
Timing is Key - A WCET Analysis of RTLola

Saarland University

Department of Computer Science

Bachelor’s Thesis

submitted by

Julia Laichner

Saarbrücken, December 2021

Supervisor: Prof. Bernd Finkbeiner, Ph.D.

Advisor: Jan Baumeister, M.Sc.

Reviewer: Prof. Bernd Finkbeiner, Ph.D.

Rayna Dimitrova, Ph.D.

Submission: 30 December, 2021

Abstract

Cyber-physical systems (CPS) are safety-critical, and monitoring these systems is es-

sential to avoid dangerous situations. Therefore, the time needed between two updates

in CPS must be below a specified upper bound to ensure that these systems do not

produce any flaws.

RTLola is a stream-based specification language for real-time constraints and is used

as amonitoring language for cyber-physical systems. Worst-case execution time (WCET)

analyses determine the upper bound of all possible executions on specific hardware. So

far, WCET tools exist for many programming languages like Java, C++, andmanymore.

Estimating the upper bound of one update of the monitor with such an existing tool

leads to imprecise results as none of them consider the specification being monitored.

This thesis presents two approaches, which aim to compute an upper bound of the

monitor using the RTLola specification and its underlying dependencies of the streams.

The first approach focuses on the front-end of RTLola , and the second approach

focuses on the analysis of the assembly code of the RTLola interpreter using the given

specification.

Acknowledgements

First of all, I want to thank Prof. Bernd Finkbeiner for supporting my work and giving

me the chance to write this thesis.

Moreover, I am grateful for the help of my advisor Jan Baumeister, who always

supported me during my thesis. He always had an open ear and encouraged me to

never give up, especially during the writing process.

Further, I thank Prof. Finkbeiner and Rayna Dimitrova for reviewing this thesis.

Last but not least, a special thanks tomy family and friends for their support through-

out the process of this thesis.

Eidesstattliche Erklärung
Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbständig verfasst

und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement in Lieu of an Oath
I hereby confirm that I have written this thesis on my own and that I have not used

any other media or materials than the ones referred to in this thesis.

Einverständniserklärung
Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in

die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent
I agree to make both versions of my thesis (with a passing grade) accessible to the

public by having them added to the library of the Computer Science Department.

Saarbrücken, 30 December, 2021

Contents

1 Introduction 1
1.1 Motivation . 3

2 Related Work 5

3 Background 9
3.1 RTLola . 9

3.1.1 Concrete Syntax . 9

3.1.2 Dependency Graph . 12

3.1.3 Evaluation Order . 14

3.1.4 Memory Analysis . 16

3.1.5 Types . 17

3.2 Worst-Case Execution Time Analysis (WCET) 17

3.2.1 Basic Blocks . 18

3.2.2 Routines . 19

3.2.3 Control Flow Graph . 20

3.2.4 Worst-Case Execution Path . 21

3.3 Cargo asm . 22

4 Worst-Case Execution Time Analysis of RTLola Specifications 25
4.1 Notation . 25

4.2 WCET Analysis . 26

4.2.1 Expression Analysis . 26

4.2.2 Memory Handling . 28

4.2.3 WCET of RTLola Streams . 30

4.2.4 Parallel Model . 31

4.2.5 Sequential Model . 32

5 Implementation 35
5.1 Setup . 35

vii

5.2 RTLola Framework . 35

5.2.1 RTLola Front-end . 36

5.2.2 RTLola Interpreter . 36

5.3 Frontend Analysis . 37

5.3.1 Implementation Details . 37

5.4 Interpreter Analysis . 37

5.4.1 Assembly Code Analysis . 39

5.4.2 Implementation Details . 39

5.4.3 Example . 40

6 Case Study 43
6.1 Front-end Analysis . 43

6.2 Interpreter Analysis . 45

6.3 Conclusion . 45

7 Conclusion and Future Work 47

viii

Chapter 1
Introduction

Cyber-physical systems (CPS) interact with their environment, i.e., by gathering data

through sensors. CPS are found in different aspects of life, reaching from unmanned

aircraft systems to medical implants. They must guarantee specific correctness proper-

ties to avoid critical situations. These critical situations may include physical damage

or injuries of humans in case of an accident with the CPS. Such cases must be prevented

under any circumstances, especially as people’s lives are at stake. Even if no one is

harmed, the costs of the damage of the CPS are not negligible. In the case of a drone,

the necessary properties are to avoid any crashes and guarantee that while the drone is

flying, the power source is never empty. These requirements cover the desired correct-

ness and safety of CPS. On the one hand, the drone must always correctly handle new

input, e.g., from its sensors, and not change directions suddenly.

On the other hand, if the CPS notices an obstacle, it should initiate a countermeasure

protocol that keeps the aircraft on the planned trajectory but flies around the obstacle.

In addition to the safety and correctness requirements of CPS, another desirable re-

quirement is the timing aspect. To illustrate this aspect, consider the following example

of a drone interacting with its environment on a mission to get to a destination. The

drone has to detect obstacles on its trajectory. If an obstacle is found in the distance

of two meters, the drone enters a critical state. Afterward, the drone has to initiate a

countermeasure protocol in time depending on the current velocity and distance of the

drone to avoid any crashes. Suppose runtime monitoring does not process the data

leading to the critical state fast enough. In that case, there may not be enough time for

the countermeasure resulting in a crash with the obstacle. Thus, CPS are safety-critical

and time-critical since seconds can decide whether the drone is involved in an accident

or not if the monitor computes the output of the input data too slow. Therefore, an

upper bound of the execution of the monitor receiving inputs is desired. This bound

allows the CPS to incorporate it into the computation.

1

1. Introduction

To ensure safety-critical properties, a possible approach is testing. Test cases for the

CPS only cover a subset of all possible executions. Especially in a real-time setting,

every possible time and place configuration - the arrival of inputs from the sensors and

the drone’s location at a particular time point - cannot be covered by testing. Therefore,

testing does not guarantee the safety of a CPS since the created test cases may not cover

a critical situation leading to an accident.

Another method of covering the strict guarantees of CPS is model checking, a static

verification method analyzing the system before its execution. In this approach, a

system model is generated, and every possible execution run is checked against the

system’s safety properties. This problem is specified as the language inclusion test. If all

execution paths of the system satisfy the correctness properties, the system guarantees

all correctness requirements. Since the complexity of CPS increases drastically due

to its real-time behavior, the complexity of generating such a model also increases

drastically. Model-checking suffers from the state-space explosion problem caused by

easily exceeding the computational memory amount needed to build the model for

the most complex practical, relevant systems. Although this approach offers highly

desirable safety and correctness guarantees, it is often not applicable in practice.

Considering the problems of the previous approaches, we search for a method ful-

filling the correctness, safety, and timing requirements desired for a CPS, which is also

applicable in practice. Runtimemonitoring combines these properties and provides the

guarantee of a reliable system. Monitoring is unlike model checking, a dynamic verifi-

cation method where the system is analyzed during its runtime. Like model checking,

runtime monitoring checks if the CPS satisfies the given specification of system re-

quirements. The monitor checks only one execution at once and analyzes the given

specification for its correctness. If violations occur, the monitor outputs feedback, either

interpreted by the CPS or a human outside the CPS by initiating a countermeasure. This

analysis is also referred to as the membership test. The feedback output may be boolean

or quantitive, where the latter helps to improve the system.

To specify the correctness properties of the system, a specification language is needed,

like temporal logics. All temporal logics share a similar structure. They express the

state of the system by atomic propositions as well as connecting formulas by boolean

and temporal operators. Using temporal logics for runtime verification is limited in the

feedback of the monitor as it only decides if the CPS fulfills the specification.

In the setting of CPS, boolean feedback, stating whether a formula is satisfied or not,

is not always enough. We aim for quantitive feedback. Consider the following example

where two drones detect obstacles and change their trajectory. In more detail, a formal

guarantee of the two drones is that they should keep a distance of three meters to any

obstacles. If a drone violates this property, the alarm being raised should contain the

boolean feedback and state that the distance to the obstacle is, for example, two meters

at the time the alarm is raised.

2

1.1. Motivation

This thesis emphasizes the quantitive and stream-based specification language RT-

Lola. The incoming data is interpreted as input streams, building the output streams’

foundation, representing the system’s desired properties. Finally, the trigger streams

raise the alarm if the specification is violated or not. So far, RTLola already offers the

desired correctness and safety guarantees.

Further, an upper bound of the maximal memory consumption is computed, which

benefits CPS running on devices with limited resources. The computation of the

memory-bound provides a static check for the monitor meaning prior to its execu-

tion. The timing guarantees have yet to be implemented and included into the RTLola

framework. This thesis presents an approach to compute the upper bound by a WCET

analysis of the execution of an RTLola monitor. We present two approaches for static

checks. First, the RTLola specification and its underlying intermediate representation

are analyzed. The second approach maps each function to its assembly code of the

RTLola interpreter and counts the instructions given a specification.

1.1 Motivation

Analyzing the code of the monitor itself with an RTLola specification narrows down

which code in the monitor is considered for the WCET. Consequently, we know which

parts of the code are executed and which parts are ruled out by the assumptions of the

specification. The approaches presented in this thesis differ from other WCET tools like

[1, 2, 3, 4]. Even toolswith annotations like the loop bound andmaximal recursion depth

like the aiT tool [1] have to choose the same bound for all functions. They cannot decide

that for a given specification, we only have synchronous lookups. Therefore, when

evaluating the expression, we would only match the stream access case and neglect

other cases for the WCET.

Example 1.1.1. Consider the followingRust codeof the function insert of the bit_set

library
1
.

/// Adds a value to the set. Returns ‘true‘ if the value was not already

/// present in the set.

pub fn insert(&mut self, value: usize) -> bool {

if self.contains(value) {

return false;

}

// Ensure we have enough space to hold the new element

let len = self.bit_vec.len();

if value >= len {

self.bit_vec.grow(value - len + 1, false)

}

1https://docs.rs/bit-set/latest/bit_set/

3

https://docs.rs/bit-set/latest/bit_set/

1. Introduction

self.bit_vec.set(value, true);

return true;

}

This function is part of the standard libraries from Rust. Within the RTLola interpreter,

the function is called to add new outputs to the set of recently computed outputs. From

the intermediate representation, we know the exact number of outputs that have yet

to be evaluated. Consequently, we conclude that the call grow is never executed, and

therefore this part of the code is not relevant for the WCET analysis. 4

4

Chapter 2
Related Work

To ensure the strict timing and safety properties of cyber-physical systems (CPS), we

must know the upper bound of the worst-case execution time (WCET) beforehand.

There are two main categories for different methods for performing a WCET analysis

presented by [5].

The first method is the measurement-based approach, which measures the maximal

execution time given a set of input data and the used hardware. This approach cannot

guarantee that the input data set covers a program’s WCET path since only a represen-

tation of possible WCET scenarios is used for the analysis. To guarantee that the WCET

is overestimated, a safe margin is typically added to the measured time, making the

estimate not always usable in practice since the result is not a tight upper bound. We

seek a safe upper bound because timing is essential for the safety of CPS. Therefore, the

measurement-based approach is not ideal in our setting.

The second method is the static WCET analysis which determines the WCET without

actually executing the programby creating a programmodel and abstracting all possible

inputs guaranteeing safe upper bounds. Usually, a static WCET analysis tool consists of

three phases: flow analysis, low-level analysis, and final calculation. This structure is,

for example, used by the aiT tool[1], the Bound-T tool [4], and the WCET tool used for

Java [6]. The WCC tool [3] differs from this structure as a WCET analysis is connected

to a C compiler and uses the aiT tool for obtaining flow facts. Another tool that deviates

from the structure is the SWEET tool [7] since it only has a focus on the flow analysis

and lacks a low-level analysis. Therefore, this tool is often used as an add-on to analyze

more detailed flow facts.

The three phases are implemented in WCET tools with various methods. The

two main techniques are the control-flow analysis and integer-linear programming

explained in the following.

The first technique is the control-flow analysis which extracts information from the

program code over all possible execution paths represented mainly by a control-flow

5

2. Related Work

graph. It can be divided into a value analysis, a loop-bound analysis, and an analysis

to determine the maximal recursion depth. The latter two do not always lead to a

result without any further user annotations. However, we will adapt this technique to

our approach and combine the flow analysis of the monitor with the analysis of the

specification of our CPS. This combination of analyses and the fact that we will use a

stream-based specification language facilitates the overall flow analysis. We know the

exact loop bound and call history in our specification language.

A widespread technique to finally compute the worst-case execution path is Integer-

Linear Programming (ILP), as it is also used by aiT[1], where paths of the program are

represented by a system of linear constraints over integer variables. The Implicit Path

Enumeration Technique (IPET) uses ILP and is originally introduced by [8] where the

execution time of a program is maximized under some constraints formulated as linear

constraints. Unlike this popular approach, we will determine the maximal execution

path differently. As we analyze our specification beforehand and combine it with the

monitor’s analysis, we can determine which assembly code will be executed in our

monitor in the end. So we do not have to find ourmaximal execution path as we already

know it.

Several approaches for WCET tools are for specific programming languages like C

[3, 2] or Java programs [6]. However, there also exist approaches for different types

of programming languages like Hume, a domain-specific high-level programming lan-

guage based on functional programming [9]. Besides analyses performed for specific

higher-level languages, some tools operate on binary code like the tool aiT by AbsInt

[1]. Further, there has been introduced a new code format, the ALF language [10], to

formalize flow facts independent from the code level or programming language. The

ALF language is, for example, used by the tool SWEET [7].

Several specification languages can be used for runtime verification. The first ap-

proach for defining specification languages is using temporal logics [11]. These consist

of atomic propositions, boolean formulas, and temporal operators. Runtime verifica-

tion with linear temporal logic (LTL) [12] lacks in expressiveness since LTL is limited to

describing discrete-time properties. To increase the expressiveness, real-time temporal

logics are introduced like the metric temporal logic (MTL) [13].

Typically the feedback produced by monitoring CPS with the presented temporal

logics is only boolean. The CPS receives feedback on whether the formula is satisfied

or not. While monitoring CPS, quantitive feedback is desired to capture how often

violations occur and possibly the last value of the formula.

An approach that incorporates quantitative feedback is using stream-based specifica-

tion languages like Lola [14, 15] and Lustre [16, 17]. These languages consist of input

and output streams where offset lookups can express properties about the future and

the past. Since the data received by the input stream is assumed to be received syn-

chronously, new approaches like RTLola are introduced, which can receive input data

without a fixed rate. RTLola is based on Lola, and output streams can have a frequency

6

1.1. Motivation

that denotes the time this output stream should be evaluated. In this thesis, we will use

this specification language, introduced by Schwenger [18], as the monitoring language

for CPS to perform the WCET analysis.

7

Chapter 3
Background

This chapter gives a short introduction to the specification language RTLola in Sect. 3.1

followed by an overview over worst-case execution time analyses in Sect. 3.2. Further,

the tool cargo asm is explained in Sect. 3.3.

3.1 RTLola

This section first describes the concrete syntax of RTLola represented by an abstract

syntax tree (AST) in Sect. 3.1.1. Then, we use the AST to build the dependency graph in

Sect. 3.1.2 followed by the evaluation model in Sect. 3.1.3. In the end, the type system

of RTLola is introduced in Sect. 3.1.5.

All definitions, lemmas, and propositions are introduced and proven by Schwenger

[18].

3.1.1 Concrete Syntax

ASTFor the abstract representation of the concrete syntax, the abstract syntax tree (AST) is

used. Later on, the semantics of RTLola are defined. There are three types of nodes

in the AST representing the different categories of streams: output streams (s↑), input

streams (s↓), and trigger (s!). To denote that a stream can be either an input stream or

an output stream, we use s−. We define the concrete and abstract syntax of input and

output streams and triggers in the following.

The ith input stream of the form: Concrete and Abstract

Syntax

input a : T

corresponds to the AST s
↓
i = (a,AST(T)). The first component is the name of the input

stream and is defined as s
↓
i .name := a. The second component is the AST object of the

respective type of the stream and is also defined as T
↓
i := AST(T).

The jth output stream of the form:

9

3. Background

output a : T @nHz := e

corresponds to the AST s
↑
j = (a,AST(T), n,AST(e)). Compared to the input stream, the

output stream has two additional components, first the evaluation frequency @nHz and

then the expression e. Similar to the input stream we have an additional definition of

all components s
↑
j .name := a, T↑j := AST(T), s↑j .ext := n, and s

↑
j .expr := AST(e).

We restrict the evaluation frequency to a natural number for simplicity reasons. As

the frequency is optional in the syntax of the output stream, the AST for an output

stream of the form:

output a : T := e

is defined as s
↑
j = (a,AST(T),⊥,AST(e)).

Finally, the kth trigger of the form:

output a "msg"

consists of the name a and the trigger message msg. If the name corresponds to a name

of some input or output stream, it is replaced by the stream reference else, it will result

in ⊥ yielding in the AST

s!k = (s,msg) =
{
(s−j ,msg) if s−j .name = a
(⊥,msg) otherwise

Incoming data is interpreted as input streams. These values are then used for the

computation of the output streams. Depending on the input and output streams, a

trigger can be raised.

Expressions:

RTLola specifications contain expressions in the output streams. To compute the ab-

stract syntax of an output stream, we define the computation rules of the AST function

for expressions. We differ between synchronous lookup expressions and asynchronous

lookup expressions.

Synchronous Lookup A stream accesses another stream synchronously whenever the

accessee stream produces a new value.

AST(s) :=

{
Sync(s−i) if s−i .name = s
Sync(⊥) otherwise

Offset Lookup A stream can access the n-th previous value of another stream syn-

chronously. The accessor stream has to wait for the accessee stream to produce a new

value in order to evaluate its expression.

AST(s.offset(by: -n)) :=

{
Offset(s−i , n) if s−i .name = s
Offset(⊥, n) otherwise

10

3.1. RTLola

Sample &Hold Lookup This stream lookup is asynchronous. It always accesses the latest

computed value of the accessee stream. The accessor stream gets the default value if

there is no value for the accessee stream yet.

AST(s.hold()) :=

{
Hold(s−i) if s−i .name = s
Hold(⊥) otherwise

Sliding Window Lookup A stream can access all values of another stream over a specific

time interval asynchronously. These values are used with an aggregation function to

compute the output.

AST(s.aggregate(over: δ, using: γ)) :=

{
Window(s−i , δ, γ) if s−i .name = s
Window(⊥, δ, γ) otherwise

Default Expression Whenever a lookup fails because so far, no value is produced, the

default value gets accessed. Therefore, the sample & hold, the offset, and the sliding

window lookup have a default expression that is used in case the lookup fails.

AST(e.defaults(to: d)) := Default(AST(d),AST(e ′))

Function Expression Function expressions f(e_1,...,e_n) are used to compute a

value for incoming data. General operators as constants, arithmetic operators, or con-

ditionals support infix notation.

AST(f(e1,...,en)) := Func(f,AST(e1), ...,AST(en))

We have described all syntactical components of the specification. In the following,

we define if a given specification is valid:

Definition 1 (Syntactic Validity [18])

An RTLola specification is Def. Syntactic
Validity

syntactically valid iff

• all stream and trigger definitions conform to the concrete syntax stated above.

• AST(s) can be computed without violating a condition. This especially includes

that all stream names can be resolved, such that no ⊥ value is contained in the

AST.

• all names of streams are unique, i.e., ∀i, j : s−j .name = s−i .name =⇒ i = j.

11

3. Background

Example 3.1.1. RTLola specification:

input dist : Float64
input height : Float64

output max_dist : Bool := dist > 10000.0
trigger max_dist "The drone has exceeded the maximal distance."

output avg_height : Float64 @ 1Hz := height.aggregate(over: 2min, using: avg)
output too_low : Bool := height < avg_height.hold().defaults(to: 3.0)
trigger too_low "The current height of the drone is below the average height"

output count : Int64 := count.offset(by: -1).defaults(to: 0)
+ if too_low then 1 else 0

trigger count > 4 "The drone was too low more than 4 times"

This example is a simplified version of a specification for monitoring a drone. The

properties we monitor are the maximal travel distance of at most 10000 meters before

the need of recharging. Then, the drone should ideally notmake too big jumps in height.

The first incoming input stream is dist, which describes the distance traveled so far

by the drone in meters. The second input stream height states the current height of

the drone, also given in meters.

The first property is realized in the output stream max_dist, where we check if the

current input stream dist is larger than 10000 meters or not. If this is the case, the first

trigger is raised.

The average height is computed by the output stream avg_height for the second

property. This stream is a sliding window and is evaluated periodically every second.

It computes the average over the input data of height over the last two minutes. Then,

the output stream too_low does a sample & hold lookup where the last value of the

stream avg_height is compared to the current value of the drone’s height. The second

trigger is raised if the current height is lower than the average. Further, the output

stream count counts the violations of too_low and raises the alarm with the third

trigger if the violation occurred more than four times. 4

3.1.2 Dependency Graph

In the previous section, the abstract representation and the syntactic validity were

defined. The next step is to clarify the semantic validity. That’s why we introduce the

dependency graph

(DG)

dependency graph (DG), which captures the dependencies between streams.

Formally the DG is defined in the following:

12

3.1. RTLola

Definition 2 (Dependency Graph [18])

The Def. Dependency

Graph

dependency graph of a specification is a directed multi-graph DG = (V, E) with

weighted edges. Its vertices are streams and the edges reflect dependencies between

streams:

V := Stream

E :=
⋃

16i6n↑

dep
s
↑
i
(s↑i .expr) ∪

⋃
16i6n!

{(s!i, 0, s
!

i.tar)}

The function dep
s
↑
i
is defined as:

dep
s
↑
i
(Offset(s−j , n)) := {(s↑i , n, s

−
j)}

dep
s
↑
i
(Default(e, e ′)) := dep(e) ∪ dep(e ′)

dep
s
↑
i
(Func(f, a1, ..., an)) :=

⋃
1<i6n↑

dep(ai)

dep
s
↑
i
(Sync(s−j)) := {(s↑i , 0, s

−
i)}

dep
s
↑
i
(Hold(s−j)) := {(s↑i , 0, s

−
j)}

dep
s
↑
i
(Window(s−i , δ, γ)) := {(s↑i , (δ, γ), s

−
j)}

Intuitively the DG is built from the AST by creating a node for every stream and

adding an edge for every dependency in the specification. Whenever an output stream

accesses another stream, an edge is added to this stream with its weight or a tuple for a

sliding window with the aggregation function and the duration.

Example 3.1.2. Consider the RTLola specification from Example 3.1.1. We build the

dependency graph in Fig. 3.1 first by creating a node for every stream. Input streams

are always sink nodes as they do not depend on any other streams. On the other hand,

triggers are always leave-nodes as no other streams can access them. In this example, the

output stream count (s↑4) does an offset lookup with 1 to itself as well as a synchronous

lookup to the stream too_low (s
↑
3). Therefore, we add in the DG a self-loop to the

node s
↑
4 with weight 1 and an edge with weight 0 from s

↑
4 to s

↑
3. The output stream

avg_height (s↑2) is a sliding window, and therefore the edge to s
↓
2 is denoted with the

pair of duration and the respective aggregation function. All other stream lookups are

0-weighted as they are either synchronous lookups or sample & hold lookups. 4

13

3. Background

s!1

s
↑
1

s
↓
1 s

↓
2

s
↑
3

s
↑
4

s!2

s
↑
2

s!3

0

0

0

0

1

0

0

(2min, avg)

0

Figure 3.1: Dependency Graph for RTLola specification in Example 3.1.1.

3.1.3 Evaluation Order

We determine the evaluation order and layers of an RTLola specification from the DG.

Especially the evaluation layers will be a key component for the WCET analysis of

RTLola. To get an intuition for the evaluation order and which difficulties may arise,

consider the following examples:

Example 3.1.3. RTLola specification:

input a : Int64
output b : Int64 := a + c.offset(by: -1).defaults(to: 0)
output c : Int64 := a + 1

The input stream a is accessed by both streams b and c synchronously, so a has to be

evaluated first. Output stream b has an offset lookup by 1 to c, sowe access the previous

value of c. For this reason, we have to evaluate c before b. As output stream c only

depends on a, we can evaluate b after c and get a correct evaluation.

This results in the evaluation order ≺with a ≺ c ≺ b. 4

Example 3.1.4. RTLola specification:

input a : Int64
output b : Int64 := a + c.offset(by: -1).defaults(to: 0)
output c : Int64 := b.offset(by: -1).defaults(to: 0) - 1

If we compare this example to the previous one, only output stream c has changed to

an offset lookup with 1 to b, so we access the previous value of b. Applying the same

approach to this example as in the previous one, difficulties arise. Since b accesses c

and c accesses b we get a cyclic dependency and therefore cannot define a total order

14

3.1. RTLola

for this specification. For evaluating output stream b we can use the default value of

c and evaluate b before c. So, in theory, we can evaluate b first and then c. However,

this results in a new problem as c has not been evaluated yet. So there does not exist a

current value of c. Therefore, b gets the second-last value and not the previous one as

intended by the specification. 4

To overcome this difficulty, we introduce a new evaluation phase, called pseudo evaluation

phase

pseudo eval-
uation phase, where each evaluated stream gets a new pseudo value. This pseudo value

is replaced with the actual computed value when a new value is computed.

To sum up the results from the two examples, Example 3.1.3 :Exm. 3.1.3, p. 14and Example 3.1.4, we

can give the formal definition of the evaluation order.

Definition 3 (Evaluation Order [18])

The Def. Evaluation
Order

evaluation order ≺ is a partial order on streams, reflecting the structure of the

dependency graph DG = (V, E). The evaluation order is the transitive closure of a

relation satisfying the following rules:

1. ∀i, j : s↓i ≺ s
↑
j

2. (s↑i , x, s
−
j) ∈ E∧ (x = 0∨ x = (δ, γ))∧ s↑i 6= s

−
j =⇒ s−j ≺ s

↑
i

Note that triggers are not considered in the definition of the evaluation order as they

do not get accessed by any other stream. Therefore, triggers can always be evaluated

after all other streams. The evaluation order can also be represented as evaluation layers

described in the following definition.

Definition 4 (Evaluation Layer [18])

The Def. Evaluation Layerevaluation layer is an equivalent representation of �. If Layer(s−i) = k, then there

is a strictly decreasing sequence of k streams w.r.t. ≺ starting in s
↑
i .

The maximal evaluation layer λmax
is described as:

λmax := max{λ | ∃s−j : λ = Layer(s−j })

Example 3.1.5 (Evaluation Layer). The specification from Example 3.1.1 :Exm. 3.1.1, p. 12results in the

following evaluation layers:

Layer(s↓1) = 0 Layer(s↑2) = 1 Layer(s!1) = 4

Layer(s↓2) = 0 Layer(s↑3) = 2 Layer(s!2) = 4

Layer(s↑1) = 1 Layer(s↑4) = 3 Layer(s!3) = 4

15

3. Background

Input streams are always in layer zero as they do not depend on any other streams. The

output streams max_dist(s↑1) and avg_height(s
↑
2) are on the first layer as they both

only depend on input streams. The output stream too_low does not only depend on

the input stream height but also on the output stream avg_height, so too_low has

to be on layer 2. The output stream count depends on itself and on too_low, which

results in layer 3. All three triggers only access one stream, so they are all on layer 4. 4

3.1.4 Memory Analysis

A first static check on an RTLola specification is made by determining the maximal

memory-bound of a stream by considering the dependency graph. This bound will be

later on used in the memory handling of the WCET algorithm in Sect. 4.2.2: Sect. 4.2.2, p. 28

Definition 5 (Memory Bound of a Stream)

Let G = (V, E) be a dependency graph. TheDef. Memory Bound memory bound of a stream s−i is

memmax(s−i) = max{n | ∃s↑j : (s
↑
j , n, s

−
i) ∈ E∧ n ∈ N}+ 1

Intuitively the memory-bound is determined with the dependency graph by com-

paring the weights of all incoming edges of a certain stream and filtering the maximal

offset. Incremented by one, this offset is equivalent to thememory bound of this stream.

Example 3.1.6. RTLola specification:

input execTime : Float64
output lastThree : Bool := execTime.offset(by -2).defaults(to: 5.0) > 5.0

∧ execTime.offset(by -1).defaults(to: 5.0) > 5.0

∧ execTime > 5.0

trigger lastThree "The last three tasks each took longer than 5ms"

This example checks whether three consecutive values of the input stream execTime

are greater than 5ms and release a trigger if the property is satisfied.

The corresponding dependency graph where t is the trigger, o is output stream

lastThree, and i is input stream execTime:

t o i
0 0,1,2

For each stream, we compute the memorization bound as defined in Def. 5, resulting

in:

1. memmax(execTime) = 3

2. memmax(lastThree) = 1

16

3.2. Worst-Case Execution Time Analysis (WCET)

Input stream execTime is only accessed by the output stream lastThree where the

maximal offset is two. Consequently, themaximalmemorization bound of execTime is

three. lastThree is only accessed by the trigger stream with one synchronous stream

lookup leading to the maximal memorization bound of 1. 4

3.1.5 Types

In RTLola, types are represented by a pair consisting of the Value Type/Pacing

Type

value type and the pacing
type. The value type defines the size and the domain of the resulting value of a stream.

These types range from boolean values, signed and unsigned integers, to floating-point

numbers. Except for the boolean value type, all value types are annotated with the

corresponding bit length. The pacing type indicates when a particular stream has to be

evaluated, either periodically or after arbitrary time points. Therefore, the pacing type

of a stream has two categories. If the stream has an optional value after the symbol @,

this value indicates the fixed frequency of the stream. The pacing type of this stream

is periodic. Otherwise, the pacing type of a stream is event-based and is represented

by a positive boolean formula ϕ overall input streams. In detail, the event-based type

represents the dependencies of output streams to input streams. Note that input streams

cannot be of periodic type since we have no control over the arrival of the input streams.

Thus, every input stream has an event-based type as its only dependency is on itself.

To get more intuition for the pacing type, consider the following example:

Example 3.1.7. A fragment of Example 3.1.1 :Exm. 3.1.1, p. 12:

input height : Float64
output avg_height : Float64 @ 1Hz := height.aggregate(over: 2min, using: avg)
output too_low : Bool := height < avg_height.hold().defaults(to: 3.0)
output count : Int64 := count.offset(by: -1).defaults(to: 0)

+ if too_low then 1 else 0

The input stream height is event-based and has the type of the input stream itself. The

output stream avg_height is periodic and has the pacing type 1Hz, and is evaluated

every second. The output stream of too_low is event-based, and the pacing type is only

bound to the input stream height as the hold lookup to avg_height can be omitted

sincewe always take the latest value of avg_height. The output stream count is again

event-based, and the pacing type is count ∧ too_low. 4

3.2 Worst-Case Execution Time Analysis (WCET)

This section introduces a WCET analysis first by a short introduction to control flow

representations and definitions used to define a control flow graph in Sect. 3.2.1 and

Sect. 3.2.2. The foundation of these definitions is built up by Stattelmann [19]. Then,

we define the worst-case execution path, the worst-case execution time of a routine in

Sect. 3.2.4.

17

3. Background

As we will perform the WCET analysis on assembly code in Sect. 5.4 the definitions

and examples in the following sections are restricted to assembly code instructions.

3.2.1 Basic Blocks

A basic block is a sequence of instructions with no branches except for the end of the

basic block. The definition of a basic block is given in the following.

Definition 6 (Basic Block [19])

LetB be a finite set ofDef. Basic Block basic blocks. Every basic block b ∈ B has at the start an instruction

with an unique address a ∈ A ⊂ N computed by the function address : B → A. The

respective basic block b for a given address a can be computed by address−1 : A→ B.

Example 3.2.1. Fig. 3.2 shows a snippet of x86 code and its basic blocks, which computes

the gaussian sum of the given input parameter with the usual calling convention. The

input parameter is expected in the edi-register, and the result is stored in the eax-

register. This code snippet consists of four basic blocks where the last instruction is

always a branching instruction. The first unconditional jump instruction forms the

first basic block. The second basic block consists of the next three instructions where

the conditional jump at address 0x800c closes the basic block. The third basic block

contains a move instruction followed by a return instruction. The last two instructions

of the code snippet form the last basic block. 4

Figure 3.2: Assembly code for computing the gaussian sum and its basic blocks

18

3.2. Worst-Case Execution Time Analysis (WCET)

Figure 3.3: Routine rfaculty computing the faculty

3.2.2 Routines

In this thesis, we will analyze more complex programs than the code snippet from

Example 3.2.1. Most programs are divided into different subroutines, which usually

handle one part of the program. In our context, such subroutines are functions and

procedures of a program to which we will refer to as routines from this point on. The

definition of a routine is given in the following:

Definition 7 (Routine [19])

Let R be the finite set of all routines for a given program. Every Def. Routineroutine r ∈ R consists

of a fixed number n of basic blocks b1, ..., bn ∈ Br.

To guarantee that routines have unique addresses and to access some routine through

their entry block and last block, we define the following properties for routines.

Definition 8 (Properties of Routines [19])

Def. Properties of
Routines

There exists a function that assigns a basic block b to a routine r routine : B → R and

for every r1, r2 ∈ R : r1 6= r2 ⇒ Br1 ∩ Br2 = ∅.
The set of all entry blocks of a given program is given by Starts ⊆ B, and the function

start : R→ Startsmaps each routine to its entry block.

The set of all end blocks of a given program is given by Ends ⊆ B, and the function

end : R→ Endsmaps each routine to the last block before the routine ends.

Example 3.2.2. We compare the routine rfaculty in Fig. 3.3 with the routine rgauss in

Fig. 3.2. rfaculty computes faculty, and rgauss computes the gaussian sum explained in

Example 3.2.1.

The faculty routine consists of four basic blocks. Similar to the code of the gaussian

sum, the structure of the basic blocks is the same. The blocks only differ in the computa-

tion. In basic block b6, we change the addition of the gaussian sum to a multiplication.

Note that the mul-instruction only takes one register, as the result register is defined

19

3. Background

to be eax. Since the result register has to be initially 1 in block b8 to perform the

multiplication, we move 1 to the result register. The input parameter is expected in the

edi-register, and the result is stored in the eax-register. Each basic block ends with a

branching instruction. 4

3.2.3 Control Flow Graph

In the following, we define the control flow graph (CFG), which describes all possible

control flow actions for a routine and its basic blocks.

Definition 9 (Control Flow Graph [19])

For some routine r ∈ R, theDef. Control Flow

Graph

CFG is denoted by: CFGr := (Br, Er) where Br consists of

all basic blocks of the routine r and the set of edges Er ⊆ Br × Br that represents the
control flow for the given routine r.

Example 3.2.3. According to Def. 9, we build the CFG for routine rgauss from Exam-

ple 3.2.2 in the following. The CFG is shown in Fig. 3.4. The branches of the basic blocks

b1 and b4 result in a clear edge. Only the branch’s address has to be resolved into an

edge to its corresponding basic block. The ret-instruction from b3 is transformed into

an edge to the caller function. The conditional jump of b2 is split into two edges where

we have a self-loop if edi 6= 0 and an edge to b3 if edi= 0. 4

Figure 3.4: CFG for routine rgauss

20

3.2. Worst-Case Execution Time Analysis (WCET)

3.2.4 Worst-Case Execution Path

The definition of the WCET of a routine is divided into different levels of abstraction,

where the lowest level is the execution time of a single assembly code instruction. We

give the first definition for the next level of basic blocks using the lowest level.

Definition 10 (Execution Time of a Basic Block)

Let b ∈ Br be a basic block of the routine r ∈ R and Ab ⊂ N the set of all addresses

a1, ..., an ∈ Ab of the basic block b. The function execinstr : Ab → R assigns the execution

time to every instruction of Ab. The Def. Execution Time

of a Basic Block

execution time of the basic block b is defined as:

execblock(b) =
∑
a∈Ab

execinstr(a).

The next level after the basic blocks is the abstraction level of paths of a routine. In

the following, we define the execution time of a path.

Definition 11 (Execution Time of a Path)

Let r ∈ R be a routine of a program, p ∈ Paths(r) be a possible path of the routine r

where Paths(r) is the set of all possible paths of the routine r ∈ R. The path p consists

of a sequence of length i of basic blocks b1, ..., bi ∈ Br. The Def. Execution Time

of a Path

execution time of the path p is

defined as:

execpath(p) =
∑
b∈Br

execblock(b).

With the execution time for every path of a routine, the last step is defining the

worst-case execution path (WCEP) of a routine.

Definition 12 (Worst-Case Execution Path)

Let r ∈ R be a routine of a program and ExecPaths(r) the set of all execution times

of the routine r ∈ R. The WCET of routine r also called the Def. Worst-Case

Execution Path

Worst-Case Execution Path
(WCEP) of routine r is defined as:

wcet(r) = max

p∈ExecPaths(r)
(execpath(p))

Example 3.2.4. Consider the CFG from Fig. 3.4. Since there is a loop in basic block b2

we assume that the basic block is only visited once. With this restriction, the only path

possible in the CFG is p = b1, b4, b2, b3.

The first step is computing the execution time of all basic blocks by combining the

execution times of all instructions of the corresponding block. For simplicity, we assume

21

3. Background

that the execution time of all instructions is 1. The resulting execution times of the basic

blocks are:

execblock(b1) = execinstr(0x800) = 1

execblock(b2) = execinstr(0x804) + execinstr(0x808) + execinstr(0x80C) = 3

execblock(b3) = execinstr(0x810) + execinstr(0x814) = 2

execblock(b4) = execinstr(0x818) + execinstr(0x81C) = 2

Sincewe only have one possible path p this path is theWCEP. The result of the execution

time of p is equal to the WCET of the entire routine:

wcet(rgauss) = execpath(p)

= execblock(b1) + execblock(b2) + execblock(b3) + execblock(b4) = 8

4

3.3 Cargo asm

The RTLola framework is implemented in Rust. As we build up a CFG for an RTLola

program with assembly code instructions, we must obtain the assembly code for the

used functions.

We will use an extension for cargo called cargo asm. This tool allows us to use the

cargo asm command with a proper path to the function to obtain the assembly code.

Before using this extension we have to install it:

cargo install cargo-asm

To obtain the assembly code from a function, we need the path of the function. To see

the rust annotations, we have to set the parameter --rust. The resulting command is:

cargo asm "<path_to_function>" --rust

Example 3.3.1. With the command

cargo asm "bit_set::BitSet::contains" --rust

we get the assembly code for the function contains of the bit_set library:

pub fn contains(&self, value: usize) -> bool {

push rbp

mov rbp, rsp

sub rsp, 64

mov qword, ptr, [rbp, -, 56], rsi

mov qword, ptr, [rbp, -, 24], rdi

mov qword, ptr, [rbp, -, 16], rsi

22

3.3. Cargo asm

mov qword, ptr, [rbp, -, 48], rdi

let bit_vec = &self.bit_vec;

mov qword, ptr, [rbp, -, 8], rdi

value < bit_vec.len() && bit_vec[value]

call bit_vec::BitVec::len

mov qword, ptr, [rbp, -, 40], rax

jmp LBB7269_4

LBB7269_1:

value < bit_vec.len() && bit_vec[value]

mov byte, ptr, [rbp, -, 25], 0

jmp LBB7269_3

LBB7269_2:

mov rsi, qword, ptr, [rbp, -, 56]

mov rdi, qword, ptr, [rbp, -, 48]

value < bit_vec.len() && bit_vec[value]

lea rdx, [rip, +, l___unnamed_383]

call <bit_vec::BitVec as core::ops::index::Index<usize>>::index

mov qword, ptr, [rbp, -, 64], rax

jmp LBB7269_5

LBB7269_3:

}

mov al, byte, ptr, [rbp, -, 25]

and al, 1

movzx eax, al

add rsp, 64

pop rbp

ret

LBB7269_4:

mov rax, qword, ptr, [rbp, -, 56]

mov rcx, qword, ptr, [rbp, -, 40]

value < bit_vec.len() && bit_vec[value]

cmp rax, rcx

jb LBB7269_2

jmp LBB7269_1

LBB7269_5:

mov rax, qword, ptr, [rbp, -, 64]

value < bit_vec.len() && bit_vec[value]

mov al, byte, ptr, [rax]

value < bit_vec.len() && bit_vec[value]

and al, 1

mov byte, ptr, [rbp, -, 25], al

jmp LBB7269_3

4

23

Chapter 4
Worst-Case Execution Time
Analysis of RTLola
Specifications

This chapter presents aWCETalgorithmof anRTLola specification. First, somenotation

in Sect. 4.1 is introduced, followed by defining the WCET on an RTLola specification in

Sect. 4.2.

The type of WCET analysis used in this chapter is based on a path analysis covered

in Sect. 3.2 : Sect. 3.2, p. 17. The computation of the WCET uses an abstract time metric analyzing all

streams. Wewill cover twoversions for executing the specification: first, a parallelmodel

where all streams of one layer are evaluated simultaneously, followed by a sequential

one where the streams of one layer are processed one after another. In both cases, the

analysis of each stream is equal.

4.1 Notation

Before we introduce the computation of the WCET of a specification in more detail, we

define the set of all evaluation layers with the maximal layer λmax
defined in Sect. 3.1.3

: Sect. 3.1.3, p. 14and the respective streams of each layer.

Definition 13 (Streams of a Layer)

Let l ∈ {0, 1, ..., λmax} and s−1 , ..., s
−
i ∈ Streams. We define streams : {0, 1, ..., λmax} →

Streams as:

streams(l) = {s−i | l = Layer(s−i)}

25

4. Worst-Case Execution Time Analysis of RTLola Specifications

Every layer has a fixed number of streamswhere each stream is executed. The inverse

function is introduced in Sect. 3.1.3: Sect. 3.1.3, p. 14 .

Example 4.1.1. Consider the RTLola specification from Example 3.1.1:Exm. 3.1.1, p. 12 and the corre-

sponding layers of the streams from Example 3.1.5:Exm. 3.1.5, p. 15 . The maximal layer of this specifi-

cation is λmax = 4. We can determine the corresponding streams to the five layers with

the function introduced in Def. 13.

streams(0) = {s
↓
1, s

↓
2}

streams(1) = {s
↑
1, s

↑
2}

streams(2) = {s
↑
3}

streams(3) = {s
↑
4}

streams(4) = {s!1, s
!

2, s
!

3}

4

4.2 WCET Analysis

To compute the WCET of a stream, we divide the computation into several stages. We

start with the calculation of the WCET of an expression, then define the influence of

the memory handling on the WCET. These two analyses correspond to the execution

time of a basic block introduced in Sect. 3.2.4: Sect. 3.2.4, p. 21 . Finally, we combine the results to the

final WCET of input streams, output streams, and triggers. The WCET of one stream

can be interpreted as an abbreviation of the determination of the execution time of a

path defined in Sect. 3.2.4: Sect. 3.2.4, p. 21 . A path corresponds to a combination of a stream and its

expression.

4.2.1 Expression Analysis

Reconsider that output streams and triggers contain arbitrary expressions that affect the

WCET of a stream. Adding two terms is more costly than loading a constant. Therefore,

we have to define the WCET of an expression before defining the WCET of a stream.

Definition 14 (WCET of an Expression)

TheDef. WCET Expres-

sion

WCET of an expression e is defined as:

wcetexpr(Default(d, expr)) = max(wcetexpr(d),wcetexpr(expr)) +wcetop(def)

wcetexpr(Sync(s)) = streamAccess

wcetexpr(Hold(s)) = streamAccess

26

4.2. WCET Analysis

wcetexpr(Offset(s, n)) = offsetAccess

wcetexpr(Func(ite, c, t, e)) = wcetop(ite) +wcetexpr(c) +max(wcetexpr(t),wcetexpr(e))

wcetexpr(Func(f, e1, ..., en)) = wcetop(f) +
∑

i∈{1,...,n}

wcetexpr(ei)

with streamAccess, offsetAccess, and wcetop.

Consequently, the WCET of an expression is composed of the overhead caused by

an operator’s execution time and the WCET of all operands. In the case of a default

expression, we must check whether the term’s value is accessible, which we interpret

as an if-then-else operation. Then, we determine the WCEP of the default expression

by comparing the WCET of the default expression and the expression. Further, a

synchronous and hold lookup is represented by streamAccess and an offset lookup by

offsetAccess. Both variables state the time needed to perform a lookup. We do not

differentiate between synchronous lookups and hold lookups because both access the

latest value of their stream. They only differ in their pacing type. However, offset

lookups are handled differently since we have an additional overhead for looking up

the value with the correct offset. So an offset lookup might access the first value of the

stream. Depending on the underlying memory model of the CPS, accessing the first

value or the latest value result in different access times, which is discussed in more

detail in Sect. 4.2.2 : Sect. 4.2.2, p. 28.

Remark 4.2.1. For the remainder of this thesis, we assign an operator of an expression to its
execution time.

wcetop(comp) = execcomp when comp ∈ {=, 6=, <,6, >,>,∧,∨, ...}

wcetop(arith) = execarith when arith ∈ {+,−, ∗, /}

wcetop(ite) = execite when ite ∈ {ite or def }

wcetop(const) = execconst when const is a constant

We assume that the if-statement and the default expression share the same execution time because
the implementation handles these two cases equivalently.

Example 4.2.1. RTLola specification:

input execTime : Float64
output δexecTime : Float64 := execTime

- execTime.offset(by: -1).defaults(to: 15.0)

trigger δexecTime > 5.0 "The difference between the last two tasks is greater than
5.0"

In this example, the output stream δexecTime computes the difference between the last

two processed tasks and releases a trigger if the difference is larger than 5ms, meaning

27

4. Worst-Case Execution Time Analysis of RTLola Specifications

s
↑
1

Float64δexecTime Func

−

Sync

s
↓
1

Default

Offset

s
↓
1

1

Sync

s
↓
1

Figure 4.1: AST of δexecTime

that the last processed task had an execution time longer than 5ms. We do not need

the absolute amount of δexecTime as the input stream execTime states the execution

time of each processed task in milliseconds from a starting point where the monitor can

process only one task at once. So the inputs for this stream are continuously increasing.

We compute the WCET of the output stream δexecTime’s expression. The first step

is to extract the part of the AST representing the expression of the stream. Then, we

apply the function wcetexpr from Def. 14:Def. 14, p. 26 .

Fig. 4.1 shows the AST of the output stream δexecTime. The root element is the

subtraction which is translated into execarith. In the next step, we compute the WCET

of both operands. The right-hand side is a synchronous lookup which results in the

constant streamAccess. The offset lookup of the left-hand side is computed by de-

termining the maximum of the default expression and the offset lookup resulting in

max(offsetAccess, streamAccess). The final result of the WCET of this expression is:

wcetexpr(δexecTime) = execarith + streamAccess+max(offsetAccess, streamAccess)

4

4.2.2 Memory Handling

As Example 4.2.1:Exm. 4.2.1, p. 27 indicates, accessing different values of the streams causes different

accessing times depending on the memory model. This section will compare two

memory models and explain how these different access times arise.

Example 4.2.2. We compare two different memory management systems, a ring buffer

and a stack displayed in Fig. 4.2. A ring buffer has two pointers read and write. read

points to the first element being stored in the buffer, whereas write points after the last

element stored in the memory. If an element is read, the read pointer increases by one.

28

4.2. WCET Analysis

(a) Ring buffer (b) Stack

Figure 4.2: Overview of different memory handling

Similarly, the write increases if an element is put into the buffer. In Fig. 4.2a, we store

the incoming values of an input stream being 12, 42, 36. Reading value 12 is an atomic

operation, whereas reading value 36 requires reading all values before increasing the

memory access time.

In contrast to the ring buffer, the values are stored linearly in a stack, with a stack

pointer (sp) pointing to the last element stored in the memory. If a value is read, the

sp decreases. In Fig. 4.2b, we also store the incoming values of an input stream being

12, 42, 36. The difference to the ring buffer is that only the last stored value is accessible.

Consequently, the memory access of value 12 requires first reading both values 42 and

36, resulting in a linear runtime depending on the size of the stack. In contrast to the

ring buffer, accessing value 36 is atomic.

Consequently, the ring buffer works with the first-in-first-out (FIFO) protocol and the

stack with the last-in-first-out (LIFO) protocol. 4

From the results of the previous example, we conclude that using, for example, a ring

buffer for a synchronous lookup of a streammeans that the latest stored value has to be

read. This access is of linear time, whereas it is atomic in a stack.

Remark 4.2.2. To monitor an RTLola specification, the number of required values of a stream
is its memory-bound memmax(s−i) defined in Sect. 3.1.4 :Sect. 3.1.4, p. 16. As Example 4.2.2 shows, different
memory management systems result in different memory access times. Thus, we introduce
execmem stating the memory access time.

The next step of the WCET analysis of RTLola is to define the memory analysis.

29

4. Worst-Case Execution Time Analysis of RTLola Specifications

Definition 15 (WCET of Memory Handling)

Let memmax(s−i) be the memory bound of s−i . TheDef. WCET Memory

Handling

WCET of memory handling of a

stream s−i is defined as:

wcetmem(s
−
i) = memmax

s−i
∗ execmem

with execmem.

Intuitively, the WCET is reached for accessing a stream if we have to go through all

values to access the wanted value. For example, accessing the latest value in a stack

is the worst-case. The maximal number of values that must be read beforehand is,

in the worst-case, the maximal memory bound. In consequence, memory handling is

composed of the access time execmem and the memory-bound of the respective stream.

The memory handling is only defined for input and output streams since a trigger has

no values that must be stored.

4.2.3 WCET of RTLola Streams

With the memory analysis from Sect. 4.2.2 and the expression analysis from Sect. 4.2.1,

we define the WCET of a stream.

Definition 16 (WCET of a Stream)

TheDef. WCET Stream WCET of a stream is defined as:

wcetstream(s↓i) = wcetmem(s
↓
i)

wcetstream(s↑i) = wcetexpr(s↑i) +wcetmem(s
↑
i)

wcetstream(s!i) = wcetexpr(s!i)

Example 4.2.3. Consider the RTLola specification from Example 4.2.1:Exm. 4.2.1, p. 27 before. Now

we want to compute the WCET of all streams. The WCET of input stream execTime

only consists of the memory handling time. First, the memory bound of execTime is

computed, which is memmax(s↓1) = 2. Then, the factor execmem is multiplied, resulting in

the WCET

wcetstream(s↓1) = wcetmem(s
↓
1)

= 2 ∗ execmem

The WCET of output stream δexecTime consists of the memory handling time and

the WCET of its expression. The memory handling time is computed analogously to

execTime. Finally, theWCETof the expressionwe computed in Example 4.2.1 is added.

wcetstream(s↑1) = wcetexpr(s↑1) +wcetmem(s
↑
1)

30

4.2. WCET Analysis

= execarith + streamAccess+max(offsetAccess, execconst) + execmem

= execarith + streamAccess+ offsetAccess+ execmem

(assuming offsetAccess > execconst)

To compute the WCET for the trigger stream, we simply compute the WCET of its

expression resulting in:

wcetstream(s!1) = wcetexpr(s!1)

= execcomp + streamAccess+ execconst

4

4.2.4 Parallel Model

An RTLola specification has an evaluation model with different layers shown in

Sect. 3.1.3 : Sect. 3.1.3, p. 14. The streams within a layer are all independent from each other in their exe-

cution and only depend on the streams from the layers before. Therefore, we introduce

a parallel model by dividing the specification into its evaluation layers, simultaneously

executing all streams of one specific layer. The WCET in the parallel model is defined

in the following.

Definition 17 (WCET of Parallel Execution)

The Def. WCET of Parallel

Execution

WCET of a parallel execution is defined as:

wcetparallelspec =
∑

l∈{0,1,...,λmax}

(
max

s−i ∈streams(l)
wcetstream(s−i)

)

Intuitively, we determine the WCEP of one layer and sum up the WCET of each layer

resulting in the WCET of the whole specification.

Example 4.2.4. RTLola specification:

input execTime : Float64
output δexecTime : Float64 := execTime

- execTime.offset(by: -1).defaults(to: 15.0)

trigger δexecTime > 5.0 "The difference between the last two tasks is greater than
5.0"

output maxTime : Bool := 15.0 < execTime
trigger maxTime "The last task exceeded the maximal time"

output lastThree : Bool := 5.0 < execTime.offset(by -2).defaults(to: 5.0)
∧ 5.0 < execTime.offset(by -1).defaults(to: 5.0)

∧ 5.0 < execTime

trigger lastThree "The last three tasks each took longer than 5ms"

31

4. Worst-Case Execution Time Analysis of RTLola Specifications

This specification extends Example 4.2.1:Exm. 4.2.1, p. 27 from before. We add two more properties to

our specification. Output stream maxTime checks whether a task exceeds the maximal

time of 15ms and releases a trigger if this is the case. The second property is modeled

by the stream lastThree and checks if the last three tasks individually take longer

than 5ms. If this check is satisfied, a trigger is released.

The WCET of this specification is computed by applying Def. 17:Def. 17, p. 31 . The WCET of the

first output and trigger are computed in Example 4.2.3:Exm. 4.2.3, p. 30 . Analogously, the remaining

streams are handled:

wcetstream(s↓1) = 3 ∗ execmem

wcetstream(s↑2) = execcomp + streamAccess+ execconst + execmem

wcetstream(s↑3) = 5 ∗ execcomp + streamAccess+max(offsetAccess, execconst)

+max(offsetAccess, execconst) + 3 ∗ execconst + execmem

= 5 ∗ execcomp + 2 ∗ offsetAccess+ streamAccess

+ 3 ∗ execconst + execmem (assuming offsetAccess > execconst)

wcetstream(s!2) = streamAccess

wcetstream(s!3) = streamAccess

Since we compute the WCET of the parallel execution, we have to determine the

WCEP of each layer:

streams(0) = {s
↓
1}⇒ wcetstream(s↓1) = 3 ∗ execmem

streams(1) = {s
↑
1, s

↑
2, s

↑
3}⇒ wcetstream(s↑3)

= 5 ∗ execcomp + streamAccess+ 2 ∗ offsetAccess+ 3 ∗ execconst + execmem

streams(2) = {s!1, s
!

2, s
!

3}⇒ wcetstream(s!1) = execcomp + streamAccess+ execconst

The final WCET of the parallel execution of the specification is:

wcetparallelspec = wcetstream(s↓1) +wcetstream(s↑3) +wcetstream(s!1)

4

4.2.5 Sequential Model

The parallel model is not applicable in practice since the RTLola interpreter executes all

streams sequentially. That iswhywe introduce an approach for analyzing the sequential

execution of the specification. The WCET in the sequential model is defined as:

32

4.2. WCET Analysis

Definition 18 (WCET of Sequential Execution)

The Def. WCET of

Sequential Execution

WCET of a sequential execution is defined as:

wcetsequentialspec =
∑

l∈{0,1,...,λmax}

 ∑
s−i ∈streams(l)

wcetstream(s−i)



This approach differs from the parallel approach only in summing up all execution

times of the streams of a layer instead of determining the maximal execution time of a

layer.

Example 4.2.5. Consider the RTLola specification from Example 4.2.4. We determine

the WCET of this specification for a sequential execution first by summing all WCET of

a layer:

streams(0) = {s
↓
1}⇒ wcetstream(s↓1)

streams(1) = {s
↑
1, s

↑
2, s

↑
3}⇒ wcetstream(s↑1) +wcetstream(s↑2) +wcetstream(s↑3)

streams(2) = {s!1, s
!

2, s
!

3}⇒ wcetstream(s!1) +wcetstream(s!2) +wcetstream(s!3)

The final WCET of the sequential execution of the specification is:

wcetsequentialspec = wcetstream(s↓1)

+wcetstream(s↑1) +wcetstream(s↑2) +wcetstream(s↑3)

+wcetstream(s!1) +wcetstream(s!2) +wcetstream(s!3)

4

Remark 4.2.3. As Example 4.2.4 and Example 4.2.5 show, the WCET analysis of a parallel
model outperforms the analysis of a sequential model if the given specification has several streams
in one layer. In fact, wcetparallelspec 6 wcetsequentialspec since the analysis of the parallel execution only
results in the same outcome as the sequential one if all streams are on a unique layer.

33

Chapter 5
Implementation

This chapter introduces two approaches for computing a WCET analysis for an RTLola

specification. The first approach focuses its analysis on the intermediate representa-

tion of the RTLola framework. The second approach considers the front-end of the

framework and the underlying assembly code of the RTLola interpreter.

5.1 Setup

TheWCETanalyses described in the following sections are implemented inRust, and the

implementation is published onGitHub1. The first analysis is based on the intermediate

representation, which is created by the RTLola front-end
2
. The second one analyzes

the assembly code of the RTLola interpreter
3
. For this thesis, the project was executed

on an Intel processor using the x86 instruction set architecture with the Intel syntax.

Therefore, we only consider the x86 code.

5.2 RTLola Framework

The RTLola framework is written in Rust and is divided into a front-end and several

back-ends. Fig. 5.1 shows the structure of the framework. We have to provide an input

file with the textual representation of an RTLola specification and an input file with

the corresponding CSV file or the input from std-in. Each input stream is annotated

with the time it gets updated with a value. Before the specification of a CPS is moni-

tored, the front-end creates the Mid-level Intermediate Representation (MIR). Then, the

specification is monitored and provides feedback to the system by releasing triggers.

1https://projects.cispa.saarland/c01jaba/rtlola-wcet
2https://docs.rs/rtlola-frontend/0.3.3/rtlola_frontend/
3https://docs.rs/rtlola-interpreter/0.7.0/rtlola_interpreter/

35

https://projects.cispa.saarland/c01jaba/rtlola-wcet
https://docs.rs/rtlola-frontend/0.3.3/rtlola_frontend/
https://docs.rs/rtlola-interpreter/0.7.0/rtlola_interpreter/

5. Implementation

Figure 5.1: Overview of the connection between parts of the framework

5.2.1 RTLola Front-end

The front-end parses the RTLola specification and creates the MIR containing all input,

output, and trigger streams. It also provides additional information about each stream

like the induced type, the evaluation layer, the memorization bound, and which stream

is accessed. The MIR forms the base for the first implementation of a WCET algorithm

discussed in more detail in Sect. 5.3.

5.2.2 RTLola Interpreter

The interpreter implements a monitor, which analyzes the specification with the incom-

ing data of the system as a CSV file or from the std-in. The interpreter gets theMIR from

the front-end and interprets the specification based on the incoming data. In the scope

of this thesis, we focus on the implementation of the online monitoring of event-based

streams shown in Fig. 5.2.

The online evaluation process starts by fetching new events meaning that new values

are received from the input streams. These events are divided into items interpreted

by eval_event. Before the streams are evaluated, the function clear_freshness

ensures that all streams are cleared before being evaluated. Then, the event must be

incorporated into the input streams by accepting all values of the input streams the

interpreter needs to evaluate the specification. Afterward, the function eval_all_ev-

ent_driven_streams iterates over all output streams of each layer and computes the

result of each stream if the event invokes its activation condition.

36

5.3. Frontend Analysis

The execution of the function eval_event is the starting point of the interpreter

analysis explained in Sect. 5.4

5.3 Frontend Analysis

To gain a more accurate timing constraint of the specification, the front-end analysis

obtains all information and parameters encoded in the MIR and interprets them into a

time value indicating the complexity of the evaluation of a specification. In this section,

we implement the algorithm presented in Chapter 4 :Chapter 4, p. 25for a sequential and parallel model.

5.3.1 Implementation Details

Remark 5.3.1. To reason about time, every operation is assumed to be atomic, and we assign
the following variables all to one.

streamAccess = 1 execcomp = 1

offsetAccess = 1 execarith = 1

execmem = 1 execite = 1

We split the analysis into an input and an output analysis. We iterate over all inputs

and obtain the execution time for an input stream by computing the memory handling

overheadwith thememorization bound. To evaluate each output stream,we iterate over

all evaluation layers and compute the execution time for the memory handling and the

expression of an output stream. We recursively construct the result by mapping every

operation and stream lookup to one and adding a possible overhead to compute the ex-

pression’s result. Moreover, we analyze the output streams with the same structure the

interpreter has. For the resultingWCET analysis for the parallel model, we compute the

maximal result of all output streams of each layer. Considering a sequential execution,

we sum up all results.

5.4 Interpreter Analysis

To obtain a more precise WCET estimation, we analyze the interpreter and the MIR.

The time instance for this analysis is the number of assembly instructions needed to

monitor an RTLola specification. Note that we are not interested in the initialization

and compilation of themonitor but only in evaluating the given specification. Moreover,

we do not distinguish between different assembly instructions.

Before analyzing any assembly code, the assembly code has to be generated. We

analyze the compiled binary with the cargo asm tool explained in Sect. 3.3 : Sect. 3.3, p. 22to extract the

unoptimized assembly code with the corresponding Rust code annotations. This tool

only allows us to extract the assembly code for a specific function. Thus, we have to

37

5. Implementation

Figure 5.2: Partial CFG of the interpreter

38

5.4. Interpreter Analysis

build the control-flow graph for the interpreter as outlined in Fig. 5.2 to know which

functions are relevant.

Remark 5.4.1. We set the starting point of the analysis to the function eval_event since the
evaluation of the specification starts after receiving an event.

5.4.1 Assembly Code Analysis

We analyze the assembly code top-down by extracting the assembly code of the func-

tion eval_event and splitting the further analysis into three blocks. Each block

represents the function being called in eval_event, which are clear_freshness,

accept_inputs, and eval_all_event_driven_outputs. Then, we dissolve ev-

ery function being called and extract their underlying assembly code. To keep track of

the connection of the functions andwhich function we already processed, we depict the

complete call history starting from eval_event.

We start bottom-up, annotating each function with its instruction number with the

complete assembly code. Each assembly file must be analyzed for any loops, if-

statements, or dead code. If there are any loops or conditionals, we annotate the

instruction number by the corresponding parameter. If a function is called within a

loop, we note how often the function is called. Note that all these parameters are known

from the MIR, and in the WCET analysis, we replace them with the actual parameters

from the specification.

Remark 5.4.2. Annotating these parameters is not limited to the RTLola framework alone but
is also applied to the standard libraries of Rust, as we have seen in Sect. 1.1 :Sect. 1.1, p. 3. However, there are
some limitations of the cargo asm tool, and not every function can be dissolved into its assembly
code like for example, _memcpy or ___rust_dealloc. All unresolved functions are handled
as atomic parameters in the final calculation.

5.4.2 Implementation Details

We only focus the WCET computation on a subset of the RTLola language consisting

of stream accesses like synchronous lookups, hold lookups, past offset lookups, and

loading constants. Further, we support simple arithmetic and boolean operations like

addition, negation, conjunction, and if-statements. The only possible value types for

streams are boolean values, unsigned and signed integer values, and floating values.

The evaluationof theWCETconsiders the threeblockswe createdduring the assembly

code analysis. The final result is composed of the instruction count of these blocks and

the overhead from the function eval_event. All parameters like the number of inputs

or evaluation layers annotated during the assembly code analysis are now replaced by

the values placed in the MIR. While evaluating a stream, we can match all possible

expressions constructions and compute an accurateWCET estimation for these streams.

39

5. Implementation

5.4.3 Example

To gain more intuition on how the interpreter analysis works we we will discuss the

WCET algorithm in more detail using the function eval_event_driven_outputs:

fn eval_event_driven_outputs(&mut self, outputs: &[OutputReference], ts: Time) {

for output in outputs {

self.eval_event_driven_output(*output, ts);

}

}

TheRust code shows thatwe loopover all output streamsandcall the function evaluating

this output stream. Consequently, we must annotate the number of instructions with

the number of output streams in the assembly code analysis.

We extract the assembly code with cargo asm and get the resulting assembly code

shown in Fig. 5.3. For simplicity, the move instructions in the beginning are omitted.

The loop is formed between the labels LBB8254_2 and LBB8254_6. By the jump in-

struction in line 18, the condition to enter the loop is checked whether all outputs have

been processed yet. If not, the codewithin the loop is executed by jumping to the assem-

bly code of label LBB8254_6. Analyzing the assembly code, we conclude that there are

32 instructions until the first output is evaluated. To evaluate a single output, 20 instruc-

tions have to be executed. Three instructions are needed to return to the caller function.

In consequence, the number of instructions for eval_event_driven_outputs with

out outputs is: 35+ out ∗ 20.
Moreover, the function has three calls in the assembly code that have to be resolved

into their complete call history. To show such a call history, consider the call history of

the iterator’s next function:

ox <core::slice::iter::Iter<T> as core::iter::traits::iterator::Iterator>::next = 11

+ 3 + 44 // out*148 // out = number of outputs of a layer

4x core::ptr::non_null::NonNull<T>::as_ptr = 8

2x core::ptr::mut_ptr::<impl *mut T>::is_null = 16

core::ptr::mut_ptr::<impl *mut T>::guaranteed_eq = 17

core::ptr::non_null::NonNull<T>::new_unchecked = 9

Every function is annotated with the instruction number where the first two appear

multiple times in the code. Additionally, we know that next is called within the loop

out times. Therefore, the final instruction count for next is composed of the overhead

of next itself and of all calls from the call history: out ∗ 148.
To sum up all results, the instruction count of next has to be added to the overhead

of the caller function as well as the two remaining function calls. Assuming that

the number of into_iter=i and eval_event_driven_output=e the instruction

number for eval_event_driven_outputs is: 35 + out ∗ 20 + out ∗ 148 + i + e =

35+ out ∗ 168+ i+ e.

40

5.4. Interpreter Analysis

1 fn eval_event_driven_outputs(&mut self, outputs: &[OutputReference], ts: Time) {

2 push rbp

3 mov rbp, rsp

4 sub rsp, 144

5 mov qword, ptr, [rbp, -, 144], rdx ... (13 more mov-instructions)

6 for output in outputs {

7 call core::slice::iter::<impl core::iter::traits::collect::IntoIterator for

&[T]>::into_iter

8 mov qword, ptr, [rbp, -, 104], rax ... (5 more mov-instructions)

9 LBB8254_2:

10 lea rdi, [rbp, -, 88]

11 call <core::slice::iter::Iter<T> as core::iter::traits::iterator::Iterator>::next

12 mov qword, ptr, [rbp, -, 72], rax

13 for output in outputs {

14 mov rax, qword, ptr, [rbp, -, 72]

15 test rax, rax

16 setne al

17 movzx eax, al

18 je LBB8254_4

19 jmp LBB8254_8

20 LBB8254_8:

21 jmp LBB8254_6

22 LBB8254_4:

23 }

24 add rsp, 144

25 pop rbp

26 ret

27 for output in outputs {

28 ud2

29 LBB8254_6:

30 mov ecx, dword, ptr, [rbp, -, 108]

31 mov rdx, qword, ptr, [rbp, -, 120]

32 mov rdi, qword, ptr, [rbp, -, 128]

33 for output in outputs {

34 mov rax, qword, ptr, [rbp, -, 72]

35 mov qword, ptr, [rbp, -, 24], rax

36 mov qword, ptr, [rbp, -, 16], rax

37 for output in outputs {

38 mov qword, ptr, [rbp, -, 8], rax

39 self.eval_event_driven_output(*output, ts);

40 mov rsi, qword, ptr, [rax]

41 self.eval_event_driven_output(*output, ts);

42 call rtlola_interpreter::evaluator::Evaluator::eval_event_driven_output

43 for output in outputs {

44 jmp LBB8254_2

Figure 5.3: Assembly code with rust annotations of eval_event_driven_outputs

41

Chapter 6
Case Study

This chapter discusses the results of the two proposedWCET approaches, the front-end

analysis in Sect. 6.1 and the interpreter analysis in Sect. 6.2. Note that interpreting the

abstract time metrics into real-time was not in the scope of this thesis. Therefore, the

results presented in this section cannot be compared to real-time results.

6.1 Front-end Analysis

In this section, weperform the front-end analysis on several RTLola specifications. Most

of these specifications are used as statistical input. Fig. 6.1a describes a specification

where all output streams are in a unique layer and a specification where all output

streams are in the same layer, as shown in Fig. 6.1b. These two specifications are then

extended by the same pattern with 10 and 20 output streams. The results of the parallel

and sequential model are:

Specification Sequential Model Parallel Model

linear dep 5 11 11

linear dep 10 21 21

linear dep 20 41 41

parallel dep 5 11 3

parallel dep 10 21 3

parallel dep 20 41 3

For the specificationwith linear dependencies, the results of bothmodels do not differ.

However, the difference for the highly parallel specifications increases the more output

43

6. Case Study

input a: Int64

output b := a
output c := b
output d := c
output e := d
output f := e

(a) RTLola specification linear dep 5

input a: Int64

output b := a
output c := a
output d := a
output e := a
output f := a

(b) RTLola specification parallel dep 5

Figure 6.1: Statistical specifications

streams the specification has. Since in the specifications with parallel dependencies,

the additional output streams have the same structure, the time needed to evaluate

these streams is equal. Therefore, no matter how many output streams we add to the

specification with parallel dependencies, the result will be equal to three.

In the following, we analyze the specifications from Fig. 6.1, but extend every syn-

chronous lookup of each output stream with an offset lookup by one. For example,

the output stream output b := a from Fig. 6.1a is transformed into output b:=
a + a.offset(by: -1).defaults(to: 0). Analogously, all output streams are

transformed. Again, we consider the specifications with five, 10 and, 20 output streams

resulting in:

Specification Sequential Model Parallel Model

linear dep 5 with offset 26 26

linear dep 10 with offset 51 51

linear dep 20 with offset 101 101

parallel dep 5 with offset 22 6

parallel dep 10 with offset 42 6

parallel dep 20 with offset 82 6

The relation between the results of the parallel and sequential model is equal to the

results before. However, the specifications covering the parallel and linear dependencies

do not lead to the same result for the sequential analysis. The specificationswith parallel

dependencies do not need to store the offset values for the output streams since only

the input stream a is accessed with an offset. Therefore the memory needed for the

specifications with linear dependencies is higher since we have to store more values

overall.

Throughout this thesis, we discussed two examples in more detail. Since the analysis

does not support aggregations, we change from Example 3.1.1:Exm. 3.1.1, p. 12 the two output streams

44

6.2. Interpreter Analysis

involving the aggregations to output too_low : Bool := height < 5.0. The

front-end analysis for these two examples results in:

Specification Sequential Model Parallel Model

Example 4.2.4 :Exm. 4.2.4, p. 3131 17

Example 3.1.1 :Exm. 3.1.1, p. 1227 18

Both specifications have a similar complexity and share a similar result.

6.2 Interpreter Analysis

In this section, we discuss the results of the interpreter analysis for the specifications

covered in the last section.

Specification Sequential Model

linear dep 20 110723

parallel dep 20 98126

linear dep 20 with offset 231078

parallel dep 20 with offset 214586

Example 4.2.4 62511

Example 3.1.1 57210

The second specification has a lower instruction number than the first one. This result

differs from the front-end analysis, where the results were equal. This is due to the

fact that in the assembly code, accessing an input stream is less costly than accessing

an output stream. Since only synchronous lookups to the input stream are made in

the second specification, the instruction count is smaller than the first one. The same

observation is made from the specifications extended with an offset lookup. The two

simple examples discussed in this thesis have a similar instruction count, as already

indicated by the front-end analysis.

6.3 Conclusion

The computed results from both implementations represent the expected behavior of

the specifications. In the worst-case, the results of the parallel model are equal to

the results of the sequential model. This worst-case are specifications where all output

streams are in a unique layer. Themain result of these experiments is that the instruction

45

6. Case Study

count increases with increasing complexity. Here, the front-end analysis serves as an

indicator for the complexity and indicates if the specification is highly parallel or consists

of output streams with linear dependencies. Moreover, the interpreter analysis refines

the result of the front-end analysis by considering the RTLola interpreter.

46

Chapter 7
Conclusion and Future Work

In this thesis, we presented a WCET algorithm for RTLola with two different imple-

mentations: the front-end analysis and the interpreter analysis. The first one is based

on the intermediate representation of RTLola and analyzes the parallel and the sequen-

tial model. The analyses of both models analyze the specification for its dependencies

resulting in a time metric expressing the specification’s complexity.

The second approach is based on the assembly code of the RTLola interpreter consid-

ering the sequential model. First, the complete assembly code is unrolled by mapping

each function to its assembly code. Then, based on the intermediate representation, the

assembly code is chosen, which is executed for the specification. This analysis provides

a result for the first step of a more sophisticated WCET analysis.

The WCET algorithm could be extended by the full RTLola language in future work.

Supporting sliding windows, aggregations, and real-time streams would significantly

increase the expressiveness of RTLola. This way, more practical relevant requirements

of CPS can be expressed and analyzed.

Further, the abstract time metric used by the two approaches could be translated into

a real-time context. This could be done by mapping the instructions to its WCET on

specific hardware where the monitor is run.

Moreover, one could estimate the WCET with a measurement-based analysis by

measuring the time for each function before it is called and after the function is executed.

These results can be merged similar to the interpreter analysis into a final result.

47

Bibliography

[1] Reinhold Heckmann and Christian Ferdinand. 2004. Worst-case execution time

prediction by static programanalysis. In In 18th International Parallel andDistributed
Processing Symposium (IPDPS 2004, pages 26–30. IEEE Computer Society.

[2] Damien Hardy, Benjamin Rouxel, and Isabelle Puaut. 2017. The heptane static

worst-case execution time estimation tool. In 17th International Workshop on Worst-
Case Execution Time Analysis, WCET 2017, June 27, 2017, Dubrovnik, Croatia (OA-

SICS). Jan Reineke, editor. Volume 57. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 8:1–8:12. doi: 10.4230/OASIcs.WCET.2017.8. https://doi.org/10.

4230/OASIcs.WCET.2017.8.

[3] Heiko Falk and Paul Lokuciejewski. 2010. A compiler framework for the reduction

of worst-case execution times. Real-Time Systems, 46, (October 2010), 251–300. doi:

10.1007/s11241-010-9101-x.

[4] Niklas Holsti and Sami Saarinen. 2002. Status of the bound-t wcet tool, (January

2002).

[5] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan

Thesing, Guillem Bernat, Christian Ferdinand, ReinholdHeckmann, TulikaMitra,

Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenstrom.

2008. The worst-case execution-time problem - overview of methods and survey

of tools. ACM Trans. Embedded Comput. Syst., 7, (January 2008).

[6] E.Y.-SHu, GuillemBernat, andAndyWellings. 2002. A static timing analysis envi-

ronment using java architecture for safety critical real-time systems. In (February

2002), 77–84. isbn: 0-7695-1576-2. doi: 10.1109/WORDS.2002.1000039.

[7] Björn Lisper. 2014. SWEET - A tool for WCET flow analysis (extended abstract).

In Leveraging Applications of Formal Methods, Verification and Validation. Specialized
Techniques and Applications - 6th International Symposium, ISoLA 2014, Imperial,
Corfu, Greece, October 8-11, 2014, Proceedings, Part II (Lecture Notes in Computer

Science). Tiziana Margaria and Bernhard Steffen, editors. Volume 8803. Springer,

49

https://doi.org/10.4230/OASIcs.WCET.2017.8
https://doi.org/10.4230/OASIcs.WCET.2017.8
https://doi.org/10.4230/OASIcs.WCET.2017.8
https://doi.org/10.1007/s11241-010-9101-x
https://doi.org/10.1109/WORDS.2002.1000039

Bibliography

482–485. doi: 10.1007/978-3-662-45231-8_38. https://doi.org/10.1007/

978-3-662-45231-8%5C_38.

[8] Yau-Tsun Steven Li and Sharad Malik. 1997. Performance analysis of embedded

software using implicit path enumeration. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst., 16, 12, 1477–1487. doi: 10.1109/43.664229. https://doi.org/10.

1109/43.664229.

[9] Kevin Hammond, Christian Ferdinand, Reinhold Heckmann, Roy Dyckhoff, Mar-

tin Hofmann, Steffen Jost, Hans-Wolfgang Loidl, Greg Michaelson, Robert F.

Pointon, Norman Scaife, Jocelyn Sérot, andAndyWallace. 2006. Towards formally

verifiableWCETanalysis for a functional programming language. In 6th Intl.Work-
shop on Worst-Case Execution Time (WCET) Analysis, July 4, 2006, Dresden, Germany
(OASICS). Frank Mueller, editor. Volume 4. Internationales Begegnungs- und

Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany. http:

//drops.dagstuhl.de/opus/volltexte/2006/677.

[10] Jan Gustafsson, Andreas Ermedahl, Björn Lisper, Christer Sandberg, and Linus

Källberg. 2009. ALF - A language for WCET flow analysis. In 9th Intl. Workshop
on Worst-Case Execution Time Analysis, WCET 2009, Dublin, Ireland, July 1-3, 2009
(OASICS). Niklas Holsti, editor. Volume 10. Schloss Dagstuhl - Leibniz-Zentrum

fuer Informatik, Germany. http://drops.dagstuhl.de/opus/volltexte/2009/

2279.

[11] Amir Pnueli. 1977. The temporal logic of programs. In 18th Annual Symposium on
Foundations of Computer Science (sfcs 1977), 46–57. doi: 10.1109/SFCS.1977.32.

[12] Andreas Bauer, Martin Leucker, and Christian Schallhart. 2011. Runtime verifi-

cation for LTL and TLTL. ACM Trans. Softw. Eng. Methodol., 20, 4, 14:1–14:64. doi:

10.1145/2000799.2000800. https://doi.org/10.1145/2000799.2000800.

[13] Ron Koymans. 1990. Specifying real-time properties with metric temporal logic.

Real Time Syst., 2, 4, 255–299. doi: 10.1007/BF01995674. https://doi.org/10.

1007/BF01995674.

[14] Ben D’Angelo, Sriram Sankaranarayanan, César Sánchez, Will Robinson, Bernd

Finkbeiner, Henny B. Sipma, Sandeep Mehrotra, and Zohar Manna. 2005. LOLA:

runtime monitoring of synchronous systems. In 12th International Symposium on
Temporal Representation and Reasoning (TIME 2005), 23-25 June 2005, Burlington,
Vermont, USA. IEEE Computer Society, 166–174. doi: 10.1109/TIME.2005.26.

https://doi.org/10.1109/TIME.2005.26.

[15] Sebastian Schirmer. 2016. Runtime Monitoring with Lola. Master’s Thesis. Saarland

University.

50

https://doi.org/10.1007/978-3-662-45231-8_38
https://doi.org/10.1007/978-3-662-45231-8%5C_38
https://doi.org/10.1007/978-3-662-45231-8%5C_38
https://doi.org/10.1109/43.664229
https://doi.org/10.1109/43.664229
https://doi.org/10.1109/43.664229
http://drops.dagstuhl.de/opus/volltexte/2006/677
http://drops.dagstuhl.de/opus/volltexte/2006/677
http://drops.dagstuhl.de/opus/volltexte/2009/2279
http://drops.dagstuhl.de/opus/volltexte/2009/2279
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1007/BF01995674
https://doi.org/10.1007/BF01995674
https://doi.org/10.1007/BF01995674
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1109/TIME.2005.26

Bibliography

[16] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. 1987. Lustre: a declarative

language for real-time programming. In Proceedings of the 14th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (POPL ’87). Associa-

tion forComputingMachinery,Munich,WestGermany, 178–188. isbn: 0897912152.

doi: 10.1145/41625.41641. https://doi.org/10.1145/41625.41641.

[17] N. Halbwachs. 2005. A synchronous language at work: the story of lustre. In

Proceedings. Second ACM and IEEE International Conference on Formal Methods and
Models for Co-Design, 2005. MEMOCODE ’05. 3–11. doi: 10.1109/MEMCOD.2005.

1487884.

[18] Maximilian Schwenger. 2019. Let’s not Trust Experience Blindly: Formal Monitoring
of Humans and other CPS. Master Thesis. Saarland University.

[19] Stefan Stattelmann. 2009. Precise measurement-based worst-case execution time esti-
mation. eng. Universität des Saarlandes, Saarbrücken.

51

https://doi.org/10.1145/41625.41641
https://doi.org/10.1145/41625.41641
https://doi.org/10.1109/MEMCOD.2005.1487884
https://doi.org/10.1109/MEMCOD.2005.1487884

	Introduction
	Motivation

	Related Work
	Background
	RTLola
	Worst-Case Execution Time Analysis (WCET)
	Cargo asm

	Worst-Case Execution Time Analysis of RTLola Specifications
	Notation
	WCET Analysis

	Implementation
	Setup
	RTLola Framework
	Frontend Analysis
	Interpreter Analysis

	Case Study
	Front-end Analysis
	Interpreter Analysis
	Conclusion

	Conclusion and Future Work

