using disjunctive pacing types:

1 input rpm: Float

2 input position: Float

3
4 output velocity @position := (position - position.offset(by: -1).defaults(to:

position)) * 36.0

5
6 trigger @position velocity > 150.0 "Driving too fast"

7
8 output shift @position || rpm := velocity.hold(or: 0.0) < 30.0 && rpm.hold(or: 0.0) >

3000.0

9 trigger @position || rpm shift "Shift to higher gear"

Specification 1.3: An RTLola Specification with disjunctive Pacing Annotations

In this specification, the pacing annotation of the shift stream explicitly encodes this
disjunction. Unlike before, the annotation no longer requires the presence of a position
value, allowing the stream to evaluate when only an RPM measurement is received.
Accordingly, the access to the position stream in shift is changed to be asynchronous.
Fig. 1.3 illustrates this behavior: compared to Fig. 1.2b, the shift stream now also
evaluates at time points two and four.

Summary In summary, RTLola provides three methods to access stream values:

1. Direct Synchronous Access. Refers to the current value of a stream by its name.

5



1. Introduction

2. Offset Synchronous Access. Refers to a past value of a stream using the offset

operator with a default fallback, but requires the stream to have a value in the
current cycle. This guarantees freshness of the accessed past value.

3. Asynchronous Access. Refers to the most recent value of a stream using the hold

operator, regardless of whether it was produced in the current or a past cycle. If
no past value exists, a default must be specified. Unlike the offset access, hold
imposes no bound on the age of the value.

Stream evaluation is further controlled by pacing annotations, written after the stream
name and preceded by @. These are positive boolean formulas over input streams, where
each atomic proposition evaluates to true whenever the corresponding input stream
receives a value.

1.1.2. Handling Sensor Failure

A limitation of event-based pacing annotations is that they only enable the monitor to
react to input events. If the system becomes unresponsive and no measurements are
produced, the monitor cannot detect this absence. To address this, RTLola supports
periodic pacing annotations, which specify a fixed frequency for stream evaluation. For
example, assuming RPM measurements arrive at 1Hz, the specification can be extended
to detect when this assumption is violated.

1 input position: Float

2 input rpm: Float

3
4 output velocity @position := (position - position.offset(by: -1).defaults(to:

position)) * 36.0

5 trigger @position velocity > 150.0 "Driving too fast"

6
7
8 output count @1Hz := rpm.aggregate(over: 1min, using: count)

9 trigger @1Hz count < 60 "RPM Sensor Failure"

10
11 output shift @position || rpm := velocity.hold(or: 0.0) < 30.0 && rpm.hold(or: 0.0) >

3000.0

12 trigger @position || rpm shift "Shift to higher gear"

Specification 1.4: A Specification that detects Sensor Failures using Periodic Streams.

The additional count stream evaluates once per second and uses a sliding window
aggregation to count the number of RPM values received in the past minute. The
trigger in line nine asserts that this count is at least 60. The sliding window aggregation
is expressed using the aggregate function, which takes two named arguments: over,
specifying the window duration, and using, defining the aggregation function applied
to all values of the target stream within that duration.

6
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Increasing Robustness. Sensor measurements are often noisy and may fluctuate
around the true physical value. To account for this, we define the sum stream, which
sums all RPM values over a one-minute sliding window. Dividing this sum by the count
yields the average RPM over the last minute. The shift stream is then adapted to use
this average.

1 input position: Float

2 input rpm: Float

3
4 output velocity @position := (position - position.offset(by: -1).defaults(to:

position)) * 36.0

5 trigger @position velocity > 150.0 "Driving too fast"

6
7
8 output count @1Hz := rpm.aggregate(over: 1min, using: count)

9 output sum @1Hz := rpm.aggregate(over: 1min, using: sum)

10
11 output avg_rpm @1Hz := sum / count

12 trigger @1Hz count < 60

13
14 output shift @position || rpm := velocity.hold(or: 0.0) < 30.0 && avg_rpm.hold(or:

0.0) > 3000.0

15 trigger @position || rpm shift "Shift to higher gear"

However, static timing information (input events or fixed periods) is insufficient to
guarantee safe evaluation. Runtime conditions must also be considered to prevent
errors such as division by zero.

1.1.3. Computation Shielding

For example, if the RPM sensor fails to produce values for one minute, the count stream
evaluates to zero, leading to a division by zero in avg_rpm. To avoid such failures, RTLola
provides evaluation conditions. These are boolean stream expressions that refine the
static timing of a stream, ensuring it only evaluates when both the pacing annotation is
satisfied and the condition holds. Finally, the above specification is adapted as follows:

1 input rpm: Float

2 input position: Float

3
4 output velocity @position := (position - position.offset(by: -1).defaults(to:

position)) * 36.0

5 trigger @position velocity > 150.0 "Driving too fast"

6
7
8 output count @1Hz := rpm.aggregate(over: 1min, using: count)

9 output sum @1Hz := rpm.aggregate(over: 1min, using: sum)

10
11 output avg_rpm @1Hz when count > 0 := sum / count

12 trigger @1Hz count < 60

7



1. Introduction

13
14 output shift @position || rpm := velocity.hold(or: 0.0) < 30.0 && avg_rpm.hold(or:

0.0) > 3000.0

15 trigger @position || rpm shift "Shift to higher gear"

The stream avg_rpm is now guarded by an evaluation, or when, condition specified after
the when keyword that asserts that the count stream must be greater than zero for the
avg_rpm stream to evaluate.

1.1.4. Problem Statement

The preceding examples demonstrate that expressive pacing annotations and evaluation
conditions are essential for monitoring complex cyber-physical systems. At the same
time, their expressiveness makes inconsistencies easier to introduce. Consider, for
example, the following specification with inconsistent pacing annotations:

1 input a: Int

2 input b: Int

3
4 output c @a || b := a + b

Specification 1.5: A Specification with faulty Pacing Annotations.

Consider time point three in the timing diagram shown in Fig. 1.4a. In this scenario, it
occurs that the stream a receives a value at a time point where stream b does not. This
could lead to the failure of the monitor, as it tries to access the non-existent value when
computing the value for stream c. This is visualized by the red arrow and red dashed
circle in Fig. 1.4a. Such inconsistencies become more subtle with advanced features
such as periodic pacing and evaluation conditions.

1 output a @2Hz := 42

2 output b @4Hz := a

Specification 1.6: A Specification with inconsistent Periodic Pacing Annotations.

Fig. 1.4b shows an inconsistency arising when b evaluates twice as often as a, requiring
nonexistent values of a at intermediate time points. In this example, the monitor requires
the non-existent values of stream a at time points 0.25s and 0.75s to compute stream b.
Similarly, Fig. 1.4c illustrates how an evaluation condition can lead to missing values in
the following specification:

1 input a: Int

2 output b @a when a > 10 := a

3 output c @a := b

Specification 1.7: A RTLola Specification with inconsistent Evaluation Conditions.

As illustrated, the issue arises when a falls below 10, as b does not evaluate, while c

depends on it. An example timing diagram is presented in Fig. 1.4c where the value of
a is given in white font in the circles.

8
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a

b

c
time

1 2 3

(a) A Timing Diagram for the Specifi-
cation in Spec. 1.5.

a

b
time

0.25s 0.5s 0.75s

(b) A Timing Diagram for the Specifi-
cation in Spec. 1.6.

a

b

c
time

11 814

1 2 3

(c) A Timing Diagram for the Specifi-
cation in Spec. 1.7.

Figure 1.4.: Timing Diagrams showcasing the inconsistent Pacing Annotations in
Spec. 1.5, Spec. 1.6, and Spec. 1.7.

The Problem. To detect such inconsistencies, RTLola employs a type system that
reasons about pacing annotations. The central challenge is to formally define this type
system and RTLolas semantics such that it can be proven that well-typed specifications
are free of runtime errors. Previous work established this only for event-based streams
without conditional evaluation.

Contribution. This thesis extends the previous formalization of the type system to
cover periodic pacing annotations and evaluation conditions. For this, we first prove
type-safety for conditional streams using new type inference rules and then present
a translation of periodic annotations and sliding windows into specifications that use
only event-based annotations and evaluation conditions. We prove the soundness of the
extension to conditional streams by adapting the previous logical relations, showing that
well-typed specifications cannot fail at runtime. Finally, we evaluate the performance
of translated real-time features against their native implementation in RTLola, thereby
quantifying the runtime cost of soundness guarantees.

9



1. Introduction

1.2. Related Work

Runtime Verification and Stream-based Monitoring Runtime verification is a well-
established research field that originated in 1999 [Kim+99]. Early approaches relied
on temporal logics, such as linear temporal logic [Pnu77; BLS11] and metric tem-
poral logic [Koy90; BKZ17], to specify monitor behavior. Applications span a wide
range of systems, including Markov Decision Processes [JTS21; Hen+23], software
systems [Jin+12; Sch21], and complex cyber-physical systems [Bau+24b; Bau+20b;
Bau+24a].

Complex system properties, such as algorithmic fairness [Bau+25] require expres-
sive specification mechanism that go beyond temporal properties. A prominent ex-
ample are stream-based specification languages as introduced by Finkbeiner et al. in
2005. [dAn+05]. Thereafter came its successor RTLola [Fay+19; Bau+24a] and other
stream-based specification languages such as Tessla [Kal+22], Striver [GS21] or Copi-
lot [PGD24], all of which provide close to fully featured programming languages for
specification.

Similar to programming languages, all the above stream-based languages feature a
type system that reasons about the data consistency of specifications. In general, type
systems as pioneered by Hindley and Milner in 1969 [Hin69; Mil78] are automatic
program analyses that guarantee well-defined meaning for programs and specifica-
tions. [Pie02, p.208] Copilot [PGD24] and Striver [GS21] both don’t feature their own
language frontend, but are an embedded domain specific language in the Haskell pro-
gramming language. TeSSla [Kal+22] and RTLola [Bau+24a] both feature their own
language frontend including a type analysis for the validity of data types.

A key distinction among stream-based languages lies in their treatment of asyn-
chronous data. Some languages such as Lola [dAn+05] and Copilot [PGD24] are purely
synchronous and do not support asynchronous input. In TeSSla [Kal+22] input streams
are modeled as piecewise constant signals, comparable in expressivity to RTLola with-
out synchronous accesses. The Striver [GS21] introduces ticking expressions, concep-
tually similar to pacing annotations in RTLola. However, it lacks consistency checks
between ticking and stream expressions, meaning evaluation is not guaranteed when a
tick occurs.

Synchronous Programming and Clocks A related body of research addresses sim-
ilar challenges in synchronous programming languages, which ensure that values are
available when required for computation. Languages such as Lustre [Cas+87], Es-
terel [BC84], and Signal [GL87] emerged in the 1980s and later inspired languages
such as Zélus [Ben+11] and Lucid Synchrone [DGP08]. These languages provide ab-
stractions for reactive systems, analogous to how imperative languages abstract digital
processors. Like pacing types in RTLola, synchronous languages employ clocks [GL87;
CP03; MPP10], which define computation timing, combined with static analyses to de-

10



1.2. Related Work

tect timing inconsistencies. For instance, [Ben+14] introduces a type system for detecting
non-causal programs, a property comparable to ensuring a unique evaluation model for
a RTLola specification. Work on Lustre [Hal+91] and Lucid Synchrone [CP03] also in-
vestigates clock sub-sampling based on boolean conditions and the resulting challenges
for timing consistency. The notion of conditional streams in RTLola is directly related
to this sub-sampling approach. However, synchronous languages typically address
sub-sampling using dependent type theory, whereas the approach in this thesis avoids
such requirements. Beyond ensuring clock consistency, recent work has advanced type
systems to verify rich temporal properties of signals. For example, [Che+24] presents a
refinement type system for the synchronous language MARVeLus. This system reasons
about annotations based on LTL [Pnu77], capturing the temporal behavior of signal
values.
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Chapter 2
Background

This chapter first provides an overview of RTLolas real-time features and conditional
streams, for which type safety will be established in this thesis. It then introduces
Logical Relations, a proof technique for showing type safety. Finally, it summarizes
existing work on formalizing RTLola’s type system using the simplified core language
StreamCore presented in [Koh+25].

2.1. RTLola

Beyond the features discussed in Sect. 1.1, RTLola as presented in [Bau+24a] includes
additional capabilities such as dynamic and parameterized streams. These are useful
for monitoring unbounded environments, for example, an unbounded number of aerial
vehicles in an airspace. However, ensuring timing consistency between parameterized
streams requires reasoning about the existence of stream instances, which lies beyond
the scope of this thesis. In addition, RTLola supports conditional streams through when
conditions in the evaluation clause.

2.1.1. Conditional Streams

In RTLola, a conditional stream such as avg_rpm in Sect. 1.1.3 is declared as follows:
1 output <name> eval @<pacing> when <condition> with <expression>

Semantically, this defines a stream that evaluates to the value of its expression at all
positions where both the pacing holds and the condition is true. At positions where the
pacing does not hold or the condition evaluates to false, the stream may take any value
or remain undefined.

This mechanism enables optimizations in monitor implementations, since no value
needs to be computed when the condition is false. For example, inexpensive conditions
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can be used to guard more costly monitoring operations, thereby improving perfor-
mance. Further optimizations of this kind are discussed in [Bau+20a].

Pacing Annotations. Pacing annotations in RTLola have two forms. They may either
define an event as a positive boolean formula over input stream variables, or specify
a fixed frequency at which a stream must produce a value according to its expression.
An event-based annotation holds when the boolean formula evaluates to true, where
each input stream variable indicates whether it received a new value in the current
evaluation cycle. Periodic pacings, first introduced in [Fay+19], hold according to the
fixed frequency relative to the monitors start.

2.1.2. Periodic Streams

Periodic streams are output streams whose pacing annotation specifies a fixed frequency.
As discussed in Sect. 1.1, periodic streams extend the monitor from being purely reactive,
based on event-driven pacings, to also performing proactive computations, such as
detecting sensor failures.

Moreover, periodic streams may include sliding window operations that aggregate
all values of a stream within a specified time window. In contrast, sliding window
operations are not permitted in event-based streams, as they can lead to unbounded
memory requirements [Fay+19].

Sliding Windows Sliding windows apply ann-ary aggregation function f over a value
domain V , defined as

f ∈ P(V) → V

to all values of a stream within a specified time frame d, referred to as the duration of the
sliding window. Formally, if V := (v1, t1), . . . , (vk, tk) denotes the set of timestamped
values of a stream, a sliding window operation over that stream with duration d and
aggregation function f evaluates at time t as follows:

vr = f({vi | (vi, ti) ∈ S∧ t− d ⩽ ti < t})

Consider the following example specification of a sliding window operation in RTLola:
1 input a: Int

2 output b @2Hz := a.aggregate(over: 1s, using: sum)

Specification 2.1: An example sliding window operation.

The sliding window specified in stream b states that every 0.5s, b equals the sum of
all values of stream a from the preceding second. Thus, the window duration is 1s,
and its aggregation function is the n-ary addition. The semantics of this operation are
illustrated in Fig. 2.1.
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a

b
time

11 8

0.5s 1s 1.5s 2s 2.5s 3s

14 7 -5 9 12 25 6 3

9

1-3

22 2 9 19 9buckets

9 31 24 11 28 28

Figure 2.1.: The Semantics of a Sliding Window Operation exemplified.

The buckets shown in the figure represent an implementation strategy for sliding win-
dows that enables bounded-memory monitoring. This is achieved by pre-aggregating
the stream values into buckets whose length matches the evaluation period of the aggre-
gation. If the window aggregation is evaluated every x seconds over a duration d, only
d/x buckets need to be stored at runtime. This strategy is later used to encode sliding
window aggregations in the extended fragment of RTLola by declaring a stream for
each required bucket.

2.2. Logical Relations

Logical relations [Sta85] are a proof technique commonly used to establish that a well-
typed program satisfies a certain property called type safety. In this thesis, we apply
logical relations to show that a specification is safe to monitor. We define this property as
the guarantee that, regardless of the values or arrival times of input streams, all streams
can always be evaluated to a defined value at runtime. For stream-based languages, and
for RTLola in particular, traditional approaches to type safety, such as using progress
and preservation lemmas, are not well suited, as they work best for operational semantics
rather than the relational semantics used in stream-based languages.

In general, type systems aim to establish semantic properties of programs from their
syntactic structure. A type system assigns types to syntactic constructs and imposes
constraints on these assignments to ensure type safety. By contrast, logical relations
connect types to semantic entities such as value domains or streams of values.

Proofs of type safety using logical relations typically follow a standard structure. First,
one defines the logical relations, that is, the semantic interpretation of types and typing
contexts. Next, the type safety property is reformulated in terms of these relations;
let us call this reformulation semantic safety. The proof then proceeds by showing that
syntactic well-typedness implies semantic safety, and finally that semantic safety implies
the original type safety property. Thus, semantic safety constitutes a strengthening of
type safety.
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2.2.1. An Introductory Example

Consider the following simplified example from [Sko19], which demonstrates that the
strongly typed lambda calculus is strongly normalizing, i.e., all well-typed programs
terminate. Assume there are only two types in the language: booleans and unary
functions. A first logical relation V assigns each type its associated set of values.

V[bool] = {true, false}

V[τ1 → τ2] = {λx : τ1.e | ∀v ∈ V[τ1].e[v/x] ∈ E[τ2]}

Similarly, a type is associated with all expressions of that type in the relate E:

E[τ] = {e | ∀e ′.e ↣∗ e ′ ∧ irred(e ′) =⇒ e ′ ∈ V[τ]}

Let irred(e) =̂ ̸ ∃e ′. e ↣∗ e ′. By the definition of E, if an expression belongs to E[τ] for
some τ, then it is strongly normalizing. The key step in the proof is to show that if an
expression e types to τ, then e ∈ E[τ].

For the complete example and a more detailed introduction to logical relations, we
refer the reader to the Introduction to Logical Relations by Lau Skorstengaard [Sko19].

2.3. StreamCore

This section reviews prior work on formalizing the type system and semantics of RT-
Lola as StreamCore [Koh+25]. In Chapter 3, we extend these definitions to support
conditional streams, and consequently periodic streams.

Intuitively, a StreamCore specification consists of a set of stream equations defined
over input and output stream variables from the sets Vin and Vout. For simplicity, stream
values are assumed to be integers, though the formalization can be extended to richer
value domains. Semantically, each stream equation specifies a constraint on the value of
a stream based on its past values or those of other streams. The semantics of StreamCore
are defined in terms of models of a specification, where a model assigns a value to every
stream at every time step such that all stream equations are satisfied.

2.3.1. Syntax

Formally, a specification is a list of stream equations of the form x @ τ := e, where x is
an output stream variable in Vout, τ is a pacing annotation, and e is a stream expression.
A pacing annotation is a positive boolean formula over the input stream variables Vin.
Expressions may be constants v ∈ Z, arithmetic operations such as addition, or stream
accesses. Stream accesses take one of three forms:

• direct synchronous access, given by a target stream variable x ∈ Vin ⊎ Vout,
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• access to the previous value of a stream, written as x.prev(e), where e is a fallback
expression evaluated if x has no previous value, or

• asynchronous hold access, written as x.hold(e), where e is a fallback expression
evaluated if x has no value.

The complete syntax of StreamCore is provided in Def. 2.1.

Definition 2.1 (StreamCore Syntax)

Variables x ∈ Vin ⊎ Vout

Values v ∈ Z

Stream Expressions e ::= v | x | x.prev(e) | x.hold(e) | e1 + e2 | . . .

Pacing Annotations τ ::= x ∈ Vin | ⊤ | τ1 ∧ τ2 | τ1 ∨ τ2

Equations eq ::= x @ τ := e

Specifications S ::= ϵ | eq ·S

2.3.2. Semantics

In StreamCore, specifications are given a relational semantics, where models relate
input streams to output streams. Before defining the relational semantics, we introduce
auxiliary notions for streams and maps.

Definition 2.2 (Stream)
Streams are sequences of optional values, where the absence of a value is noted by ⊥.

Stream ≜ (Z ⊎ {⊥})N

For the formal definition of relational semantics in StreamCore, we require StreamMaps,
which assign stream variables to streams.

Definition 2.3 (Stream Map)
Given a set of stream variables X ⊆ Vin ⊎Vout, the set of stream maps over X is defined

as:

Smap(X) ≜ StreamX

Let ρ ∈ Smap(X), the domain of ρ is denoted as dom(ρ) ≜ X. Let ∅ be the unique map
in Smap(∅). Given a stream variable x and w ∈ Stream, (x 7→ w) ∈ Smap({x}) denotes
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the singleton map associating w to x. Finally, the join of two maps ρX ∈ Smap(X) and
ρY ∈ Smap(Y) as ρX · ρY is defined as follows: ρX · ρY ∈ Smap(X ∪ Y) as follows:

ρ1 · ρ2 ≜ λx.

{
ρ1(x) if x ∈ dom(ρ1)

ρ2(x) if x /∈ dom(ρ1) and x ∈ dom(ρ2)

Note that · is not commutative in general, but only when X and Y are disjoint. In the
following, ρin and ρout range over Smap(Vin) and Smap(Vout), respectively.

Semantics of Stream Expressions. Based on the previous definitions, the semantics
of stream expressions are given as follows. For a stream map ρ ∈ Smap(Vin ⊎ Vout) and
a time point n ∈ N, each expression e is assigned a value JeKnρ ∈ Z ⊎ { }. The symbol
 denotes that the evaluation of the expression failed. To define the meaning of stream
accesses, we introduce the following helper functions. Let w ∈ Stream be a stream of
optional values, n ∈ N a time point, and v ∈ Z ∪  .

Definition 2.4 (Stream Operators)

Sync(w,n) ≜

{
w(n) if w(n) ̸= ⊥
 if w(n) = ⊥

Last(w,n) ≜


w(n) if w(n) ̸= ⊥
Last(w,n− 1) if w(n) = ⊥∧ n > 0

 if w(n) = ⊥∧ n = 0

Hold(w,n, v) ≜

{
Last(w,n) if Last(w,n) ̸=  
v if Last(w,n) =  

Prev(w,n, v) ≜


Last(w,n− 1) if w(n) ̸= ⊥∧ n > 0∧ Last(w,n− 1) ̸=  
v if w(n) ̸= ⊥

∧(n = 0∨ n > 0∧ Last(w,n− 1) =  )
 if w(n) = ⊥

Intuitively, the functions can be described as follows:

• Sync(w,n) returns the integer value of stream w at time n, or  if w is undefined
at n.
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• Last(w,n) returns the most recent defined value of w at or before time n. If no
such value exists (i.e., w has never been different from ⊥ up to and including n),
then Last(w,n) fails and yields  .

• Hold(w,n, v) also returns the most recent defined value of w at or before n. Unlike
Last(w,n), if no such value exists (Last(w,n) =  ), it returns the default value v.

• Prev(w,n, v) corresponds to the x.prev(e) stream access. This operation first
inspects the current value of stream x. If x has a defined value at time n, it returns
the previous defined value of x. If no previous value exists (i.e., n is the first time
x is defined), it returns the default value e. Formally, Prev(w,n, v) checks whether
w(n) is defined. If w(n) = ⊥, then Prev fails and returns  . If w(n) is defined, Prev
returns the last defined value of w excluding w(n). If n is the first point where w

is defined, Prev returns the default value v.

Definition 2.5 (Denotation of stream expressions)
Using these functions the semantics of stream expressions is defined as follows:

JcKnρ ≜ c

Je1 + e2Knρ ≜ Je1Knρ + Je2Knρ

JxKnρ ≜ Sync(ρ(x), n)

Jy.prev(e)Knρ ≜ Prev(ρ(y), n, JeKnρ )

Jx.hold(e)Knρ ≜ Hold(ρ(y), n, JeKnρ )

Where the operator + is defined as follows:

v1 + v2 ≜

{
v1 + v2 if v1 ̸=  ∧ v2 ̸=  
 otherwise

Constant values and arithmetic operations are evaluated in the standard way, and, as
expected, stream accesses are interpreted using the functions Sync, Prev, and Hold.

Semantics of Pacing Annotations. Before defining the semantics of complete spec-
ifications, we specify the semantics of pacing annotations. Intuitively, a pacing anno-
tation represents a subset of discrete time points x ⊆ N at which a stream must take a
defined value. Since pacing annotations are syntactically expressed as positive boolean
formulas over input stream variables Vin, their semantics depend on the given input
stream map ρin. An atomic proposition in such a formula, corresponding to an input
stream variable, denotes the set of time points where the associated stream in ρin has a
defined value. The semantics of boolean connectives then follow naturally from the set
operations ∪ and ∩.
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Definition 2.6 (Denotation of pacing annotations)
Given an input stream map ρin, the semantics of pacing annotations are defined as

follows:

JxKρin ≜ {n | ρin(x)(n) ̸= ⊥}

J⊤Kρin ≜ N

Jτ1 ∨ τ2Kρin ≜ Jτ1Kρin ∪ Jτ2Kρin

Jτ1 ∧ τ2Kρin ≜ Jτ1Kρin ∩ Jτ2Kρin

Semantics of Specifications Finally, the semantics of specifications can be defined
as a set of stream maps the satisfies the constraints imposed by the stream equations.

Definition 2.7 (Denotation of Equations)

Jx @ τ := eK ≜ { ρ = ρin · ρout | ∀n ∈ JτKρin .ρout(x)(n) = JeKnρ }

JϵK ≜ Smap(Vin) · Smap(Vout)

Jeq ·SK ≜ JeqK ∩ JSK

The denotation of a single equation is defined as the set of all stream maps in which
the output stream variable of the equation equals the value of its associated stream
expression. This requirement applies only at time points where the pacing annotation
holds. Since ρout(x)(n) ∈ Z ∪ ⊥ and JeK ∈ Z ∪  , both x and e must evaluate to a
well-defined integer value at all time points determined by the pacing annotation τ.

Safe Specifications. A definition for safe specifications is derived based on the se-
mantics presented above.

Definition 2.8 (Safety)
A specification S is called safe if, for every set of input streams ρin, there exists at least

one compatible set of output streams ρout. Formally,

Safe(S) ≜ ∀ρin ∈ Smap(Vin).∃ρout ∈ Smap(Vout). ρin · ρout ∈ JSK
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This definition does not require uniqueness of the output stream map; thus, non-
deterministic specifications are considered safe. Safety ensures that no stream access
refers to a non-existing value. If such an access were possible, the evaluation would
yield  , which is not a valid stream value, and no compatible output stream map could
exist in the denotational semantics.

2.3.3. Typing Rules of StreamCore

The typing rules of StreamCore operate at two levels: type judgments for specifications,
denoted ⊢, and type judgments for expressions, denoted ⊢x, where x records the stream
variable associated with the expression.

Definition 2.9 (Typing Rules of StreamCore)
The type inference rules for specifications are defined as follows:

Empty

Γ ⊢ ϵ

Eq
x /∈ dom(Γ) Γ ⊢x e : τ Γ, x : τ ⊢ φ

Γ ⊢ (x @ τ := e) ·φ

The type inference rules for expressions are defined as:

Const
v ∈ Z

Γ ⊢x v : τ

BinOp
Γ ⊢x e1 : τmust Γ ⊢x e2 : τmust

Γ ⊢x e1 + e2 : τmust

DirectOut
y ∈ Vout x ̸= y (y : τcan) ∈ Γ τmust |= τcan

Γ ⊢x y : τmust

DirectIn
y ∈ Vin τmust |= y

Γ ⊢x y : τmust

HoldOut
x ̸= y y ∈ dom(Γ) Γ ⊢x e : τmust

Γ ⊢x y.hold(e) : τmust

HoldIn
y ∈ Vin Γ ⊢x e : τmust

Γ ⊢x y.hold(e) : τmust

PrevOut
x ̸= y (y : τcan) ∈ Γ Γ ⊢x e : τmust τmust |= τcan

Γ ⊢x y.prev(e) : τmust

PrevIn
y ∈ Vin Γ ⊢x e : τmust τmust |= y

Γ ⊢x y.prev(e) : τmust

Self
x = y Γ ⊢x e : τmust

Γ ⊢x y.prev(e) : τmust

Where τmust |= τcan is defined as:

τmust |= τcan ≜ ∀ρin.JτmustKρin ⊆ JτcanKρin
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The inference rules for specifications process equations sequentially, adding the as-
sociation between each stream variable and its pacing annotation to the typing environ-
ment. The Empty rule states that any typing context is valid for an empty specification.
The Eq rule processes a single stream equation, recurses on the remaining specification,
and binds the current stream variable x to its pacing annotation τ. To prevent multiple
definitions of the same stream, it requires that x is not yet bound in the typing envi-
ronment. Moreover, it ensures that the stream expression can be evaluated at pacing τ,
expressed by the premise Γ ⊢x e : τ.

For stream expressions, the main type constraints arise from stream accesses. Each
stream access can be typed using one of two rules, depending on whether the accessed
stream is an input or an output stream.

Synchronous accesses, handled by the rules DirectOut, DirectIn, PrevOut, and
PrevIn, require that the time points at which an expression must be evaluated are con-
tained within the time points at which the accessed stream can be evaluated. This
condition is expressed by τmust |= τcan. For output stream accesses, an additional re-
striction applies: the accessed stream must differ from the stream associated with the
expression, thereby prohibiting self-access. The exception is the Self rule, which ex-
plicitly permits a stream to access its own past values through the y.prev(e) operator.
This rule requires only that the default expression e can be evaluated at the same time
points as the access itself, a condition shared with the PrevOut and PrevIn rules and
the y.hold(e) operator.

The asynchronous accesses using y.hold(e) imposes a weaker requirement: the
accessed stream y must simply be present in the domain of Γ and different from x,
without any pacing constraint.

2.3.4. Logical Relations for Pacing Types

This section defines the semantic interpretation of pacing types using logical relations.
Before introducing logical relations for pacing types, a relaxed semantics for stream
expressions over partial stream maps is provided. This is necessary because type in-
ference is an incremental process, where type definitions are gradually added to the
typing environment. The logical relations connect pacing types and typing environ-
ments to stream semantics, including stream maps. Thus, it is essential to specify how
stream expressions evaluate under partial stream maps in which some streams may be
undefined.

In the partial semantics, a stream access operator explicitly returns  if the accessed
stream is not in the domain of the map. The semantics also employ a single-value
memory cell, denoted x = v, which records the last value of a stream. This primarily
affects the semantics of the y.prev(e) operator when the accessed stream is the same as
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the stream associated with the expression. The memory cell is later required to prove
the type safety for streams that access their own past values. The full partial semantics
is given below as follows:

Definition 2.10 (Semantics of Stream Expressions under Partial Maps)

ĴcK
n,x=v

ρ ≜ c

̂Je1 + e2K
n,x=v

ρ ≜ Ĵe1K
n,x=v

ρ + Ĵe2K
n,x=v

ρ

ĴyK
n,x=v

ρ ≜

{
Sync(ρ(y), n) if y ̸= x∧ y ∈ dom(ρ)

 if y = x∨ y ̸∈ dom(ρ

̂Jy.prev(e)K
n,x=v

ρ ≜


Prev(ρ(y), n, ĴeK

n,x=v

ρ ) if y ̸= x∧ y ∈ dom(ρ)

 if y ̸= x∧ y ̸∈ dom(ρ)

v if y = x∧ n > 0∧ v ̸=  
ĴeK

n,x=v

ρ if y = x∧ (n = 0∨ v =  )

̂Jx.hold(e)K
n,x=v

ρ ≜

{
Hold(ρ(y), n, ĴeK

n,x=v

ρ ) if y ̸= x∧ y ∈ dom(ρ)

 if y = x∨ (y ̸= x∧ y ̸∈ dom(ρ))

The logical relations are defined with respect to the partial semantics of stream expres-
sions. Since specification safety is formulated in terms of the total semantics, Lemma 5.2
in [Koh+25] shows that the partial semantics coincides with the total semantics for every
extension of partial stream map to a total one. For completeness, we restate Lemma 5.2
of the paper:

Lemma 1. Let x ∈ Vout, Y ⊆ Vout \ {x}, and ρ ∈ Smap(Vin ∪ Y) and ρ ′ ∈ Smap(Vout \ Y \ {x}).
Then for any stream w ∈ Stream and any n ∈ N, we have:

w(n) ̸= ⊥ =⇒ ĴeK
n,x=L̃ast(w,n−1)

ρ ̸=  =⇒ ĴeK
n,x=L̃ast(w,n−1)

ρ = JeKρ · (x 7→w) ·ρ ′

Where L̃ast(w,n) is defined as follows:

L̃ast(w,n) ≜

{
Last(w,n) if n ⩾ 0

 if n < 0

Logical Relations. In the following, four relations are introduced: WJ−K, GJ−K, EJ−K,
and SJ−KHere, WJ−K associates pacing annotations with streams, GJ−K associates typing
contexts with output stream maps, EJ−K associates typing contexts with expressions,
and SJ−K associates typing contexts with specifications.
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Definition 2.11 (Interpretation of Pacing Types)

WJτKρin ≜ { w ∈ Stream | ∀n ∈ JτKnρin
.w(n) ̸= ⊥ }

GJΓKρin ≜ { ρout ∈ Smap(dom(Γ)) | ∀(x : τ) ∈ Γ. ρout(x) ∈ WJτKρin }

EJΓ | x : τKρin ≜ { e | ∀ρout ∈ GJΓKρin .∀n ∈ JτKρin .∀v ∈ Z ∪ { }. ĴeK
n,x=v

ρin ·ρout
̸=  }

SJΓKρin ≜ { S | ∀ρ1out ∈ GJΓKρin .∃ρ2 ∈ Smap(Vout \ dom(Γ)).ρin · ρ1out · ρ2out ∈ JSK }

The stream relationWJτKρin s the simplest of the four relations. It contains all streamsw
that have a defined value at least at the time points specified by JτKρin . The relationGJΓKρin

extends this notion to typing contexts: it contains all partial maps ρout ∈ Smap(dom(Γ))

such that, for every x : τ in Γ , the stream ρout(x) satisfies the interpretation of τ. The
relation EJΓ | x : τKρin contains all expressions e that can be evaluated at pacing τ for any
output stream x consistent with Γ . Last but not least, the specification relation SJΓKρin

contains all specifications S for which any partial stream map in GJΓKρin can be extended
to a total stream map that is a solution of S.

Semantic Typing. As outlined in Sect. 2.2, semantic typing judgments are defined on
the basis of these logical relations.

Γ |= S ≜ ∀ρin. S ∈ SJΓKρin

Γ |= ρ ≜ ∀ρin. ρ ∈ GJΓKρin

Γ |=x e : τ ≜ ∀ρin.e ∈ EJΓ | x : τKρin

The proof of type system soundness, i.e., ∅ ⊢ S =⇒ Safe(S), proceeds in two steps. First,
it is shown that semantically well-typed specifications are safe (∅ |= S =⇒ Safe(S)).
Second, it is established that syntactic well-typedness implies semantic well-typedness,
i.e., ∅ ⊢ S =⇒ ∅ |= S. For the complete proofs, we refer the reader to the original work
on pacing type soundness [Koh+25].
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Chapter 3
Proving Type-Safety for
Conditional Streams

In this chapter, we extend the existing StreamCore formalization to establish type
safety for conditional streams. The syntax of StreamCore is first modified to include
conditional stream equations, and the value domain of streams is extended with boolean
values to capture the semantics of conditions. Semantically, a conditional equation
restricts the time points at which a stream must produce a defined value to those where
both its pacing holds and the condition evaluates to true.

As illustrated in Sect. 1.1 with Spec. 1.7, conditional streams introduce further risks
for safe monitoring. To mitigate these risks, we extend the StreamCore type system
to permit conditional output streams in pacing annotations. Within the pacing type
system, conditional streams are hence treated similar to input streams and determine
their own pacing. The type system enforces that any stream synchronously accessing a
conditional stream x must be annotated with at least the pacing x, ensuring evaluation
occurs only when x produces a value.

3.1. StreamCore with Conditional Streams

The extension of StreamCore proceeds in three steps. First, the syntax is enriched with
conditional equations and references to conditional output streams in pacing annota-
tions. Second, the semantics of pacing annotations are adapted to account for these
references, and semantics for conditional streams are introduced. Third, additional
type inference rules are defined to handle conditional output streams.
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3.1.1. Syntax

Formally, the syntax of StreamCore is extended in three ways compared to the definition
presented in Def. 2.1:

1. The value domain of streams is extended to include booleans, B ≜ true, false.

2. Conditional stream equations are added.

3. Most importantly, pacing annotations are extended to allow references to condi-
tional output stream variables.

To distinguish between output streams with evaluation conditions and those without,
we define the set of conditional output stream variables as Vcond ⊆ Vout. If necessary,
the set of non-conditional output stream variables is denoted by Vtrue. The complete
syntax of StreamCore with conditional streams is provided in Def. 3.1.

Definition 3.1 (StreamCore Syntax with Conditional Streams)

Variables x ∈ Vin ⊎ Vout

Values v ∈ Z ∪ B

Stream Expressions e ::= v | x | x.prev(e) | x.hold(e) | e1 + e2 | . . .

Pacing Annotations τ ::= x ∈ Vin ⊎ Vcond | ⊤ | τ1 ∧ τ2 | τ1 ∨ τ2

Equations eq ::= x @ τ := e for x ∈ Vtrue

Conditional Equations eqc ::= x @ τ when ec := e for x ∈ Vcond

Specifications S ::= ϵ | eq ·S

Values are defined as the union of integers and booleans. For simplicity, we assume
throughout this thesis that all specifications are well-typed with respect to data types,
i.e., arithmetic operations are applied only to integers and boolean connectives only to
booleans.

Atomic propositions in pacing annotations are extended to range over both input
streams and conditional output streams. A conditional equation includes an additional
expression ec, introduced by the when keyword following the pacing annotation. This
expression specifies the condition under which the stream must produce a defined value
and is assumed to evaluate to a boolean.

3.1.2. Semantics

We start by adapting Def. 2.2 such that streams are defined over integers and boolean
values:
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Definition 3.2 (Stream)
Streams are sequences of optional values, where the absence of a value is noted by ⊥.

Stream ≜ (Z ⊎ B ⊎ {⊥})N

Next the updated semantics of pacing annotations is presented that accounts for
conditional output streams:

Definition 3.3 (Denotation of Pacing Annotations)
Given a stream map ρ, the semantics of pacing annotations are defined as follows:

JxKρ ≜ {n | ρ(x)(n) ̸= ⊥}

J⊤Kρ ≜ N

Jτ1 ∨ τ2Kρ ≜ Jτ1Kρ ∪ Jτ2Kρ

Jτ1 ∧ τ2Kρ ≜ Jτ1Kρ ∩ Jτ2Kρ

The updated semantics of pacing annotations differ from Def. 2.6 only in that the
stream map is now total over both input and output streams. Since the syntax and
semantics of expressions remain unchanged, we adapt the semantics of specifications
in Def. 2.7 to incorporate conditional streams.

Definition 3.4 (Denotation of Equations)

Jx @ τ := eK ≜ { ρ = ρin · ρout | ∀n ∈ JτKρ. ρout(x)(n) = JeKnρ }

Jx @ τ when ec := eK ≜ { ρ = ρin · ρout | ∀n ∈ JτKρ. JecKnρ ̸=  

∧ (JecKnρ = true =⇒ ρout(x)(n) = JeKnρ ) }

JϵK ≜ Smap(Vin) · Smap(Vout)

Jeq ·SK ≜ JeqK ∩ JSK

Jeqc ·SK ≜ JeqcK ∩ JSK
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The denotational semantics of a conditional equation x @ τ when ec := e coincide
with those of unconditional streams, except for the additional premise that requires the
condition to evaluate to a defined value, reflecting the intuition that evaluation is only
possible when both the expression and the condition can be evaluated. If the condition
evaluates to true, the stream must equal the value defined by its expression; otherwise,
the model may assign any value, including ⊥.

Note that this requirement is in fact a relaxation of the unconditional semantics, as the
time points at which a stream must be equal to its expression are further constrained.

3.1.3. Typing Rules for StreamCore with Conditional Streams

To formalize type safety, we introduce a new typing relation for pacing annotations. An
annotation is well-typed if all stream variables it references are present in the typing
environment Γ , ensuring that only well-typed streams occur in pacing annotations. We
then extend the type inference rules to handle boolean values and add a dedicated rule
for conditional streams.

Typing Pacing Annotations. Formally, a pacing annotation is well-typed with respect
to Γ if it can be derived using the following inference rules:

Var
x ∈ dom(Γ)

Γ ⊢ x

Top

Γ ⊢ ⊤

And
Γ ⊢ τ1 Γ ⊢ τ2

Γ ⊢ τ1∧τ2

Or
Γ ⊢ τ1 Γ ⊢ τ2

Γ ⊢ τ1∨τ2

The inference rules for conjunction and disjunction recurse on the operands in the
expected manner. The central case is the Var rule, which requires that any stream
variable occurring in a pacing annotation is contained in the environment.

The type inference rules for expressions remain largely unchanged compared
to Def. 2.9. The main difference is that the Const rule now also allows boolean
values. Boolean operations are typed using the BinOp rule.
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3.1. StreamCore with Conditional Streams

The type inference rules for stream expressions are then given as follows:

Const
v ∈ Z ∪ B
Γ ⊢x v : τ

BinOp
Γ ⊢x e1 : τmust Γ ⊢x e2 : τmust

Γ ⊢x e1 + e2 : τmust

DirectOut
y ∈ Vout x ̸= y (y : τcan) ∈ Γ τmust |= τcan

Γ ⊢x y : τmust

DirectIn
y ∈ Vin τmust |= y

Γ ⊢x y : τmust

HoldOut
x ̸= y y ∈ dom(Γ) Γ ⊢x e : τmust

Γ ⊢x y.hold(e) : τmust

HoldIn
y ∈ Vin Γ ⊢x e : τmust

Γ ⊢x y.hold(e) : τmust

PrevOut
x ̸= y (y : τcan) ∈ Γ Γ ⊢x e : τmust τmust |= τcan

Γ ⊢x y.prev(e) : τmust

PrevIn
y ∈ Vin Γ ⊢x e : τmust τmust |= y

Γ ⊢x y.prev(e) : τmust

Self
x = y Γ ⊢x e : τmust

Γ ⊢x y.prev(e) : τmust

We adapt the definition of τmust |= τcan to account for output streams:

τmust |= τcan ≜ ∀ρ.JτmustKρ ⊆ JτcanKρ

Type Inference for Specifications. On the specification level, we add a typing rule
for conditional streams EqC.

Empty

Γ ⊢ ϵ

Eq
x /∈ dom(Γ) Γ ⊢ τ Γ ⊢x e : τ Γ, x : τ ⊢ φ

Γ ⊢ (x @ τ := e) ·φ

EqC
x /∈ dom(Γ) Γ ⊢ τ Γ ⊢x e : τ Γ ⊢x ec : τ Γ, x : x ⊢ φ

Γ ⊢ x @ τ when ec := e ·φ

At the specification level, we add the EqC rule for conditional streams. Unlike the
Eq rule, EqC additionally requires that the evaluation condition ec is compatible with
the pacing τ. Moreover, instead of associating the stream variable with its declared
pacing type, EqC associates it with its own stream variable. Consequently, any stream y

that accesses a conditional stream x synchronously must include at least pacing x in its
annotation. This observation is crucial for establishing type safety in the next section.
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3. Proving Type-Safety for Conditional Streams

Both the Eq and EqC rules require that pacing annotations are well-typed, ensuring
that no annotation refers to an output stream that is not yet typed.

Self Accesses in Conditions. Before turning to the interpretation of pacing types
through logical relations, we highlight an unintuitive but safe edge case: a stream that
accesses its own past value in its condition. Such cases may yield unexpected models
in the semantics. Consider the following specification:

1 output x @true when x.prev(false) := false

The issue arises because the value of x.prev(false) at time n is defined only if x itself is
defined at n, as specified in Def. 2.5. If the condition evaluates to a defined value at n, it
must be false. Thus, the condition of the stream is false, and the stream is not required
to produce a value. In this situation, x.prev(false) is not guaranteed to evaluate to a
defined value, contradicting the initial assumption. However, due to the semantics of
conditional streams, a valid model exists in which the stream evaluates to the value of its
expression whenever the condition is false. As a result, the constant-false stream is a
valid interpretation of x in this example. Although unexpected from a user perspective,
this behavior does not compromise type safety.

3.2. Proving Type Safety of Conditional Streams

To prove type safety of StreamCore with conditional streams, we first define the deno-
tational semantics of pacing types over partial maps. We then adapt the logical relations
from Def. 2.11 to this setting and use them to prove type safety. An overview of the
proof is provided in Fig. 3.1.

We begin with the interpretation of pacing annotations over partial maps.

Definition 3.5 (Denotation of Pacing Annotations over Partial Maps)

ĴτKρ ≜ JτKρ · (λ_.λ_.⊥)

These semantics follow Def. 3.3, except that any stream not in the domain of the partial
map is assigned to the constant ⊥ stream, yielding a total map. This allows us to derive
the following lemma for pacing types:

Lemma 2. Let ρ be a stream map such that: ρ ∈ Smap(Vin) · Smap(dom(Γ)) for a typing context
Γ . Then it holds:

∀x ∈ (Vout \ dom(Γ)).∀w ∈ Stream.Γ ⊢ τ =⇒ ĴτKρ = ĴτKρ · (x 7→w)
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3.2. Proving Type Safety of Conditional Streams

Proof. Proof by induction over the structure of pacing types. We only show the inter-
esting base case when τ = y is a stream variable. Suppose Γ ⊢ y for a stream variable y.
It remains to show that:

ĴyKρ = ĴyKρ · (x 7→w)

From Γ ⊢ y follows that y ∈ dom(ρ). Suppose that ρ(y) = wy where wy is an arbitrary
stream. From the definition of the · operator on stream maps given in Def. 2.3 and
y ∈ dom(ρ) it follows that: (ρ · (x 7→ w))(y) = wy. It immediately follows that:

ĴyKρ = { n | wy(n) ̸= ⊥ } = { n | (ρ · (x 7→ w))(y)(n) ̸= ⊥ } = ĴyKρ · (x 7→w)

The lemma states that under the partial semantics for pacing annotations if an anno-
tation is well-typed it does not matter how the partial map is extended, the set of time
points for which the pacing annotation holds remains the same.

To establish type safety, we must also determine when the partial semantics of pacing
annotations agree with their denotational semantics. Intuitively, they agree for a stream
map ρ and its totalization by (λ.λ.⊥) whenever τ contains no stream variables outside
the domain of ρ. This property is enforced by the typing relation for pacing annotations
introduced above. The following lemma formalizes this agreement between partial and
denotational semantics:

Lemma 3. Let Γ be a typing context and ρ ∈ Smap(Vin) · Smap(dom(Γ)) be a partial stream
map. Then it holds for any pacing annotation τ:

∀ρout
′ ∈ Smap(Vout \ dom(Γ)).Γ ⊢ τ =⇒ ĴτKρ = JτKρ ·ρout ′

Proof. By induction on the type derivation tree of Γ ⊢ τ.

Intuitively, the lemma holds because Γ ⊢ τ guarantees that all variables in τ are in the
domain of ρ. Thus, totalizing ρ does not affect the evaluation of τ, including the specific
totalization used by the partial semantics.

3.2.1. Interpretation of Pacing Types over Input and Output Streams

Finally, we adapt the logical relations of Def. 2.11 to account for output streams in pacing
annotations. As before, we define four logical relations that connect pacing types and
typing contexts to semantic objects such as streams and stream maps. The four relations
are defined as follows:
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3. Proving Type-Safety for Conditional Streams

Definition 3.6 (Interpretation of Pacing Types)

WJτKρin ·ρout ≜ { w ∈ Stream | ∀n ∈ ĴτKρin ·ρout
.w(n) ̸= ⊥ }

GJΓKρin ≜ { ρout ∈ Smap(dom(Γ)) | ∀(x : τ) ∈ Γ. ρout(x) ∈ WJτKρin ·ρout }

EJΓ | x : τKρin ≜ { e | ∀ρout ∈ GJΓKρin .

∀n ∈ ĴτKρin ·ρout
.

∀v ∈ Z ∪ B ∪ { }. ĴeK
n,x=v

ρin ·ρout
̸=  }

SJΓKρin ≜ { S | ∀ρout
1 ∈ GJΓKρin .

∃ρout
2 ∈ Smap(Vout \ dom(Γ)).ρin · ρout

1 · ρout
2 ∈ JSK }

The first logical relation, WJτK, associates a pacing annotation τwith the set of streams
that produce values according to this pacing. The main extension compared to the
definition in [Koh+25] is that pacing annotations are now interpreted over both input
and output streams. Accordingly, the relation is indexed not only by an input stream
map ρin but also by an output stream map ρout. Since these maps may not include all
output streams of the specification, i.e., they are partial output stream maps, the relation
is defined using the partial semantics of pacing annotations introduced in Def. 3.5.

The second relation, GJΓK, interprets typing contexts as the set of all partial output
stream maps with the same domain as the context, such that every stream in the map is
well-typed with respect to its annotation.

The third relation, EJΓ | x : τK, captures the set of stream expressions that can be
safely evaluated in context Γ for a stream x with pacing τ. As pacing annotations are
interpreted over partial output stream maps, the relation is defined with respect to their
partial semantics. It is also based on the partial semantics of expressions from Def. 2.10,
which remain unchanged by the introduction of conditional streams. Type safety results
are then lifted from the partial semantics to the denotational semantics of expressions
by Lem. 1.

The fourth relation, SJΓK, defines the set of specifications that are safe to evaluate
under typing context Γ , using the denotational semantics of specifications from Def. 3.4.
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3.2. Proving Type Safety of Conditional Streams

Cor. 9
∅ ⊢ S =⇒ Safe(S)

∅ ⊢ S =⇒ ∅ ⊨ S =⇒ Safe(S)

Thm. 7
Γ ⊢ S =⇒ Γ ⊨ S

Lem. 6 Cor. 5
Γ ⊢x e : τ =⇒ Γ ⊨x e : τ

Lem. 4

Thm. 8
∅ ⊨ S =⇒ Safe(S)

Figure 3.1.: A visualization of the Proof Structure.

Because these semantics operate only on total maps, the relation quantifies over all
possible totalizations of the partial output stream map.

The definitions of semantic typing introduced in Sect. 2.3.4 remain unchanged.

3.2.2. Proof Overview

The overall proof follows the structure of [Koh+25], although the changes to the logical
relations lead to different proofs. Fig. 3.1 illustrates how lemmas, corollaries, and
theorems combine to establish type safety. The main result is stated in Cor. 9, which
forms the root of the proof tree in the figure. This result is decomposed using logical
relations and semantic typing: Thm. 7 shows that syntactically well-typed specifications
are also semantically well-typed, and Thm. 8 establishes that semantically well-typed
specifications are safe. The proof of Thm. 7 is divided into two steps. First, Cor. 5
shows that if an expression is syntactically well-typed in environment Γ , then it is
also semantically well-typed under Γ , based on a case analysis of the typing rules for
expressions in Lem. 4. Second, using this result and Lem. 6, which addresses the typing
rules for specifications, we conclude that syntactic typing implies semantic typing.

3.2.3. Proofs in Detail

This section presents the detailed proof of type safety for StreamCore with condi-
tional streams. The proof proceeds in the order shown in Fig. 3.1: beginning with the
soundness of expression typing, then the soundness of specification typing, and finally
combining these results to prove type safety as a whole.
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3. Proving Type-Safety for Conditional Streams

Soundness of Expressions

The following lemma establishes the soundness of the type inference rules for expres-
sions by showing that syntactic typing entails semantic typing.

Lemma 4 (Compatibility of Typing Rules for Expressions). The following implications
hold:

1. v ∈ Z ∪ B =⇒ Γ ⊨x v : τmust

2. y ∈ Vin =⇒ τmust |= y =⇒ Γ ⊨x y : τmust

3. y ∈ Vout =⇒ (y : τcan) ∈ Γ =⇒ τmust |= τcan =⇒ Γ ⊨x y : τmust

4. Γ ⊨x e1 : τmust =⇒ Γ ⊨x e2 : τmust =⇒ Γ ⊨x e1 + e2 : τmust

5. y ∈ Vin =⇒ Γ ⊨x e : τmust =⇒ τmust |= y =⇒ Γ ⊨x y.prev(e) : τmust

6. Γ ⊨x e : τmust =⇒ Γ ⊨x x.prev(e) : τmust

7. Γ ⊨x e : τmust =⇒ (y : τcan) ∈ Γ =⇒ τmust |= τcan =⇒ Γ ⊨x y.prev(e) : τmust

8. y ∈ Vin =⇒ Γ ⊨x e : τmust =⇒ Γ ⊨x y.hold(e) : τmust

9. y ∈ dom(Γ) =⇒ Γ ⊨x (e : τmust) =⇒ Γ ⊨x y.hold(e) : τmust

Proof. To prove the above lemma, recall that Γ ⊨x e : τmust is defined as ∀ρin.e ∈ EJΓ |

x : τmustK. We assume an arbitrary instantiation of the quantifiers in EJΓ | x : τmustK as
follows: Let ρout ∈ GJΓK, let n ∈ ĴτmustKρin ·ρout

. Finally, the proofs of the individual cases
boil down to showing that ĴeK

n,x=v

ρin ·ρout
̸= ⊥, i.e. that the expression evaluates to a defined

value given some partial evaluation model.

(1) Constants. Suppose v ∈ Z ⊎ B and let ρin be an arbitrary input stream map s.t.
ρin ∈ Smap(Vin). Pick any p ∈ Z ∪ B ∪  , then it remains to show that:

ĴvK
n,x=p

ρin ·ρout
̸=  

By definition of Ĵ−K it holds that ĴvK
n,x=p

ρin ·ρout
= v ̸=  as v ∈ Z ∪ B

(2) Direct Input Stream Access. Suppose y ∈ Vin is an input stream variable and let
ρin be an arbitrary input stream map s.t. ρin ∈ Smap(Vin). Also suppose that τmust |= y.
Pick any p ∈ Z ∪ B ∪  , then it remains to show that:

ĴyK
n,x=p

ρin ·ρout
̸=  
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As input streams have no defining equations, it holds that x ̸= y and therefore:

ĴyK
n,x=p

ρin ·ρout
= Sync((ρin · ρout)(y), n)

Because τmust |= y it holds that ∀ρ.JτmustKρ ⊆ JyKρ. Therefore, it especially holds that:

JτmustKρin ·ρout ·λ_.λ_.⊥ ⊆ JyKρin ·ρout ·λ_.λ_.⊥ ≡ ĴτmustKρin ·ρout
⊆ ĴyKρin ·ρout

(3.1)

Because ρin ∈ Smap(Vin) and y ∈ Vin it holds that y ∈ dom(ρin), and it follows that ∀t ∈
ĴyKρin ·ρout

.(ρin · ρout)(y)(t) ̸= ⊥. With that it especially holds that (ρin · ρout)(y)(n) ̸= ⊥. It
follows that Sync((ρin · ρout)(y), n) = (ρin · ρout)(y)(n) ̸=  .

(3) Direct Output Stream Access. Let ρin be an arbitrary input stream map. Suppose
y ∈ Vout is an output stream variable different from x, that (y : τcan) ∈ Γ and that
τmust |= τcan. Pick any v ∈ Z ∪ B ∪  . We must show that:

ĴyK
n,x=v

ρin ·ρout
̸=  

First note that y ∈ dom(ρout) as ρout ∈ GJΓK. Because ρout ∈ GJΓK and (y : τcan) ∈ Γ it holds
by definition of GJ−K that ρout(y) ∈ WJτcanKρin ·ρout . From the definition of WJτcanKρin ·ρout

it follows that:

∀t ∈ ĴτcanKρin ·ρout
.(ρin · ρout)(y)(t) ̸= ⊥

Similar to the observation 3.1 it follows from τmust |= τcan that

(ρin · ρout)(y)(n) ̸= ⊥

By definition of Ĵ−K and y ̸= x it follows that ĴyK
n,x=p

ρin ·ρout
= Sync((ρin · ρout)(y), n) =

(ρin · ρout)(y)(n) ̸=  .

(4) Binary Operation. Let ρin be an arbitrary input stream map. Suppose Γ ⊨x e1 :

τmust and Γ ⊨x e1 : τmust. Let v ∈ Z∪B∪ be arbitrary. It follows that Ĵe1K
n,x=v

ρin ·ρout
̸=  and

Ĵe2K
n,x=v

ρin ·ρout
̸=  . It remains to show that:

̂Je1 + e2K
n,x=v

ρin ·ρout
̸=  

By definition of Ĵ−K it follows: ̂Je1 + e2K
n,x=v

ρin ·ρout
= Ĵe1K

n,x=v

ρin ·ρout
+ Ĵe2K

n,x=v

ρin ·ρout
̸=  
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3. Proving Type-Safety for Conditional Streams

(5) Past Input Stream Access. Let ρin be an arbitrary input stream map. Let y ∈ Vin
be an input stream variable and therefore y ̸= x. Suppose Γ ⊨x e : τmust and τmust |= y.
Pick any v ∈ Z ∪ B ∪  . It remains to show that:

̂Jy.prev(e)K
n,x=v

ρin ·ρout
̸=  

Because y ∈ Vin it follows that y ∈ dom(ρin) and therefore y ∈ dom(ρin · ρout). From
the definition of Ĵ−K it follows that ̂Jy.prev(e)K

n,x=v

ρin ·ρout
= Prev((ρin · ρout)(y), n, ĴeK

n,x=v

ρin ·ρout
).

Observe that Prev(w,n, v) can only return  if v =  or w(n) = ⊥. From Γ ⊨x e : τmust it
follows that v = ĴeK

n,x=v

ρin ·ρout
̸=  . From τmust |= y it follows that (ρin · ρout)(y)(n) ̸= ⊥. It

follows that:

̂Jy.prev(e)K
n,x=v

ρin ·ρout
= Prev((ρin · ρout)(y), n, ĴeK

n,x=v

ρin ·ρout
) ̸=  

(6) Self Access. Let ρin be an arbitrary input stream map. Suppose Γ ⊨x e : τmust. Pick
any v ∈ Z ∪ B ∪  . We have to show that:

̂Jx.prev(e)K
n,x=v

ρin ·ρout
̸=  

By definition of ̂Jx.prev(e)K
n,x=v

ρin ·ρout
is either equal to v if v ̸=  which concludes the proof,

or equal to ĴeK
n,x=v

ρin ·ρout
. Because Γ ⊨x e : τmust it holds that ĴeK

n,x=v

ρin ·ρout
̸=  and therefore it

follows that ̂Jx.prev(e)K
n,x=v

ρin ·ρout
̸=  .

(7) Past Output Stream Access. Let ρin be an arbitrary input stream map. Let y ∈
Vout be an output stream variable different from x. Suppose Γ ⊨x e : τmust, (y : τcan) ∈ Γ

and τmust |= τcan. Pick any v ∈ Z ∪ B ∪  . It remains to show that:

̂Jy.prev(e)K
n,x=v

ρin ·ρout
̸=  

Because (y : τcan) ∈ Γ it holds that y ∈ dom(ρout). Because y ̸= x it follows by definition
of Ĵ−K that ̂Jy.prev(e)K

n,x=v

ρin ·ρout
= Prev((ρin · ρout)(y), n, ĴeK

n,x=v

ρin ·ρout
). As observed before

Prev(w,n, v) can only return  if v =  or w(n) = ⊥. From Γ ⊨x e : τmust it follows
that v = ĴeK

n,x=v

ρin ·ρout
̸=  . Because τmust |= τcan it holds that n ∈ ĴτcanKρin ·ρout

. Since
y ∈ dom(ρout) it holds that ρout(y)(n) ̸= ⊥ and therefore w(n) = (ρin · ρout)(y)(n) ̸= ⊥.
From this it follows that ̂Jy.prev(e)K

n,x=v

ρin ·ρout
= Prev((ρin · ρout)(y), n, ĴeK

n,x=v

ρin ·ρout
) ̸=  .

(8) Input Stream Hold. Let ρin be an arbitrary input stream map and let v ∈ Z∪B∪ .
Let y ∈ Vin be an input stream variable and therefore different from x. Suppose Γ ⊨x e :

τmust. We have to show that:

̂Jy.hold(e)K
n,x=v

ρin ·ρout
̸=  
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As y ̸= x and y ∈ dom(ρin) it holds by definition that:

̂Jy.hold(e)K
n,x=v

ρin ·ρout
= Hold((ρin · ρout)(y), n, ĴeK

n,x=v

ρin ·ρout
)

Observe that Hold(w,n, v) can only evaluate to  if v =  by definition. As v = ĴeK
n,x=v

ρin ·ρout

and Γ ⊨x e : τmust it holds that: v = ĴeK
n,x=v

ρin ·ρout
̸=  .

(9) Output Stream Hold. Let ρin be an arbitrary input stream map and let v ∈ Z∪B∪ .
Let y ∈ Vout be an output stream variable different from x. Suppose that y ∈ dom(Γ) and
Γ ⊨x e : τmust. It remains to show that:

̂Jy.hold(e)K
n,x=v

ρin ·ρout
̸=  

Because y ∈ dom(Γ) and therefore y ∈ dom(ρout) and y ̸= x it holds that:

̂Jy.hold(e)K
n,x=v

ρin ·ρout
= Hold((ρin · ρout)(y), n, ĴeK

n,x=v

ρin ·ρout
)

As before, because Γ ⊨x e : τmust it holds that ĴeK
n,x=v

ρin ·ρout
̸=  and therefore it follows that

̂Jy.hold(e)K
n,x=v

ρin ·ρout
̸=  .

Using this lemma the proof of the overall expression soundness stated in the following
corollary follows through induction over the type derivation tree:

Corollary 5 (Expression Soundness).

Γ ⊢x e : τ =⇒ Γ ⊨x e : τ

Proof. By induction on the type derivation tree of Γ ⊢x e : τ applying Lem. 4 for each
case.

Soundness of Specifications

Similarly to proof of soundness for expressions, Lem. 6 establishes the soundness of
type inference rules for specifications by showing that they are consistent with semantic
typing. It distinguishes a separate case for each rule.

Lemma 6 (Compatibility of Typing Rules for Specifications). The following statements hold
true:

1. Γ ⊨ ϵ

2. x /∈ dom(Γ) =⇒ Γ ⊢ τ =⇒ Γ, x : τ ⊨ S =⇒ Γ ⊨x e : τ

=⇒ Γ ⊨ (x @ τ := e) ·S
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3. x /∈ dom(Γ) =⇒ Γ ⊢ τ =⇒ Γ, x : x ⊨ S =⇒ Γ ⊨x ec : τ =⇒ Γ ⊨x e : τ

=⇒ Γ ⊨ (x @ τ when ec := e) ·S

Proof. Recap that Γ ⊨ S is defined as ∀ρin ∈ Smap(Vin).S ∈ SJΓKρin . Therefore we first fix
an arbitrary ρin ∈ Smap(Vin). To show that S ∈ SJΓKρin we have to show that prove that for
any ρout1 ∈ GJΓKρin there exists a ρout2 ∈ Smap(Vout \ (dom)(Γ)) such that ρin · ρout1 · ρout2 ∈
JSK. Said otherwise: there is a totalization of the partial output stream map ρout1 such
that it satisfies the stream equations of the specification.

(1) Empty Specification. Let ρout1 ∈ GJΓKρin be fixed but arbitrary. Note that by
definition of J−K it holds that JϵK = Smap(Vin) · Smap(Vout), i.e. for an empty specification
any stream map is valid. Hence it suffices to pick any ρout2 ∈ Smap(Vout \ dom(Γ)) such
as λ_.λ_.⊥., i.e. the stream map the maps every stream to a stream of constant ⊥.

(2) Unconditional Stream. Suppose x ̸∈ dom(Γ),Γ ⊢ τ, Γ, x : τ ⊨ S and Γ ⊨x e : τ. Let
ρout1 ∈ GJΓKρin be fixed but arbitrary. It remains to show the existence of an output
stream map ρout2 ∈ Smap(Vout \ dom(Γ)) such that:

ρin · ρout
1 · ρout

2 ∈ J(x @ τ := e) ·SK = Jx @ τ := eK ∩ JSK

From Γ ⊨x e : τ it follows that:

∀n ∈ ĴτKρin ·ρout1
.∀v ∈ Z ∪ B ∪ { }.ĴeK

n,x=v

ρin ·ρout1
̸=  (3.2)

Using this, we define a stream we for e recursively and show that it is in WJτKρin ·ρout1 .

we(n) ≜

 ĴeK
n,x=L̃ast(we(0) · ... ·we(n−1) ·0ω,n−1)

ρin ·ρout1
if n ∈ ĴτKρin ·ρout1

⊥ if n ̸∈ ĴτKρin ·ρout1

First, observe that we is well-defined, because we(n) only depends on we at time points
n ′ < n. Because of observation 3.2 it holds that ∀n ∈ ĴτKρin ·ρout1

.we(n) ̸=  . It follows
that we ∈ WJτKρin ·ρout1 . Using Lem. 2, x ̸∈ dom(Γ) and Γ ⊢ τ it follows that we ∈
WJτKρin ·ρout1 · (x 7→we). By definition of GJ−K it follows that ρout1 · (x 7→ we) ∈ GJΓ, x : τKρin .
Observe that by definition Last(w,n) only depends on positions n ′ of stream w where
n ′ ⩽ n. Therefore, it holds that:

L̃ast(we(0) · . . . ·we(n− 1) · 0ω, n− 1) = L̃ast(we, n− 1)

Using this and applying Lem. 1 we derive that:

∀n ∈ ĴτKρin ·ρout1
.we(n) = ĴeK

n,x=L̃ast(we,n−1)

ρin ·ρout1
= JeKnρin ·ρout1 · (x 7→we) ·ρout ′

(3.3)
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It remains to show that there is a ρout2 such that ρin · ρout1 · ρout2 ∈ Jx @ τ := eK and
ρin · ρout1 · ρout2 ∈ JSK. Using Γ, x : τ ⊨ S and picking ρout1 · (x 7→ we) for the first all quan-
tifier, we obtain a ρoutS ∈ Smap(Vout \ dom(Γ, x : τ)) such that ρin · ρout1 · (x 7→ we) · ρoutS ∈
JSK. We pick (x 7→ we) · ρoutS as ρout2 and it remains to show that ρin · ρout1 · ρout2 ∈
Jx @ τ := eK. Based on observation 3.3 and applying Lem. 3 using Γ ⊢ τ we derive that:

∀n ∈ JτKρin ·ρout1 ·ρout2 .we(n) = JeKnρin ·ρout1 · (x 7→w) ·ρout ′

Because x ̸∈ dom(ρoutS) it holds that (ρin · ρout1 · ρout2)(x) = we and it follows that
ρin · ρout1 · ρout2 ∈ Jx @ τ := eK.

(3) Conditional Stream. Suppose x ̸∈ dom(Γ),Γ ⊢ τ, Γ, x : x ⊨ S, Γ ⊨x ec : τ and
Γ ⊨x e : τ. Let ρout1 ∈ GJΓKρin be fixed but arbitrary. It remains to show the existence of
an output stream map ρout2 ∈ Smap(Vout \ dom(Γ)) such that:

ρin · ρout
1 · ρout

2 ∈ J(x @ τ when ec := e) ·SK = Jx @ τ when ec := eK ∩ JSK

We construct a stream we ∈ WJτKρin ·ρout1 · (x 7→we) in the exact same way as for an uncon-
ditional stream. However, it it not obvious, whether it holds that:

ρout
1 · (x 7→ we) ∈ GJΓ, x : xKρin

Because ρout1 ∈ GJΓKρin it holds that ρout1 · (x 7→ we) ∈ dom(Γ, x : x). It remains to show
that ∀(x ′ : τ ′) ∈ (Γ, x : x).(ρout1 · (x 7→ we))(x

′) ∈ WJτKρin ·ρout1 · (x 7→we). As ρout1 ∈ GJΓKρin

this holds for all x ′ ̸= x ∈ Γ, x : x and therefore it suffices to show that:

(ρout
1 · (x 7→ we))(x) ∈ WJxKρin ·ρout1 · (x 7→we)

By definition of WJ−K it must hold that ∀n ∈ ĴxKρin ·ρout1 · (x 7→we)
.we(n) ̸= ⊥. Because

x ̸∈ dom(ρin · ρout1) it holds bz definition of Ĵ−K that:

ĴxKρin ·ρout1 · (x 7→we)
= { n | we(n) ̸= ⊥ }

It follows immediately, that ∀n ∈ { n | we(n) ̸= ⊥ }.we(n) ̸= ⊥ and therefore we ∈
WJxKρin ·ρout1 · (x 7→we). Consequently, it holds that:

ρout
1 · (x 7→ we) ∈ GJΓ, x : xKρin

Similar to before, we use Γ, x : x ⊨ S and pick ρout1 · (x 7→ we) for the first quantifier
in SJΓ, x : xK to obtain an ρoutS ∈ Smap(Vout \ dom(Γ, x : x)) such that ρin · ρout1 · (x 7→
we) · ρoutS ∈ JSK. We pick (x 7→ we) · ρoutS as ρout2 and it remains to show that:

ρin · ρout
1 · ρout

2 ∈ Jx @ τ when ec := eK
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3. Proving Type-Safety for Conditional Streams

Because Γ ⊨x ec : τ and using Lem. 1 we can derive that:

∀n ∈ ĴτKρin ·ρout1
.ĴecK

n,x=L̃ast(we,n−1)

ρin ·ρout1
= JecKnρin ·ρout1 ·ρout2

̸=  

Using Lem. 3 and Γ ⊢x τ we can show that"

∀n ∈ JτKρin ·ρout1 ·ρout2 .JecK
n
ρin ·ρout1 ·ρout2

̸=  (3.4)

Because of observation 3.3 from before it also holds that:

∀n ∈ JτKρin ·ρout1 ·ρout2 .we(n) = JeKnρin ·ρout1 ·ρout2
(3.5)

Note that this holds independently of whether ec evaluates to true or false at time n.
Therefore it follows from observation 3.4 and 3.5 that:

ρin · ρout
1 · ρout

2 ∈ Jx @ τ when ec := eK

Using this Lem. 6 the soundness of specifications follows by induction over the type
derivation tree of a specification, applying Cor. 5 to the premisses of the inference rules.

Theorem 7 (Specification Soundness).

Γ ⊢ S =⇒ Γ ⊨ S

Proof. By induction on the type derivation tree of Γ ⊢ S.
Base Case: Let S = ϵ and suppose Γ ⊢ S. By case (1) of Lem. 6 it immediately follows
that Γ ⊨ S.
Inductive Cases:

1. Let S ′ = (x @ τ := e) ·S and suppose that Γ ⊢ S ′, i.e. x ̸∈ dom(Γ), Γ ⊢x e : τ and
that Γ, x : τ ⊢ S. By induction, it holds that Γ, x : τ ⊨ S. From Cor. 5 it follows that
Γ ⊨x e : τ. Applying case (2) of Lem. 6 it follows that Γ ⊨ S ′.

2. Let S ′ = (x @ τ when ec := e) ·S and suppose that Γ ⊢ S ′, i.e. x ̸∈ dom(Γ), Γ ⊢x e : τ,
Γ ⊢x ec : τ and that Γ, x : x ⊢ S. By induction, it holds that Γ, x : x ⊨ S. From Cor. 5
it follows that Γ ⊨x e : τ and that Γ ⊨x ec : τ. Applying case (3) of Lem. 6 it follows
that Γ ⊨ S ′.
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3.2.4. Type Safety

Before type safety can be proven, it must be shown that it follows from the soundness
of the type inference rules established above. Thm. 8 establishes this and states that,
if a specification is semantically well typed in the empty environment, then it implies
that there exists and output stream map for every possible input stream map, i.e. the
specification is safe.

Theorem 8 (Safety).

∅ ⊨ S =⇒ Safe(S)

Proof. Let ∅ ⊨ S and let ρin ∈ Smap(Vin). By the definition Safe(S) it remains to show that
there exists a ρout ∈ Smap(Vout) such that ρin · ρout ∈ JSK. By definition of ∅ ⊨ S it holds
that S ∈ SJ∅Kρin . By definition of SJ∅Kρin it holds that:

∀ρout
1 ∈ GJ∅Kρin .∃ρout

2 ∈ Smap(Vout).ρin · ρout
1 · ρout

2 ∈ JSK

By fixing ρout1 = ∅, it holds that ρin · ρout1 · ρout2 = ρin · ∅ · ρout2 = ρin · ρout2 ∈ JSK. We
conclude the proof by picking ρout2 for ρout.

Finally, Thm. 8 and Thm. 7 can be combined to derive the type safety result for
conditional streams in StreamCore.

Corollary 9 (Type Safety).

∅ ⊢ S =⇒ Safe(S)

Proof. Suppose ∅ ⊢ S.ByThm. 7 it follows that ∅ ⊨ S. Applying Thm. 8 Safe(S) follows.
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Chapter 4
Encoding Real-Time Streams

In this chapter, we present two constructions that translate the real-time features of
RTLola into the extended StreamCore framework with conditional streams. First,
we define how periodically paced streams can be encoded in StreamCore. Second, we
show how sliding window aggregations can be represented using a sequence of periodic
streams that compute the buckets of the sliding window, as discussed in Sect. 2.1.2.

4.1. Periodic Streams

To encode periodic streams in StreamCore, we assume the existence of a clocked input
stream that evaluates to a defined value at a fixed frequency. All periodic streams
depend on this clock input. Their when conditions restrict the evaluation points of the
clock input to match the desired frequency.

Formally, let P be the set of periodic streams in the RTLola specification, with fre-
quencies f1, . . . , fk ∈ N (in Hertz) and expressions e1, . . . , ek. Let f ′ be the frequency of
the clock input stream, defined as lcm(f1, . . . , fk), where lcm denotes the least common
multiple. We denote this clock input stream by clock:

1 // Assumed to produce values at the frequency f’

2 input clock: Bool

We assume that all added stream names are fresh, i.e., they do not occur in the original
RTLola specification. To further restrict the evaluation points of periodic streams, we
introduce the following auxiliary output stream:

1 output step @clock := (step.prev(0) + 1) % f’

This stream, step, continuously counts from 0 to f ′ − 1 using the modulo operator
% whenever the clock input evaluates. It is used to further subdivide the frequency
of the clock into the required frequencies for the periodic output streams. For each
fi ∈ f1, . . . , fk, we construct an output stream clock_fi that evaluates at frequency fi.
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4. Encoding Real-Time Streams

1 output clock_fi @clock when step % (f ′ / fi) == 0 := true

Intuitively, this holds true as:

f ′ % (f ′/fi) = 0 ⇔ c ∗ (f ′/fi) + 0 = f ′ ⇔ c = fi

This construction ensures that step%(f ′/fi) = 0 is satisfied exactly fi times as step cycles
from 0 to f ′ − 1.

However, naively translating of a periodic output stream s ∈ P with frequency fi and
expression e as follows would prevent specifications from being type safe when periodic
streams reference one another.

1 output s @clock_fi := e

Since periodic streams are encoded as conditional streams, every referenced stream
must appear in the pacing annotation of the referencing stream. Intuitively, references
between periodic streams should be allowed if the referencing stream runs at a lower
frequency than the referenced one. To ensure type safety, we extend the pacing an-
notation of each stream with the clock streams of all synchronously accessed periodic
dependencies:

Definition 4.1 (Encoding Periodic Streams)
Formally, let s ∈ P evaluate at frequency fs with expression e. Let X ⊆ P be the set of

periodic streams accessed synchronously in e, and let C be the set of clock streams that
form their pacing annotations. Then s is encoded in StreamCore as follows:

1 output s @clock_fi ∧
∧

c∈C c := e

This construction guarantees type safety by ensuring that each periodic stream eval-
uates at no more than its assigned frequency. However, the encoded stream is not
guaranteed to evaluate exactly at its frequency. Instead, due to the inclusion of syn-
chronous dependencies in the pacing annotation, the evaluation occurs at the greatest
common divisor (gcd) of its own frequency and those of its synchronous dependencies.
To enforce exact frequencies, one would need to restrict the set X to contain only those
periodic streams f∗ such that gcd(fi, f∗) = fi.

As an example, consider a specification with streams annotated at disjoint frequencies.
1 output a @2Hz := true

2 output b @3Hz := true

Following the above construction, we introduce a clock input stream that evaluates at
lcm(2, 3) = 6 Hertz. The step stream then counts from 0 to 5 at each event of clock,
resetting to 0 every full second. The resulting encoding of the specification is as follows:
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step

clock

clock_2Hz

clock_3Hz

time1s 2s

1 2 3 4 5 0 1 2 3 4 5 0
0

@clock when step%3=0

@clock when step%2=0

Figure 4.1.: An Example Trace Visualization of the Specification in Spec. 4.1.

1 // Assumed to produce values at the frequency 6Hz

2 input clock: Bool

3
4 output step @clock := (step.prev(0) + 1) % 6

5
6 output clock_2Hz @clock when step % 3 == 0 := true

7 output clock_3Hz @clock when step % 2 == 0 := true

8
9 output a @clock_2Hz := true

10 output b @clock_3Hz := true

Specification 4.1: The Encoding of Streams with Different Frequencies.

A visualization of clock_2Hz andclock_3Hz is given in Fig. 4.1. The figure illustrates how
conditional evaluation based on the step stream produces the desired sub-frequencies
from the assumed frequency of the clock input.

4.2. Sliding Windows

In this section, we present an encoding of sliding windows in StreamCore. We im-
plement the bucket-based algorithm described in Sect. 2.1.2, which evaluates sliding
windows using periodic streams.

To this end, we introduce a new stream access, x.fresh(). It returns whether stream
x produced a value in the current time step. In other words, it is an asynchronous access
that evaluates to true if the current value exists and to false otherwise. Formally, its
semantics are defined as follows:

Jx.fresh()Knρ ≜

{
true if ρ(x)(n) ̸= ⊥
false if ρ(x)(n) = ⊥

The typing rules for x.fresh() are identical to those of the hold operator, except that no
default expression is required. Consequently, its soundness proof proceeds analogously
to that of hold.
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4. Encoding Real-Time Streams

Using this operator, we encode sliding windows as follows. Suppose a specification
contains a stream x that aggregates values of stream y:

1 output x @fxHz := y.aggregate(over: ds, using: agr)

We assume that the clock streams defined in Sect. 4.1 are available and that d ⩾ 1
f , i.e.,

the sliding window spans at least one period. We denote the neutral element of the
aggregation function agr by ϵ.

The sliding window is expanded as follows.

Definition 4.2 (Encoding Sliding Windows)
Let b be the number of buckets, computed as b = d ∗ fx. For 1 ⩽ i ⩽ b − 1, let the

stream representing bucket bi be defined as:
1 output bi @clock_fx := bi+1.prev(ϵ)

Let the bucket bb be defined as follows:
1 output bb @clock_fx ∨ y :=

2 if clock_fx.fresh() then

3 if y.fresh() then

4 y.hold(ϵ)

5 else

6 ϵ

7 else

8 agr(bb.prev(ϵ), y.hold(ϵ))

Finally, the buckets are aggregated to construct the value of the window:
1 output x @clock_fx := agr(b1.prev(ϵ), . . ., bb.prev(ϵ))

The last bucket, bb, aggregates the values of y. The remaining buckets b1, . . . , bb−1

propagate this aggregated value by accessing the previous value of the next bucket
at each clock cycle. The aggregation of y uses a disjunctive pacing annotation that
evaluates either at each clock cycle or when y produces a value. The fresh operator
distinguishes between these two cases.

When evaluated at a clock cycle, the bucket reinitializes for the next period: it takes
either the current value of y or ϵ if no value exists. By checking whether a value of y
exists using y.fresh(), the first window bound is inclusive in time, i.e., the aggregation
window at time t covers all time points i with t− d ⩽ i < t.

When the stream does not evaluate at a clock cycle (the else branch), it must be the
case that y produced a value, which is then aggregated with the previous bucket value.

Thus, if the clock evaluates at real-time point t, bucket bb contains the value of y at
time t, or ϵ if none exists. Bucket bb−1 contains all aggregated values of y for times i

with t−(1/fx) ⩽ i < t. Bucket bb−2 aggregates all values for t− 2(1/fx) ⩽ i < t−(1/fx),
and so on.
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All generated streams, except bb, share the annotation @clock_fx and only access each
other. Bucket bb includes the additional disjunct ∨y. Its type safety follows because all
stream accesses within it are asynchronous, except the .prev( · ) self-access, which is
safe under the Self inference rule. The synchronous accesses to buckets in bb−1 and x

are also valid, since clock_fx |= clock_fx ∨ y.

4.3. An Example

We illustrate this translation using Spec. 1.4, which detects sensor failures by counting
received values over a fixed period via a sliding window aggregation.

1 input position: Float

2 input rpm: Float

3 // Assumed to produce values at 1Hz

4 input clock: Bool

5
6 output step @clock := (step.prev(0) + 1) % 1

7
8 // Constructed clock streams

9 output clock_1Hz @clock when step % 1 == 0 := true

10
11 output velocity @position := (position - position.prev(position)) * 36.0

12 output trigger_too_fast @position when velocity > 150 := "Driving too fast"

13
14 // Sliding window buckets

15 output b_60 @clock_1Hz∨ rpm :=

16 if clock_1Hz.fresh() then

17 if rpm.fresh() then

18 1

19 else

20 0

21 else

22 b_60.prev(0) + 1

23 output b_59 @clock_1Hz := b_60.prev(0)

24
...

25 output b_2 @clock_1Hz := b_3.prev(0)

26 output b_1 @clock_1Hz := b_2.prev(0)

27
28 output count @clock_1Hz:= b_1.prev(0) + . . . + b_60.prev(0)

29 output trigger_rpm_failure @clock_1Hz when count < 60 := "RPM Sensor Failure"

30
31 output shift @position∨ rpm := velocity.hold(0) < 30 && rpm.hold(or: 0) > 3000

32 output trigger_shift @position∨ rpm when shift := "Shift to higher gear"

Specification 4.2: An Encoding of Spec. 1.4 into StreamCore with Conditional Streams

Because the specification uses a single frequency (1Hz) for periodic pacing, the generated
clock_1Hz is semantically identical to the clock input stream, assumed to tick at 1Hz.
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4. Encoding Real-Time Streams

Trigger conditions are encoded as conditional streams. For instance, the trigger in
line 12 of the specification encodes its condition velocity > 150 directly as the evaluation
condition. A trigger stream evaluates to a string value explaining the violation.

The sliding window counting values of the rpm input over the last 60 seconds is
encoded using 60 bucket streams. Because counting does not depend on the actual
values of the rpm stream, hold accesses to it are replaced with the constant 1. The
aggregation then simply sums the bucket values to compute the total count of received
values.

In the next chapter, we present a more extensive case study and compare the per-
formance of these encodings with specifications that use a native implementation of
periodic streams and sliding windows.
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Chapter 5
A Case Study

In this chapter, we analyze the expressivity and performance of the fragment of RTLola
specifications whose type safety can be guaranteed by StreamCore with conditional
streams. We present two specifications from the aerospace domain in RTLola and their
corresponding encodings in StreamCore. As an objective measure, we compare the
analysis and interpretation performance of the specifications using the existing RTLola
framework [Bau+24a].

5.1. Geofence

A geofence defines a virtual boundary for aircraft that must not be crossed to ensure safe
flight and controlled airspace. In this example, the geofence is a polygon consisting of
multiple lines forming its edges. For simplicity, the experiments use a geofence formed
by four lines. A geographical visualization is given in Fig. 5.1a.

(a) A Visualization of a Geofence over
the Saarbrücken Airport.

Geo
fen

ce 
Line

Geofence Line

(b) A Plot Showing the Intersection of
the Flight Path with the Geofence.

Figure 5.1.: A Visualization of a Geofence Specification.
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To monitor such a geofence, the monitor observes the aircraft position via the x and y

coordinates. It also observes the velocity to estimate the time until a potential breach.
The calculation of the breach point is illustrated in Fig. 5.1b. Based on the previous and
current aircraft positions, the trajectory is projected as a line. The monitor then computes
intersection points between this trajectory and each geofence edge. If an intersection
lies between the two vertices defining the edge, it is considered valid, and the distance
from the aircraft to this point is computed. The minimal such distance indicates the
projected breach location if the aircraft continues on a straight path. Using this distance
and the aircraft’s velocity, the time to breach is estimated. A RTLola specification for a
monitor with a single geofence line is given in Spec. 5.1.

1 input x : Float

2 input y : Float

3 input velocity : Float

4
5 // Knots to m/s

6 output velocity_ms @velocity := velocity * 0.514444

7 constant c_epsilon : Float := 0.0000001

8
9 // Computes the vehicle line

10 output diff_x @x := x - x.offset(by: -1).defaults(to: x)

11 output diff_y @y := y - y.offset(by: -1).defaults(to: y)

12 output isFnc @x := diff_x != 0.0

13 output m @x && y:= if isFnc then (diff_y) / (diff_x) else 0.0

14 output b @x && y:= if isFnc then y-(m*x) else 0.0

15 output dstToPnt @x && y := sqrt(diff_x**2.0 + diff_y**2.0)

16
17 // true -> going into negative x direction; false -> positive x

18 output o_x @x := if abs(diff_x) < c_epsilon then false else diff_x < 0.0

19 output o_y @x&&y := if abs(diff_y) < c_epsilon then false else diff_y < 0.0

20
21 // Face 0

22 constant p0_x_0 :Float := 85.63214254449431

23 constant p0_y_0 :Float := 86.88834481791841

24 constant p1_x_0 :Float := 93.54204321854458

25 constant p1_y_0 :Float := 38.639226576496

26
27 output m_line_0 @x && y := (p1_y_0 - p0_y_0) / (p1_x_0 - p0_x_0)

28 output b_line_0 @x && y := p1_y_0 - (m_line_0 * p1_x_0)

29 output intersecting_0 @x && y := m != m_line_0 || b = b_line_0

30 output intersection_x_0 eval @x && y when isFnc && intersecting_0 with (b - b_line_0)

/ ( m_line_0 - m)

31 output intersection_y_0 eval @x && y when isFnc && intersecting_0 with m_line_0 *
intersection_x_0+ b_line_0

32 output inbounds_0 eval @x && y when isFnc && intersecting_0 with

33 if p0_x_0 < p1_x_0

34 then (intersection_x_0 >= p0_x_0 and intersection_x_0 <= p1_x_0)

35 else (intersection_x_0 <= p0_x_0 and intersection_x_0 >= p1_x_0)

36 output in_direction_0
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37 eval @x && y when isFnc && intersecting_0 with if o_x then intersection_x_0 < x

else intersection_x_0 > x

38 output violations_0

39 eval @x && y when isFnc && intersecting_0 && in_direction_0 && inbounds_0 with

(intersection_x_0, intersection_y_0)

40 output distance_to_violations_0

41 eval @x && y when isFnc && intersecting_0 && in_direction_0 && inbounds_0 with

sqrt((intersection_x_0 - x)**2.0 + (intersection_y_0 - y)**2.0)

42 output time_to_0

43 eval @(x && y) || velocity when isFnc.hold(or: false) && intersecting_0.hold(or:

false) && in_direction_0.hold(or: false) && inbounds_0.hold(or: false) &&

velocity_ms.hold(or: 0.0) != 0.0 with distance_to_violations_0.hold(or: 0.0) /

velocity_ms.hold(or: 0.0)

Specification 5.1: A Geofence Specification.

This specification relies heavily on conditional streams, for example, to ensure that the
trajectory can be expressed as m ∗ x + b and to avoid division-by-zero errors in the
time-to-breach calculation. The StreamCore encoding is given in Appendix A.2. In this
encoding, the when conditions are simplified compared to the RTLola specification, as
they are implicitly strengthened by referencing other conditional streams in the pacing
annotation instead of restating the evaluation condition of the accessed streams in the
condition of the stream itself.

5.2. Tube

A tube is a stricter variant of a geofence, restricting deviations from a target flight path by
a specified threshold. Unlike geofences, tubes are three-dimensional and also enforce
adherence to the intended flight altitude. A top-down view is shown in Fig. 5.2a.
Nevertheless, deviations from the intended path may be necessary, for example, to
avoid collisions. Thus, it is often desirable to relax the tube requirement by allowing
temporary deviations.

A tube monitor observes the x, y, and z positions of the aircraft and computes the
distance to the closest flight path segment. The calculation for a single segment is
illustrated in Fig. 5.2b. The monitor evaluates three distances:

1. from the aircraft to the starting point of the segment,
2. from the current position to its projection on the segment (perpendicular distance),
3. from the aircraft to the endpoint of the segment.

The minimum of these distances is the distance between the aircraft and the segment.
The minimal distance to any segment defines the current distance to the path. If

this exceeds the threshold, it constitutes a violation. For the relaxation, the monitor
first issues a warning if the threshold is exceeded and only declares a violation if the
condition persists for a specified duration. A RTLola specification for monitoring a
single path fragment is given in Spec. 5.2.
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(a) A Visualization of a Tube around a given
Flight Path.

Flig
ht 

Path
 Seg

men
t P

(b) A Plot Showing how a Tube can be
Monitored.

Figure 5.2.: A Visualization of a Tube Specification.

1 input x : Float

2 input y : Float

3 input z : Float

4
5 constant threshold: Float := 350.0

6
7 // === Segment 0 ===

8 constant x0_0 : Float := 1.27

9 constant y0_0 : Float := 3.42

10 constant z0_0 : Float := 7.50

11
12 constant x1_0 : Float := 5.57

13 constant y1_0 : Float := 1.23

14 constant z1_0 : Float := 8.54

15
16 output output_ld0 @True := (x1_0 - x0_0, y1_0 - y0_0, z1_0 - z0_0)

17 output output_lc0 @x && y && z := (x - x0_0, y - y0_0, z - z0_0)

18 output output_lfp_len0 @x && y && z :=

19 (output_ld0.0*output_lc0.0 + output_ld0.1*output_lc0.1 + output_ld0.2*output_lc0.2) /

20 (output_ld0.0**2.0 + output_ld0.1**2.0 + output_ld0.2**2.0)

21 output output_lfp_proj0 @x && y && z :=

22 (output_lfp_len0*output_ld0.0, output_lfp_len0*output_ld0.1,

output_lfp_len0*output_ld0.2)

23 output output_lfp0 @x && y && z :=

24 (x0_0 + output_lfp_proj0.0, y0_0 + output_lfp_proj0.1, z0_0 + output_lfp_proj0.2)

25 output output_d_lfp0 @x && y && z :=

26 sqrt((output_lfp0.0 - x)**2.0 + (output_lfp0.1 - y)**2.0 + (output_lfp0.2 - z)**2.0)

27 output output_d_start0 @x && y && z :=

28 sqrt((x0_0 - x)**2.0 + (y0_0 - y)**2.0 + (z0_0 - z)**2.0)

29 output output_d_end0 @x && y && z :=

30 sqrt((x1_0 - x)**2.0 + (y1_0 - y)**2.0 + (z1_0 - z)**2.0)
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31 output output_d_line0 @x && y && z :=

32 if output_lfp_len0 <= 0.0 then output_d_start0

33 else if output_lfp_len0 >= 1.0 then output_d_end0

34 else output_d_lfp0

35
36 // Aggregate minimum distances

37 output min_distance @x && y && z := min(output_d_line0, ... ,output_d_linen)

38 output violated @x && y && z := min_distance > threshold

39 output critical_violation @2Hz := violated.aggregate(over:25s, using:forall)

40
41 trigger @x && y && z violated "warning : deviating from intended flight path!"

42 trigger @2Hz critical_violation "critical: left flight path. Return immediately!"

Specification 5.2: A Tube Specification

While this specification does not use conditional streams, it employs periodic streams
and sliding window aggregations to implement the relaxation property. As a result, the
encoding in StreamCore (given in Appendix A.3) grows significantly in size.

5.3. Evaluation

Although the contribution of this thesis is primarily theoretical, we present an evaluation
based on the above specifications and the one from Sect. 1.1.3, whose encoding is given
in Appendix A.1. We compare the specification length, analysis time, and runtime
performance of the original RTLola specifications with their StreamCore encodings to
assess the cost of ensuring type safety.

The specifications were analyzed using the existing RTLola Frontend [25b] and the
RTLola Interpreter [24]. The StreamCore encodings were translated back into RTLola
syntax while preserving the transformations. Timing measurements were performed
with Criterion [25a], averaged over 20 randomly sampled runs. The experiments were
executed on a PC with an 8-core processor at 4.5GHz and 32GB of memory. Traces
of length 1000 were randomly sampled, ensuring the assumption on the clock input
stream for the StreamCore specifications was satisfied. The results are shown in Tbl. 5.3.

Specification RTLola StreamCore

LOC Analyze Interpret LOC Analyze Interpret

Geofence 149 217.0 ms 8.7 ms 149 199.1 ms 10.6 ms
Tube 142 404.7 ms 19.6 ms 208 4141.1 ms 43.4 ms
Motivating 15 2.6 ms 4.0 ms 160 10477.0 ms 24.6 ms

Table 5.3.: Comparison between LOC, Analyze and Interpretation Time for RTLola and
StreamCore Variants of the Specifications.
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As expected, encoding sliding windows as streams significantly increases specifi-
cation size, especially for the Tube and Motivating examples (the latter referring to
Sect. 1.1.3). The increased size also impacts analysis performance; for instance, the Mo-
tivating example requires 10.5 seconds compared to 3 milliseconds originally. Analysis
time includes all frontend stages: parsing, type analysis, and well-definedness checking.
Note that the RTLola framework is not optimized for such encodings, and a dedicated
implementation of the StreamCore type system could be more efficient. Interpretation
time also increases, due to the large number of streams introduced to encode sliding
window operations. While the native RTLola Interpreter is at least twice as fast for
sliding windows, neither its sliding window implementation nor its pacing annotations
are proven type safe, which is the key contribution of this thesis.
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Chapter 6
Conclusion and Future Work

This thesis establishes type safety for conditional streams in the stream-based moni-
toring language RTLola. Conditional streams extend the expressivity of the language,
enabling safe formulations of properties that prevent errors such as division by zero.
Building on this foundation, the thesis introduces an encoding of the real-time features
of RTLola using conditional streams. These features include fixed-rate streams, en-
coded via a single clock input stream with a guaranteed frequency, and sliding window
operations. Fixed-rate streams are particularly useful for detecting failed sensors or
other components that no longer produce observable events.

To establish type safety for these features, the existing formalization of RTLola,
called StreamCore, was extended from purely asynchronous streams to asynchronous
streams with evaluation conditions. To preserve safety, that is, to guarantee that a model
of the specification always exists regardless of input timing, the pacing type system was
extended to allow output streams as references in pacing annotations. Consequently, the
logical relations were revised, and a formal proof was developed. The proof shows that
if a specification is well typed under the given inference rules, then it can be monitored
without runtime errors caused by asynchrony or evaluation conditions.

On this basis, encodings of periodic streams and sliding window operations were de-
fined in StreamCore using conditional streams. Periodic streams rely on a single clocked
input stream, while their scheduling relative to the clock is expressed as an evaluation
condition. Sliding window aggregations are encoded as sequences of periodic streams
that replicate the bucketing algorithm of sliding window operations.

The expressivity and runtime performance of this fragment was evaluated in a small-
scale case study with specifications from the aerospace domain. As expected, perfor-
mance measurements show that the native implementation of sliding windows out-
performs their encoded counterpart. Nevertheless, the study demonstrates that the
fragment of RTLola with proven type safety is expressive enough to capture complex
properties, such as approximate adherence to a given flight path.
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6.1. Future Work

Several extensions of this work are possible. First, an implementation of a type checker
for the presented system is required. Although the RTLola framework already in-
cludes a type checker for specifications with evaluation clauses and periodic streams,
its correctness is not formally proven. A comparison between the existing type checker
and a new implementation based on the soundness results presented here would be of
particular interest.

Second, as discussed in [Koh+25], the constructive nature of the proof allows for
the automatic derivation of a verified interpreter for StreamCore. Such an interpreter
would be valuable for safety-critical cyber-physical systems. It could also be used for
differential testing against the optimized RTLola implementation to improve robust-
ness.

Third, several language features of RTLola remain without proven type safety. One
such feature is dynamic streams. Dynamic streams are created and terminated during
execution using the spawn and close expressions, which affect specification safety in a
manner similar to evaluation conditions. In many cases, spawn and close conditions
could be encoded using evaluation conditions. An exception arises when dynami-
cally created streams are periodic. In such cases, the local clock of the stream may
be misaligned with other streams of the same frequency, as its clock begins only at
creation time. Local periodic streams are important for specifying properties such as
deadline conformance, where a property must hold within a fixed duration after an
event [Bau+24a].

Another feature not yet captured by StreamCore with conditional streams is param-
eterized streams. Parameterized streams generalize output streams to sets of stream
instances, each created and closed by spawn and close expressions. Safety issues arise
when these instances access each other synchronously. Parameterized streams are espe-
cially useful for representing unbounded data domains, such as monitoring an arbitrary
number of surrounding aircraft.

In summary, further formalization is required to ensure the safe evaluation of these
expressive language features.
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Appendix A
Case-Study Specifications
encoded in StreamCore

This appendix contains the translated versions of the RTLola specifications presented
in the case-study in Chapter 5 into StreamCore with conditional streams.

A.1. Running Example from Sect. 1.1.3

The StreamCore version of the specification presented in Sect. 1.1.3.
1 input rpm: Float

2 input position: Float

3 // Assume to tick at a frequency of 1Hz

4 input clock: Bool

5
6 output step @clock := (step.prev(0) + 1) % 1

7
8 // Constructed clock streams

9 output clock_1Hz @clock when step % 1 == 0 := true

10
11 output velocity @position := (position - position.prev(position)) * 36.0

12 output trigger_too_fast @position when velocity > 150.0 := "Driving too fast"

13
14 // Sliding window buckets for count

15 output count_b_60 @clock_1Hz∨ rpm :=

16 if clock_1Hz.fresh() then

17 if rpm.fresh() then

18 1

19 else

20 0

21 else

22 count_b_60.prev(0) + 1
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23 output count_b_59 @clock_1Hz := count_b_60.prev(0)

24
...

25 output count_b_2 @clock_1Hz := count_b_3.prev(0)

26 output count_b_1 @clock_1Hz := count_b_2.prev(0)

27
28 output count @clock_1Hz:= count_b_1.prev(0) + . . . + count_b_60.prev(0)

29
30 // Sliding window buckets for sum

31 output sum_b_60 @clock_1Hz∨ rpm :=

32 if clock_1Hz.fresh() then

33 if rpm.fresh() then

34 rpm.hold(0.0)

35 else

36 0.0

37 else

38 sum_b_60.prev(0.0) + rpm.hold(0.0)

39 output sum_b_59 @clock_1Hz := sum_b_60.prev(0.0)

40
...

41 output sum_b_2 @clock_1Hz := sum_b_3.prev(0.0)

42 output sum_b_1 @clock_1Hz := sum_b_2.prev(0.0)

43
44 output sum @clock_1Hz:= sum_b_1.prev(0) + . . . + sum_b_60.prev(0)

45
46 output avg_rpm @clock_1Hz when count > 0 := sum / count

47 output trigger_sensor_fail @clock_1Hz when count < 60 := "The RPM sensor seems to have

failed"

48
49 output shift @position || rpm := velocity.hold(0.0) < 30.0 && avg_rpm.hold(0.0) >

3000.0

50 output trigger_shift @position || rpm when shift := "Shift to higher gear"

A.2. A Geofence Specification

This section contains the geofence specification presented in Chapter 5 translated into
StreamCore with conditional streams.

1 input x : Float

2 input y : Float

3 input velocity : Float

4
5 // Knots to m/s

6 output velocity_ms @velocity := velocity * 0.514444

7 output c_epsilon @True := 0.0000001

8
9 // Computes the vehicle line

10 output diff_x @x := x - x.prev(x)

11 output diff_y @y := y - y.prev(y)

12 output isFnc @x := diff_x != 0.0
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13 output m @x && y:= if isFnc then (diff_y) / (diff_x) else 0.0

14 output b @x && y:= if isFnc then y-(m*x) else 0.0

15 output dstToPnt @x && y := sqrt(diff_x**2.0 + diff_y**2.0)

16
17 // true -> going into negative x direction; false -> positive x

18 output o_x @x := if abs(diff_x) < c_epsilon then false else diff_x < 0.0

19 output o_y @x&&y := if abs(diff_y) < c_epsilon then false else diff_y < 0.0

20
21 // Face 0

22 output p0_x_0 @True := 85.63214254449431

23 output p0_y_0 @True := 86.88834481791841

24 output p1_x_0 @True := 93.54204321854458

25 output p1_y_0 @True := 38.639226576496

26
27 output m_line_0 @x && y := (p1_y_0 - p0_y_0) / (p1_x_0 - p0_x_0)

28 output b_line_0 @x && y := p1_y_0 - (m_line_0 * p1_x_0)

29 output intersecting_0 @x && y := m != m_line_0 || b = b_line_0

30 output intersection_x_0 @x && y when isFnc && intersecting_0 := (b - b_line_0) / (

m_line_0 - m)

31 output intersection_y_0 @intersection_x_0 := m_line_0 * intersection_x_0 + b_line_0

32 output inbounds_0 @intersection_x_0 := if p0_x_0 < p1_x_0

33 then (intersection_x_0 >= p0_x_0 and intersection_x_0 <= p1_x_0)

34 else (intersection_x_0 <= p0_x_0 and intersection_x_0 >= p1_x_0)

35 output in_direction_0 @intersection_x_0 := if o_x then intersection_x_0 < x else

intersection_x_0 > x

36 output violations_0 @intersection_x_0 when in_direction_0 && inbounds_0 :=

(intersection_x_0, intersection_y_0)

37 output distance_to_violations_0 @intersection_x_0 when in_direction_0 && inbounds_0 :=

sqrt((intersection_x_0 - x)**2.0 + (intersection_y_0 - y)**2.0)

38 output time_to_0

39 eval @distance_to_violations_0 || velocity when velocity_ms.hold(or: 0.0) != 0.0

with distance_to_violations_0.hold(or: 0.0) / velocity_ms.hold(or: 0.0)

A.3. A Tube Specification

This section contains the tube specification presented in Chapter 5 translated into
StreamCore with conditional streams.

1 input x : Float

2 input y : Float

3 input z : Float

4
5 // Assume to tick at a frequency of 2Hz

6 input clock: Bool

7
8 output step @clock := (step.prev(0) + 1) % 1

9
10 // Constructed clock streams

11 output clock_2Hz @clock when step % 1 == 0 := true
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12
13 output threshold @True := 350.0

14
15 // === Segment 0 ===

16 output x0_0 @True := 1.27

17 output y0_0 @True := 3.42

18 output z0_0 @True := 7.50

19
20 output x1_0 @True := 5.57

21 output y1_0 @True := 1.23

22 output z1_0 @True := 8.54

23
24 output output_ld0 @x := (x1_0 - x0_0, y1_0 - y0_0, z1_0 - z0_0)

25 output output_lc0 @x&&y&&z := (x - x0_0, y - y0_0, z - z0_0)

26 output output_lfp_len0 @x&&y&&z :=

27 ((output_ld0.0*output_lc0.0 + output_ld0.1*output_lc0.1 + output_ld0.2*output_lc0.2) /

28 (output_ld0.0**2.0 + output_ld0.1**2.0 + output_ld0.2**2.0))

29 output output_lfp_proj0 @x&&y&&z :=

30 (output_lfp_len0*output_ld0.0, output_lfp_len0*output_ld0.1,

output_lfp_len0*output_ld0.2)

31 output output_lfp0 @x&&y&&z :=

32 (x0_0 + output_lfp_proj0.0, y0_0 + output_lfp_proj0.1, z0_0 + output_lfp_proj0.2)

33 output output_d_lfp0 @x&&y&&z :=

34 sqrt((output_lfp0.0 - x)**2.0 + (output_lfp0.1 - y)**2.0 + (output_lfp0.2 - z)**2.0)

35 output output_d_start0 @x&&y&&z :=

36 sqrt((x0_0 - x)**2.0 + (y0_0 - y)**2.0 + (z0_0 - z)**2.0)

37 output output_d_end0 @x&&y&&z :=

38 sqrt((x1_0 - x)**2.0 + (y1_0 - y)**2.0 + (z1_0 - z)**2.0)

39 output output_d_line0 @x&&y&&z :=

40 if output_lfp_len0 <= 0.0 then output_d_start0

41 else if output_lfp_len0 >= 1.0 then output_d_end0

42 else output_d_lfp0

43
44 // Aggregate minimum distance

45 output min_distance @x&&y&&z := min(output_d_line0, . . . ,output_d_line_n)

46 output violated @x&&y&&z := min_distance > threshold

47
48 // Sliding window buckets for long_violation

49 output b_50 @(clock_2Hz || (x&&y&&z)) :=

50 if clock_2Hz.fresh() then

51 if violated.fresh() then

52 violated.hold(false)

53 else

54 false

55 else

56 b_50.prev(false) && violated.hold(false)

57 output b_49 @clock_2Hz := b_50.prev(false)

58 output b_48 @clock_2Hz := b_49.prev(false)

59
...

60 output b_1 @clock_2Hz := b_2.prev(false)
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61
62 output long_violation @clock_2Hz := b_1.prev(false) && . . . && b_50.prev(false)

63
64 output trigger_warning @x&&y&&z when violated := "warning : deviating from intended

flight path!"

65 output trigger_critical @clock_2Hz when long_violation := "critical: left flight path.

Return immediately!"
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