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“If you torture the data long enough, it will confess.”
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by Hendrik Leidinger

Failure Analysis enjoys a high economic interest, as any kind of failure may result in

incalculable risks and costs. It is concerned with the collection and analysis of data

for detecting causes of failures within a system. A widespread technique is fault tree

analysis, which enables a graphical representation of possible failures and their causes.

However, fault trees still do not save the system designer the tedious work of searching

for the actual cause. Most approaches require full manual analysis of a misbehavior

based on logs and system designs. Previous approaches to the automation of such failure

analyses have not yet been able to spread across the industry as they typically focus on

very specific problems.

We present an approach to support the user in the search for the failure cause of a system

run with the help of machine learning. The analysis is based on the log files generated

by the monitored system. Our approach is now structured in three steps. First the log is

scanned for segments where abnormal behavior occurs. A machine-learned classifier then

determines the type of the anomaly. Finally, we generate a regressor for each anomaly

type, which estimates the level of severity of the respective anomaly. If a system run

fails, we search for combinations of anomalies whose summed severity exceed a certain

threshold. These combinations are presented to the user as possible causes of failure.

In concrete terms, we validate our approach on a quadcopter which is an unmanned

aerial vehicle having gained increasing attention in the more recent past. We utilize a

state-of-the-art simulation tool to generate data for training and evaluation.
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Chapter 1

Introduction

Today, a variety of systems are characterized by a complex interaction of hardware and

software components. The correct functioning of these systems, such as vehicles, air-

planes or drones, is influenced by many external and internal conditions, making the

troubleshooting process difficult. For example, a failed system run can be the result

of a software bug or adverse environmental influences, which we call faults or causes.

Understandably, there is a high economic and ethical interest in developing systems that

are as error-free as possible, and to this end ever better methods are being developed for

identifying the causes of failures.

The generic term for the collection and analysis of data to find or prevent a cause of

failure within a system is called Failure Analysis. In this context, a failure denotes a

state of the system that leads to the system no longer being able to perform its task

successfully. Failure Analysis of a complex system, such as an autonomous drone, is a

challenging task. This is not only due to the intrinsic complexity of such systems, but

also to the fact that they react to and rely on their environment, which in turn influences

the behavior of the system. For example, a drone might not reach its destination in time

because it has to counteract a wind level that would otherwise cause it to lose course. In

the following we present two approaches that support engineers during Failure Analysis.

Fault tree analysis [1] tries to capture all possible causes and effects in a tree-like structure

with logical connections. The causes can then be found by traversing the tree from the

failure event. However, creating a fault tree to a complex system is non trivial. The

tree must be created manually and all possible sources of error must be identified in

advance. There are approaches to generate fault trees automatically [2, 3], but these are

very specific to underlying architectural languages, which describe the layout of a system.

With our approach causes of errors are not only identified for an abstract system, as is

the case with fault tree analysis, but are also specifically related to the system run.

Another method to support engineers during Failure Analysis is runtime verification. It is
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a technique for the verification of a single run of a system by processing information about

its states [4]. Runtime verification provides a more detailed insight into the behavior and

occurring errors of the system in contrast to techniques like testing. This information

can be valuable during the search for the possible failure causes. However, a manual

search for the faults is still required. In addition, runtime verification generically shows

all possible errors. Our approach strongly narrows down the number of possible causes

and thus additionally eases the workload with the help of machine learning techniques.

In the following we explain our approach on an abstract level.

Step 1 - Anomaly Detection

Based on the log files generated by the monitored system, we proceed as follows: In a

first step, we generate sampling points from the log that describe the system flow. For

each of these sampling points, we then find out whether the system behaves abnormally

there. This is done with the help of a binary classifier for each sampling point, which

determines whether the behavior at this point is abnormal or not.

Step 2 - Type Identification

In the second step, the focus is on identifying the type of anomaly based on the behavior

of the system. The idea is that different sources of error cause specific behavior of the

system, which in turn allows deductions about the anomalies. For example, drifting

drones always behave differently, depending on which errors occur. In a gust of wind, for

example, they try to correct the deviation by countersteering. In contrast, if the GPS

data is incorrect, drones correct the trajectory, which is significantly different from the

normal flight path. In other words, the task of the second step is to identify the type of

anomaly, be it a gust of wind, incorrect GPS data, or even both. The goal is therefore to

find out which types of anomalies occur for sets of subsequent sampling points and where

the number of possible types is limited. This happens again with the help of machine

learning. For step 2 we have to deal with a problem of classification with multiple labels.

Thereby the classifier marks a sequence of sampling points with all anomaly types it

exhibits.

Step 3 - Anomaly Scoring

Last, we determine which anomalies are at fault in the event of a system failure. For

this purpose, we train a regressor for each type of anomaly to assess the severity of the

anomaly. If an anomaly has a high negative impact on the system, it will receive a high
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score. We adjust the overall magnitude of all anomaly types using the training data.

Since we know which runs failed and which did not, we can ensure that the sums of the

scores for the failed runs are higher than the sums for the successful runs. This leads

to a threshold between failed and successful runs. The possible causes of errors are now

combinations of anomalies whose summed magnitude is greater than this threshold.

We evaluate our approach on a simulated quadcopter, which flies a certain route au-

tonomously. During this flight three different types of anomalies can occur: a gust of

wind, wrong GPS inputs or insufficient speed. The intensity of the anomalies is de-

termined randomly. The simulation is performed using ArduPilot, a software suite for

developing and simulating autonomous unmanned vehicle systems [5]. For the evalua-

tion we compare different classifiers and regressors to determine the best setting for each

step. We show that for each step there is an appropriate model that delivers convincing

results, assuming that the previous steps deliver perfect results. For step 1, for example,

we found a model which reached an Matthews correlation coefficient (MCC) value of

about 0.84 with a rather small training set consisting of about 61000 flights. In addition,

the evaluation of the successive execution of all steps shows that the approach is func-

tional, albeit in this case the previous steps deliver no perfect results. Using the result

of step 1, for example, the approach achieves a subset accuracy of more than 80% at

step 2, which is quite decent, considering that it is a rather strict metric for multi-label

classification problems.





Chapter 2

Background

2.1 ArduPilot

Ardupilot is an open source software suite for the creation of autonomous unmanned

vehicle systems, including drones, helicopters, rovers, boats and more [5]. It was initially

developed by Jordi Munoz and Chris Anderson and got its first release in 2009 with

version 1.0, which was mainly intended for do-it-yourself (DIY) drones [6]. Within the

following years the project has grown steadily and added support for more and more

vehicle types. However, ArduPilot was written only for arduino based microcontrollers.

Between 2013 and 2014, efforts were made to make it compatible with a range of hardware

platforms, such as linux based flight controllers [7]. Today, ArduPilot is used by many

different companies and amateurs around the world [8].

2.1.1 Software in the Loop (SITL)

To test an embedded system in a non-critical environment, the hardware in the loop

(HITL) and software in the loop (SITL) simulations have proven to be useful. In a HITL

simulation the electronic controller is connected to a HITL-Simulator which simulates the

environment of the controller [9]. In contrast to that, in SITL the controller is run on the

same hardware as the simulator. ArduPilot provides a software in the loop simulator [10],

which allows us to run an unmanned vehicle within a simulated environment without

any additional hardware. This is possible, since ArduPilot is compatible with a variety

of hardware platforms. The sensor data is provided by a so called flight dynamics model

(FDM) in a flight simulator. An FDM models flight dynamics, which is concerned with

predicting and measuring aerodynamic forces on an aircraft [11]. Ardupilot supports

simulators for various vehicles, such as multi-rotor aircrafts, ground and underwater

vehicles [10].
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2.1.2 MAVLink

The Micro air vehicle communication protocol (MAVLink) is a protocol for the com-

munication with drones [12]. It was first released by Lorenz Meier in 2009. It is a

lightweight protocol where a sent packet has an overhead of only 14 bytes. Moreover,

it supports several microcontrollers, like ARM7 or STM32. In our setting it is used

for the communication between the simulated drone and the training data generation

environment.

2.1.3 MAVProxy

MAVProxy is a ground control station (GCS) for unmanned aircraft vehicles (UAV) [13].

A GCS allows human control of UAVs and consists of a processing unit, a graphical

user interface, a telemetry module to get information from the UAV and a datalink

subsystem to communicate with the UAV [14]. MAVProxy is compatible with any UAV

that supports the MAVLink protocol.

2.1.4 Dronekit

The Dronekit-Python API allows to write applications in Python which communicate

with a vehicle using the MAVLink protocol [15]. While direct communication via the

MAVLink protocol is rather low-level, dronekit offers an object-oriented approach. A

vehicle object provides information about its telemetry, state and parameter. In addition,

it enables direct control of the vehicle or the uploading and execution of missions.

2.2 Machine Learning

2.2.1 Terminology

In the field of machine learning there are many new terms which we introduce in the

following by means of an example. Suppose we want a function to return the number that

is displayed on a given grayscale image. Each image has a size of 30×30 pixels. Thus the

input of the function is a vector in R900. The individual grayscale values in the vector

are called features and the vector is called the feature vector [16]. An invocation of our

desired function results in a value between 0 and 9. That is, there are 10 possible results,

called classes. Therefore the function is called a classifier as it classifies the input [16].

More formally, a classifier is a function f : X → Y, where X is the input space and Y
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is a discrete and finite output space. If Y = R then we speak of regression [16]. For the

example above, we are in search of a classifier of type R900 → {0, ..., 9}. The goal is to

learn from data to be able to create an accurate classifier.

Supervised learning is a type of learning where the classifier is determined by example

input-output-pairs [16]. Given the set of all possible classifiers F = {f | f : X → Y} and
the set of all possible training data T = {(X,Y ) | X ∈ X∧Y ∈ Y} the supervised learning

algorithm is a mapping A : 2T → F . In other words: the learning algorithm receives a

set of training data and generates a classifier with the help of it. In our example above,

the learning algorithm would get pairs of grayscale images and the displayed number

and return a classifier. There are different approaches to learning. The methods we use

in our approach are presented in Section 2.2.2. The resulting classifier is evaluated on

values not part of the training data, which is called testing [16].

Binary vs. Multi-Class Classification

Our example problem described above is a multi-class classification problem (or poly-

chotomy), since |Y| > 2. If |Y| = 2 then we speak of a binary classification problem

(or dichotomies) [16]. Many approaches allow to solve multi-class classification problems

directly (see Section 2.2.2). However, it is also a valid strategy to split such problems

into several binary classification problems. Popular strategies are called One-vs-rest and

One-vs-one [17].

In the One-vs-rest strategy, we create a binary classifier for each class. Let k be the

number of classes. Then the approach results in a total number of k classifiers. The

classifier returns true if the input matches the class and false otherwise. In addition,

it is required that each classifier returns a confidence score. This is necessary if several

classifiers report positive results at once. The final class is the label of the classifier that

produced the highest confidence score.

In the One-vs-one strategy, we create a classifier for all pairs of classes. This means that

every classifier can vote for one of the two classes. The final class is determined by a

simple majority vote. The number of classifiers is k(k−1)
2 .

Multi-Label Classification

In multi-label classification, a classifier returns not only one but several classes [18].

Classes are called labels in this case. Thus, several labels are assigned to an instance.

Given X and Y as above, a multi-label classifier is a function f : X → 2Y . One way to

solve multi-label classification problems is to split them into several binary classification

problems, one for each label [19]. Each binary classifier decides if the label is assigned
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overfitting underfitting desired fitting

Figure 2.1: Overfitting and Underfitting on an example data set with two classes red
and black

to the instance or not. This approach is known as the binary relevance method (BR).

Another possibility is to consider every single element of the power set as a class and

to solve the resulting multiclass classification problem [19]. This approach is called the

label powerset method (LP). This method has the clear disadvantage that the number of

classes grows exponentially.

Overfitting and Underfitting

Overfitting and underfitting is a serious problem in machine learning. Usually, data is

not exactly separable. There is almost always a certain noise. Overfitting takes this

noise into account which causes new data to be classified less accurately as one can see

in Figure 2.1. On the left side there is an example where the red dot is still included,

although it is in the "black zone". Underfitting on the other side contains unnecessarily

many black dots in the "red zone" as one can see in the middle example. The desired

partitioning is provided on the right side. It ignores the outlier and otherwise separates

the data accurately.

2.2.2 Classifiers/Regressors

This section describes in detail the classification and regression approaches we use in this

paper.

k-Nearest-Neighbor

In k-Nearest-Neighbor (kNN) the k nearest training points determine the class of the in-

put [20]. It is assigned to the class that occurs most often among the k nearest neighbors.

Figure 2.2 shows an example for k-Nearest-Neighbor with two features only. There exist

four classes red, yellow, green and blue. Now assume that k = 8 and that the pink point
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feature1

feature2

feature1

feature2

Figure 2.2: Example k-Nearest-Neighbor with k = 8, two features and four classes
red, green, yellow and blue. The pink point is assigned to the yellow class since it occurs

most often among the 8 nearest neighbors

shall be assigned to one of the four classes. The eight nearest neighbors are encircled in

the figure. The most common class is the yellow one, which is why the pink dot is finally

assigned to this class. This example already shows that k-Nearest-Neighbor naturally

supports multi-class classification and no adjustments are necessary.

k-Nearest-Neighbor regression is done almost in the same way. But instead of choosing

the most frequently occurring class, we compute the mean of the k nearest neighbors [21].

There exist different metrics for the computation of the distance between two vec-

tors [20]. One example is the Euclidean distance which is computed as follows. Let

a = (a1, a2, .., an) and b = (b1, b2, ..., bn). Then the Euclidean distance is defined as:

d(a, b) =

√√√√ n∑
i=1

(bi − ai)2

Another metric is the Manhattan distance, which describes the absolute distance of the

individual features:

d(a, b) =
n∑
i=1

|bi − ai|

The generalization of both metrics is called the Minkowski distance which is defined as

follows:

dλ(a, b) = (
n∑
i=1

|bi − ai|λ)
1
λ

For λ = 1 it equals the Manhattan distance and for λ = 2 it equals the Euclidean

distance.

We use the k-Nearest-Neighbor as a starting point because it is very intuitive, easy to

implement but still very powerful. With the k-Nearest-Neighbor analysis, the learning

phase is completely skipped. All work is done during classification. This is also the

drawback of k-Nearest-Neighbor. The classifier has to compute the distance from the

input point to all training points, which is very expensive.



10 Background

T

Majority Vote

rand(T ) ⊂ T rand(T ) ⊂ T

rand(T ) ⊂ T

...

Figure 2.3: Graphical representation of the functionality of random forests. Each
tree is created with a random subset with replacement of a training set T . During
classification each tree decides for one class. The final class is determined by a majority

vote.

Random Forest

In random forests [22] the learning algorithm creates multiple decision trees. Each tree

is created with a random sample with replacement out of the training set. Figure 2.3

exemplarily shows the procedure for random forests. Given a training set T we create

random subsets of this set and use them to create a decision tree. In the final classifier

each decision tree decides for one class. The final class is determined by a simple majority

vote. In case of a multi-class classification problem the same procedure is applied: The

class with the highest number of votes is the final class.

There exist multiple algorithms for the creation of a decision tree. CART (Classification

and Regression Trees) [23], for example, constructs binary trees by choosing a feature

and a threshold such that the Information gain (IG) or the Gini gain is maximized [24].

In more detail, for each node a random sample of features is selected which are possible

candidates for the split criterion. One of these features is chosen for a binary split at

a determined threshold. There are several approaches to evaluating the quality of a

split. We will present the aforementioned Information gain and Gini gain as described

in [24, 25]. First of all, let T be the training set with elements of the form (x, y) =

(x1, x2, ..., xn, y) and let t be the threshold for the split. Furthermore, let S≤t(a) =

{(x, y) ∈ T | xa ≤ t} be the set of all training data, where xa ≤ t and S>t(a) = {(x, y) ∈
T | xa > t} be the set of all training data, where xa > t .

Let C be the set of classes. Then the entropy is defined as E = −
∑
i∈C

pilog(pi), where pi

is the probability that a random choice in T results in an element of class i. Formally

the Information gain is defined as follows:

IG(T, a) = E(T )− E(T |a)
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where the conditional entropy is defined as:

E(T |a) =
|S≤t(a)|
|T |

· E(S≤t(a)) +
|S>t(a)|
|T |

· E(S>t(a))

In other words, the information gain is defined as the difference between the entropy

of the current training set T and the conditional entropy of T given the feature chosen

for the split. The higher the Information gain, the more Information we get from this

feature. The chosen feature is the one with the highest Information gain.

The Gini gain is computed similarly. In fact, all we have to do is replace entropy with

Gini impurity. The Gini impurity is computed as follows:

G =
∑
i∈C

pi · (1− pi)

where pi is again the probability that a random choice in T results in an element of class

i. Then the Gini gain is computed similarly

GG(T, a) = G(T )−G(T |a)

where the conditional Gini is defined as:

G(T |a) =
|S≤t(a)|
|T |

·G(S≤t(a)) +
|S>t(a)|
|T |

·G(S>t(a))

Random forests can be used for regression, too. But instead of Gini impurity or entropy

we make use of, for example, the mean squared error [25, 26]. Given the current training

set T of the current node it is computed as follows:

y =
1

|T |
∑

(X,y)∈T

y

MSE =
1

|T |
∑

(X,y)∈T

(y − y)2

For a leaf node y is the result value of the tree. The final result is the average of the

results of all decision trees.

Random forests solve the overfitting problem of single decision trees. Since each decision

tree has only a subset of all information, they return a more inaccurate result. However,

together with the results of all other trees this represents an accurate solution.
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Artificial Neural Networks

x1

x2

x3

y

w1

w2

w3

b

Figure 2.4: Example Neuron with three in-
puts x1, x2, x3. wi are the weights, b the bias

and y is the output

According to Samarasinghe [27] an artifi-

cial neural network is a network of nodes,

so called neurons. A neuron has arbitrary

many input edges and one output edge.

There are different types of neurons. Per-

ceptrons, for example, output either 0 or 1,

whereas Sigmoid neurons return any value

between 0 or 1. Each input gets a weight

which models, intuitively speaking, the im-

portance of this input to the output. Furthermore each neuron has a bias. The greater

this value the closer the result gets to the value 1 or, in the case of perceptrons, the

higher the probability to output a 1. Figure 2.4 shows an example neuron with three

input edges and one output edge. In case of Sigmoid neurons the computation of y is

done in the following way:

y =
1

1 + exp(−
∑

j wjxj − b)

A Multi-layer Perceptron network consists of an input layer, an output layer and a hidden

layer. The input layer provides the input to the network, wheras the output layer is the

output of the network. The number of neurons in the hidden layer can be adjusted as

desired. In fact, several hidden layers can be used. Such networks are called deep neural

networks [28]. However, Cybenko [29] showed that networks consisting of a finite number

of sigmoid neurons and only one hidden layer can approximate continuos functions.

Therefore, and to keep the search for a suitable network simple, we will only concentrate

on networks with a single hidden layer. Figure 2.5 shows an example network. This

network is also an example of a network that can solve multi-class classification problems,

because the output layer consists of more than one neuron. For example, each neuron

represents a class and the neuron with the highest value for an arbitrary input represents

the final class. The goal of the learning algorithm is to adjust the weights and biases

such that the classification error with the training set is minimized. To achieve this, we

need a way to quantify the classification error. It is indicated by a so-called loss function.

A loss function L is a function of type Y ×Y → [0,∞]. It evaluates the performance of a

classifier. In the following we will define the log-loss function (or cross-entropy) [17]. Let

T be the training set, C the set of classes, pij the probability that sample i is classified

with class j, yij a binary value that is 1 if sample i actually has class j and 0 otherwise.
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Input layer Output layer

Hidden layer

Figure 2.5: Example of a Neural Network with Input layer in blue, output layer in
red and one hidden layer in yellow.

Then:

logloss = − 1

|T |

|T |∑
i=1

|C|∑
j=1

yijlog(pij)

is the log-loss function. To avoid overfitting one makes use of the regularization method.

This technique adds a so-called regularizer to a loss function. In this case, we want

to penalize high values for the weights. This is e.g. achieved with the so-called L2

Regularization [30] which is defined as follows. Let α ∈ R≥0 and w1, ..., wn be the

weights of the network. Then:

L2 = α
n∑
i=1

w2
i

The final loss is therefore logloss + L2. The choice of α is problem-specific. One gets

suitable values by experimenting.

Now that we are able to quantify the performance of the classifier, we still need a way

to improve it step by step. To improve means to minimize the loss, which means that

we have to determine the minimum of the loss function. Gradient descent [27, 31],

for example, is an approach that uses the negative gradient to find local minima of a

function f beginning at a starting point x0. The subsequent values can then be calculated

as follows:

xn+1 = xn − γn∇f(xn)

where γn is the step size. It can be redefined in each step and should neither be too long

nor too short. Figure 2.6 shows an example. Here, the step size decreases the closer we

get to the minimum in order to avoid overshooting. Figure 2.7 shows an example with

large step sizes. One can see that we do not reach the minimum as we are jumping back
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Figure 2.6: Example Gradient
Descent with suitable step sizes γi

and starting point x0

x0

x

f(x)

γ0

γ1

γ2

Figure 2.7: Example Gradient
Descent with large step sizes γi

and starting point x0

and forth over it each time. A procedure that has proven to be useful is the so-called

momentum [32]. Let η ∈ [0, 1] be the momentum coefficient. Then the updates are now

computed as follows:

vt+1 = ηvt − γn∇f(xn))

xn+1 = xn + vt+1

Intuitively speaking, it moves us faster to the minimum of the function as the step

sizes increase. For η = 0 this is the same as gradient descent. The choice of the

coefficient is again a matter of trial and error. Stochastic gradient descent [31] is a very

similar approach with the difference that instead of considering the entire training set, we

consider only a random subset of the training data for the computation of the loss in each

new step. This results in more steps being needed, but the calculation of the individual

steps is much faster. The calculation of the gradient is usually achieved with the help of

a backpropagation algorithm. The interested reader is referred to Samarasinghe [27] for

more information on this subject, as the details are not relevant for this work.

Another approach is Newton’s Method as described by Kelley et al. [33]. Usually Newton’s

method is an approach used to approximate the roots of a function. Starting from x0,

the subsequent values can be calculated as follows until an adequate accuracy has been

achieved:

xn+1 = xn −
f(xn)

f ′(xn)
= xn − f(xn)[f ′(xn)]−1

The procedure can also be used to calculate the position of an extremum by searching

for the zeros of the first derivative:

xn+1 = xn − f ′(xn)[f ′′(xn)]−1
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In the multidimensional case we have to replace the first derivative by the gradient and

the second derivative by the Hessian matrix:

xn+1 = xn −∇f(xn)[H(f(xn))]−1

One disadvantage of Newton’s method is that the calculation of the Hessian matrix

is very expensive. Therefore there are approaches like the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm [34–37] which approximate this matrix. Approaches like this

are called quasi-Newton methods.

Regression is done in a similar way. But instead of the logarithmic loss, we compute the

mean squared error as described in the previous section. Furthermore, in regression we

have only one neuron in the output layer.

Neural networks are very abstract and it is hard to understand decisions. Therefore it is

usually not a good idea to start with a neural network. However, in the more recent past

it was shown that neural networks perform very well in many applications. Therefore it

seems to be a good idea to make use of them.

2.2.3 Imbalanced Data

Classifiers usually only perform correctly if there are about the same number of samples

of each class. If there are only very few elements in a class, there is a risk that these

will not be considered. With neural networks and random forests such a circumstance

becomes particularly noticeable. Imagine, for example, a scenario in which a binary

classifier should recognize whether a person is male or female based on characteristics

such as size or hair length. The training data consists of 980 male and 20 female examples.

Figure 2.8: Example of a SMOTE insertion
in the two-dimensional case and k = 3 for a
underrepresented class red. The upper red dot
is randomly selected and inbetween a new red

dot is inserted.

The minimization of the logloss function

would now be clearly in favor of the male

examples, since the female examples hardly

carry any weight. Therefore, the trained

classifier would probably not recognize fe-

male examples, since according to the train-

ing data it has proven to be effective in

classifying as male. Different resampling

methods have been proposed in the past to

mitigate the problem. The most obvious

approaches are random undersampling and

oversampling [38]. Random undersampling

reduces the overrepresented classes by randomly removing items of this class. Random

oversampling on the other hand copies elements of the underrepresented class. Another
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...

Training TEvaluation V

Iteration 1

Iteration 2

Iteration 3

Figure 2.9: Example for leave-one-out cross-validation. Only one element is part of
the evaluation set in each iteration, the rest is used for training

approach, which seems very suitable for our case, is the synthetic minorityoversampling

technique (SMOTE) [39]. This technique determines the k nearest neighbors of an ele-

ment of the underrepresented class. One of these neighbors is randomly selected. Now a

new element is randomly inserted between these neighbors. Figure 2.8 shows an example

in the one-dimensional case for k = 3. The upper red dot is selected and the new element

is placed between them.

2.2.4 Evaluation

Cross-Validation

Cross-validation is a very common technique used to determine more precisely the pre-

dictive performance of a model [40]. The original idea was to split a set of samples

S = {S1, S2, ..., Sn} into a training set T ⊂ S and an evaluation set [41] V = S \ T .
Later on a whole series of splitting techniques was introduced.

The most common technique is the so-called leave-one-out cross-validation (LOOCV) [41,

42]. With this technique n passes are generated. For each pass i a training set T =

{S1, ..., Si−1, Si+1, ..., Sn} and an evaluation set V = {Si} is created. Figure 2.9 shows

an example. In practice, however, this approach is too expensive. A technique more

frequently used in practice is the k-fold cross-validation [41]. With this approach, the

data is divided into k equal sized sets. In each iteration one of these sets is chosen for

evaluation and the rest for training. Figure 2.10 shows an example for k = 3. Stratified

k-fold cross-validation is a variation of k-fold cross-validation in which the data is split in

such a way that the probability of obtaining an element of class c is approximately equal

in every set [43]. The example in Figure 2.10 fulfills this property: each set contains

about the same number of red and black dots.
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Training TEvaluation V

Iteration 1

Iteration 2

Iteration 3

Samples S

Figure 2.10: Example of a k-fold cross-validation with k = 3.

Hyperparameter optimization

Determining the correct parameters for each classifier is quite difficult. In fact, it is

often recommended to guess several suitable parameters and test the performance with

them. For example, to estimate the performance of k-nearest neighbor we check the

performance for different k, e.g. {5, 8, 11, 14}. This technique is called grid search [43].

The performance is usually checked with the help of cross-validation.

Classification

There are many approaches to the evaluation of a classifier. The methods listed below

and many more have been assembled in detail by Sokolova et al. [44]. We start with

the evaluation of a binary classifier, because the evaluations of multi-label classifiers are

based on this. First of all we need four basic building blocks, as depicted in Table 2.1.

Table 2.1: A confusion matrix

Correct Class \ Predicted Class Positive Negative
Positive true positive (tp) false negative (fn)
Negative false positive (fp) true negative (tn)

Inputs that have been correctly classified as positive by a binary classifier are called

true positives (tp). True negatives (tn) are those that have been correctly classified

as negative. On the other hand, false positives (fp) are those that have been wrongly

classified as positives and false negatives (fn) have been wrongly classified as negative.

In a first step we can compute the accuracy, which is the percentage of predictions that

are correct:
tp + tn

tp + tn + fp + fn
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Furthermore we can define the positive predictive value (PPV or precision) and the true

positive rate (TPR or recall) as:

precision =
tp

tp + fp
, recall =

tp

tp + fn

Precision indicates how many of the items classified as positive are actually positive.

Recall indicates how many positives have been classified as positive. Analogously we

can define the negative predictive value (NPV) and the true negative rate (TNR or

specificity) as:

NPV =
tn

tn + fn
, TNR =

tn

fp + tn

These values already provide a detailed insight into the performance of a binary classifier.

However, it would be preferable to evaluate the performance with only one value. Very

often the so-called F1 score is used for this purpose, which is the harmonic mean of

precision and recall.

F1 = 2 · PPV · TPR
PPV + TPR

Yet this score has to accept criticism because it disregards the true negative rate. A

solution is offered by the Matthews correlation coefficient (MCC) [45], which is calculated

as follows:

MCC =
tp · tn − fp · fn√

(tp + fp)(tp + fn)(tn + fp)(tn + fn)

It returns a value between −1 and 1. If it is 1 then the classifier performs perfect. If it is

0 then it is no better than a random classifier and if it is −1 it performs exactly opposite

to the perfect classifier.

With multi-label classification one can proceed similarly. The following descriptions are

explained in detail by Zhang et al. [46]. First of all we need to calculate the confusion

matrix for each label. Now, either a binary classifier can be applied to each confusion

matrix and the average is calculated from these results, which is called macro-averaging.

Or we add up the confusion matrices and apply a binary metric to the result, which is

known as micro-averaging. More formally, let L = {l1, ..., ln} be the set of labels. Let

tplj , fplj , tn lj , fn lj be the true positives, false positives, true negatives and false negatives

of label lj . Let binary ∈ {precision, recall ,NPV ,TNR,F1}. Then:

binarymacro =
1

|L|
∑
l∈L

binary(tpl, fpl, tnl, fnl)

is the macro-average value and:

binarymicro = binary

(∑
l∈L

tpl,
∑
l∈L

fpl,
∑
l∈L

tnl,
∑
l∈L

fnl

)
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is the micro-average value. Intuitively speaking macro-averaging weights all labels equally

and micro-averaging weights all examples equally.

Another rather strict metric is called subset accuracy. Let N be the number of evaluation

inputs, yi the correct value of evaluation input i and ŷi the predicted value of i. Then:

1π =

{
1, if π holds

0, otherwise

subsetacc =
1

N

N−1∑
i=0

1yi=ŷi

In other words, subset accuracy specifies in percent the number of inputs for which all

labels are correct which is rather strict compared to the other metrics.

Regression

For regression we need different evaluation models. A metric which is suitable for this

and which we already know is the mean squared error. Let N be the number of evaluation

inputs, yi the correct value of evaluation input i and ŷi the predicted value of i. Then

we can compute the mean squared error as follows [16]:

MSE =
1

N

N−1∑
i=0

(yi − ŷi)2

Analogously we can compute the mean absolute error (MAE) [47]:

MAE =
1

N

N−1∑
i=0

|yi − ŷi|

In some cases it might also be useful to get the maximum error (ME) and the median

absolute error (MedAE) [48], which are computed as follows:

ME = max(|yi − ŷi|) , MedAE = median(|y1 − ŷ1|, ..., |y1 − ŷ1|)

An interesting model is the so called R2 score (or coefficient of determination) [16]. It is

computed as follows:

R2 = 1−
∑N−1

i=0 (yi − ŷi)2∑N−1
i=0 (yi − y)2

where y = 1
N

∑N−1
i=0 yi. A nice intuition for this is provided in Figure 2.11. In linear

regression we are in search of a linear function that comes closest to the input data. In the

worst case x provides us with no information about y. In this case it is a good estimate to
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x
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unexplained
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Figure 2.11: Illustration of the R2 score for linear regression. A fraction of the
variance can be explained by the slope of the straight line.

determine the average value y. In our example, however, there is a relationship between

x and y: for higher x we get higher y. Therefore it is possible to reduce the variance

by adjusting the gradient of the linear function accordingly. The variance that gets lost

is called the explained variance, because we were able to "explain" it by the gradient.

Yet an unexplained variance remains. R2 now relates these two values to each other

intuitively as follows.

R2 = 1− unexplained variance

explained variance + unexplained variance

Thus a value of 0 means that a classifier is not better than y and a value of 1 means that

it maps all values perfectly. A value less than 0 means that the classifier classifies even

worse than y.

2.2.5 Scikit-learn

To minimize the development effort, we made use of a programming framework to realize

the classification algorithms. For classical machine learning algorithms, like k-Nearest-

Neighbor or Random Forests but also for the more advanced methods like neural networks

there exists the scikit-learn library for Python [49]. It provides an easy to learn high-level

interface and enables the comparison of different methods which makes it an adequate

choice.

Based on scikit-learn many more libraries have been published, extending it. To realize

multi-label classification we use the scikit-multilearn API [50]. Moreover to tackle the

problem of imbalanced data we make use of the imbalanced-learn library [51].
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Related Work

3.1 Multi-label Classification

Multi-label Classification is considered a very difficult machine-learning problem. There-

fore a lot of research has been done to transform problems of this kind into simpler

problems. These approaches are interesting for our problem as well. However, in the end

we decided against them, because our problem can be broken down into even simpler

ones. In the following we present a selection of approaches for the decomposition of

multi-label classification problems.

Read et al. [19] present classifier chains for Multi-label Classification. The binary rel-

evance method, introduced in Section 2.2.1, has a drawback. If the classes are cor-

related with each other, this information will get lost during this procedure. There-

fore, they propose to create chains of classifiers. Let C be the set of labels and T =

{(x1, S1), ..., (xn, Sn)} the training set with Si ⊆ C. They define an ordering on the la-

bels and represent Si by a binary vector (l1, ..., l|C|) ∈ {0, 1}|C| which indicates whether

label lj belongs to xi or not. Then they create |C| classifiers c1, ..., c|C|, where the training

set for ci is modified such that T ′ = {(x, l1, ..., li−1, li) | (x, S) ∈ T}. In other words, the

classifier ci gets information about the classifications of the previous classifiers by adding

them to the features in the training set. They call this the classifier chain method (CC).

The authors themselves criticize that the arrangement of the labels is crucial. Thus,

they present another approach which they call ensemble of classifier chains (ECC). ECC

trains m CC classifiers. Each CC classifier is trained with a randomly ordered C and a

random subset with replacement of T . For the determination of the resulting class they

define a threshold t. A label li is assigned to an input if the number of classifiers that

assign label li is greater than t.

Tsoumakas et al. [52] present the RAKEL (RAndomk-LabELsets) algorithm. It is an en-

semble method of the label powerset method described in Section 2.2.1. The procedure is

as follows. Let Ck = {Y | Y ⊆ C ∧k = |Y |} be the set of all subsets of C of size k. Then
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RAKEL trains m classifiers c1, ..., cm with ci : X → 2Yi , where Yi ∈ Ck \ {Y1, ..., Yi−1}.
In other words, for a given k and m it creates m LP classifiers with randomly chosen

Yi ∈ Ck without replacement. The final labels are determined in the same way as in

ECC. For appropriate k and m it was shown that RAKEL performs better than BR and

LP.

Fürnkranz et al. [53] make use of label ranking for Multi-label classification. Given a

set of labels C = {l1, ..., ln} the task is to find a ranking ≺x over C for a given input

x ∈ X and some input space X . Ranking by pairwise comparison (RPC) achieves this

by creating a binary classifier for each pair of labels (li, lj). The authors transform label

ranking to Multi-label classification by adding a new label l0, which serves as a split point

between relevant and irrelevant labels. A label li is relevant if li ≺x l0 and irrelevant

if l0 ≺x li. Relevant labels are labels, that will be assigned to the input and irrelevant

labels are those that will not be assigned to the input. This approach provides more

information about the relationship of the individual labels to each other. However, this

is done at the expense of the runtime which makes it intractable for large problems.

3.2 Runtime Verification

Runtime verification or runtime monitoring is a technique for the verification of a single

run of a system. In a sense, this is an extension of testing, since specification languages

are able to extract and process information about the state of a running system [4]. One

such specification language is called Lola [4] which is stream-based: It gets possibly mul-

tiple streams of input data and translates them into output streams. Lola was already

used in many different contexts such as synchronous circuits [4], network monitoring [54]

and unmanned aircraft systems [55].

According to Adolf et al. [55] a Lola specification is a system of equations over stream

variables of the following form:

inputinputinput T1 t1

...

inputinputinput Tm tm

outputoutputoutput Tm+1 s1 := e1(t1, ..., tm, s1, ...sn)

...

outputoutputoutput Tm+n sn := en(t1, ..., tm, s1, ...sn)

where t1, ..., tm are the input streams, s1, ..., sn are the output streams and T1, ..., Tm+n

are the types of the respective streams. The stream expressions e1, ..., en have access to

input and output streams. The language allows constants, functions, conditionals and
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offset expressions for the construction of ei. An offset expression is an expression of the

form s[−i, d], where s is a stream of type T , i is an integer value and d is a value of type

T . Let c be the current position in the stream. The offset operator returns the value of

the stream at position c− i. If this value does not exist, e.g. if c− i < 0, it returns the

default value d.

The semantics of a Lola specification are as follows. Let τ = 〈τ1, ..., τm〉 be a valuation

of input streams of length N + 1. A tuple σ = 〈σ1, ..., σn〉 of streams of length N + 1

describes the set of output streams si, if and only if for all 1 ≤ i ≤ n and 0 ≤ j ≤ N ,

σi(j) = val(ei)(j) holds. In this case σ is “an evaluation model of the Lola specification

for τ ” [55]. val(e)(j) is defined as a set of partial evaluation rules, as described for ex-

ample in [4].

The original design was done by by D’Angelo et al. [4] in 2005 for the runtime monitor-

ing of synchronous systems. The language was extended to be more suitable for network

monitoring [54]. The advantage of this extended language, called Lola 2.0, is that incom-

ing data can be subdivided such that smaller amounts of data can be processed. Lola 2.0

is intended to be a bridge between light-weight network monitoring tools, like Snort [56],

and more involved approaches based on expensive formalisms such as Bro [57]. Snort is

a Network Intrusion Detection System (NIDS) which is able to analyse and log packets

based on information given in the payload of the packets. In contrast to that, the spec-

ification language of Bro operates on events generated from prefiltered network traffic.

The language is as expressive as a programming language. In the more recent past,

Lola was integrated into the flight operation framework ARTIS (Autonomous Research

Testbed for Intelligent Systems) [55]. It consists of a software framework and a set of

unmanned aircraft of different classes and sizes. Faymonville et al. propose RTLola [58],

the real time extension to Lola. In RTLola input streams are considered that extend at

unknown rates and each new event has a real-valued time stamp. A new offset operator

is introduced that aggregates all values over a provided real-time window. For example,

s[2sec, 0, avg] computes the average value of all values of the stream that occured during

the last two seconds.

Runtime verification is very similar to our approach. We also process the information of

a system to extract and evaluate possible anomalies. However, so far our approach can

only be applied to the logs after a system run. Runtime verification allows the analysis

of logs as well as the analysis during runtime.

3.3 Failure Analysis

Finding the cause of the failure is a hard task since the failure cause usually occurs much

earlier. Therefore scientists have always been looking for ways to simplify debugging



24 Related Work

tasks. The generic term for such approaches is Failure Analysis. In concrete terms,

these are approaches to collecting and analysing data to determine the cause of failure

in a system [59]. This is exactly what we are trying to achieve in our approach. In the

following we present a selection of approaches that try to simplify or automate Failure

Analysis. These approaches are closely related to our approach, as both support engineers

during debugging by presenting possible failure causes.

An old technique used until today is the so called "Fault Tree Analysis" [1]. The goal is to

find the source of a system failure. This is achieved by creating a graphical representation

of causal relationships in the system. Thereby the plan of the system serves as input and

events that cause a system failure or malfunction are determined. Then, the task is to

find events that lead to the failure. Events can be combined with logic gates, resulting

in a circuit. Fault trees are usually created manually and therefore require a lot of time

and effort. We also have to determine possible causes of failures in our approach and

train the learning algorithms on them. However, our algorithm then tries to determine

the cause of the failure on its own, while a fault tree should be regarded as a help for

manually finding and preventing causes.

Another subarea of Failure Analysis is fault localization. More specifically, the aim is

to find the statement or the set of statements that caused a failure within a program.

There exist many different approaches to automated fault-localization of which we will

introduce some representatives in the following paragraphs.

In slice-based approaches[60, 61] coverage information of test suites is used. For example,

if two tests produce the same error, the faulty statements are most likely the ones used

in both tests.

In spectrum-based approaches, the program is divided into multiple entities [62]. These

entities are ranked according to a specific formula or statistical information. If many tests

that utilize a particular entity fail, the suspiciousness score for that entity increases.

A famous representative of these approaches is Tarantula [63]. It provides a visual

representation of the source code and colors the lines green to red depending on how

likely it is that this line is the cause of the error.

Xuan et al. [64] argue that there exists no optimal ranking metric for spectrum-based

fault localization. They make use of machine learning techniques to build a ranking

function. The learning algorithm is trained with pairs of erroneous and error-free source

code. Their experiments show that their approach performs better than, for example,

Tarantula in terms of localizing faults.

Zeller et al. [65] propose a program state based approach for fault-localization. The idea

is to spot the differences in states of one passing run and one failing run. Their algorithm

reduces these differences to finally obtain a minimal set of possible failure causes [62].

Fault localization approaches are well suited for Failure Analysis of systems working with

software suites like ardupilot. However, the system can behave correctly and still fail due
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to external influences. Such failure causes are difficult to detect with these approaches.

An exception to this is the approach of Zeller et al. By comparing successful and failed

runs, the causal analysis could be extended to external causes as well. The step-by-step

removal of individual external influences should allow the actual causes to be found.

However, this means that the complex system must be run under the new conditions

again and again in order to analyze the behavior of the system without certain anomalies.

This is difficult to achieve with systems such as unmanned aircraft vehicles.

3.4 Program Intrusion Detection

Intrusion Detection approaches try to detect anomalous program behaviour, which can

be done e.g. based on simple pattern matching or with the help of machine learning.

The machine learning step of our approach is very similar to machine learning based

program intrusion detection. Both try to find anomalous behaviour in a trace. However,

in contrast to our approach, this is only a binary classification problem: One simply

wants to find out if there is an intrusion or not. Nevertheless, our approach is strongly

inspired by program intrusion detection. In the following we present intrusion detection

algorithms based on machine learning.

Ghosh et al. [66] present three different intrusion detection algorithms. The first one is

based on simple pattern matching. The second one makes use of a simple feed forward

multi-layer perceptron network and the last one uses more complex Elman networks. The

authors argued that it is sufficient to capture system calls of a program as a compact

representation of its behaviour. They are captured by using Sun Microsystem’s Basic

Security Module (BSM) auditing facility for Solaris1.

The feed-forward network gets as input a sequence of system calls and decides whether

this sequence is anomalous or normal. To classify a session, which is an execution of

multiple programs, they make use of the leaky bucket algorithm, which accumulates out-

puts of the neural network but also slowly leaks its value. Thus, if anomalous behaviour

becomes more frequent in a short time it will raise a flag.

The problem with the described algorithm is that it is not able to capture intrusions

spread over a longer period of time, since it is only able to decide for small parts of a

sequence whether it is anomalous or not. Thus, the authors proposed an Elman network,

which has so called context nodes in the hidden layer. A context node gets input from one

node in the hidden layer and returns its output to each node in the layer of the context

node. This Elman network now predicts the next sequence of events which is compared

to the actual sequence of events. The difference of these sequences is the measure of

anomaly. Finally, the leaky bucket algorithm is used for the results as described above.
1see e.g. https://docs.oracle.com/cd/E19455-01/806-1789/806-1789.pdf
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The Elman network performed best, while the feed forward network was not much better

than a simple pattern matching approach.

3.5 Causality Analysis

The causality analysis of systems is an ongoing research topic, where many different ap-

proaches have been proposed. These approaches are very similar to our approach, as the

goal is always to simplify the process of finding the causes of faulty behavior in complex

systems. In the following we will present some of them.

The method of Wang et al. [67] uses a hybrid approach to causal analysis to find the fault-

causing components in a safety-critical system. They choose a counterfactual approach

by algorithmically deriving alternative system behavior, however without re-executing

the system. The underlying idea is to consider how the system would have behaved if

a component had not exhibited malfunction. The authors show that their approach is

more accurate if they emulate the execution of individual components and if they addi-

tionally consider input and output relationships between the components.

Kuntz et al. [68] developed an approach for the automatic creation of fault trees based

on probabilistic counter-examples. The method aims to facilitate the reliability analysis

of safety-critical systems. They make use of a probabilistic model checker to produce

counterexamples for interesting properties. These counterexamples consist of system ex-

ecution paths and the associated probability information. The counter-examples serve as

a basis to derive fault trees by extracting the causal relationships. None of the analysis

steps require manual intervention.

Gössler et al. [69] propose a semantic framework to improve troubleshooting in complex

component-based computer systems. Their counterfactual analysis is based on configu-

ration structures with the aim to handle partial and distributed observations and con-

current systems uniformly. In addition, it should identify necessary and sufficient causes

of faults within systems.



Chapter 4

Approach

In this chapter we provide a more detailed overview of our approach. First, we describe

in detail how the data for the machine learning approaches is created. Then we describe

our approaches for the anomaly detection and type identification. After that, we explain

our methodology for the causality analysis.

4.1 Creation of Training Data

For the generation of the training data we use the SITL simulator integrated in ArduPilot.

This allows us to realize the whole simulation in one place. Furthermore, we are able

to run multiple simulations at once, whereas in a HITL simulation we would require

multiple electronic controllers to achieve the same result. The autonomous copter is a

quadcopter with default parameters as described in Appendix A.

4.1.1 Mission

The drone has to accomplish a mission which is provided by a so called waypoint (WP)

file as one can see in Figure 4.1. The general format is as follows [70]:

1 QGC WPL <VERSION >

2 <INDEX > <CURRENT WP> <COORD FRAME > <COMMAND > <PARAM1 > <PARAM2 > <PARAM3 > <PARAM4 >

<PARAM5/X/LONGITUDE > <PARAM6/Y/LATITUDE > <PARAM7/Z/ALTITUDE > <AUTOCONTINUE >

We used the MAVLink commands NAV_TAKEOFF (22), NAV_WAYPOINT (16) and

NAV_RETURN_TO_LAUNCH (20). Thus, the drone first takes off to the provided

latitude, longitude and altitude. Then it processes the given waypoints one after the other

and finally returns to the initial location. Figure 4.2 shows a graphical representation of

the mission.

The mission is initialized as follows. A simulated quadcopter is set to the position
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1 QGC WPL 110
2 0 0 3 22 0.000000 0.000000 0.000000 0.000000 49.254986 7.040858 50.000000 1
3 1 0 3 16 0.000000 0.000000 0.000000 0.000000 49.257015 7.040343 50.000000 1
4 2 0 3 16 0.000000 0.000000 0.000000 0.000000 49.259010 7.051792 50.000000 1
5 3 0 3 16 0.000000 0.000000 0.000000 0.000000 49.252594 7.041029 50.000000 1
6 4 0 3 16 0.000000 0.000000 0.000000 0.000000 49.253616 7.037252 50.000000 1
7 5 0 0 20 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1
8

Figure 4.1: WP file of the mission that the drone has to accomplish. The first line
describes the format and the version. Every following line contains the command to
be executed at the fourth position, the target location at fourth and third last position

and the altitude at the second last position.

Figure 4.2: A graphical representation of the mission from Mission Planner [71]. The
drone takes off at position H(ome) and then traverses waypoints 1 to 4 one after the

other to finally return to H.

(49.255070, 7.040825) on Saarland University at an altitude of 0 meters. We use dronekit

to communicate with the drone via MAVLink. With the help of dronekit we upload

the mission to the drone and set the vehicle mode to AUTO such that the drone can

accomplish its mission.

4.1.2 Anomalies

Under perfect conditions the drone is able to accomplish the mission without issues.

However, since our goal is to find anomalous behaviour, we must manually intersperse
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abnormal behavior. Fortunately, the SITL simulator provides support for the simulation

of many different environmental influences. We have opted for three different possible

anomaly types which we describe in the following.

Speed

The first possible anomaly is that the drone is flying too slowly. In this case it is not

possible for the drone to complete its mission before the battery drains. During the flight

we randomly set the speed of the drone and wait a random amount of time for the next

speed change. We want higher probabilities for higher speeds and time intervals between

two speed changes. Intuitively speaking we fold the symmetrical parts of the normal

distribution on top of each other and move the result to the right by a given amount. To

this end, we define the following function for a random variate x of a normally distributed

random variable X ∼ N (0, σ2) and a margin y:

r(x, y) =


x+ y, −y < x ≤ 0

y − x, 0 < x < y

0, x ≥ y ∨ x ≤ −y

The drone has a maximum speed of 15ms . We decided for a normally distributed X ∼
N (0, 6) for the random choice of speed. A new random value for speed is now the result

of r(x, 15), where x is a random variate of X. For the waiting time in between we proceed

in the same way. For a normally distributed random variable X ∼ N (0, 200), the waiting

time between two speed changes is the result of r(x, 600), with x being a random variate

of X. Figures 4.3 and 4.4 show the probability distribution for the random choice of

the speed and the waiting time in between. The probability density function for the

computation of the speed value is f(x) = 2 · fN (0,6)(x− 15) for 0 < x ≤ 15 and similarly

for the waiting time it is f(x) = 2 · fN (0,200)(x − 600) for 0 < x ≤ 600. As desired, a

higher speed gets a higher probability, since in the end we want more successful flights

than failed ones. The waiting time in between is with high probability very long, as

an autonomously flying drone is usually not configured in such a way that it constantly

changes its speed on a straight route.
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Figure 4.3: Probability distribu-
tion for the time between two ran-
dom speed changes in seconds:
f(x) = 2 · fN (0,200)(x− 600)

Figure 4.4: Probability distribu-
tion for the random determination

of speed in m
s :

f(x) = 2 · fN (0,6)(x− 15)

Wind

Figure 4.5: Probability distribution for the
random determination of wind speed in m

s :
f(x) = 2 · fN (0,6)(x)

Wind is another possible anomaly type. We

adjust two parameters. First, the wind

speed in m
s , and second the horizontal di-

rection. We proceed in a similar way for the

wind speed as we did for the drone speed.

For a normally distributed X ∼ N (0, 6) the

new value for the wind speed is the result

of 20 − r(x, 20), for a random variate x of

X. Figure 4.5 shows the probability distri-

bution for the wind speed. It is described by

the following probability density function:

f(x) = 2 · fN (0,6)(x) for 0 ≤ x < 20. Similar

to the speed anomaly we wanted a higher

probability for lower wind speeds. In con-

trast to that, the wind direction is determined by a discrete uniform distribution, since

we wanted to assign the same probability to each direction. After a waiting time, which

is determined by a uniform distribution between 0 and 20 seconds, the wind speed is

determined again.

GPS Glitches

Last, we decided for GPS glitches as the third type of anomaly. During a GPS glitch the

position of the drone is incorrectly determined by the GPS module. In our case during a
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GPS glitch, latitude and longitude differ from the correct value by 0.0002− 0.002 each,

which corresponds to a displacement of about 25 to 265 meters. Any possible displace-

ment may occur with the same probability. A GPS glitch appears with a probability

of 0.01. Between two possible GPS glitches a time between 0 and 100 seconds elapses,

randomly distributed.

4.1.3 Extraction of Relevant Data

MAVProxy stores any received telemetry from the simulated vehicle to a log file. This

log file is converted to a json file with the help of a tool provided by MAVLink. The file

provides all information about the flight which we need for our approach. However, for a

later classification we need to convert the data into a sequence of numbers. Furthermore,

we must filter out the most relevant information from the large amount of information

available.

Each message in the telemetry log is timestamped. We want to demonstrate our extrac-

tion on an example as shown in Figure 4.6. Suppose we want to extract the heading

50,50,50,50,50,50,50,50,49

25,25,25,25,25,25,46,46,46heading:

altitude:

0.0stamp: 0.63 0.81

Figure 4.6: An example of how the data sequences are
created. At timestamp 0.0 two values for heading and alti-
tude occur. At 0.63 a new value for heading appears. Up to
that point, the previous values will be used. Analogously

for timestamp 0.81

and the altitude of the drone at

a sampling interval of 0.1 sec-

onds. Whenever a new value

for a variable like the heading

appears at a given timestamp,

all variables are aligned up to

this point and the new value is

inserted. The first values for

heading and altitude appear at

timestamp 0.0. The first new

value for the heading appears at

time 0.63. Thus, we need to add

six times the value of the current value to both arrays. Then we replace the last value

of heading by the new value, which is 46. Altitude is updated at time 0.81. Again we

need to add two times the value of the current value to both arrays and replace the

last value of altitude by 49. In the following we will refer to such sequences of data as

streams. The described technique is known as 0-order hold. Another possibility would

have been interpolation. With this technique, however, we would have the problem that

the positions on GPS glitches slowly adapt to the incorrect position instead of having a

sudden jump which makes the classification more complicated.

Now, several questions remain unanswered. The first question is whether we should

choose the same sampling interval for the different flights or a different one for each
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flight. The first option has several drawbacks. If a flight takes too long we miss parts

of it, as we need an upper limit for the number of samples. If it is too short, we have

to fill it with some data that does not exist. We decided for the second option, which

means that we chose a different sampling interval for each flight. Let s be the number

of samples we want to have and t the time that it took for the drone to execute the

mission. Then the sampling interval i is t
s . The advantage of this method is that we

have always sampled the entire flight. The disadvantage, however, is that long flights

may be sampled insufficiently because of a high sampling interval. Investigation of the

training data has shown, however, that outliers in the sampling interval are rare.

The second question that needs to be answered is how many samples we need. If we

have too many samples, then the classification will get very slow. We decided for 600

samples per flight. As a flight takes about 6 minutes, this corresponds to a sampling

interval of about 0.6 seconds. This proved to be a good compromise between accuracy

and efficiency.

We sample the following data to train and evaluate the classifiers: latitude, longitude

and speed information account for GPS and speed anomalies. Moreover to successfully

detect wind anomalies we consider pitch, roll and heading of the drone. Additionally, we

store some more information which does not serve as input to the classifier, but makes it

easier to perform the manual classification. To accurately determine wind anomalies we

sample wind speed and wind direction from the simulator. For GPS glitches we store the

actual glitch in x- and y-direction. Finally, the battery state and altitude of the drone

are added.

4.1.4 Manual Classification of Anomalies

Since we do supervised learning we now have to manually classify the generated training

data. Up until now we created the features. As already mentioned, we stored some

additional information which makes it easy for us to perform the classification. For the

three possible anomalies we create three new streams of size 600, where the values can

either be 0 or 1. If it is 1, it means that there is an anomaly of the according type,

otherwise not.

Detecting a wind anomaly is straightforward. While the wind speed is greater than 2,

we set the value of the stream for the wind anomalies to 1, and 0 otherwise.

Detecting a GPS glitch is a bit more involved. ArduPilot features a built-in glitch

protection. Given a previous position, speed and direction it can predict the next position

with some precision. If the input of the GPS module deviates significantly from the

predicted position, this input is discarded first. The drone is assumed to be at the

expected position. Figure 4.7 illustrates the glitch protection mechanism. If the new
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reported trajectory expected trajectory

new GPS position

tolerance radius

Figure 4.7: Ardupilots glitch protection. If the new GPS position is not within the
tolerance radius it will be discarded. The tolerance radius increases over time until the

new position is again within the radius.

GPS position is within the tolerance radius it is considered. This radius increases over

time. The glitch is cleared if the GPS position is within the tolerance radius again. For

us, that means it is not enough to check if the GPS glitch values are greater than 0.

Depending on how long this glitch lasts, it has not changed the flight behaviour of the

drone. Instead we have to check if there is a larger jump in the position. Thus, we check

if the distance between two positions is larger than 25 meters, because this is the smallest

possible jump during a glitch. Only if this is the case, then there is a GPS glitch at this

position.

For the detection of speed anomalies we decided for a reference flight, which ran under

ideal conditions. To check if the speed at a certain point is appropriate, we search for

the nearest point in the reference flight and check if the speed is at least 90% of the

reference speed.

4.1.5 Normalization

Especially for k-nearest neighbor it is reasonable to normalize the data. In this case, for

example, a large difference in heading separates the data to a greater extent from each

other than a large difference in speed. The maximum speed difference is 15ms and the

maximum difference in the heading is 360◦. For this reason, neighbors with less difference

in heading would be preferred in k-nearest neighbor.

To handle such cases we transform all values such that they are in the [0, 1] interval.

The transformation is depicted in Table 4.1. The speed only needs to be divided by

the maximum possible speed, which is 15ms . However, since the speed can be slightly

higher due to gusts of wind we increase this value to 18. To normalize latitude and

longitude we first determine the maximum and minimum latitude and longitude from

all flights. With the help of these values we can normalize as shown in the table. A
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Table 4.1: Normalization of different stream values

Values Variable Conversion

Speed s s
18

Latitude lat lat−minlat
maxlat−minlat

Longitude lon lon−minlon
maxlon−minlon

Heading h h
360

Pitch p p mod 360
360

Roll r r mod 360
360

nice side effect of this normalization of latitude and longitude is that it is robust to

relocation and scaling. More formally, let σ = (α1, β1), ..., (αn, βn) be a set of positions.

Let Σ be the set of traces σ1, ..., σm. Let minα(Σ) = min{α | ∃σ ∈ Σ.(α, β) ∈ σ}
and maxα(Σ) = max{α | ∃σ ∈ Σ.(α, β) ∈ σ} and analogously for minβ(Σ) and

maxβ(Σ). Let norm(α,Σ) = α−minα(Σ)
maxα(Σ)−minα(Σ) and norm(β,Σ) =

β−minβ(Σ)
maxβ(Σ)−minβ(Σ) . Let

Σ(λ, v, w) = {σ′ | σ ∈ Σ ∧ |σ| = |σ′| ∧ ∀(α, β) ∈ σ. ∃(α′, β′) ∈ σ′. α′ = λα + v ∧ β′ =

λβ + w} be the same set of traces, but scaled by λ and shifted in latitude by v and in

longitude by w. Then we have to show the following proposition.

Proposition 4.1. ∀σ ∈ Σ. ∀(α, β) ∈ σ. norm(α,Σ) = norm(λα + v,Σ(λ, v, w)) ∧
norm(β,Σ) = norm(λβ + w,Σ(λ, v, w))

Proof. Let σ ∈ Σ and (α, β) ∈ σ. Then

norm(α,Σ) =
α−minα(Σ)

maxα(Σ)−minα(Σ)

=
λ(α−minα(Σ))

λ(maxα(Σ)−minα(Σ))

=
λα− λminα(Σ)

λmaxα(Σ)− λminα(Σ)

=
λα+ v − (λminα(Σ) + v)

λmaxα(Σ) + v − (λminα(Σ) + v)

=
λα+ v −minα(Σ(λ, v, w))

maxα(Σ(λ, v, w))−minα(Σ(λ, v, w))
(linearity of maxα and minα)

= norm(λα+ v,Σ(λ, v, w))

And analogously for norm(β,Σ)
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The heading just needs to be divided by 360. We proceed in the same way with pitch and

roll, but we have to calculate modulo 360 beforehand. This is because roll may also be

negative depending on whether the drone is tilted to the right or left. The same applies

to pitch with the difference that the drone tilts forward or backward.

4.2 Anomaly Detection

This section aims to describe our approach to anomaly detection using machine learning.

In the previous section we described how we generated the training data. Now the task

is to learn a classifier with the help of this data.

4.2.1 Initial Considerations

A brute-force solution to our problem would have been to use only one large multi-

label classifier. This means that all data of a flight would have served as input for the

classifier. The classifier would have returned for each sample point an anomaly type if

applicable. This method has multiple drawbacks. First of all the number of features is

very high. In general, a high feature space means that more training data is needed for

a satisfactory result. Secondly, the number of possible classes is very high, which means

that we need even more training data. Last but not least this is a multi-label classification

problem, which is considered as one of the hardest machine learning problems since it

is a generalization of multi-class classification problems. Problems of this kind are often

separated into smaller problems that are easier to solve.

The question that eventually led us to change our mind was: if we subdivide a problem

into smaller problems, as is often the case with multi-label classification problems, then

why would we not make a subdivision specially adapted to this problem? Our problem

has a characteristic that makes it a simpler problem than we originally thought: It is

not relevant where exactly an anomaly occurs in flight, since the characteristics of the

anomaly remain the same. With wind the flight direction changes or the pitch and roll

of the drone, with speed anomalies the speed is too slow and with GPS anomalies one

can see a jump in the position. Only the speed is complicated when the drone makes a

turn. However, curves also have clear characteristics, for example that the drone comes

to a standstill and changes its direction.

Our approach is now twofold. First we try to find out at which sampling points anomalies

occur. After that, these anomalies are extracted and classified. In the following we

explain these steps in more detail.
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Figure 4.8: Example of a classification in step 1 illustrated on position information of
the flight. x-direction is the norm of longitude and y-direction is the norm of latitude.

Left side is the expected result, right side is the result of the classifier

4.2.2 Anomalous or Not?

The first step is to determine for each individual sampling point whether it is abnormal

or not. For this we create a classifier for each sampling point. The features of this

classifier are the information contained in the four previous sampling points, those of the

following four and those of the point itself. This is necessary because otherwise a GPS

anomaly may not be detected as an anomaly, as it only becomes noticeable by a greater

distance between two locations. Since we are unable to guarantee a balanced data set,

the underrepresented elements in the training data are extended by synthetic data using

SMOTE. The result is a stream of 600 values for each flight whose values are either 1

or 0, meaning that the point was either anomalous or not. Figure 4.8 shows an example

classification. The red points indicate that this sampling point was abnormal, the blue

points that it was not. On the left side is the expected result and on the right side the

result of the classifier. The only noticeable difference is at normalized position (0.35, 0.3)

where the classifier classified a small part as anomalous, although it is not.

4.2.3 Classification of Anomalies

Prior to classifying anomalies we need to extract them. Hence, we define the following

parameters to adjust this process. First of all we need to define a maximum size of an

anomaly because the number of features is fixed. On the other hand, it might also be

useful to define a minimum size. The reason for this is that extremely short anomalies are

very likely no anomalies and may only be misclassified by the classifier in the first step.

However, it can also be the case that anomalies are incorrectly classified as normal. For

this case we define another buffer parameter which indicates how many points classified as
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Figure 4.9: Examples of anomalous sampling points. The left one is not considered
as an anomaly with a buffer of 2 and a minimum size of 5. The middle one is considered

as 1 anomaly. The right one is considered as 2 anomalies.

normal may be included in an anomaly. Last, we defined a context size. This parameter

determines the length of the sections before and after the anomaly. The idea is to provide

the machine learning algorithm with more context for classification. If an anomaly is

shorter than the maximum size, the context size is increased such that all anomalies are

of the same length.

As an example consider Figure 4.9. Suppose we have a minimum size of 5, a buffer of

2, a maximum size of 20 and a context of 10 sampling points. The red dots represent

sampling points that were classified as anomalous in the first step. The blue ones are

those that were classified as normal. The first example is not extracted as the size is

less than 5. Even with the help of the buffer we only get a total length of 4. The

second example is extracted because it is of size 15 and in between there is only one

sampling point that is not considered anomalous. In the last example both anomalies

are extracted, as they both have a size of 6.

Before we feed our classifier the extracted anomalies, we adjust some values to simplify

the classification. Our goal was to superimpose the anomalies, which means that we need

to adjust latitude and longitude values. This is achieved in the following way. Suppose

we have two streams of latitude and longitude values as follows:

lon = lon1, lon2, ..., lonn

lat = lat1, lat2, ..., latn

First, we set the values relative to the origin starting from the first value as follows:

lon = lon1 − lon1, lon2 − lon1, ..., lonn − lon1

lat = lat1 − lat1, lat2 − lat1, ..., latn − lat1

Now we compute the distance from (lonn, latn) to the origin with the help of the

pythagorean theorem: dist =
√
lat2n + lon2

n and define a new point u = (dist, 0), which



38 Approach

α

Figure 4.10: Illustration of transformation of latitude and longitude. First, we shift
the anomaly such that the first sampling point is located on the origin. Then we rotate

the anomaly such that the last sampling point is on the x axis.

lies on the x-axis and has the same distance to the origin as v = (lonn, latn). We compute

the angle between the two vectors by the formula:

angle = acos

(
u · v

||u|| · ||v||

)
, where ||x|| =

√
x2

1 + x2
2

Finally, we rotate the remaining points (lon2, lat2), ..., (lonn−1, latn−1) by the calculated

angle with the help of a rotation matrix. Figure 4.10 illustrates the procedure described

above. Apart from the positions we need to adjust the heading, too. This is straightfor-

ward, because we only have to rotate it by the angle calculated above.

The creation of the training data is analogous with the difference that the classes are

already assigned directly when the anomalies are extracted. The classification problem

is now a multi-label classification problem with 3 labels for the 3 possible anomalies. We

make use of the label powerset transformation method to transform this problem to a

multi-class classification problem with 8 classes. Again, since we cannot guarantee a bal-

anced dataset, SMOTE is used to extend the underrepresented elements in the training

data by synthetic data. Figure 4.11 shows an example classification. On the left side

there is the expected result and on the right side the classification. One can see that

the classifier did not find the GPS anomaly right at the starting point. Furthermore, it

often regarded pure wind anomalies as speed anomalies as well.

4.3 Causality Analysis

Our ultimate goal is to present the user with few anomalies that are sufficient for the

drone to fail in the end. We define a flight as failed if the battery is empty before it lands

or if the drone has not arrived at the target position at all.

Our idea is to estimate the intensity of anomalies with the help of machine learning. In

other words, we evaluate the anomalies on a scale from 0 to x, where 0 means that the
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Figure 4.11: Example of a classification in step 2 illustrated on position information
of the flight. x-direction is the norm of longitude and y-direction is the norm of latitude.

Left side is the expected result, right side is the result of the classifier

anomaly had no influence on the flight and x that it had a particularly high influence on it.

Then for each type of anomaly a regressor is trained with the anomalies of the respective

type. The exact value of x does not matter since the regressors return real numbers.

We set x = 100. While the scale is the same for each regressor, the different anomalies

are not equally severe. Therefore, we create parameters for each type of anomaly whose

values we determine with the help of an optimization problem. For this we define an

error function that punishes scores on flights that are higher than a certain threshold but

did not fail and vice versa. A minimization function then determines the values of the

parameters for each anomaly type such that this error function is minimized. Finally, we

determine all combinations of anomalies sufficient to cause the flight to fail and present

them to the user. In the following subsections we present the individual steps in more

detail.

4.3.1 Handcrafting the Intensity of Anomalies

Determining the intensity of an anomaly turned out to be more challenging than origi-

nally thought. The intensity depends significantly on what the drone is currently doing.

For example, a gust of wind has almost no influence on the drone when it is flying slowly

which is the case in curves. Therefore, we decided to always rate wind anomalies occur-

ring in curves with a wind speed of less than 16ms with 0. Speed anomalies are completely

ignored there and given a 0 rating, as the drone flies slowly there anyway and an even

slower speed has no effect. Apart from that the anomalies are scored as follows.

For the rating of a wind anomaly both wind speed and wind direction, are impor-

tant. The extent to which the wind direction plays a role was determined with the
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help of an experiment. In this experiment the drone flew the route described above 180

times with a 10 times accelerated simulation speed. 9 seconds after the start of the

Figure 4.12: Battery charge after 180 drone
flights with a wind gust whose direction is al-

ways shifted by 1 degree.

simulation a gust of wind with a speed of

20ms was started, which lasted 6 seconds and

blew exactly against the drone. With ev-

ery flight the angle of the gust of wind was

changed by 1 degree until it blew exactly

from behind the drone. During the gust the

drone always travelled between the first and

the second waypoint. After each flight we

measured the state of charge of the battery.

The result of this experiment is depicted in

Figure 4.12. One can clearly observe that

the wind direction is of major importance,

as the remaining battery capacity varies be-

tween -4% and 15%. We use this result for

the scoring and transform it into a number between 0 and 1 as follows. Let res be a

result of the experiment. Then iwd = 1− res+4
19 is the impact of the direction of a wind

gust. The wind direction in an anomaly is calculated relative to the heading, where 0

degree means the wind comes from the opposite direction of the drone, and 180 degree

means the wind comes from the same direction as the drone. The impact of the wind

speed is computed similarly. We assume a maximum wind speed of 20ms . Let spd be the

speed of a gust. Then iwv = spd
20 is the impact of the wind speed. The drones heading,

wind speed and direction of an extracted anomaly are defined as the average value of the

occuring headings, wind speeds and directions within the anomaly. Finally, we need to

include the sampling interval. Let l be the length of an anomaly, m the maximum length

of an anomaly, s be the sampling interval of an anomaly and t the maximum sampling

interval of all flights. Then i` = l·s
m·t is the impact of the length of the anomaly. The

impact of a wind anomaly is now calculated as follows. Let x be the maximum possible

rating of an anomaly. Then:

iw = min(iwv · iwd · i` · x, x)

is the impact of a wind gust on a scale from 0 to x.

Computing the impact of speed anomalies is a bit easier. The drone has a maximum

speed of 15ms . Let a be the average speed of the drone during the speed anomaly. Then

isr = 1− a
15 is the impact of slow speed. The final impact is computed as follows:

is = min(isr · i` · x, x)
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is the impact of a slow speed on a scale from 0 to x. Another idea was to make use of

the reference flight described in Section 4.1.4 instead of just the maximum speed 15ms .

But the result has not changed for the better, which is why we opted for the simpler

approach.

Finally we need to compute the impact of a GPS anomaly. For this, we computed

the maximum distance between two consecutive locations within an anomaly. With the

GPS glitches described in Section 4.1.2, we achieve a displacement of the drone of at least

about 26 meters and at most about 267 meters. Thus, a glitch has the lowest impact if

the position shifts by only 26 meters and the highest if it shifts by 267 meters. With a

small buffer we compute the impact of a GPS anomaly as follows. Let m > 25 be the

largest jump in positions. Then igr = m−25
245 is the impact of a GPS anomaly. The final

impact is computed as follows:

ig = min(igr · x, x)

is the impact of a GPS glitch on a scale from 0 to x. Note that the length of the anomaly

makes no difference in GPS glitches and therefore is not included.

4.3.2 Parameter Optimization

All anomalies are scored on the same scale between 0 and x. However, not all types

of anomalies are equally severe. Therefore, we define parameters u, v and w for the

respective weighting of speed, wind and GPS anomalies. We define an error function

as follows. Let Flights be the set of all flights. Furthermore, let score(f, u, v, w) =

u · sumspd(f) + v · sumwnd(f) + w · sumsat(f) the summed score of all anomalies of a

flight f weighted by the parameters. Then

errf (u, v, w) =
∑

f∈Flights
err(score(f, u, v, w), failed(f))

err(x, failed) =


0, x ≥ 500 ∧ failed ∨ x < 500 ∧ ¬failed
500− x, x < 500 ∧ failed

x− 500, x ≥ 500 ∧ ¬failed
.

is the error function we want to minimize. Fortunately, with the scipy library [72] python

already offers an API to minimize such functions using BFGS. Figure 4.13 shows how

well we can separate failed flights from successful flights using scores and optimized

parameters. The figure shows 4800 flights. The red dots represent failed flights and

the green dots represent successful flights. The threshold that separates failed flights

from successful flights is 500. We have an overall precision of 0.91 and a recall of 0.88.
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Figure 4.13: Summed anomaly scores of 4800 flights. Red dots are failed flights.
Green dots are successful flights. x-direction are the flights and y-direction shows the

scores.

Thus, the failed flights are not perfectly separated from the successful flights. Especially

at the transition from failed to successful flights there are many overlaps. However, a

perfect subdivision is not necessary because we want to identify the worst anomalies.

Nevertheless, it is a good indicator of how accurate our scores are.

4.3.3 Determination of Causes

Finally, we want to present anomalies to the user that are likely causing the drone to fail

in the end. One possibility is to present all possible combinations, which together result

in a score of over 500. However, this results in a number of possible combinations that

is far greater than the number a human can still handle. Therefore, we need to make

some adjustments to significantly reduce the number of possible combinations.

A possible improvement is to re-assemble anomalies of the same type that occur in direct

succession and add up the scores. Since our extracted anomalies have a fixed length, it

is possible that long lasting anomalies are split into several parts. These will now be re-

assembled. A second improvement is to present only minimal subsets. A minimal subset

X is a set such that ∀x ∈ X the sum of all scores in X \ {x} is less than 500. Although

this brought a significant improvement, the number of possible combinations was still too

high. Our final approach was therefore to present the most serious anomalies, sufficient

to achieve a score of more than 500. Figure 4.14 shows the result for our example flight.

On the left side is again the expected result and on the right side is the result of our

approach. One can see that our approach has identified almost all anomalies as serious,
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Figure 4.14: Most severe anomalies that are sufficient on their own to get a summed
score of over 500. x-direction is the norm of longitude and y-direction is the norm of

latitude.

which are also considered severe by the reference. Only one wind anomaly in the lower

right was not considered severe by the corresponding regressor.





Chapter 5

Evaluation

The evaluation is divided into three parts. First, we want to find out which classifier

or regressor is best suited for each step. For this we cross-validate all classifiers and

regressors mentioned in the background with different parameters. The best models are

then used to perform a final analysis of our approach. Finally we test the anomaly

detection on a rotated and relocated mission to show how this little change affects the

result.

5.1 Finding suitable classifiers and regressors

All presented classifiers and regressors have different parameters for perfect adaptation

to a problem. However, choosing the right parameters is not trivial. A typical approach

is to test the models for different parameters known as grid search. In the following we

will briefly discuss which parameters we have checked for each classifier and regressor.

k-Nearest-Neighbor

k-Nearest-Neighbor was checked for k ∈ {5, 8, 11, 14} and euclidean distance. All neigh-

bors are equally weighted. These parameters are the same for classification and regres-

sion.

Random Forests

For random forests we have varied the number of decision trees. We have tested this

method for 60, 90, 120 and 150 decision trees. Additionally, both split criteria, gini and

entropy, have been tested. The trees are expanded until all leaves contain only elements

of a single class. The number of features considered at each node is
√
|T |, where T is
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Figure 5.1: Results for step 1 for k-Nearest-Neighbor for k ∈ {5, 11, 8, 14}

the training set. The same parameters are used for classification and regression, except

for the impurity which we will only check for mean squared error in regression.

Multi-layer Perceptron

For neural networks we used hidden layer sizes of 60, 90, 120 and 150 respectively with

minimizing functions stochastic gradient descent and LBFGS. The activation function of

the neurons is chosen to be the logistic sigmoid function. We test three different values

for α for the L2 regularization, namely 0.0001, 0.01 and 10. For stochastic gradient

descent we decided for a constant learning rate γi = 0.001 ∀i and a momentum η = 0.9.

This should guarantee us fast steps in the beginning, which get smaller the closer we

get to the minimum. The number of samples used per optimization round is set to 200.

Both stochastic gradient descent and LBFGS stop optimizing as soon as the loss has

not improved by at least 10−4 after 10 consecutive iterations. In addition to that, the

optimization is always aborted after at most 200 iterations. The parameters for both,

classification and regression, are the same in our setting.
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Figure 5.2: Result for step 1 for the Multi-layer Perceptron. First value is the number
of neurons in the hidden layer. Second is the minimization function and third value is

the α

5.1.1 Anomaly Detection

For the evaluation of step 1 we consider a quantity of 15, 000 flights. Thus, each of the

600 classifiers is evaluated on 15, 000 samples. Each model is evaluated with the help of a

stratified 5-fold cross-validation. The training data was each time extended by synthetic

data using SMOTE. Figure 5.1 shows the results for different k in k-Nearest-Neighbor,

averaged over the mean value of the 5-fold cross-validation of the 600 classifiers. One

can see that this approach shows significant weaknesses in the negative predictive value,

no matter which k we choose. This means that many of the sampling points classified as

non-anomalous are actually anomalous. In this case k-Nearest-Neighbor is hardly better

than a random generator. However, the values for precision, recall and specificity are

quite good. If a sampling point is not anomalous, this will be detected in 90% of cases.

This also applies vice versa: if a sampling point is anomalous, this is also detected in

90% of cases. And finally, 90% of the anomalous sampling points are actually anoma-

lous. The difference between recall and negative predictive value indicates that we have

significantly more anomalous sampling points than non-anomalous ones.
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Figure 5.3: Result for step 1 for Random Forests for different numbers of decision
trees (60, 90, 120, 150) and two different impurity functions, gini and entropy.

Figure 5.2 shows the results for the neural network which are significantly worse than the

ones from k-Nearest-Neighbor for some of the parameters.

Figure 5.4: MCC and F1 score of the best
models of kNN, Random Forest and MLP re-

spectively

First of all, it is noticeable that the classi-

fiers optimized using the stochastic gradient

descent perform worse, which becomes par-

ticularly apparent with high α for the L2-

regularization. Here, it is probably neces-

sary to re-adjust the parameters for step size

and momentum. The approaches optimized

using LBFGS perform significantly better,

but not better than k-Nearest-Neighbor.

One can see slightly better results with a

smaller hidden layer, so it might be helpful

to further reduce the complexity of the net-

work. Maybe the training data was just too

small to train the neural network sufficiently.

Unfortunately, up until now we were unable
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Figure 5.5: Scores for Multilayer Perceptron with different parameters for step 2

to find a suitable network that could solve our problem sufficiently well. The results for

different parameters of random forest are in contrast quite pleasing, as one can see in

Figure 5.3. Although the negative predictive value is still clearly worse than the other

metrics, it is still significantly better than with the other models. Apart from that one

can see a slightly better result with entropy. The number of decision trees also has a

positive effect on the result. The fact that random forest scores much better in every

respect than the other models makes the decision for the right model a simple one. The

comparison of the Matthews correlation coefficient and the F1 score of the best models

of the respective category in Figure 5.4 emphasizes the superiority of random forest once

again. While the average MCC value for the best neural network is slightly above 0.3, it

is about 0.6 for k-Nearest-Neighbor and almost 0.8 for random forest. Also the F1 score

with a value of about 0.95 is much better with the random forest than with the other

models.

5.1.2 Anomaly Type Identification

For the evaluation of step 2 we consider a quantity of 86, 458 anomalies from 2, 000 flights.

The anomalies are extracted in sizes of 10. The context size is set to 10 and the buffer
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Figure 5.6: Scores for k-Nearest-Neighbor with different parameters for step 2

is set to 0. Furthermore, no minimum size of the anomaly is specified, i.e. all anomalies

are considered. Each value is the mean value of a stratified 5-fold cross validation. The

training data was each time extended by synthetic data using SMOTE. The results for

the multilayer perceptron for different parameters are depicted in Figure 5.5. They

show that the neural network is the least convincing model. The overall accuracy is

just about 57% in the best case and less than 10% in the worst case. However, note

that accuracy is a very strict evaluation method, since it only considers an input to be

correctly classified if all labels have been correctly classified. Nevertheless, the result

is not convincing, since even the less strict F1 scores are only just around 80%, micro-

averaged and about 60% macro-averaged. The large discrepancy between micro and

macro average values indicates that elements of a less common class are poorly classified

in this case. Since GPS anomalies are less common, they are probably the cause for

the discrepancy. The overall weaker performance of stochastic gradient descent indicates

that the parameters for this procedure were not chosen optimally. Furthermore, one can

see that smaller networks perform slightly better in comparison. Thus, it might again

be worth considering reducing the complexity of the network.

Surprisingly, k-Nearest-Neighbor is significantly more convincing as one can see in

Figure 5.6. One can see that the accuracy reaches almost 70%. However, the number
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Figure 5.7: Scores for random forest with different parameters for step 2

of neighbours hardly affected the result which is why this model probably does not have

much room for improvement. Again there is a significant discrepancy between micro

and macro average values for the same reason. Especially the discrepancy of precision

micro and macro average catches the eye. It indicates that possibly many anomalies were

wrongly classified as GPS anomalies. Nevertheless, altogether the result of k-Nearest-

Neighbor is acceptable, if one considers the simplicity of the algorithm.

The best result by far was achieved by random forests as one can see in Figure 5.7. With

an accuracy of over 80%, this result is pretty good. The discrepancy between micro and

macro average values is also much smaller with random forests, but still present. The

difference in negative predictive value could indicate that some GPS anomalies were not

detected. The very small difference in the results for different parameters indicates that

further improvements are difficult to achieve here. Nevertheless, that does not change

the fact that the result is already very good.

Figure 5.8 compares the three models with the best parameters. Here again the clearly

better result of random forest becomes apparent. But even the results of k-Nearest-

Neighbor can sometimes keep up. However, the neural network is far behind. Again one

can see that random forests are superior to the other approaches in every respect and

are chosen for the final evaluation.
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Figure 5.8: Comparison of best scores for each model

5.1.3 Anomaly Scoring

For the evaluation of step 3 we considered the same quantity of 86, 458 anomalies of the

same 2, 000 flights as in step 2. Once again each model is evaluated with the help of

a stratified 5-fold cross-validation. The results for the speed regressors are depicted in

Figure 5.9. The graphic shows the results of the error functions explained in Section 2.2.4

on a logarithmic scale. In contrast to the score functions shown in the previous sections,

a lower value is better here. One can see that k-Nearest-Neighbor is the worst overall

in comparison. Although the mean squared error and the maximum error decrease with

increasing k, the mean absolute error and the median absolute error increase slightly.

Nevertheless it might be interesting to check the performance for even higher k since we

prefer a minimization of the mean squared error. A slightly better result was achieved

by the neural network, with the exception of the case with high complexity and high α.

It is interesting to observe that stochastic gradient descent and LBFGS behave exactly

the other way around this time. With stochastic gradient descent we achieve slightly

better results than with LBFGS. The size of the network does not show any correlation.

Although the errors increase significantly with high network complexity and high α, this

is not the case with lower α. Here, in fact, the more complex network performs better.
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Figure 5.9: Different error functions for the different models with different parameters
for the regression of speed

The best performance was once again achieved by the random forests. However, the

number of decision trees hardly changes the result which could indicate that performance

cannot be improved significantly. It is noticeable that with all approaches the maximum

error is very high. However, by looking at the median absolute error and the mean

absolute error, one can see that such a high error is rather rare. A similar situation

can be seen with the regressors for GPS anomalies as depicted in Figure 5.10. Once

again, k-Nearest-Neighbor performs worst and random forest performs best. A change

in the number of neighbours or the number of decision trees causes a hardly visible

change in the result again. Interestingly enough, the neural network performs best with

high network complexity and high α which is in strong contrast to the previous chart.

Moreover, a worse performance is no longer recognizable with the LBFGS minimization.

The maximum error this time is slightly lower on average than for speed anomalies.

However the mean absolute error is on the other hand slightly higher. Last but not

least we consider the performance of regressors for wind anomalies in Figure 5.11. Here

the neural network shows the worst performance and random forest once again the best

performance. k-Nearest-Neighbor is about in the middle. However, the result seems to

get worse with higher k. The performance of the network is worse again with LBFGS

minimization. As with speed, a significant decrease of the result can be seen here again

with high α and high network complexity. Compared to the other two cases, the overall

error here is lower. Nevertheless, the maximum error is still very high. Figure 5.11

compares the R2 score of the best regressors of each type for each anomaly. First of all,
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Figure 5.10: Different error functions for the different models with different parame-
ters for the regression of GPS glitches

Figure 5.11: Different error functions for the different models with different parame-
ters for the regression of wind



Evaluation 55

Figure 5.12: R2 scores for the best regressors for each anomaly type

one can see that all regressors achieve better results than a simple regressor that just

returns the average value, albeit only slightly in the case of GPS anomalies and k-Nearest-

Neighbor. Since k-Nearest-Neighbor only considers neighbors with the least euclidean

distance, it is understandable that neighbors with strong jumps in the positions are not

as close as for example neighbors with similar speed or pitch and roll. This could explain

the poor performance of k-Nearest-Neighbor on GPS anomalies. The performance of

random forest is clearly superior to the average regressor, even though it drops on wind

anomalies. The underlying training data may not be scored correctly in case of wind

anomalies. Since random forest performs better in every aspect than the other two

models, the decision for the right regressor is once again easy.

5.2 Evaluation of the Composition

For the evaluation of the composition we consider a total number of 61, 205 flights. we

take 80% of the data as training set and 20% for evaluation. We make use of the classifiers

and regressors that achieved the best results in the previous evaluation. The results of

the previous steps will now serve as input for the succeeding steps. We start off with

step 1. Table 5.1 shows the absolute results of all sampling points of the remaining

Table 5.1: confusion matrix for step 1

Correct \ Predicted Anomalous Normal
Anomalous 4, 862, 739 124, 128

Normal 89, 574 2, 268, 159

12, 241 flights. It describes the sum of the results of all 600 classifiers. According to this
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Figure 5.13: Result of step 2 for different tolerance values and anomaly size 10

table the overall precision is about 98% and recall is about 97%. On the other hand

the negative predictive value is about 95% and specificity 96%. Matthews correlation

coefficient results in 0.93. Averaging over the results of the single classifiers results in a

slightly worse overall result here the precision decreases to about 95%. Recall remains

at about 97%. Specificity drops slightly to 92%. However, the negative predictive value

drops sharply to only about 84%. For this reason the Matthews correlation coefficient

drops to only about 0.84. This is mainly due to the classifications at the beginning and

end of a flight. There are very few anomalies and the classifiers do not have enough

data to recognize the small number of anomalies as anomalous. All in all, the result

is consistent with the result in the previous evaluation. The higher number of flights

has improved the result, but not significantly. Nevertheless, the result is very good and

minor errors can still get fixed in step 2 with the help of the buffer.

The evaluation of step 2 based on the data of step 1 is a bit more involved. We first have

to define when a classification is correct and when it is not. We say that a classification

of a segment is correct if there is a manually classified segment nearby with the same

label. More formally, let sp, tp ∈ {1, ..., 600} be the starting point and ending point of

a predicted anomaly in a flight with 600 sampling points. Given a tolerance value ε,

we say that a label l is correct for (sp, tp), iff there is an anomaly (sc, tc) in the correct
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classification with the same label l such that |tp − tc|+ |sp − sc| < ε. The anomalies are

extracted in sizes of 10. The context size is set to 10 and the buffer is set to 5. The

minimum size of an anomaly is 0. Figure 5.13 shows the result for different values for the

tolerance ε. One can see that the result is pretty bad for a tolerance of 0. However, this

scenario is quite unrealistic. It is unlikely that the predicted anomalies will start and

stop at exactly the same sampling point as the correct anomalies. Besides, there is no

need for that to be the case. A slight deviation at the start and end of an anomaly is not

significant as long as it is at least detected. The recall value is nevertheless very high.

This means that if the anomalies overlap exactly, then the type was correctly predicted

most of the time. On the other hand, the negative predictive value is also very high.

This is due to the fact that most correct anomalies do not have a type as only very few

anomalies are found at a tolerance of 0. With increasing tolerance the other values also

increase. With a tolerance of 10 we get pretty good values for all measures above 80%.

We consider a tolerance of 10 to be justifiable, since a sufficiently precise determination

of the position of the anomaly is still given. Table 5.2 shows the underlying data for the

Table 5.2: confusion matrices for step 2 with tolerance t = 10 and anomaly size 10

Correct \ Pred. Speed No Speed
Speed 325, 334 25, 480

No Speed 16, 172 119, 828

Correct \ Pred. GPS No GPS
GPS 6, 227 837

No GPS 1, 558 478, 192

Correct \ Pred. Wind No Wind
Wind 358, 036 30, 434

No Wind 29, 583 68, 761

results with a tolerance of 10. One can see that all types were classified similarly well. To

verify the effect of the chosen size of the anomaly, we checked step 2 with anomaly size 20

as well. Context size, buffer and minimum size remain the same. The result is depicted

in Figure 5.14. First of all, it is noticeable that we had to increase the tolerance in order

to achieve similar results as with the smaller anomaly size. This makes sense because the

anomalies can now be further away from each other. However, with a tolerance value of

15, the results are still worse than with an anomaly size of 10 and a tolerance value of

10. This becomes particularly clear with the accuracy, which is now only around 70%.

But also specificity dropped to about 74% which means the number of false positives has

increased. Table 5.3 shows the results in detail for a tolerance of 15. One can see that all

results have become significantly worse. Although there are fewer anomalies overall, the

number of misclassifications is very often even higher than with the previous settings. It

is particularly noticeable that only half of all non-wind anomalies were detected as such.

In general, it can be said that the smaller anomaly size provides a more precise result

not least because of the lower tolerance value.

For the evaluation of step 3 we proceed in a similar way. We take the score of the
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Figure 5.14: Result of step 2 for different tolerance values and anomaly size 20

Table 5.3: confusion matrices for step 2 with tolerance t = 10 and anomaly size 20

Correct \ Pred. Speed No Speed
Speed 159, 372 23, 622

No Speed 22, 751 66, 487

Correct \ Pred. GPS No GPS
GPS 4, 234 1, 249

No GPS 712 266, 037

Correct \ Pred. Wind No Wind
Wind 186, 935 18, 031

No Wind 34, 701 32, 565

anomaly that is closest and still within the tolerance. If there is none nearby the score is

set to 0. Figure 5.15 shows the R2 scores for the three regressors for different tolerance

values and an anomaly size of 10. For values less than or equal to 4, all regressors are

worse than the average baseline. Probably no anomaly is found nearby and therefore

many scores are set to 0. With a tolerance of 10 we get very close to the results in the

first step. Thus one can say that the errors in the previous steps worsen the results of

the subsequent steps, but not in such a way that the approach becomes unusable. It is

interesting to know how the score distribution is on the failed and successful flights. The

result of the classifiers shows that they are cautious in assigning higher scores. About

69% of all failed flights get a total summed score of more than 500. However, 95% of all
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Figure 5.15: Result of step 3 for different tolerance values and anomaly size 10

flights with a summed scoring of over 500 are also failed flights. In comparison, for our

manually generated scores 83% of the failed flights had a summed score of over 500 and

76% of the summed scores with a value of over 500 were failed flights.

The results for an anomaly size of 20 can be seen in Figure 5.16. Here the result is

significantly worse, especially in the case of speed anomalies, despite a higher tolerance

value. Up to a tolerance of 10 they are even worse than the average base regressor. It

becomes clear once again that with smaller anomaly sizes significantly better results can

be achieved. The summed scores can no longer sufficiently separate the failed flights

from the successful flights at an anomaly size of 20. Only about 34% of all failed flights

also get a summed score of over 500. Though, 99% of all flights with a score of over 500

are also failed flights. Nevertheless, the result is significantly worse for this anomaly size.

Again, in comparison, for our manually generated scores 75% of the failed flights had a

summed score of over 500 and 83% of the summed scores with a value of over 500 were

failed flights.
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Figure 5.16: Result of step 3 for different tolerance values and anomaly size 20

5.3 Rotated and Relocated Mission

While steps two and three can in principle be applied to any possible mission, this is

not the case with step 1. In step 1, the classifiers are created for exactly one specific

mission. We show on a relocated and rotated mission, that even this small change

worsens the result significantly. Our new mission starts at Mount Sunday1 and takes

the same route as the previous one, but rotated 90 degrees. the training data are the

same as in the evaluation of the composition. The test data are 2000 flights on the new

mission. The result is depicted in Table 5.4. This results in an overall precision of about

Table 5.4: confusion matrix for step 1 for a rotated and relocated mission

Correct \ Predicted Anomalous Normal
Anomalous 658, 858 158, 693

Normal 199, 959 138, 090

76% and a recall of about 80%. The negative predictive value is now only at about

46%. Specificity is even worse and only at about 40%. This results in a poor Matthews
1Mount Sunday served as a location for the Lord of the Rings trilogy by Peter Jackson [73], based

on the books of J.R.R. Tolkien [74]. It was the setting for Edoras the capital of Rohan.



Evaluation 61

correlation coefficient of just 0.22. Averaging over the results of the single classifiers the

values get even worse. Precision drops to about 74 %, recall to 80%. Specificity drops to

34% and the negative predictive value is slightly better with 63%. Matthews correlation

coefficient therefore results in about 0.2. The results clearly show that the approach is

not robust against changes in the mission. Although one could make the normalization

rotation-independent, as we did in step 2, we could still not use new routes.
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Limitations & Future Work

This work is a first approach towards identifying the causes of failures of system runs, in

our case drone flights. In the evaluation we discussed the overall approach and our results.

However, there remain issues which can be tackled in future work. In the following we

describe disadvantages and limitations of our approach and outline possible solutions.

Anomaly Detection

One of the biggest drawbacks is the great amount of classifiers we have to deal with

in the first step. The problem lies in the fact that a high number of classifiers leads

to high computational complexity and consequently a long computing time. While the

computation can be parallelized, it still requires many CPU cores to achieve quick results.

Apart from that, this approach does not scale well. This is because the number of

classifiers is constant. Thus, for longer system runs the sampling rate increases, yielding

less accurate results. Here we find ourselves in a trade-off scenario, because if more

classifiers were to be added, this would in turn lead to an increased runtime. Another

limitation is that the classifiers specialize only in one specific run of the system. In our

case this corresponds to a fixed drone flight. As an alternative to many classifiers, an

approach with a single classifier would also be conceivable. Such a classifier would than

distinguish between normal and abnormal behavior of the system and no longer have to

specialize in just one particular mission. However, this would require much more training

data and was therefore not feasible for the scope of this work. Another option would

be to replace the first step with a combination of a runtime verification tool for rough

fault location and our approach to Failure Analysis. The purpose of this work, however,

was to create a purely machine learning based analysis. Finally, another solution for this

could lie in the methods that are also used for natural language processing (NLP) [75].

We see the parallels between NLP and our approach in the fact that we do not know

how big the input is, neither for sentences nor for system runs. In order to deal with this
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problem, NLP offers, among other things, the approach of recurrent neural networks1

(RNN). The idea is that the network receives the input sentence word for word and

"stores" the information of the sentence in the process. Such an approach would allow

us to store more information about the flight in the network in order to make more

accurate decisions for each sampling point.

Anomaly Type Identification

A further limitation is that there may be anomaly types whose correct classification

would require consideration of the entire lifetime of the anomaly. For our drone example,

this is not the case with the anomaly types we are looking at, as they have distinct

characteristic differences that show up directly at the beginning of the anomaly and can

be unambiguously classified. An increase of the sample points to be considered would,

however, make the classification more difficult, since this in turn meant more features

for the classifier. Once again one could use natural language processing approaches here,

since we do not know the duration of an anomaly in advance. This could solve the

aforementioned problem, because we could also "store" information across the lifetime

of the anomaly in the RNN.

Anomaly Scoring

Another limitation is the evaluation system to identify the main causes of failed flights.

Although we consider only a small number of anomalies, it was not possible to set pa-

rameters in a way that would strictly separate the failed flights from the successful ones.

There were still enough flights that failed and received a score that was too low and those

that did not fail and received a score that was too high. Apart from that, the current

approach does not allow for causal chains. This means that anomalies are always re-

garded as a direct cause of failure. Here, for example, a further step could be introduced

as a solution to establish relationships between anomalies. Again, one may be inspired

by natural language processing, where it is important to relate words to other words in

the sentence.

On a more general note, it might also be interesting to find out why neural networks

have performed rather poorly. Although we have tested various configurations, possible

sources of error may still lie in the selection of parameters and network depth. It is also

possible that a significantly higher number of training data is required. However, an

evaluation with even more data was not possible within the scope of this thesis.

1A recurrent neural networks allows connections of neurons with neurons of the same layer or previous
layers which makes it a generalization of Elman networks.
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Conclusion

We presented an approach for identifying and analyzing anomalies in a system with

the help of machine learning. To evaluate this approach, we chose the scenario of an

autonomously flying drone where three different anomalies could occur: a gust of wind,

wrong GPS inputs or insufficient speed. The evaluation on this example scenario has

shown that the approach is capable of detecting abnormal behavior and filtering out the

most relevant anomalies. Under the assumption that the previous steps deliver perfect

results, the individual steps are highly convincing. With random forests, step 1 achieves

an MCC of 0.84 as the average value of all classifiers for a quantity of 61, 205 flights.

If one considers the sum of all confusion matrices an MCC value of 0.93 is reached.

Step 2 achieves a subset accuracy of over 85% at a quantity of 86, 458 anomalies with

random forests. The macro-averaged values show that there is little discrepancy in the

classification performance of underrepresented anomalies. For the same anomalies step

3 achieves an R2 score of about 0.64 for wind anomalies and slightly below 0.8 for GPS

and speed anomalies using random forests.

The composition of all three steps achieves a similarly good result with respect to the

weakened assumptions. Here we could still achieve a subset accuracy of more than 80%

in step 2 with an anomaly size of 10. A similarly slight decrease can be found in step 3,

where we still reach an R2 score of slightly less than 0.75 for GPS and speed anomalies

and about 0.55 for wind anomalies.

The evaluation on a rotated mission has shown that the approach also has significant

weaknesses, especially in step 1. These could be eliminated in future work. Overall,

it can be said that the approach is capable of delivering useful results that can help a

failure analyst investigate the cause of the failure.
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Appendix A

Copter default parameters

For a simulated UAV we can define several default values to better adapt it to one’s own

needs. The default values for our copter are depicted in Figure A.1. We will provide a

short description of these values in the following.

I EK2_ENABLE enables or disables the extended Kalman filter to estimate, for

example, the current position.

I FRAME_TYPE determines the alignment of the motors. 0 means that they are

adjusted like a "+" sign.

I MAG_ENABLE enables or disables the compass.

I FS_THR_ENABLE enables or disables a software based throttle failsafe. 1 means

that it returns to launch in such a case.

I BATT_MONITOR enables or disables monitoring of the battery.

I COMPASS_OFS* determines the offset of the compass to its respective axis.

I COMPASS_LEARN enables or disables automatic learning of the previously men-

tioned offsets.

I FENCE_RADIUS determines a circle around the launch that triggers a specific

action if it is exceeded.

I FRAME_CLASS determines the type of copter, which is a quadcopter in this case.

I RC* values are for the remote control, which is not relevant for us.

I FLTMODE* allow flight mode changes for different channel PWMs.

I SUPER_SIMPLE enables or disables the super simple mode, which is not relevant

for us.
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1 EK2_ENABLE 1
2 FRAME_TYPE 0
3 MAG_ENABLE 1
4 FS_THR_ENABLE 1
5 BATT_MONITOR 4
6 COMPASS_LEARN 0
7 COMPASS_OFS_X 5
8 COMPASS_OFS_Y 13
9 COMPASS_OFS_Z -18

10 COMPASS_OFS2_X 5
11 COMPASS_OFS2_Y 13
12 COMPASS_OFS2_Z -18
13 FENCE_RADIUS 150
14 FRAME_CLASS 1
15 RC1_MAX 2000.000000
16 RC1_MIN 1000.000000
17 RC1_TRIM 1500.000000
18 RC2_MAX 2000.000000
19 RC2_MIN 1000.000000
20 RC2_TRIM 1500.000000
21 RC3_MAX 2000.000000
22 RC3_MIN 1000.000000
23 RC3_TRIM 1500.000000
24 RC4_MAX 2000.000000
25 RC4_MIN 1000.000000
26 RC4_TRIM 1500.000000
27 RC5_MAX 2000.000000
28 RC5_MIN 1000.000000
29 RC5_TRIM 1500.000000
30 RC6_MAX 2000.000000
31 RC6_MIN 1000.000000
32 RC6_TRIM 1500.000000
33 RC7_MAX 2000.000000
34 RC7_MIN 1000.000000
35 RC7_OPTION 7
36 RC7_TRIM 1500.000000
37 RC8_MAX 2000.000000
38 RC8_MIN 1000.000000
39

40 RC8_TRIM 1500.000000
41 FLTMODE1 7
42 FLTMODE2 9
43 FLTMODE3 6
44 FLTMODE4 3
45 FLTMODE5 5
46 FLTMODE6 0
47 SUPER_SIMPLE 0
48 SIM_GPS_DELAY 1
49 SIM_ACC_RND 0
50 SIM_GYR_RND 0
51 SIM_WIND_SPD 0
52 SIM_WIND_TURB 0
53 SIM_BARO_RND 0
54 SIM_MAG_RND 0
55 SIM_GPS_GLITCH_X 0
56 SIM_GPS_GLITCH_Y 0
57 SIM_GPS_GLITCH_Z 0
58 INS_ACCOFFS_X 0.001
59 INS_ACCOFFS_Y 0.001
60 INS_ACCOFFS_Z 0.001
61 INS_ACCSCAL_X 1.001
62 INS_ACCSCAL_Y 1.001
63 INS_ACCSCAL_Z 1.001
64 INS_ACC2OFFS_X 0.001
65 INS_ACC2OFFS_Y 0.001
66 INS_ACC2OFFS_Z 0.001
67 INS_ACC2SCAL_X 1.001
68 INS_ACC2SCAL_Y 1.001
69 INS_ACC2SCAL_Z 1.001
70 INS_ACC3OFFS_X 0.000
71 INS_ACC3OFFS_Y 0.000
72 INS_ACC3OFFS_Z 0.000
73 INS_ACC3SCAL_X 1.000
74 INS_ACC3SCAL_Y 1.000
75 INS_ACC3SCAL_Z 1.000
76 MOT_THST_EXPO 0.5
77 MOT_THST_HOVER 0.36
78

Figure A.1: Default parameters for the copter

I SIM* values simulate abnormal behaviour, like GPS glitches or wind gusts.

I INS* values set the accelerometer scalings and offsets.

I MOT_THST_HOVER sets motor thrust needed to hover.

I MOT_THST_EXPO determines the thrust curve of the motor.
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