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Abstract

We present an automata based verification framework to monitor a running sys-
tem against a high level specification. Our framework includes specification for-
malisms to express system properties and verification algorithms to check an exe-
cution trace of a system against the intended behavior.

Linear Temporal Logic(LTL) is a widely used specification language to ex-
press temporal properties of a system. We presentBounded Temporal Logic
(BTL), which extends LTL by parameterizing temporal operators with time
bounds. As compared to LTL, BTL is a natural and a more compactformalism to
express time-bounded temporal properties.

In automata based verification,alternating automata(AA) are commonly used
as intermediate representations of LTL specifications, because of their succinct-
ness and linear translations from LTL formulae. However, the translation from
BTL formulae to AA is exponential. We presentmetric alternating automata
(MAA), a variant of AA, and a linear translation mechanism from BTL formulae
to MAA.

A collection of algorithms, based on MAA, are presented to monitor anex-
ecution traceagainst a BTL specification. We start with specialized algorithms
for different sublogics of BTL, and then present agenericalgorithm which han-
dles all the sublogics of BTL (including LTL) and performs asefficiently as the
corresponding specialized algorithms for those sublogics.
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Chapter 1

Preliminaries

1.1 Introduction and Motivation

This thesis presents a framework to monitor running systemsagainst high level
specifications. Our framework includes specification formalisms to express
system properties and verification algorithms to monitor a system execution
against the intended behavior.Linear-time Temporal Logic(LTL) [15] is a widely
used specification language to model the properties of reactive systems. Several
verification tools based on LTL have been developed in academia and in industry.
Generally, the temporal properties expressed in LTL are interpreted over an
infinite moment in future. LTL can also be used to express temporal properties
that are interpreted over a finite moments in future by using asequence of next
operators . However, this approach is adequate only if thosefinite moments are
very small in number. We presentBounded Temporal Logic(BTL) as a compact
alternative to LTL. In BTL, temporal operators are parameterized with both
finite and infinite time bounds. For example, we want a system to behave in the
following way:
Always, when a processP is permitted to enter the critical sectionS, it will
eventually leaveS within n system steps.
Let p represents the proposition “P entersS”and q the proposition “P leavesS”,
then the above property can be expressed in BTL as follows:

�[0,∞](p→ ♦[0,n−1]q).

One may argue that the same property can also be expressed in classical LTL,
usingn next operators, as follows:

�(p→ (q ∨©(q ∨©(...(q ∨©q)...))).

1



2 CHAPTER 1. PRELIMINARIES

However, the size of the specification is exponentially larger compared to the BTL
formula.

BTL not only expresses system properties in a compact form, but also leads
to better complexity of the verification algorithms, which are discussed in Chap-
ter 4. BTL can also be seen as a special case ofmetric temporal logic (MTL)
with discrete time intervals. MTL, which was introduced by Koymans in [13], is
an extension of LTL used to express quantitative temporal properties of reactive
systems.

In the automata-theoreticapproach to verification, a verification problem is
first reduced to anautomata-theoreticproblem [4], such as taking the intersection
of two automata, emptiness checking, membership checking etc. Therun-time
verification problem can be reduced to the membership checking problem of au-
tomata [8], i.e., a trace of the system execution satisfies the specification, if it is
accepted by the corresponding specification automaton.

Alternating automataare efficient datastructures forrun-timeverification due
to their succinctness and linear translation from LTL specifications [8]. Alter-
nating automata, in the context ofrun-timeverification, were first studied in [6],
where a collection of algorithms based on alternating automata is presented. The
algorithms traverse the trace in different ways, i.e.,Breadth-First, Depth-Firstand
Reverse. Two of the algorithms,Depth-FirstandReverse, need the trace of the
system execution to be available offline. TheBreadth-Firstalgorithm can work
online, but it has an exponential space complexity in the size of input formula.

We introducemetric alternating automata(MAA) and a translation mecha-
nism from BTL formulas to MAA. MAA extendalternating automataby intro-
ducing time constraints on transitions. A transition is enabled in MAA, if and
only if, the corresponding time constraint is fulfilled. Ouralgorithms monitor a
system execution against an intended behavior by checking whether a given ex-
ecution traceρ is accepted by the specification automatonA. Three algorithms,
theForward-Backwardalgorithm, theOptimized Breadth-Firstalgorithm and the
Genericalgorithm are presented to checkρ againstA. TheForward-Backward
unrollsA into a DAG (directed acyclic graph)G and then traversesG backwards to
detect an accepting runρ inA. The space complexity of the algorithm is quadratic
in the size ofA and linear is the size ofρ. TheOptimized Breadth-Firstalgorithm,
which extends theBreadth-Firstalgorithm presented in [6], has space complexity
constant inρ and exponential inA. The algorithms outperform each other for
different sublogics of BTL. TheGeneric algorithm, presented in Chapter 4, com-
bines theBreadth-FirstandForward-Backwardalgorithm to optimize the overall
complexity.

For a BTL specificationϕ and an execution traceρ, theGenericalgorithm, in
the worst case, runs in spaceO(C |ϕ|) and timeO(C |ϕ| ∗ |ρ|), whereC is the max-
imum integer constant appearing inϕ. For the same specification when translated
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into classical LTL, the best known algorithms run in spaceO(2C∗|ϕ|) and time
O(2C∗|ϕ| ∗ |ρ|).

We also present a restricted sublogic of BTL, calledSlightly-restricted
Bounded Temporal Logic(SBTL). SBTL is strong enough to express most of
the system properties commonly used in practice. For SBTL formula, the space
complexity of theGenericalgorithm reduces toO(|ϕ| ∗ C2 ∗ 22(|ϕ|)).

1.2 Background

1.2.1 Linear Time Temporal Logic

Linear time temporal logic(LTL) is based on a linear model of time. Linear time
means that each moment in time has one and only one successor.Time is bounded
in the past (i.e., we have a start time) and unbounded in the future (i.e., there are
infinitely many moments in the future). Reactive systems areknown for their
ongoing interaction with their surroundings and their non-terminating behavior
[2]. Thus, a system execution is an infinite sequence of states. The correctness
of a system execution is proved by checking the temporal ordering of the infinite
state sequence. Temporal logic is a simple and natural way tospecify the ordering
of events without referring to absolute time measures.

Temporal properties are mainly classified intosafety properties andliveness
properties [17]. Asafetyproperty asserts that “nothing bad”will happen in future,
while a livenessproperty asserts that “something good”will eventually happen in
future. TheMutual exclusionproblem is a famous example of asafety property
[2], where we require that no two processes are able to accessa shared resource
simultaneously. An example of alivenessproperty is theguaranteed service[2],
where it is required that each request for a certain resourceis eventually enter-
tained.

1.2.2 Run-Time Verification

Model checking(MC) [16] is a widely used technique to prove a system’s design
correctness against a formal specification. Despite intensive research, applications
of MC are mostly restricted to finite state systems. Softwaremodel checkingis
extremely hard due to the large (possibly infinite) state space to be explored. Thus,
MC is mostly used for verifyingCommunication Protocols, Hardware Circuitsor
some abstract representations ofSoftware Systems. Since one can not completely
rule out possible differences between the actual implementation and the abstract
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model, verifying an abstract model does not guarantee the correctness of the actual
system.

One of the alternatives is to check the system while it is running. The research
community has proposedrun-time verification as an light-weight alternative to
MC for Software Systems[6]. In run-time verification, a particular trace of the
system execution is verified against a formal specification,instead of exploring the
whole state space. Although, not as comprehensive as MC,Run-timeverification
has a lot of attention in recent years in the area of software verification.

1.2.3 Alternating Automata

In automata based verification, a verification problem is reduced to a known
automata-theoreticproblem. Unfortunately, most of the operations on nondeter-
ministic automata are very costly and are not feasible in many cases.Alternating
automataare efficient data structures for verification purposes. Forexample, the
complementation of a nondeterministic automaton is exponential, while comple-
mentation of analternating automatonis a linear operation.

Alternating automata generalize nondeterministic automata by allowing a
choice to be marked as either universal or existential. A universal choice means
that a word is accepted if all the paths through the automatonlead to acceptance.
An existential choice means that a word is accepted if one of the paths through
the automaton leads to acceptance. A run of a nondeterministic automaton is
a sequence of states, whereas a run of analternating automaton, because of
universal choice, is a tree.

1.3 Overview

We begin with an introduction ofmetric alternating automata (MAA) and
Bounded Temporal Logic(BTL ) in Chapter 2. In Chapter 3, we present veri-
fication algorithms based on MAA, and analyze their complexities. In Chapter 4,
we present theGenericalgorithm and analyze its complexity for different sublog-
ics of BTL. Chapter 5 constants the concluding remarks aboutour work. A brief
tutorial of the online monitoring tool ’OPrA’, which implements the framework,
is presented in the appendix.



Chapter 2

Metric Alternating Automata

2.1 Introduction

In the automata-theoretic approach to verification, a verification problem is first
reduced to an automata-theoretic problem, and then solved by the methods known
already for automata. The most common practice is to translate thetemporal logic
specificationϕ into anautomatonA, and then perform different operations onA.
For example,runtime monitoring of a system’s execution can be reduced to the
membership checkingproblem. We use a similar approach to the one discussed
in [6], where an LTL formulaϕ is translated into analternating automatonA and
then a given execution traceρ is checked againstA for acceptance.

In our framework, we useBounded Temporal Logic(BTL), presented in Sec-
tion 2.4, to express time-bounded temporal properties. Thetranslation from a BTL
formula to analternating automatonis exponential. We introduce a variant ofal-
ternating automata, calledmetric alternating automata(MAA). MAA associate
time-bounds on transitions, which leads to a linear translation from BTL formulae
to MAA.

Metric alternating automata, like alternating automata, allow dual branching
modes, that is, a universal branching mode and an existential branching mode.
Universal branching, represented by conjunction over subautomata, means that
a state sequence is accepted by the automaton if all paths lead to acceptance,
whereas existential branching, represented by disjunction over subautomata,
means that a state sequence is accepted if any of the path leads to acceptance.
Nodes ofmetric alternating automataare marked as either accepting or rejecting,
represented by1 and0 respectively. A run of ametric alternating automaton, due
to conjunction over subautomata, is a tree instead of a sequence of states in case
of nondeterministic automaton. Arun tree is accepting if every path in the tree
ends at anaccepting node.

5
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2.2 Syntax and Semantics

Definition 2.1. (Metric Alternating Automaton) Given a set of clocksC, a
metric alternating automatonA is defined as follows:

A ::= ǫA empty automaton
| N automaton node
| A ∧ A conjunction of two automata
| A ∨ A disjunction of two automata
| Ad metric sub-automaton

whereN is a node of ametric alternating automatondefined in Definition 2.2,
andd ∈ N ∪ {∞} is a metric.

Definition 2.2. (Node of a Metric Alternating Automaton) Given an input
alphabetQ, a nodeN of ametric alternating automatonis defined as follows:

N ::= 〈ν, acc〉 leaf node
| 〈F , δ, acc〉 timer node

where,

• ν ∈ Q is an input letter.

• δ is a sub-automaton expressing the next-state relation.

• F is a boolean function overN ∪ {∞}.

• acc ∈ B.

In general, a clock of atimed automatonrepresents the time elapsed since the
last reset. In our formalism, a clockc is a decreasing sequence of positive integers,
such thatci+1 = ci − 1 for all i > 0.

Nodes of ametric alternating automatonare classified into two types. A
leaf node that represents a state formulaν and a timer node represents a boolean
functionF over a set of clocks.

Example 2.1. Figure 2.1 illustrates the construction of ametric alternating
automatonA that specifies thetimed-languageL given below:
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n0

n1

n2

n3

true

t > 0
b

t−−

t := 4

¬a

Figure 2.1: Metric alternating automaton for the timed language L =
{σ|∀i.((σi |= a)→ ∃j > i.(σj |= b) andj − i ≤ 4)}

.

L = {σ|∀i.((σi |= a)→ ∃j > i.(σj |= b) andj − i ≤ 4)},
whereσi andσj represent theith and thejth input letter inσ respectively, andi, j
are positive integers.

The languageL consists of allsequencessuch that ifa holds at a certain posi-
tion, thenbmust holds within four time units. In simple words, we can saythat the
maximum distance between the position wherea holds and the positionb holds is
at most four time units.
The nodes of the automaton are graphically represented by rounded squares and
circles, as shown in Figure 2.1. A rounded square representsan accepting node,
while a circle represents a rejecting node. Anexecution traceis a member of the
languageL if it is accepted byA. Acceptance conditions ofA are discussed in
the sections to follow.

Definition 2.3. (Execution Trace) Given a setυ of system variable, an execution
traceρ : s0, s1, s2..., is an infinite sequence of states, where a statesi is a truth
assignment to the variables inυ .

2.3 Run of a Metric Alternating Automaton

In automata theory, a run of a nondeterministic automaton isa sequence of states.
However, a run of ametric alternating automaton, because of the conjunction
over sub-automata, is a tree.
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Definition 2.4. (Run Tree)A run tree of ametric alternating automatonis de-
fined as follows:

T ::= ǫT empty tree
| 〈N ,T〉 a node with a subtree
| T .T composition of two subtrees

whereN represents a node of a ametric alternating automaton.

Definition 2.5. (Run) Given anexecution traceρ and ametric alternating au-
tomaton A, a run treeT with an associated clockc is called a run ofρ in A if
one of the following conditions holds:

A = ǫA and T = ǫT

A = 〈ν, acc〉 and T = 〈〈ν, acc〉, ǫT 〉, andρ0 |= ν

A = 〈F , δ, acc〉 and
ρ 6= ǫ,T = 〈〈F , δ, acc〉, T ′〉,F(c) = true and
T ′, with a clockc− 1, is a run ofρ1, ρ2, ρ3... in δ.

A = A1 ∧A2 and
T = T1.T2,T1, with a clockc, is a run ofρ in A1,

andT2, with a clockc, is a run ofρ in A2.

A = A1 ∨A2 and
T ,with a clockc, is a run ofρ in A1

or T , with a clockc, is a run ofρ in A2.

A = Ad
0 and T, with a clockd, is a run ofρ in A0.

Definition 2.6. (Accepting Run) A run T of ametric alternating automatonA
is accepting if all the branches ofT end at accepting nodes.

Definition 2.7. (Model) An execution traceρ is a model of ametric alternating
automatonA, denoted asρ |= A if there exits an accepting run ofρ in A.

Definition 2.8. (Language) The language ofmetric alternating automatonA,
denoted asL(A), is the set of all models ofA.

Example 2.2. Figure 2.2 shows two runT1 and T2 of the metric alternating
automatonA (shown in figure 2.1) against two different input sequencesσ1 and
σ2 given below:

σ1 = 〈¬a, b〉 → 〈a,¬b〉 → 〈¬a,¬b〉 → 〈¬a,¬b〉 → 〈a,¬b〉 → 〈a, b〉
σ2 = 〈a, b〉 → 〈a,¬b〉 → 〈¬a,¬b〉 → 〈¬a,¬b〉 → 〈a,¬b〉 → 〈¬a,¬b〉.
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n3

n3n3
n3

T1
T2

Figure 2.2: RunsT1 and T2 of input sequencesσ1 andσ2 in the specification
automatonA, shown in Figure 2.1.

According to Definition 2.7,σ1 |= A if there is an accepting run ofσ1 in
A. The run treeT1 is accepting, by Definition 2.6, as all the branches end at
accepting nodes (n0, n1, n3). Thus,σ1 is a model ofA. On the other hand,σ2

producesT2 which, by our definition, is not accepting, as some of the branches
end at the rejecting node (n2), as shown in the figure. Since there does not exists
any accepting run for the input sequenceσ2, the sequence is rejected by the
specification automatonA andσ2 is not a model ofA.

2.4 Bounded Temporal Logic

We present TheBounded Temporal Logic(BTL) as an alternative specification
language toLinear-time Temporal Logic(LTL). LTL, discussed briefly in Chap-
ter 1, does not succinctly express thetime-boundedtemporal properties. BTL
allows one to express time-bounded temporal properties in anice compact form
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by parameterizing temporal operators with both finite and infinite time bounds.
The time-bounded properties, when expressed in BTL have size logarithmically
smaller compared to LTL.
For example, the property that “Always every p-state is followed by a q-state
within 100 time units” can be modelled in BTL as follows:

�[0,∞](p→ ♦[0,100]q).

Similarly, the property that “Within 20 system steps a p-state triggers an infinite
sequence of q-state” can be expressed in BTL as follows:

♦[0,19](p→ �[0,∞]q).

Definition 2.9. Bounded Temporal Logic(BTL) Given a set of propositions P,
Bounded Temporal LogicBTL can be inductively defined as follows:

ϕ := p

| ϕ ∨ ϕ
| ϕ ∧ ϕ
| �[x1,x2]ϕ

| ♦[x1,x2]ϕ

| ϕU[x1,x2]ϕ

wherep ∈ P is a proposition,x1, x2 ∈ N ∪ {∞} andx1 ≤ x2 ≤ ∞.

Given anexecution traceρ, a state formulaP , BTL formulaeϕ andψ, a BTL
formula holds at position 0≤ j < |ρ| , written as (ρ, j) |= ϕ, is formally described
as follows:

For a state formula:

(ρ, j) |= p iff the assertion p holds atρj .

For the boolean connectives:

(ρ, j) |= ϕ ∧ ψ iff (ρ, j) |= ϕ and(ρ, j) |= ψ

(ρ, j) |= ϕ ∨ ψ iff (ρ, j) |= ϕ or (ρ, j) |= ψ.

(ρ, j) |= ϕ iff (ρ, j) 2 ϕ

For temporal operators

(ρ, j) |= �[x1,x2]ϕ iff (ρ, i) |= ϕ for all i ∈ [x1 + j, x2 + j]
(ρ, j) |= ♦[x1,x2]ϕ iff (ρ, i) |= ϕ for somei ∈ [x1 + j, x2 + j]
(ρ, j) |= ϕU[x1,x2]ψ iff (ρ, i) |= ψ for somei ∈ [x1 + j, x2 + j] and

( x1 + j = i or (ρ, k) |= ϕ for all k ∈ [x1 + j, i− 1] ) ,
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wherex2 + j < |ρ|.

(ρ, j) |= �[x1,x2]ϕ iff (ρ, i) |= ϕ for all i ∈ [x1 + j, |ρ| − 1]
(ρ, j) |= ♦[x1,x2]ϕ iff (ρ, i) |= ϕ for somei ∈ [x1 + j, |ρ| − 1]
(ρ, j) |= ϕU[x1,x2]ψ iff (ρ, i) |= ψ for somei ∈ [x1 + j, |ρ| − 1] and

( x1 + j = i or (ρ, k) |= ϕ for all k ∈ [x1 + j, i− 1] ) ,

where,x1 + j < |ρ| ≤ x2 + j.

(ρ, j) |= �[x1,x2]ϕ always true
(ρ, j) |= ♦[x1,x2]ϕ always false
(ρ, j) |= ϕU[x1,x2]ψ always false,

where,x1 + j ≥ |ρ|.

Given BTL formula ϕ and Ψ, weak until W and dual untilR operators
can be expressed as follows:

• (ρ, j) |= ϕW[x1,x2]ψ ≡ (ρ, j) |= ϕU[x1,x2]ψ or (ρ, j) |= ♦[x1,x2]ϕ

• (ρ, j) |= ϕR[x1,x2]ψ ≡ (ρ, j) |= ¬(¬ϕU[x1,x2]¬ψ)

Note 2.1. BTL does not support the the next operator, however♦[1,1]ϕ can be
used to specify thatϕ holds at the next state.

2.5 BTL to MAA translation

In this section, we present the translation from a BTL formula to a MAA. To make
the translation from a specification to an automaton more readable, we define
translation functionsΨ0, Ψ1, Ψ2, Ψ3 andΨ4 which we later use in the construction
of the MAA. Given MAA A,A1,A2 , the translation functionsΨ0, Ψ1, Ψ2, Ψ3

andΨ4 are be defined as follows:

Ψ0(A) = (〈λx. x > 0,Ψ0(A), 0〉) ∨ ((〈λx. x = 0, ǫ, 1〉) ∧ (A))
Ψ1(A) = (〈λx. x > 0,Ψ1(A), 1〉) ∨ ((〈λx. x = 0, ǫ, 1〉) ∧ (A))
Ψ2(A) = (〈λx. x > 0,Ψ1(A), 1〉 ∨ 〈λx. x = 0, ǫ, 1〉) ∧ A
Ψ3(A1,A2) = (〈λx. x > 0,Ψ2(A1,A2), 0〉 ∧ A1) ∨A2

Ψ4(A) = (〈λx. x > 0,Ψ3(A), 0〉) ∨A
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The translation rules from BTL specificationϕ to metric alternating automaton
A(ϕ) are given below:

For a state formula p:

A(p) = 〈p, 1〉

For BTL formulaeϕ andψ:

A(ϕ ∧ ψ) = A(ϕ) ∧ A(ψ)
A(ϕ ∨ ψ) = A(ϕ) ∨ A(ψ)
A(�[x1,x2]ϕ) = (Ψ1((Ψ2(A(ϕ)))x2−x1))x1−1

A(♦[x1,x2]ϕ) = (Ψ0((Ψ4(A(ϕ)))x2−x1))x1−1

A(ϕU[x1,x2]ψ) = (Ψ0((Ψ3(A(ϕ),A(ψ)))x2−x1))x1−1

Note 2.2. In translation from BTL to automaton, all BTL formulae are assumed
to be in negation normal form, that is, all the negations havebeen pushed to state
level such that there is no temporal operator within the scope of negation.

Given BTL formulaeϕ andψ, Figure 2.3 shows the construction of met-
ric alternating automataA1, A2, A3 andA4 from the respective BTL formulae
♦[x1,x2]ϕ, �[x1,x2]ϕ andϕU[x1,x2]ψ.

Proposition 2.1. For every BTL formulaϕ, there exists ametric alternating au-
tomatonA, and the size ofA is linear in proportion to the size ofϕ.
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A1 : A(♦[x1,x2]ϕ)

A(ϕ)

A(ϕ)

A(ϕ)

A(ψ)

A2 : A(�[x1,x2]ϕ)

A3 : A(ϕU[x1,x2]ψ)

t1 := x1 − 1

t1 := x1 − 1

t1 := x1 − 1

t1 > 0

t1 > 0

t1 > 0

t1 −−

t1 −−

t1 −−

t2 := x2 − x1

t2 := x2 − x1

t2 := x2 − x1

t2 > 0t2 > 0

t2 > 0

t2 −−

t2 −−

t2 −−

t1 = 0

t1 = 0

t1 = 0

t2 = 0

Figure 2.3: Construction ofmetric alternating automata (MAA)from BTL for-
mulae.
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Chapter 3

Verification Algorithms

3.1 Introduction

In this chapter, we present online verification algorithms based on metric al-
ternating automata(MAA). Our algorithms check an execution trace against a
formal specification, expressed inbounded temporal logic(BTL). BTL, as dis-
cussed in Chapter 2, is a compact version of LTL, where temporal operators are
parameterized with discrete time intervals.

To check an execution trace against the intended behavior, we follow a similar
approach to the one presented in [6]. The idea is to translatea BTL specificationϕ
into ametric alternating automatonA, and then check whether a given execution
traceρ is accepted byA or not.ρ is accepted byA, according to Definition 2.6, if
there exists arunT of ρ inA, such that every path throughT ends at an accepting
node.

Three algorithms are presented to check whether a runT of ρ exists inA
or not. The first algorithm, calledForward-Backwardalgorithm, unrollsA into
a configuration treeT and then traversesT backwards, starting from leaves, to
detectT as a subtree inT. The algorithm follows a very simple technique, but
it generates aT that grows exponentially in the size ofρ. The second algorithm,
called Optimized Forward-Backwardalgorithm, unrolls the automaton into a
more compact datastructure, called aconfiguration DAGG, and then traversesG
backwards to detectT in G. The space complexity of the second algorithm is
linear in the size of|ρ| and quadratic in the size ofA. The third algorithm is an
optimized version of theBreadth-Firstalgorithm presented in [6].

15
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3.2 Forward-Backward Algorithm

As discussed in Section 3.1, theForward-Backwardalgorithm detects arun T of
anexecution traceρ in the specification automatonA. The algorithm first trans-
latesA into a configuration treeT, defined in Definition 3.1, and then evaluates
T backwards to detectT as a subtree inT. At a given system step,T represents
all the system configurations that are consistent with the specification so far. The
initial configuration is computed by translating the specification automatonA into
T. The algorithm works in two phases, i.e., theforward expansionand theback-
ward evaluationof T. The forward expansionexpandsT from the leaves, while
thebackward evaluationevaluatesT backwards, starting from the leaves.

Definition 3.1. (Configuration Tree) A configuration treeT, generated by un-
rolling ametric alternating automatonA, is defined recursively as follows:

T ::= ǫT empty tree
| 〈p, 〈N , T 〉, res〉 node with a sub-tree
| 〈p, 〈T ∧ T〉, res〉 a conjunctive branching point with two sub-trees
| 〈p, 〈T ∨ T〉, res〉 a disjunctive branching point with two sub-trees
| 〈p, 〈d,T〉, res〉 a metric sub-tree

where,N is a node ofA, p is a parentconfiguration tree, d ∈ N ∪ {∞} and
res ∈ {−1, 0, 1}.

Procedure Forward(St)
Input : A setSt of node-clock pairs of a configuration treeT.
Output : A set of node-clock pairs + expansion ofT as side effect.
begin

S ′
t ← ∅

for each〈X , c〉 ∈ St do
if X = 〈pp, 〈〈F , δ, acc〉, ǫT〉, 0〉 then

T′ ← translate(δ)
X ← 〈pp, 〈〈F , δ, acc〉,T′ 〉, 0〉
S ′

t ← S ′
t ∪ Get-Leaves(X ,T′, c− 1)

return S ′
t

end

Definition 3.2. (Translation from an MAA to a Configuration Tree ) For a
metric alternating automatonA, the translation functiontranslate(A), fromA to
aconfiguration tree, is defined as follows:
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translate(ǫA) = ǫT

translate(N ) = 〈ǫT, 〈N , ǫT〉, 0〉
translate(A1 ∨A2) = 〈ǫT, 〈translate(A1) ∨ translate(A1)〉, 0〉
translate(A1 ∨A2) = 〈ǫT, 〈translate(A1) ∧ translate(A1)〉, 0〉
translate(Ad

x) = 〈ǫT, 〈d, translate(Ax)〉, 0〉

Procedure Get-Leaves(p,T, c)
Input : A parent pointerp, a configuration treeT and a clockc.
Output : A set of node-clock pairs of expandedT+ assignment of parent

pointer inT as side effect.
begin

switch T do
case〈p′, 〈N , ǫT〉, res〉

p′ ← p

return {〈T, c〉}

case〈p′, 〈T1 ∨ T2〉, res〉
p′ ← p

return Get-Leaves( T,T1, c) ∪ Get-Leaves(T,T2, c)

case〈p′, 〈T1 ∧ T2〉, res〉
p′ ← p

return Get-Leaves( T,T1, c) ∪ Get-Leaves(T,T2, c)

case〈p′, 〈d,T′〉, res〉:
p′ ← p

return Get-Leaves(T,T′, d)

return ∅
end

3.2.1 Forward Expansion

A configuration treeT, maintained by theForward-Backwardalgorithm, is ex-
panded at every system step to generate all the possible successor configurations.
The procedureForward expandsT from the leaves by adding subtrees toT.
Forward takes as input a setSt of pairs 〈X , c〉, whereX is a leaf ofT andc
is an associated clock. For each node-clock pair〈〈p, 〈F , δ, acc, 〉T′〉, c〉 ∈ St, the
subautomatonδ is translated into aconfiguration subtreeT ’, using the function
translate. Each newly addedT ’ is then passed to the procedureGet-Leaves
with clock valuec− 1 to compute the set of node-clock pairs forT ’. As a side ef-
fect,Get-Leaves assigns each subtree inT′ a parent pointer.Forward returns
as output a setS ′

t of node-clock pairs for the expandedT.
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The construction of aconfiguration treefrom ametric alternating automaton
is shown in the functiontranslate. Eachmetric subautomatonwith a metricd is
translated into ametric subtreeTmetric, such that the clock associated withTmetric

is initialized withd.

Procedure Eval-Back(T)
Input : A configuration treeT.
Output : A configuration tree.
begin

Tx ← ǫT

switch T do
case〈pp, 〈N ,T′〉, res〉

res← result(T′)
if res 6= 0 then

Tx ← Eval-Back(pp)

case〈pp, 〈T1 ∧ T2〉, res〉
res← result(T1) and result(T1)
if res 6= 0 then

Tx ← Eval-Back(pp)

case〈pp, 〈T1 ∨ T2〉, res〉
res← result(T1) or result(T1)
if res 6= 0 then

Tx ← Eval-Back(pp)

case〈pp, 〈c,T′〉, res〉
res← result(T′)
if res 6= 0 then

Tx ← Eval-Back(pp)

if Tx = ǫT then
return T

else
return Tx

end

3.2.2 Backward Evaluation

At each system step the expansion of aconfiguration treeT is followed by the
backward evaluationof T. In thebackward evaluation, T is traversed backwards
to detect an acceptingrun T in T. TheBackward evaluationof T, as the name
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suggests, starts with the leaves and traversesT backwards. A leaf nodeX with
an associated clockc is checked, using the functionevaluate [Definition 3.5],
whether it is a part ofT or not. The result of the evaluation ofX , either1 or
−1, is propagated upwards following the parent pointer. The evaluation result 1
or -1 implies thatX is a part ofT orX is not a part ofT respectively. Similarly,
the parent subtreePX of X is then checked whether it belongs toT or not. The
recursive process continues until the root ofT is reached or a subtree rooted at a
disjunctive or a conjunctive branching point is evaluated to 0.

Disjunctive branching points
∨

and conjunctive branching points
∧

of T have
a variableres which is used to mark the status of the branching points. For

∨

,
res = 1, res = −1 or res = 0 implies that at least one of the subtrees rooted at
∨

belongs toT , all the subtrees rooted at
∨

do not belong toT or at least one
of the subtrees rooted at

∨

is not fully evaluated respectively. Similarly, for
∧

,
res = 1, res = −1 or res = 0 implies that all the subtrees rooted at

∧

belong to
T , at least one of the subtrees rooted at

∧

does not belong toT or at least one of
the subtrees rooted at

∧

is not fully evaluated respectively.
The procedureEval-Back propagates the result upwards inT by updating

the value of the booleanres for each subtree inT. Eval-Back returns as output a
subtreeT′ in T that is evaluated to either1 or−1. The existence ofT is detected in
T, if and only if,Eval-back propagates the result1 till the root ofT. Similarly,
a rejecting sequence is detected, if and only if, the root ofT is evaluated to−1.

Definition 3.3. For a givenconfiguration treeT = 〈P,X, res〉, the functionre-
sult(T ) returnsres.

Definition 3.4. Given a valuex ∈ {−1, 0, 1}, the logical operatorsand andor
used in the procedureEval-back have the following semantics:

−1 and x = −1
x and −1 = −1
0 and 0 = 0
1 and x = x

x and 1 = x

−1 or x = x

x or −1 = x

0 or 0 = 0
1 or x = 1
x or 1 = 1

At the final position of the traceρ, the algorithm applies the accepting condi-
tion and evaluates each leaf inR using functioneval-final.
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Procedure Eval-Tree(S, eval, ρi)
Input : A setS of node-clock pairs of aconfiguration tree, a function

eval, and the current system stateρi.
Output : A set ofconfiguration trees
.
begin

S ← ∅
for each〈p, 〈N , ǫT 〉, res〉 ∈ S do

res← eval(〈N , c〉, ρn)
if res 6= 0 then

S ← S ∪ Eval-Back(p)

end

Definition 3.5. For a given node-clock pair〈N , c〉, and a system stateρi, the
functionevaluateis defined as follows:

evaluate(〈〈ν, acc〉, c〉, ρi) =

(

1 ifρi |= ν

−1 otherwise

)

evaluate(〈〈F , δ, acc〉, c〉, ρi) =

(

0 if F(c) = true

−1 otherwise

)

evaluate(〈〈F , ǫ, acc〉, c〉, ρi) =

(

1 if F(c) = true

−1 otherwise

)

Definition 3.6. For a given node-clock pair〈N , c〉, and the final system stateρn,
the functioneval-final is defined as follows:

eval-final(〈〈F , δ, 0〉, c〉, ρn) = −1

eval-final(〈〈F , δ, 1〉, c〉, ρn) =

(

1 if F(c) = true

−1 otherwise

)

eval-final(〈N , c〉, ρn) = evaluate(〈N , c〉, ρn)

3.2.3 How it works

The main moduleForward-Backward takes a program traceρ and a metric
alternating automataA and checks whetherρ is a model ofA. At system step
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Procedure Forward-Backward(A, ρ)
Input : An automatonA and aprogram traceρ.
Output : A boolean.
begin
R← translate(A)
St ← Get-Leaves(ǫ,R,∞)
for n=1 ... |ρ| − 1 do

S ← Eval-Tree(St, evaluate, ρn)
if R ∈ S andresult(R) 6= 0 then

return result (R)

St ← Forward(St)

return R ∈ Eval-Tree(St, eval-final[Definition3.6], ρn) and
result(R) = 1

end

0, a configuration treeR is initialized by translatingA to R. The procedure
Get-Leaves is called to computes a setSt of node-clock pairs forR. For each
subsequent system step,Forward-Backwardworks as follows:

1. Calls the procedureEval-Tree, with functionevaluateas an argument,
to evaluate each〈X , c〉 ∈ S. The evaluation result is propagated upwards in
R using procedureEval-Back.

2. Terminates with success or failure ifR is evaluated to1 or−1 respectively.

3. Calls the procedureFoward to expandR and to compute the successor set
of node-clock pairs.

4. Repeats step 1, 2 and 3 untilρ reaches its last state.

3.2.4 Example

In this section, we discuss the working of theForward-Backwardalgorithm based
on an example automatonA, shown in Figure 3.1, and an example execution
traceρ = [〈a,¬p,¬q〉, 〈¬a, p,¬q〉, 〈¬a,¬p, q〉]. The specification automatonA
represents the BTL formula♦[0,∞](a ∧ ( (♦[0,2]p) U[0,3] q )).

As discussed earlier, theForward-Backwardalgorithm unrollsA into aconfig-
uration treeT and then detects a runT of A in T such thatT starts from the root
of T and ends at the accepting nodes. Figure 3.2 shows different configurations
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q

p

a

n0

n1

n2

n3
n4

n5

A(♦[0,∞](a ∧ ( (♦[0,1]p) U[0,3] q )))

t1 :=∞

t2 := 3

t3 := 1

t1 > 0

t1 −−

t2 > 0

t3 > 0

t2 −−

t3 −−

Figure 3.1: A Construction of ametric alternating automatonfrom the BTL for-
mula♦[0,∞](a ∧ ( (♦[0,1]p) U[0,3] q )).

of T at each system step. Eachmetric subtreein T is annotated with an associ-
ated clock. The dotted lines represent subtrees inT that do not belong toT , the
thick lines represent the subtrees that belong toT , and the normal lines represent
subtrees that are not fully evaluated yet.

To checkρ againstA for acceptance,Forward-Backwardworks as follows:
Step 1:

• The algorithm translatesA into T, as shown in Figure 3.2(1a).

• The nodes ofT are evaluated to either−1, 1 or 0, and the procedure
Eval-Back propagates the evaluation result upwards inT, as shown in
Figure 3.2(1b). The dotted lines show the propagation of theresult−1,
while a thick line shows the propagation of the result1. Recall that an eval-
uation result is propagated only if it is−1(failure) or1(success). The timer
nodesn0, n3 andn5 are evaluated to0 as the associated time constrains are
fulfilled.

• The subtrees inT that are evaluated in the previous step are removed andT
is reduced to a compact form, as shown in Figure 3.2(1c).

Step 2:

• The procedure Forward expandsT from the timer nodesn0, n3 andn5, as
shown in Figure 3.2(2a), with clocks decremented by1.
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Figure 3.2: A stepwise construction of aconfiguration tree.

• The procedureEval-Back propagates the result of the evaluation of nodes
n1, n21, n3 andn4 upwards inT, as shown in Figure 3.2(2b). Here, thetimer
noden3 under the clock scope0 is also evaluated to−1, as the associated
time constraint is not fulfilled.

• T is again reduced to a compact form, as shown in Figure 3.2(2c).

Step 3:

• The procedure Forward expandsT from thetimer nodesn0 andn5, as shown
in Figure 3.2(3a).
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• At the final step, the nodes are evaluated by applying the accepting condi-
tion. The noden2 is state-satisfied and accepting, while all other nodes are
either not state-satisfied (n1, n4) or rejecting (n0, n3, n5). The propagation
of the evaluation result is shown in Figure 3.2(3b).

• ρ is accepted, as there exists an accepting run ofρ in A. Figure 3.2(3b)
shows aT that starts from the root ofT and ends at accepting node (n2

under clock2).

Claim 3.1. For a givenexecution traceρ and ametric alternating automatonA, let
T be theconfiguration treegenerated by theForward-Backward by unrolling

A. Then, the sizeZn of T, at positionn in ρ, is always bounded byK ∗
n

∑

i=0

xi and

the number of leavesLn in T are bounded byXn, whereX = |A| andK ∈ Z
+.

Proof. Base Case:At the system step1, Z1 ≤ K ∗X andL1 ≤ X. This istrue
as the algorithm, at the first step simply translatesA into T and the size ofT is
linear in |A|. The number of leaves are at mostX, as the number of nodes inA
are always bounded byX.

Induction: At system stepn, we assume thatZn ≤ K ∗
n

∑

i=0

X i andLn ≤ Xn.

To complete theinductionstep, we must prove that at system stepn+ 1,

Zn+1 ≤ K ∗
n+1
∑

i=0

X i andLn+1 ≤ Xn+1.

As per our assumption,Ln ≤ Xn at system stepn. Each leaf adds a subtree of
maximum sizeK ∗ X by translating a subautomaton inA into a configuration
subtree. We have at mostXn new subtrees added toT at system stepn+ 1, each
of size at mostX. The sum of the sizes of newly generated subtrees is bounded
byXn ∗K ∗X.

The upper bound ofZn+1 of T , at system stepn + 1, after expansion can be
computed a follows:

Zn+1 ≤ K ∗
n

∑

i=0

X i + (Xn)K ∗X

⇒ Zn+1 ≤ K ∗
n

∑

i=0

X i +Xn+1

⇒ Zn+1 ≤ K ∗
n+1
∑

i=0

xi
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The number of leavesLn+1 in the expandedT are equal to the number of
leaves of newly added subtrees at system stepn+ 1. Since the size of each newly
generated subtreeT ′ is bounded byX, the number of leaves in eachT ′ are at
mostX.

Hence, the upper bound ofLn+1 is computed by the following expression:

Ln+1 ≤ (xn) ∗ x
⇒ Ln+1 ≤ Xn+1

Theorem 3.1. Given a program traceρ and a metric alternating automatonA,
Forward-Backward runs in timeO(|A||ρ|) and spaceO(|A||ρ|)

Proof. As shown in Claim 3.1, the size of theconfiguration treeT, maintained

by Forward-Backward, at system step|ρ| is bounded byK ∗
|ρ|

∑

i=0

|A|i.

Since the space required by the algorithm is linear in the size of T , the space
complexity ofForward-BackwardisO(|A||ρ|)

Similarly, the running time ofForward-Backward is also linear in|T|. The
forward expansionunrollsA to T, which is a linear process. Duringbackward
evaluationnone of the edges are visited twice, thereforebackward evaluationis
also linear. Thus, the running time ofForward-Backward isO(|A||ρ|).

Theorem 3.2. Given a program traceρ and ametric alternating automatonA,
Forward-Backward(A, ρ) = true, if there exists an accepting run ofρ in A.

The correctness of theForward-Backwarddirectly follows from the definition
of an acceptingrun.
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3.3 Optimized Forward-Backward Algorithm

TheForward-Backwardalgorithm presented in Section 3.2, uses aconfiguration
treeT that grows exponentially in the size of an execution trace. Such an expo-
nential growth ofT makes the algorithm inefficient for practical purposes.

Recall that in theForward-Backwardalgorithm, the procedureForward
computes a setSt of pairs 〈X , c〉 for T, whereX is a node inT under the
scope of a clockc. For any two node-clock pairs〈〈p, 〈N ,T′〉, res〉, c〉 and
〈〈p′, 〈N ′,T′〉, res〉, c′〉 in St, the Forward-Backwardalgorithm constructs two
similar successor subtreesT′ andT′′, if N = N ′ andc = c′. We use the term
isomorphicto refer to such node-clock pairs. The above observation motivates us
to think about replacing all similar subtrees with just one subtree. The idea seems
simple, but it may result into a construction which has multiple predecessors of a
single successor. We present a modified version of theconfiguration tree, called
configuration DAGG that allows us to have multiple predecessors. We also mod-
ify our Forward-Backwardalgorithm slightly to work onG. The new algorithm is
calledOptimized Forward-backwardalgorithm.

Definition 3.7. (Configuration DAG) A configuration DAGG, generated by un-
rollingA, is defined as follows:

G ::= ǫG empty DAG
| 〈Sp, 〈N , c〉, res〉 a leaf
| 〈Sp, 〈∧, Ss〉, res〉 a conjunctive branching point with a set of sub-DAGs
| 〈Sp, 〈∨, Ss〉, res〉 a disjunctive branching point with a set of sub-DAGs

where,N is a node ofA , Sp is a set of parentconfiguration DAGs, Ss is a set
of configuration DAGs, c ∈ C is a clock andres ∈ {−1, 0, 1}.

The above definition allows us to join more than two sub-DAGs either con-
junctively or disjunctively. Aconjunctive branching point

∧

is evaluated totrue
if all of the sub-DAGs are evaluated totrue. Whereas, adisjunctive branching
point is evaluated totrue if any of the sub-DAGs is evaluated totrue.

Definition 3.8. (Translation from an MAA to a Configuration DAG ) For a
metric alternating automatonA and a clockc, the translation functiontrans-
late(A, c) is defined as follows:

translate(ǫA, c) = ǫG
translate(N , c) = 〈∅, 〈N , c〉, 0〉
translate(A1 ∨A2, c) = 〈∅, 〈∨, {translate(A1, c)} ∪ {translate(A1, c)}〉, 0〉
translate(A1 ∧A2, c) = 〈∅, 〈∧, {translate(A1, c)} ∪ {translate(A1, c)}〉, 0〉
translate(Ad

0, c) = translate(A0, d)
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Procedure Get-Leaves(Sp,G)
Input : A setSp of parentconfiguration DAGs, aconfiguration DAGG.
Output : A set of nodes ofG + assignment of parent pointers inG as a

side effect.
begin

switch G do
caseǫG

return ∅
case〈Spp,X , res〉

Spp ← Sp

return {〈Spp,X , res〉}

case〈Spp, 〈∨, Ss〉, res〉
Spp ← Sp

return
⊎

E ∈Ss

Get-Leaves( {G}, E)

case〈Spp, 〈∧, Ss〉, res〉
Spp ← Sp

return
⊎

E ∈Ss

Get-Leaves( {G}, E)

end

Definition 3.9. For a setSb of branching points and a childconfiguration DAGG,
the functionadd-child( Sb,G) is defined as follows:

add-child(Sb,G) =
⋃

〈Sp,〈x,Ss〉,res〉∈Sb

〈Sp, 〈x, Ss ∪ {G}〉, 0〉

Definition 3.10. For a setSb of branching points and a childconfiguration DAG
G, the functionremove-child( Sb,G) is defined as follows:

remove-child(Sb,G) =
⋃

〈Sp,〈x,Ss〉,res〉∈Sb

〈Sp, 〈x, Ss − {G}〉, 0〉

3.3.1 Forward Expansion

The forward phase of theOptimized Forward-Backwardis similar to the forward
phase of theForward-Backwardalgorithm discussed in Section 3.2.1, i.e., to gen-
erate all possible successor configurations by expanding theconfiguration DAGG.
However, theOptimized Forward-Backwardalgorithm does extra computations to
keep the size ofG smaller. As stated above, theconfiguration treeT maintained
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Procedure Forward(St)
Input : A setSt of leaves of aconfiguration DAGG.
Output : A set of leaves of expandedG + expansion ofG as a side effect.
begin

S ′
t ← ∅

for eachX ∈ St do
if X = 〈Sp, 〈〈F , δ, acc〉, c〉, 0〉 then

G′ ← translate(δ, c− 1)
Sp ← remove-child(Sp,X )
Sp ← add-child(Sp,G

′)
S ′

t ← S ′
t

⊎

Get-Leaves(Sp,G
′)

return S ′
t

end

by theForward-Backwardalgorithm contains multiple copies of the same sub-
trees inT. Theoptimized forward-backwardalgorithm avoids such duplication by
merging isomorphic node-clock pairs.

We assume that the union operation
⊎

, beside computing union of two
sets, merges the isomorphic leaves. For example, twoisomorphic leavesX1 =
〈Sp, 〈N , c〉, res〉 andX2 = 〈S ′

p, 〈N , c〉, res〉 can be replaced by a single leaf
X = 〈Sp ∪ S ′

p, 〈N , c〉, res〉. By using functionadd-child, X is added to every
element of the setSp∪S ′

p. Similarly, using functionremove-child, X1 andX2 are
removed fromSp andS ′

p respectively.

3.3.2 Backward Evaluation

Thebackward evaluationtraverses theconfiguration DAG(G) backwards to detect
a run T in G. In theForward-Backwardalgorithm, the procedureEval-Back
propagates the result upwards in theconfiguration treefollowing a single parent
link. However, in theOptimized Forward-Backwardalgorithm,G allows every
sub-DAGGsub in G to have a setSp of predecessors. The evaluation result ofGsub

is propagated upwards inG following everyp ∈ Sp, as shown in the procedure
Eval-Back. The operationsand andor are applied over a set instead of a pair.

The procedureEval-Back returns a setS of DAGs that are evaluated to
either−1 or 1. To keepG in a compact form,Eval-Back removes all the sub-
DAGs inG that are evaluated to−1 or 1. The removal of the sub-DAGs results in
a situation where we have adisjunctiveor aconjunctivebranching pointB over a
set{G′} of size1. In such a situation,Eval-Back reduces the evaluation ofB
to the evaluation ofG′, and replacesB by G′.
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Procedure Eval-Back(S,G)
Input : A setS of configuration DAGsand aconfiguration DAGG.
Output : A set ofconfiguration DAGs.
begin

S ′ ← {G}
for each〈Sp, 〈x, Ss〉, res〉 ∈ S do

if x = ∧ then
res← andE ∈Ss

result(E)
else

res← orE ∈Ss
result(E)

if res 6= 0 then
S ′ ← S ′∪ Eval-Back(Sp, 〈Sp, 〈x, Ss〉, res〉)

else
Ss ← Ss − {G}
if Ss = {E} then

Sp ←remove-child(Sp, 〈Sp, 〈x, Ss〉, res〉)
Sp ←add-child(Sp, E)

return S ′

end

3.3.3 How it works

The main moduleFORWARD-BACKWARD takes a program traceρ and a metric
alternating automatonA and checks whetherρ is a model ofA or not. At system
step0, aconfiguration DAGR is initialized by translatingA toR. The setSt of
leaves ofR is initialized by the procedureGet-Leaves.

For each subsequent system step,Forward-Backwardworks as follows:

1. Calls the procedureEval-DAG, with functionevaluateas an argument, to
evaluate each〈X , c〉 ∈ St.

2. Terminates with success or failure ifR is evaluated to1 or−1 respectively.

3. Calls the procedureFoward to expandR and to compute, forS, the suc-
cessor set of node-clock pairs.

4. Repeats step 1, 2, 3 and 4 unlessρ reaches its last state.

At the final position of the traceρ, the algorithm applies the accepting condi-
tion and evaluates each leaf inR using the functioneval-final.
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Procedure Eval-DAG(St, eval, ρi)
Input : A setSt of leaves of aconfiguration DAGs, a functionevaland

the current system stateρi.
Output : A set ofconfiguration DAGs.
begin

S = ∅
for each〈Sp,X , res〉 ∈ St do

res← eval(X , ρi)
if res 6= 0 then

S ← S ∪ Eval-Back(Sp, 〈Sp,X , res〉)

return S.
end

Procedure Forward-Backward(A, ρ)
Input : An automatonA and aprogram traceρ.
Output : A Boolean.
begin
R ← translate(A,∞)
St ← Get-Leaves(∅,R)
for n=1 ... |ρ| − 1 do

S ← Eval-DAG(St, evaluate, ρn)
if R ∈ S andresult(R) 6= 0 then

return result (R)

St ← Forward(St)

return R ∈ Eval-DAG(St, eval-final, ρn) andresult(R) = 1
end

3.3.4 Example

The working of theForward-Backwardalgorithm was discussed, in Section 3.2.4,
based on an exampleexecution traceand an example specification automaton.

We take the same automatonA, shown in Figure 3.1, and the same execution
trace ρ = [〈a,¬p,¬q〉, 〈¬a, p,¬q〉, 〈¬a,¬p, q〉] to discuss howOptimized
Forward-Backwardworks?

The Optimized Forward-Backwardalgorithm unrollsA into a configuration
DAGG and then detects a pathT in G, such thatT starts from the root ofG and
ends at the accepting nodes. Figure 3.3 shows different configurations ofG at each
system step. The dotted lines represent sub-DAGs inG that do not belong toT ,
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Figure 3.3: A stepwise construction of aconfiguration DAG

thick lines represent the sub-DAGs that belong toT , and normal lines represent
sub-DAGs that are not fully evaluated yet. The clocks are pushed down to the
level of the leaves. A leaf ofG is represented asN c

x , whereNx is a node ofA and
c is an associated clock.

To checkρ againstA for acceptence,Forward-Backwardworks as follow:

Step 1:

• The algorithm translatesA into G, as shown in Figure 3.3(1a).

• The nodes ofG are evaluated to−1, 1 or 0, and the procedureEval-Back
propagates the evaluation result upwards inG, as shown in Figure 3.3(1b).
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The dotted lines show the propagation of the result−1, while a thick line
shows the propagation of the result1. The timer nodesn0, n

1
3 andn3

5 are
evaluated to0 as the associated time constrains are fulfilled.

• The sub-DAGs inG that are evaluated in the previous step are removed and
G is reduced to a compact form, as shown in Figure 3.3(1c).

Step 2:

• The procedure Forward expandsG from thetimer nodesn0, n
1
3 andn3

5 with
clocks decremented by1. As shown in Figure 3.3(2a), the sub-DAGs with
isomorphic nodes(n1

3, n
1
4) are merged.

• The procedureEval-Back propagates the result of the evaluation of the
nodesn1, n

3
2, n

2
2, n

0
3, n

0
4 andn1

4 upwards inG, as shown in Figure 3.3(2b).

• The compactG, after reduction, is shown in Figure 3.3(2c).

Step 3:

• The procedure Forward expandsT from thetimer nodesn0 andn2
5, as shown

in Figure 3.3(3a).

• At the final step, the nodes are evaluated by applying the accepting condi-
tion. The nodesn2

2 andn3
2 are state-satisfied and accepting, while all other

nodes are either not state-satisfied or rejecting. The propagation of the eval-
uation result is shown in Figure 3.3(3b).

• ρ is accepted as there exists aT , such thatT starts from the root ofG and
ends at an accepting noden2

2, as shown in Figure 3.3(3b).

Theorem 3.3. Given a program traceρ and a metric alternating automaton
A constructed from a BTL formulaϕ, FORWARD-BACKWARD runs in time
O(X2 ∗ (Mc + 2) ∗ |ρ|) and spaceO(X2 ∗ (Mc + 2) ∗ |ρ|) , whereMc is the
largest constant appearing inϕ (excluding∞) andX = |A|.

Proof. The procedureFORWARD-BACKWARD maintains aconfiguration DAGG
during its execution and the space complexity ofFORWARD-BACKWARD is linear
in the size ofG. At each system step,G is expanded by the procedureForward

form the leaves. The sizeZn of G at a system stepn is bounded byK ∗
n

∑

i=0

M ,

whereM ∈ Z
+ is the upper bound of the increment in the size ofG at each system

step.



3.3. OPTIMIZED FORWARD-BACKWARD ALGORITHM 33

The procedureForward takes a setSt of leaves〈Sp〈N , c〉, res〉 of G, where
N is a node ofA paired with an associated clockc. The size ofSt is always
bounded byX ∗ (Mc + 2), as the number of nodes inA are bounded byX.

Forward expandsG from each leafE ∈ St. EachE generates a sub-DAG
G′ by unrolling the subautomatonδ, and the size ofG′ is bounded byK ∗ X (
as translation fromδ to G′ is linear). Since there are at mostX ∗ C elements in
St and every element increments the size ofG by at mostX, the upper bound of
increment in the size ofG is given byM = K ∗X2 ∗ (Mc + 2).

After merging isomorphic leaves, the number of leaves is reduced to at most
X ∗ C, but the number of edges remains the same.

Hence, the space complexity ofFORWARD-BACKWARD is O(X2 ∗ (Mc +
2) ∗ |ρ|).

Overall running time ofFORWARD-BACKWARD is also linear is the size ofG.
The forward expansionof G is linear as the construction from ametric alternating
automatonto a configuration DAGis linear. Duringbackward evaluation, none
of the edges inG is visited twice. Each edge is immediately removed by the
procedureEval-Back, once it is visited during backward evaluation.

The running time of the algorithm, forρ, is thereforeO(X2 ∗ (Mc + 2) ∗ |ρ|).

Corollary 3.1. Given a program traceρ and ametric alternating automaton
A, constructed from an LTL formulaϕ, FORWARD-BACKWARD runs in time
O(X2 ∗ |ρ|) and spaceO(X2 ∗ |ρ|), whereX is the size ofA.

Proof. BTL is equivalent to the classical LTL if all the temporal operators have
lower bounds0 and upper bounds∞, except the special case where a bounded
diamond♦[1,1] is used in place of the next operator of classical LTL. The clocks
associated with♦[1,1] are initialized with0 (as shown in the construction of au-
tomata in Chapter 2).

Every nodeN of A can only be paired with a single clock value from the set
{0,∞}. The number of leaves of theconfiguration DAGG is bounded byX.

Hence, the space complexity ofFORWARD-BACKWARD is O(X2 ∗ |ρ|) and
the running time is alsoO(X2 ∗ |ρ|).

Definition 3.11. (Finitely Bounded Temporal Logic) (FBTL) A sublogic of
BTL, such that all of the temporal operators are parameterized with finite interval
bounds.

Lemma 3.4. Given a program traceρ and a metric alternating automatonA,
constructed from FBTL formulaϕ, FORWARD-BACKWARD runs in timeO(X3∗
(Mc + 1)2) and spaceO(X3 ∗ (Mc + 1)2), whereX is the size ofA, andMc is
the maximum constant appearing inϕ.
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Proof. As proved in Theorem 3.3, the size of aconfiguration DAG(G) is incre-
mented by at mostX2 ∗ (Mc + 2) at each system step. The factorMc + 2 in the
above expression reduces toMc+1, as in FBTL the number of clocks are bounded
byMc +1. The number of leaves inG are bounded byX ∗(Mc +1) and increment
in |G| at any system step is bounded byX2 ∗ (Mc + 1).

The maximum number of steps required to fully evaluateϕ is bounded by
Csum, andCsum is the sum of the lengths of intervals appearing inϕ.

Thus, the total size ofG is bounded byX2 ∗ (Mc +1)∗Csum orX3 ∗ (Mc +1)2

asCsum ≤ X ∗ (Mc + 1).
The complexity ( both space and running time) ofFORWARD-BACKWARD, as

proved in Theorem 3.3, is linear in|G|. Hence, forϕ, FORWARD-BACKWARD
runs is spaceO(X3 ∗ (Mc + 1)2) and timeO(X3 ∗ (Mc + 1)2).

3.4 Optimized Breadth-First Algorithm

The Optimized Forward-Backwardalgorithm, presented in the previous section,
has a quadratic and a linear space complexity in the size of input formulaϕ and
length of an execution traceρ respectively. The algorithm is useful for checking a
smaller prefix ofρ against a relatively larger size ofϕ. To monitor a larger (possi-
bly infinite) ρ, the essential requirement is to bring down the space complexity to
constant in the size ofρ. One of the solutions is to use theBreadth-Firstalgorithm
presented in [6], as the space complexity of the algorithm isindependent of the
size ofρ.

We present a modified version of theBreadth-Firstalgorithm that works on
metric alternating automata. For ametric alternating automatonA translated
from a BTL formulaϕ, the algorithm maintains a setS of system configura-
tions that are consistent with the prefix of anexecution traceρ seen so far. A
configurationC ∈ S is a set of pairs〈N , t〉, whereN is a node ofA and
c ∈ {0, 1...,Mc,∞} is an associated clock, andMc is the maximum constant
appearing inϕ. ρ is accepted byA if there exists at least oneC ∈ S that leads to
an accepting system state.

Definition 3.12. (Configuration) A Configuration is a set of pairs〈N , c〉, where
N is a node of ametric alternating automataandc is an associated clock.

Definition 3.13. For ametric alternating automatonA, and an associated clock
c, the functioninit (A, c) that computes a setS of configurations is defined as
follows:
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init (ǫA, c) = ∅
init (N , c) = {〈N , c〉}
init (〈Ad

0〉, c) = init (A0, d))
init (A1 ∨A2, c) = init (A1, c) ∪ init (A2, c)
init (A1 ∧A2, c) = init (A1, c)⊗ init (A2, c)

where,⊗ denotes the following:
{C1...Cn} ⊗ {C ′

1...C
′
m} = {Ci ⊎ C ′

j|i = 1...n, j = 1...m}

Procedure BREADTH-FIRST(A, ρ)
Input : An automatonA and aprogram traceρ
Output : A boolean
begin

S ← init (A)
for n=0 ... |ρ| − 2 do

S ′ ← ∅
for eachC in S do

if state-satisfied(C, ρn) then
S ′ ← S ′ ∪ Successor(C)

S ← S ′

S ′ ← ∅
for eachC in S do

if state-satisfied( C, ρn−1) and final(C) then
S ′ ← S ′ ∪ {C}

return S ′ ← ∅
end

Definition 3.14. For a configurationC , the functionSuccessor(C) is define as
follows:

successor(C) =
⊗

〈〈F ,δ,acc〉,c〉∈C

init (δ, c− 1)

Definition 3.15. For a configurationC and a system states, the functionstate-
satisfied(C, s) returnstrue if

for everyX ∈ C, evaluate(X, s) returnstrue.

Definition 3.16. For a configurationC , the functionfinal(C) returnstrue if

for every〈A, c〉 ∈ C,A.acc = 1.
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The algorithm presented above works exactly like theBreadth-Firstalgorithm
presented in [6], but the space complexity of the algorithm does change a big
times.

For a metric alternating automatonA, translated from BTL formulaϕ, the
space requirement forBreadth-First is bounded by2X∗(Mc+2), whereX = |A|
andMc is the maximum constant appearing inϕ.

The maximum constantMc in practice is very large as compared toX and
therefore the space complexity of the algorithm is much higher for practical pur-
poses. We present an optimization to the above algorithm that reduce the complex-
ity to exponential inX and quadratic inMc. The optimization reduces the size of
C by removing redundant entries inC, which ultimately reduces the number of
configurations , i.e., the size ofS ′.

Recall that without any optimization, that maximum possible size of theC is
X ∗ (Mc + 2). We claim that if the size ofC ′ isX + y, then there exists at leasty
redundant entries inC that can be removed.C is called a compact configuration
if there does not exist a redundant entry inC.

3.4.1 Example

For ametric alternating automatonA , shown in Figure 3.1, and theexecution
traceρ = [〈a,¬p,¬q〉, 〈¬a, p,¬q〉, 〈¬a,¬p, q〉], theOptimized Breadth-Firstal-
gorithm checksρ againstA by generating all the possible configurations at each
system step. The program traceρ is accepted if at least one of the configurations
generated at the initial system step leads to an accepting configuration. We denote
a node-clock pair as〈N , c〉 byN c in this section.

The set of configurations generated at system steps1, 2 and3 are given below:

Step 1: The functioninit (A), at system step 1, computes the following set of
configurations:

S1 = { {n∞
0 }, {n

∞
1 , n

3
2}, {n

∞
1 , n

1
3, n

3
5}, {n

∞
1 , n

1
4, n

3
5} }

Two configurations{n∞
1 } and{n∞

1 , n
1
3, n

3
5} in S1 are state-satisfied, and are

used to generate successor configurations for the next system step.

Step 2: At system step 2, the setS2 of configurations is computed using
functionSuccessoras follows:

S2 = successor({n∞
0 }) ∪ successor({n∞

1 , n
1
3, n

3
5})
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⇒ { {n∞
0 }, {n

∞
1 , n

3
2}, {n

∞
1 , n

1
3, n

3
5}, {n

∞
1 , n

1
4, n

3
5}, {n

2
2, n

0
3},

{n2
2, n

0
4}, {n

0
3, n

2
5}, {n

0
4, n

2
5}, {n

0
3, n

1
4, n

2
5}, {n

1
3, n

0
4, n

2
5} }

Three configurations{n∞
0 }, {n

0
4, n

2
5} and{n1

3, n
0
4, n

2
5} in S2 are state-satisfied,

and are used to generate successor configurations in Step 3.

Step 3: At the system step 3, the setS3 of configurations is computed us-
ing functionSuccessoras follows:

S3 = successor({n∞
0 }) ∪ successor({n0

4, n
2
5}) ∪ successor({n1

3, n
0
4, n

2
5})

⇒ { {n∞
0 }, {n

∞
1 , n

3
2}, {n

∞
1 , n

1
3, n

3
5}, {n

∞
1 , n

1
4, n

3
5}, {n

1
2, n

0
3},

{n1
2, n

0
4}, {n

0
3, n

1
5}, {n

0
4, n

1
5}, {n

0
3, n

1
4, n

1
5}, {n

1
3, n

0
4, n

1
5},

{n1
2}, {n

1
3, n

1
5}, {n

1
4, n

1
5} }

The final setS3 of configurations has one configuration{n1
2} that is accepting

and state-satisfied, while all other configurations are either not sate-satisfied or not
accepting. Thus,ρ is accepted byA.

Definition 3.17. (Redundant Entry) For a system configurationC, an element
e ∈ C is a redundant entry, iff there exists another elemente′ ∈ C, such thate′

subsumese.

Definition 3.18. (Compact Configuration)A configurationC is acompact con-
figurationif C does not contain aredundant entry.

The Optimized Breadth-Firstalgorithm maintains a setSc of compact con-
figurations. We assume that the union operation⊎, besides taking a union of
sets, removesredundant entrieson fly. The size of each configurationC is
bounded by the number of nodes in the specification automatonA, as each el-
ement〈N , c〉 ∈ C has distinctN . The size ofSc, as proved in Theorem 3.7, is
bounded by(Mc + 2)|A|.

Claim 3.2. For a system configurationC, let 〈N , c〉 and〈N , c′〉 be two elements
in C; either〈N , c〉 subsumes〈N , c′〉 or 〈N , c′〉 subsumes〈N , c〉.

Proof. To prove our claim, we make the following case distinctions:
Case 1:N = 〈ν, acc〉
The evaluation of non-timer nodes does not depend on the value of the clock.
Thus,〈N , c〉 ⇔ 〈N , c′〉 and any of the pair can be picked randomly.
Case 2:N = 〈λx.x > 0, δ, 1〉
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• c > 0 andc′ > 0
The accepting timer node-clock pairs〈N , c〉 and 〈N , c′〉 assert that the
specification subformula represented by the subautomatonδ will hold for
the nextc and c′ system steps respectively. The assertion implies that
〈N , c〉 ⇒ 〈N , c′〉 if c > c′ and 〈N , c′〉 ⇒ 〈N , c〉 if c′ > c. Thus, the
pair with a greater clock value subsumes the other one.

• c = 0 or c′ = 0
Since the functionλ is evaluated tofalse when applied to0, C is state
satisfied, iff every element inC is evaluated totrue. Thus, a node-clock
pair with a clock value0 subsumes all other elements inC.

Case 3:N = 〈λx.x > 0,A,−1〉

• c > 0 andc′ > 0
The rejecting timer node-clock pairs〈N , c〉 and〈N , c′〉 assert that the spec-
ification subformula represented by the subautomatonδ will hold within
the nextc and c′ system steps respectively. The assertion implies that
〈N , c〉 ⇒ 〈N , c′〉 if c > c′ and 〈N , c′〉 ⇒ 〈N , c〉 if c′ > c. Thus, the
pair with a lesser clock value subsumes the other one.

• c = 0 or c′ = 0
Same as in the previous case.

Case 4:N = 〈λx.x = 0, ǫA, 1〉

• c > 0 or c′ > 0

Since the functionλ is evaluated tofalse when applied to0, a node-clock
pair with a clock value greater than0, subsumes all the other elements inC.

• c = 0 andc′ = 0
This case makes two pairs equal, and therefore any of the pairs can be picked
randomly.

Lemma 3.5. For ametric alternating automatonA and an execution traceρ, let
S be the set of configurations generated byBREADTH-FIRST at any position in
ρ. Then the maximum size of anyconfigurationC ∈ S is bounded byX, where
X = |A|.
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Proof. As proved in Claim 1.2, any two node-clock pairs appearing inconfig-
urationC having the same automaton node can be replaced with a single pair.
Therefore, every element〈N , c〉 ∈ C has a distinctN , whereN is a node inA
andc is an associated clock. The number of automaton nodes is bounded byX,
therefore the maximum size of anyC ∈ S is bounded byX.

The correctness of theBreadth-Firstalgorithm follows directly from the cor-
rectness ofBreadth-Firstalgorithm presented in [6].

Theorem 3.6.Given anexecution traceρ and ametric alternating automatonA,
BREADTH-FIRST(A, ρ) =true, if there exists an accepting run ofρ in A.

Theorem 3.7. Given an execution traceρ and ametric alternating automa-
ton A constructed from BTL formulaϕ, BREADTH-FIRST runs in space
O(X ∗ (Mc + 2)X) and in timeO(X ∗ (Mc + 2)2X), whereX = |A| andMc is
the maximum constant appearing inϕ (excluding∞)

Proof. The procedureBREADTH-FIRST generates, at each system step, a set
S of configurations. A configurationC ∈ S is a set of node-clock pairs, such
that each〈N , c〉 ∈ C has a distinctN . C is mapping from a set of nodes of
A {N1...NX} to the set of clock values{0, 1...,Mc,∞}. Thus, the size of each
C ∈ S is bounded byX and the size ofS is bounded by(Mc + 2)X .
Hence, the space complexity ofBREADTH-FIRST isO(X ∗ (Mc + 2)X)

The running time ofBREADTH-FIRST is the running time of the procedure
Forward at each system step times the number of system steps. At each system
step,Forward takes a configurations setS1 of maximum size(Mc + 2)X and
constructs a successor configurations setS2 of size at most(Mc + 2)X . The size
of each configurationC ∈ S1 is bounded byX. Each node-clock pairP ∈ C

generates a successor configuration setS ′ of size at most2X . Thus, the total
number of configurations generated are bounded byX ∗ 2X ∗ (Mc + 2)X orX ∗
(Mc + 2)2X .

Hence, the running time ofBREADTH-FIRST isO(X ∗ (Mc + 2)2X).

Corollary 3.2. Given anexecution traceρ and ametric alternating automatonA,
constructed from an LTL equivalent BTL formulaϕ, BREADTH-FIRST runs in
timeO(2X ∗ |ρ|) and spaceO(2X), whereX is the size ofA.

Proof. For an LTL equivalent BTL formulaϕ, the the size of a set of node-clock
pairs is bounded by the size ofϕ, as each nodeN in the specification automaton
can be paired with either0 or∞. Thus, for a givenexecution trace, the complexity
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of BREADTH-FIRST for ϕ is reduced toO(2|ϕ|) in space andO(22|ϕ| ∗ |ρ|) in
time.



Chapter 4

Generic Algorithm

4.1 Introduction

The algorithms presented in Chapter 3 have their strengths and weaknesses based
on the type of input formula. TheBreadth-Firstalgorithm is better suited for
a larger program trace (possibly infinite) with a smaller finitely bounded inter-
vals. For LTL formulae, where the maximum interval bound other than∞ is 1,
the Breadth-Firstalgorithm performs to its maximum potential. TheOptimized
Forward-Backwardalgorithm has better running time and is useful for a relatively
larger specification size and shorter prefix of a program trace. Thus, theOptimized
Forward-Backwardalgorithm is better suited for an input formula that has only
the finitely bounded temporal operators.

The above observation leads to a new framework where both algorithms can be
combined capitalize on their relative strengths. We introduce a rather inelegant but
an effective approach to make the best use of theForward-BackwardandBreadth-
First algorithms. The idea is to use theBreadth-Firsttechnique on the top level,
and useOptimized Forward-Backwardtechnique for subformulae that have only
finitely bounded temporal operators.

We present aGenericalgorithm that combines thebreadth firsttechnique and
forward backwardtechnique in a single algorithm. For different sublogics of
BTL, the Generic algorithm works as efficiently as the corresponding special-
ized algorithms for those sublogics. We also introduce a sublogic of BTL called
Slightly-Restricted Temporal LogicSBTL. SBTL does not allow any unbounded
temporal operators within the scope of bounded temporal operators. We believe
that SBTL is strong enough to specify most of the system properties used in prac-
tice. The complexity ofGenericis reduced considerably when a specification is
given in the form of SBTL.

41
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4.2 The Algorithm

This section presents theGenericalgorithm, which combines theBreadth-First
algorithm and theOptimized Forward-Backwardalgorithm to optimize the over-
all complexity. The algorithm translates ametric alternating automatonA into
an annotated metric alternating automatonAa. The additional information as-
sociated withAa guides the algorithm to apply eitherbreadth firstor forward
backwardtechniques for eachmetric subautomatonAmetric ∈ Aa.

The Generic algorithm works mainly like theBreadth-Firstalgorithm as it
computes a set of configurations at each system step. Unlike the Breadth-First
algorithm, the evaluation of a configuration can not be instantly reduced to the
evaluation to its successor configurations.Genericmaintains a set of sets of con-
figurations in the form of aconfiguration DAG(G) , defined in Definition 4.4.G
is expanded and evaluated backwards in the same way as done intheOptimized
Forward-Backwardalgorithm.

Definition 4.1. (Annotated Metric Alternating Automaton) An annotated
metric alternating automatonA is defined as follows:

A ::= ǫA empty automaton
| N an automaton node
| A ∧ A conjunction of two automata
| A ∨ A disjunction of two automata
| 〈Ad, k〉 metric sub-automaton,

wherek ∈ N ∪ {∞}.

Definition 4.2. The functioncons-sumthat takes ametric alternating automaton
A and returns sum of the constant appearing inA, is defined as follows:

cons-sum(ǫA) = 0
cons-sum(N ) = 0
cons-sum(Ad

0) = d+ cons-sum(A0)
cons-sum(A1 ∨ A2) = cons-sum(A1) + cons-sum(A2)
cons-sum(A1 ∧ A2) = cons-sum(A1) + cons-sum(A2)

Definition 4.3. The functionannotate that takes ametric alternating automaton
and returns anannotated metric alternating automaton, is defined as follows:

annotate(ǫA) = ∅
annotate(N ) = N
annotate(Ad

0) = 〈annotate(A0), d+ cons-sum(Ax)〉
annotate(A1 ∨ A2) = annotate(A1) ∨ annotate(A2)
annotate(A1 ∧ A2) = annotate(A1) ∧ annotate(A2)
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Definition 4.4. (Configuration DAG) A configuration DAGG, generated by
unrollingA, is defined as follows:

G ::= ǫG empty DAG
| 〈Sp, 〈N , c〉, res〉 a leaf represents a node-clock pair
| 〈Sp, C, res〉 a leaf represents a set of node-clock pair
| 〈Sp, 〈∧, S〉, res〉 a conjunctive branching point with a set ofG
| 〈Sp, 〈∨, S〉, res〉 a disjunctive branching point with a set ofG

where,N is a node ofA , Sp is a set of pointers to parentconfiguration DAGs,
c is a clock,S is a set ofconfiguration DAGs, C is a set of pairs〈N , c〉, and
res ∈ {−1, 0, 1}.

Note 4.1.There are two types of leaves in the above definition of aconfiguration
DAG. We use the term “typeA”for a leaf that represents a node-clock pair, and
use to the term “typeB”for the leaf that represents a set of node-clock pairs.

Definition 4.5. (Translation from an AMAA to a Configuration DAG ) For a
metric alternating automatonA and an associated clockc, the translation function
translate (A,c) is defined as follows:

translate(ǫA, c) = ∅
translate(N , c) = 〈∅, 〈N , c〉, 0〉
translate(A1 ∨A2, c) = 〈∅, 〈∨, {translate(A1, c)} ∪ {translate(A1, c)}〉, 0〉
translate(A1 ∧A2, c) = 〈∅, 〈∧, {translate(A1, c)} ∪ {translate(A1, c)}〉, 0〉
translate(〈Ad

0, k〉, c) = translate(A0, d)

Definition 4.6. Given an annotated metric alternating automatonA, a clock c,
the functioninit (A, c) is defined as follows:

init (ǫA, c) = ∅
init (N , c) = {〈{〈N , c〉}, ǫG〉}
init (〈Ad

0, k〉, c) = {〈∅, {translate(A0, d)}〉}
init (〈Ad

0,∞〉, c) = init (A0, d)
init (A1 ∨ A2, c) = init (A1, c) ∪ init (A2, c)
init (A1 ∧ A2, c) = init (A1, c)⊗ init (A2, c)

where,⊗ denotes the following:

{〈C1, D1〉...〈Cn, Dn〉} ⊗ {〈C ′
1, D

′
1〉...〈C

′
m, D

′
m〉} =

{〈Ci ⊎ C ′
j, Di ∪D′

j〉
|i = 1...n, j = 1...m}

Definition 4.7. (Configuration) For ametric alternating automatonA , a con-
figuration is a pair〈C,D〉, where
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• C is a set of pairs〈N , c〉, whereN is a node ofA andc is an associated
clock.

• D is a set of configuration DAGs.

For an alternating automatonA and an execution traceρ, the algorithm gen-
erates a setS of possible system configurations at every system step, using the
function init . The initial configuration setS1 is computed by callinginit with ar-
gumentA. ρ is accepted byA if and only if there exists at least one configuration
in S1 that leads to an accepting configuration.

A configuration〈C,D〉 ∈ S leads to an accepting configuration if and only if
the following holds.

• C is state satisfied.

• All d ∈ D are evaluated to1.

• At least one of the successor configurations ofC leads to an accepting state.

Procedure Generate-DAG(S)
Input : A setS of configurations.
Output : A configuration DAG.
begin

D′ ← ∅
for each〈C,D〉 ∈ S do
X ← 〈∅, C, res〉
Gc ← 〈∅, 〈∧, {X} ∪D〉, 0〉
D′ ← D′ ∪ {Gc}

G← 〈∅, 〈∨, {D′}〉, 0〉
return G

end

4.2.1 Translation from a Configuration to a DAG

In the Breadth-Firstalgorithm, the evaluation of a configuration is instantly re-
duced to the evaluation of its successor configurations. A configurationCC in
the configuration setS, generated byGenericusing the functioninit , contains a
setD of DAGs. The evaluation ofCC can not be reduced to the evaluation of
successor configurations unless eachd ∈ D is fully evaluated. SinceGeneric
generates DAGs for the subautomata representing the subformulas having only
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finitely bounded intervals, alld ∈ D are evaluated within a finite number of sys-
tem steps. EveryCC ∈ S is stored for a finite number of system steps before its
evaluation is reduced to the evaluation of successor configurations.

The algorithm storesS in the form aconfiguration sub-DAG(G). The transla-
tion from S to G is shown in the procedureGenerate-DAG. G is adisjunctive
branching pointover a setDsub of configuration sub-DAGs〈Sp, 〈∧, {〈G, C, 0〉}∪
D〉 constructed by translating every configuration〈C,D〉 ∈ S, where the setSp

contains the links to the parent configurations.

Procedure Forward(St)
Input : A setSt of leaves of aconfiguration DAGG.
Output : A set of leaves of the expandedG + expansion ofG as a side

effect.
begin

S ′
t ← ∅

for eachX ∈ St do
switchX do

case 〈Sp, C, res〉
Sp ← remove-child (Sp,X )

S ′ ←
⊗

〈〈F ,δ,acc〉,c〉∈C

init (δ, c− 1)

G ← Generate-DAG(S ′)
Sp ← add-child (Sp,G)
S ′

t ← S ′
t ∪ Get-Leaves(Sp,G)

case〈Sp, 〈〈F , δ, acc〉, c〉, 0〉
Sp ← remove-child (Sp,X )
G ← translate(δ, c− 1)
Sp ← add-child (Sp,G)
S ′

t ← S ′
t ∪ Get-Leaves(Sp,G)

return S ′
t

end

4.2.2 Forward Expansion

A configuration DAG (G) maintained by theGenericalgorithm is expanded at
each system step by the procedureForward from the leaves.Forward takes
a setSt of leaves ofG and expandsG by computing aconfiguration sub-DAGfor
each leaf inSt.
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The setSt contains both typeA and typeB leaves. The expansion is done
differently for the typeA and the typeB leaves. For typeA leaves,G is expanded
in the same way as discussed in Section 3.3.1. However, for typeB leaves,G
is expanded by computing a setS of configurations first, and then translating
S to configuration sub-DAG. Similarly for typeA leaves, the algorithm merges
isomorphicleaves of typeB on the fly to avoid producing duplicate sub-DAGs.

Procedure Eval-DAG(St, eval, ρi)
Input : A setSt of leaves of aconfiguration DAG, a functionevaland

the current system stateρi.
Output : A set ofconfiguration DAGs.
begin

S ← ∅
for each〈Sp,X , res〉 ∈ St do

if X = 〈N , c〉 then
res← eval(X , ρi)

else
for each〈N , c〉 ∈ X do

res← res and eval(〈N , c〉, ρi)

if res 6= 0 then
S ← S ∪ Eval-Back(Sp, 〈Sp,X , res〉)

return S.
end

4.2.3 Backward Evaluation

Thebackward evaluationof aconfiguration DAGG starts off from the leaves. The
procedureEval-DAG takes a setSt of leaves ofG and evaluates every element in
St. The evaluation result is propagated upwards using the procedureEval-Back
presented in Section 3.3.2.St contains both typeA and typeB leaves. A type
A leaf is evaluated in the same way as previously done by theOptimized
Forward-Backward algorithm. However, a typeB leaf 〈Sp, C, res〉 is evalu-
ated to−1, 1 and0, if one of 〈N , c〉 ∈ C is evaluated to−1, all 〈N , c〉 ∈ C are
evaluated to−1 or one of〈N , c〉 ∈ C is evaluated to0 respectively.

4.2.4 How it works

The procedureGENERIC takes a program traceρ of lengthn and ametric alter-
nating automatonA and checks whetherρ is a model ofA. A setS of initial
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Procedure GENERIC(A, ρ)
Input : An automatonA and aprogram traceρ.
Output : A Boolean.
begin

S ← init (A,∞)
R← Generate-DAG(S)
St ← Get-Leaves(∅,R)
for n=1 ... |ρ| − 1 do

Sd ← Eval-DAG(St, evaluate, ρn)
if R ∈ Sd andresult(R) 6= 0 then

return result (R)

for each〈Sp, X, res〉 ∈ Sd do
Sp ← remove-child (Sp, 〈Sp, X, res〉)

St ← Forward(St)

return R ∈ Eval-DAG(St, eval-final) andresult (R) = 1
end

system configurations is computed and then translated into aconfiguration DAG
R. R is passed to the procedureGet-Leaves to compute the setSt of leaves.
The algorithm from step1 to stepn− 1 works as follows:

1. Calls the procedureEval-DAG to evaluateR backwards from the leaves.

2. Terminates with success or failure ifR, in the previous step, is evaluated to
1 or−1 respectively .

3. Removes all the sub-DAGs inR that are evaluated to1 or−1.

4. Calls the procedureForward to expandR from the leaves, and computes
a set of leaves of expandedR.

5. Repeats step 1, 2, 3, 4 and 5 untilρ reaches its last state.

At the final position of the traceρ, the algorithm applies the accepting con-
dition and evaluates each leaf in theconfiguration DAGusing the functioneval-
final.

4.2.5 Example

Figure 4.2 shows the detection of an accepting run of anexecution traceρ =
[〈a,¬p,¬q〉, 〈¬a, p,¬q〉, 〈a,¬p, q〉] in the specification automatonA. A, shown
in Figure 4.1, is constructed from the BTL formula♦[0,∞]( a ∧ ((♦[0,1]p)U[0,∞]q)).
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q

p

a

n0

n1

n2

n3
n4

n5

A(♦[0,∞](a ∧ ( (♦[0,1]p) U[0,∞] q )))

t1 :=∞

t2 :=∞

t3 := 2

t1 > 0

t1 −−

t2 > 0

t3 > 0

t2 −−

t3 −−

Figure 4.1: A Construction of ametric alternating automatonfrom the BTL for-
mula♦[0,∞](a ∧ ( (♦[0,1]p) U[0,∞] q )).

As discussed in previous sections, theGenericalgorithm stores system config-
urations in the form aconfiguration DAGG. The algorithm tries to detect a path
G that starts at the root ofG and ends at accepting nodes.

The dotted lines represent sub-DAGs inG that do not belong toT , the thick
lines represent the sub-DAGs that belong toT , and normal lines represent sub-
DAGs that are not fully evaluated yet. The typeA node ofG is represented as
N c

x , whereNx is a node ofA andc is an associated clock. The typeB node is
represented by a set of nodes ofA.

To checkρ againstA for acceptence,Genericworks follow:

Step 1:

• The algorithm generates the initial setS of configurations forA and then
translatesS into G, as shown in Figure 4.2(1a).

• Both the typeA and the typeB nodes ofG are evaluated, and the procedure
Eval-Back propagates the evaluation result upwards inG, as shown in
Figure 4.2(1b). The dotted lines show the propagation of theresult−1,
while a thick line shows the propagation of the result1.

• The sub-DAGs inG that are evaluated in the previous step are removed and
G is reduced to a compact form, as shown in Figure 3.3(2c).
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Figure 4.2: A stepwise construction of aconfiguration DAG

Step 2:

• G is expanded from the typeA nodesn1
1 by constructing aconfiguration

sub-DAGs, translated from subautomaton using the functiontranslate. For
each typeB node{n0} and{n1, n5}, G is expanded by constructingcon-
figuration sub-DAGsthat are translated from successor configurations. The
expansion ofG is shown in Figure 4.2(2a).

• The procedureEval-Back propagates the evaluation result of the nodes
n0

3, {n2}, {n1, n2} and{n1, n5} upwards inG, as shown in Figure 4.2(2b).

• The compactG, after reduction, is shown in Figure 4.2(2c).
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Step 3:

• The procedure Forward expandsT from thenodes{n0} and{n5}, as shown
in Figure 4.2(3a).

• At the final step, the nodes are evaluated by applying the accepting condi-
tion. The nodes{n1, n2} and{n2} are state-satisfied and accepting, while
all other nodes are either not state-satisfied or rejecting.The propagation of
the evaluation result is shown in Figure 4.2(3b).

• ρ is accepted, as there exist twoT s, starting from the root ofG and ending
at the accepting nodes ({n1, n2} and{n2}), as shown in Figure 4.2(3b).

Theorem 4.1. Given a program traceρ and analternating automatonA, con-
structed from BTL formulaϕ, GENERIC runs in timeO(|ρ|∗((Mc+2)2(X−Y ) +
(Mc + 1) ∗ Y 2)) and spaceO(X ∗ (Mc + 1)((Mc + 2)2(X−Y ) + (Mc + 1) ∗ Y 2)),
whereMc is the largest constant appearing inϕ (excluding∞), X = |A| andY
is the sum of the sizes of subautomata representing FBTL subformulae inϕ

The correctness of theGenericalgorithms follows from the correctness of the
Optimized Forward-Backwardand the correctness of theBreadth-Firstalgorithm.

Theorem 4.2. Given a program traceρ and an automatonA, GENERIC (A, ρ)
=true, if there exists an accepting run ofρ in A.

Theorem 4.3. Given a program traceρ and analternating automatonA, con-
structed from BTL formulaϕ, GENERIC runs in timeO(|ρ|∗((Mc+2)2(X−Y ) +
(Mc + 1) ∗ Y 2)) and spaceO(X ∗ (Mc + 1)((Mc + 2)2(X−Y ) + (Mc + 1) ∗ Y 2)),
whereMc is the largest constant appearing inϕ (excluding∞), X = |A| andY
is the sum of the sizes of subautomata representing FBTL subformulae inϕ

Proof. Like theOptimized Forward-Backwardalgorithm, presented in Chapter 3,
GENERIC also maintains aconfiguration DAGG during its execution. The space
complexity ofGENERIC is linear in the size ofG. At each system step,G is
expanded by the procedureForward form the leaves. To find out the overall
space complexity of the algorithm, we need to find out the increment in|G| at a
given system step.

The procedureForward takes a setSt of leaves ofG and expandsG from
each〈Sp,X , res〉 ∈ St. As discussed in Section 4.4.2,St contains both typeA
and typeB leaves. Since all theisomorphic leavesin G are merged on the fly, the
number of the typeA nodes is bounded byY ∗ (Mc + 1) (Lemma 3.4), while the
number of typeB leaves is bounded by(Mc + 2)2(X−Y ) (Theorem 3.7).
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Each of typeA leaves adds a sub-DAG of size at mostY , by unrolling the
specification subautomationδ ∈ A . Similarly, each of typeB leaf adds a sub-
DAG of size at most(Mc +2)X−Y by translating a set of successor configurations
to aconfiguration sub-DAG. Thus,X ∗ (Mc + 1) leaves of typeA increment the
size ofG by at mostX ∗ (Mc + 1) and(Mc + 2)X leaves of typeB increment the
size ofG by at most(Mc + 2)2X . The total increment in the size ofG is therefore
bounded by(Mc + 2)2(X−y) + (Mc + 1) ∗ Y 2.

Everyconfiguration sub-DAGgenerated at a given system stepn is fully eval-
uated withinn+X ∗(Mc +1) system steps (Lemma 3.4). Lets take a setS of con-
figurations, generated by the the functioninit at a system stepn. Each〈C,D〉 ∈ S
is translated into aconfiguration sub-DAGG′ = 〈Sp, 〈∧, {〈G′, C, 0〉}∪〉, 0〉, where
Sp is the set of parent edges. At system stepn + 1, the procedureForward
replaces the leaf〈G′, C, 0〉 ∈ G′ with the successorconfiguration sub-DAGG′′,
generated by translating a set of successor configurations of C. At a system step
m ≤ n +MC ∗X, every elementd ∈ D is fully evaluated and removed fromD,
resulting inD = ∅. The procedureEval-Back reduces the evaluation ofG to
the evaluation ofG′′ and replacesG′ by G′′.

Thus, an increment in the size ofG made at any system step is decremented
from G within the nextX ∗ (Mc +1) system steps. The overall size ofG is always
bounded byX ∗ (Mc + 1)((Mc + 2)2(X−Y ) + (Mc + 1) ∗ Y 2).

Hence, space complexity ofGENERIC isO(X ∗ (Mc + 1)((Mc + 2)2(X−Y ) +
(Mc + 1) ∗ Y 2)).

Overall running time ofGENERIC is the increment in|G| at each system step
times the number of system steps. Thus, the running time ofGENERIC isO(|ρ| ∗
((Mc + 2)2(X−Y ) + (Mc + 1) ∗ Y 2))

4.3 Slightly-Restricted Bounded Temporal Logic

This section presents a sublogic of BTL, calledSlightly-Restricted Bounded Tem-
poral Logic(SBTL). SBTL does not allow temporal operator to be parameterized
infinite intervals to be nested in a subformula guarded by a temporal operators to
be parameterized with a bounded interval. TheGenericalgorithm make use of
this restriction to optimize the overall space complexity.

SBTL is strong enough language to specify most of the properties of reac-
tive systems in practice. For example, the property that “always every p-state is
followed by a q-states for 5 time units” can be expressed in SBTL as follows:

�[0,∞)(p→ �[0,4]q)
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Similarly, the property that “always every p-state is followed by a q-state within 5
time units” can be expressed in SBTL as follows:

�[0,∞)(p→ ♦[0,4]q)

Definition 4.8. Slightly-Restricted Bounded Temporal Logic Letψ be a FBTL
formula, a SBTL formulaϕ can be defined inductively as follows:

ϕ ::= ψ

| ϕ ∧ ϕ
| ϕ ∧ ϕ
| �[0,∞]ϕ

| ♦[0,∞]ϕ

| ϕU[0,∞]ϕ

Lemma 4.4. For a BTL formulaϕ that does not contain any subformula that
corresponds to FBTL,GENERIC runs in timeO(X ∗ (Mc + 2)X ∗ |ρ|) and space
O(X ∗ (Mc +2)X), whereMc is the largest constant appearing inϕ andX = |ϕ|.

Proof. For a metric alternating automatonA, translated fromϕ, the function
init does not generateconfiguration DAGs. Each configuration〈C, ∅〉 in the
configuration setS, generated byinit , is translated into aconfiguration DAG
G′ = 〈Sp, 〈∧, {〈G′, C, 0〉}〉, 0〉 by the procedureGenerate-DAG. In backward
evaluation,G′ is instantly reduced to a single leaf node〈Sp, C, 0〉 by the procedure
Eval-back. In the next system step,〈Sp, C, 0〉 is replaced by theconfiguration
sub-DAGtranslated from the set of successor configurations ofC.

Thus, G is a disjunctive branching pointover a set of typeB leaves. As
we know from Theorem 3.7, the number of typeB leaves is always bounded
by (Mc + 2)X and the size of the typeB leaves is bounded byX. Hence, the
space complexity ofGENERIC, for ϕ, isO(X ∗ (Mc + 2)X).

The running time ofGENERIC is linear in the increment in|G| at every system
step times the number of system steps. Hence,GENERIC runs in the timeO(X ∗
(Mc + 2)X)

Lemma 4.5. For ametric alternating automatonA, translated from FBTL for-
mulaϕ, GENERIC runs in timeO((Mc +1)2 ∗X3) and spaceO((Mc +1)2 ∗X3),
whereMc is the largest constant appearing inϕ andX = |A|.

Proof. Forϕ, the functioninit generates a single configuration〈∅, {G}〉 , where
G is aconfiguration DAGtranslated fromA.

The space complexity ofGENERIC, as proved in Theorem 4.3, isO(X∗(Mc+
1)((Mc + 1)2(X−Y ) + (Mc + 1) ∗ Y 2)), whereX is the size ofA andY is the sum
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of sizes of subautomata representing FBTL subformulas. We haveX = Y , as
ϕ is a FBTL formula. SubstitutingX for Y in the above expression, the space
complexity ofGENERIC, for ϕ reduces toO((Mc + 1)2 ∗X3).

Similarly, the time complexity ofGENERIC for BTL formula isO(X ∗ (Mc +
1)((Mc+2)2(X−Y )+(Mc+1)∗Y 2)). By substitutingX for Y , the time complexity
of GENERIC gets reduced toO((Mc + 1)2 ∗X3).

Lemmas 4.4 and 4.5 prove that theGeneric algorithm is as efficient as
Breadth-First for BTL specification and as efficient asOptimized Forward-
Backward for FBTL specification respectively.

Theorem 4.6. For ametric alternating automatonA, translated from SBTL for-
mulaϕ, GENERIC runs in timeO(X ∗ (Mc + 1) ∗ (22(X−Y ) + (Mc + 1) ∗ Y 2))
and spaceO(|ρ| ∗ (22(X−Y ) + (Mc + 1) ∗ Y 2)) ,whereMc is the largest constant
appearing inX = |A| andY is the sum of sizes of subautomata that corresponds
to FBTL subformulae inϕ .

Proof. GENERIC maintains system configurations in the form of aconfiguration
DAG (G). Theorem 3.3 proves that the space complexity ofGENERIC is linear
in the increment in|G| at every system step times(Mc + 1) ∗X, and the running
time is bounded by the increment in|G| at each system step times|ρ|.

In ϕ, we have FBTL subformulae of total sizeY inside a top level LTL formula
of sizeX − Y . For aconfiguration DAGG generated by unrollingA, the number
of typeB leaves are bounded by2X−Y (corollary 3.2) and the number of typeA
leaves is bounded byY ∗ (Mc + 1)(lemma 3.4).

Each of typeA leaf adds a sub-DAG of size at mostY , by unrolling the spec-
ification subautomaton . Similarly, each of typeB leaf adds a sub-DAG of the
size at most(Mc + 2)X−Y by translating a set of successor configurations to a
configuration sub-DAG. Thus,Y ∗ (Mc + 1) leaves of typeA increment the size
of G by at mostY 2 ∗ (Mc + 1) and2X−Y leaves of typeB increment the size ofG
by at most22(X−Y ). The total increment in the size ofG is therefore bounded by
2(X−Y ) + (Mc + 1) ∗ Y 2.

Hence, forϕ, GENERIC runs in spaceO(X ∗ (Mc + 1) ∗ (22(X−Y ) + (Mc +
1) ∗ Y 2)) and in timeO(|ρ| ∗ (2(X−Y ) + (Mc + 1) ∗ Y 2)).

Theorem 4.7. For an execution traceρ, and ametric alternatingautomatonA,
translated from BTL formulaϕ, the space complexity ofGENERIC for different
sub-logics ofBTL is given below:
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O(2X) if ϕ is a LTL formula
O(X3 ∗ (Mc + 1)2) if ϕ is a FBTL formula
O(X ∗ (Mc + 2)(22(X−Y ) + (Mc + 1) ∗ Y 2)) if ϕ is a SRBTL formula
O(X ∗ (Mc + 1)((Mc + 2)2(X−Y ) + (Mc + 1) ∗ Y 2)) if ϕ is a BTL formula

where,

• X = |A|.

• Y is the sum of the sizes of subautomata representing FBTL formulae.

• Mc is the maximum constant appearing inϕ (excluding∞).

Theorem 4.8. For an execution traceρ, and ametric alternatingautomatonA,
translated from input formulaϕ, the time complexity ofGENERIC for different
sub-logics ofBTL is given below:

O(2X ∗ |ρ|) if ϕ is an LTL formula
O(X3 ∗ (Mc + 1)2) if ϕ is a FBTL formula
O(|ρ| ∗ (22(X−Y ) + (Mc + 1) ∗ Y 2)) if ϕ is a SRBTL formula
O(|ρ| ∗ ((Mc + 2)2(X−Y ) + (Mc + 1) ∗ Y 2)) if ϕ is a BTL formula

where,

• X = |A|.

• Y is the sum of the sizes of subautomata representing FBTL formula.

• Mc is the maximum constant appearing inϕ (excluding∞).



Chapter 5

Conclusion

In this thesis, we presented a framework to monitor time-bounded temporal prop-
erties of a running system. The specification language BTL not only allows us
to express time-bounded temporal properties in a compact form, but also leads to
efficient algorithms.Metric alternating automata(MAA), with time constrains
on transitions, provide a linear translation mechanism from BTL specifications to
MAA. The algorithm based onalternating automata(AA) can be easily extended
to work on MAA.

A collection of specialized algorithms for different sublogics of BTL is
presented with their respective complexity analysis. TheOptimized Forward-
Backwardalgorithm has a better running time and space complexity forFBTL
specifications, where all the temporal operators have finitebounds. On the other
hand, theOptimized Breadth-Firstalgorithm performs much better when all the
temporal operators have infinite bounds, i.e., LTL specifications. Normally, BTL
specifications contain a mixture of both finitely and infinitely bounded temporal
operators. TheGenericalgorithm dynamically applies specialized techniques for
different sublogics of BTL. It not only handles all the sublogics of BTL (includ-
ing LTL), but also performs as efficiently as the specializedalgorithms for those
sublogics.

Typically, in BTL specifications,the infinitely bounded temporal operators ap-
pear on top of the finitely bounded temporal operators. We have formally classi-
fied such properties asSlightly-restricted Bounded Temporal Logic(SBTL), pre-
sented in Chapter 4. The complexity of theGenericalgorithm is reduced consid-
erably for the SBTL specification.
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Appendix A

OPrA - A Runtime Monitoring
Software

In this chapter we present a software tool, called OPrA (Online Program An-
alyzer), for online monitoring of a running program. OPrA implements the
framework discussed in this thesis. The first version of OPrAonly theForward-
Backwardalgorithm. All the other algorithms will appear in the coming version.

A.1 General Description

The Software tool OPrA (Online Program Analyzer) is an online monitoring
tool, that monitors a running program against a high-level specification written
in Bounded Temporal Logic(BTL). A given programP is instrumented with ad-
ditional instructions to emits relevant events.P ,when runs, emits events which
are then checked against the specification by a monitor running in parallel.

The Software is divided into four modules, which are discussed briefly in the
following subsections:

A.1.1 Formula Translation

The Formula Translatorreads BTL specification scriptΥ from a text file and
translatesΥ to ametric alternating automatonA. The translation fromϕ toA is
done by theFormula Translatoras follows:

• Parsesϕ to check against the syntax and semantics of the BTL.

• If Υ is syntactically a and semantically correct,Formula Translatorpro-
duces a syntax treeT from Υ.
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• T is then transformed into thenegation normal form, such that negation are
pushed to the proposition level.

• T , in the negation normal form, is then translated into ametric alternating
automatonA according to the translation rules defined in Chapter 2.

• Return the automatonA as output.

A.1.2 Program Instrumentation

The instrumentation moduletakes a specification scriptΥ and program segment
P ,written inC0 (a subset ofC langueage), and produces an instrumented codeP ′

that can compiled with any standardC0 compiler.P ′ contains additional instruc-
tions to emit events, and also the specification scriptΥ′ inserted, as comments, at
the top of the program file.Υ′ is produced after replacing each proposition inΥ
with their respective index numbers. The boolean constantstrue andfalse are
replaced with1 and0 respectively. GivenP andΥ, the program instrumentation
works as follows:

• Parsesϕ script to extract the set of predicatesSp that appears inϕ. Predi-
cates or boolean functions over program variables. Each Predicatepred ∈
Sp is assigned a unique integer valuekey and then put into a listLp of pair
〈pred, key〉. Keys are assigned in increasing order staring with2. 0 and1
are reserved for the boolean constantfalse andtrue respectively.

• Eachpred ∈ Sp in the specification scriptΥ is replaced by their respective
key, and the resultant specification scriptΥ′ is written at the top of instru-
mented programP ′ enclosed in the comments.

• TraversesLp to compute a listLvp of pair 〈var, plist〉, wherevar belongs
to a set of program variablesV that appears inΥ. The listLvp maps each
var ∈ V to a setS ′ ⊆ Sp, such that,var appears in every element ofS ′.

• ParsesP to compute a set of program instructionPi that updates the value
of anyE ∈ V . This is done my looking at each assignment instruction in
the program text. The setPi consists of all the assignment instructions that
contains a program variableE ∈ V , such thatE appears on the left side of
the assignment operator.

• For each assignment instructionI ∈ Pi that updates variable avar ∈ V ,
computes the setS ′ of predicates , such that eachP ∈ S ′ containsvar.

• Insert new instruction after each assignment instructionI ∈ Pi to emit the
event.
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A.1.3 Event Recognizer

TheEvent Recognizerrecognizes the events emitted by the running program. A
change in the value of program variablev results in changing truth value of the set
S of predicates appearing in the input formula. The module, maintains a listL of
pair〈id, val〉, whereval is a predicate’s truth value andid uniquely identifies each
predicate. The listL is computed by parsing the specification scriptΥ of a BTL
formula . Event Dispatcherreceives a pair〈id, val〉, from the running program
and updatesL. After updatingL, Event Recognizernotifiesmonitoring module
about the change in system state.

A.1.4 Runtime Monitoring

Runtime Monitormonitors the instrumented programP against the formal speci-
ficationΥ. The stepwise activities ofRuntime Monitorare given below:

1. Parses the specification scriptΥ, and also initializes the listL of
pair〈id, val〉, whereid is an index number of a proposition, andval rep-
resents its truth-value.

2. InvokeFormula translatorto translate the specificationΥ to ametric alter-
nating automaton.

3. Initializes theEvent Recognizer.

4. Waits for the notification from theEvent Recognizerabout system’s state
change.

5. When receives the notification of state change from theEvent Recognizer
and verifies the new system state against the specification.

6. Repeat the last two steps unless program terminates without the following
results:

• Program trace satisfies the specification.

• Failure is detected during execution.

A.2 Specification Script

In this section we define the grammar for the specification script Υ, which we
use to writeBounded Temporal LogicBTL formula. The predicates over program
variables are enclosed in curly braces. The grammar rules are defined below:
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formula ::=
| (formula )
| binary-formula
| unary-formula
| proposition

unary-formula ::= temporal-operator formula
| simple-operator formula

binary-formula ::= formula temporal-operator formula
| formula simple-operator formula

temporal-operator ::= toperator interval
| formula simple-operator formula

proposition ::= {predicate}
| constant

interval ::= ǫ

| [number,number]
| [number,−]

toperator ::= U (the temporal operator for strong until)
| W (the temporal operator for weak until)
| R (the temporal operator for the dual of until)
| G (the temporal operator for always)
| F (the temporal operator for Eventually)
| X (the temporal operator for next)

simple-operator ::= and (the boolean operator for conjunction)
| or (the boolean operator for disjunction)
| xor (the boolean operator for exclusive conjunction)
| not (the boolean operator for negation)
| → (the boolean operator for implication)
| ↔ (the boolean operator for equivalence )

predicate ::= ”C language boolean expression”

number ::= ”An integer”

constant ::= true|false
The precedence of temporal and non-temporal operators is given below:
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Yes

 C0 Program

Instrumented Program

Executable Program

Running Program

BTL specification

BTL Automaton

Metric alternating 
Automaton

Execute

Events
Compile

Instrumentation

Runtime Monitor

No

Figure A.1: The architecture of the software tool OPrA (Online Program Ana-
lyzer).

Precedence Operators
0 !
1 G, F, X
2 and
3 or
4 xor
5 ↔
6 →
7 U, W, R

The operators appear at the same line have equal precedence.
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A.3 Software Architecture

The Figure A.1 shows the architecture of the software tool OPrA. The spftware
takes the specification scriptΥ and a programP as inputs.Υ contains the script
for the BTL specificationϕ, stating which system’s property is to be monitored.
P is instrumented in accordance withΥ, to produce the instrumented program
P ′. At the same timeϕ is translated to ametric alternating automatonA. P ′ is
compiled withC0 compiler, and executed. During the executionP ′ emits events,
which are received by theRuntime Monitor. Runtime Monitorchecks whether a
sequence of events emitted byP ′ are accepted byA or not.


