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Abstract

We present an automata based verification framework to moaitunning sys-
tem against a high level specification. Our framework inekidpecification for-
malisms to express system properties and verification ithgas to check an exe-
cution trace of a system against the intended behavior.

Linear Temporal LogidLTL) is a widely used specification language to ex-
press temporal properties of a system. We preS8mtnded Temporal Logic
(BTL), which extends LTL by parameterizing temporal operatwith time
bounds. As compared to LTL, BTL is a natural and a more comipactalism to
express time-bounded temporal properties.

In automata based verificaticaternating automat#AA) are commonly used
as intermediate representations of LTL specificationsabge of their succinct-
ness and linear translations from LTL formulae. Howeveg, tifanslation from
BTL formulae to AA is exponential. We presentetric alternating automata
(MAA), a variant of AA, and a linear translation mechanismonfr BTL formulae
to MAA.

A collection of algorithms, based on MAA, are presented tanitaw an ex-
ecution traceagainst a BTL specification. We start with specialized atgors
for different sublogics of BTL, and then preseng@nericalgorithm which han-
dles all the sublogics of BTL (including LTL) and performsefficiently as the
corresponding specialized algorithms for those sublogics
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Chapter 1

Preliminaries

1.1 Introduction and Motivation

This thesis presents a framework to monitor running systagasnst high level
specifications. Our framework includes specification fdrsmas to express
system properties and verification algorithms to monitoryatesm execution
against the intended behavidainear-time Temporal Logi(LTL) [15] is a widely
used specification language to model the properties ofiveasystems. Several
verification tools based on LTL have been developed in ac&dand in industry.
Generally, the temporal properties expressed in LTL arerpmeted over an
infinite moment in future. LTL can also be used to express tealproperties
that are interpreted over a finite moments in future by usisgguence of next
operators . However, this approach is adequate only if tinge moments are
very small in number. We preseBbunded Temporal Logi¢BTL) as a compact
alternative to LTL. In BTL, temporal operators are parameésl with both
finite and infinite time bounds. For example, we want a systefrehave in the
following way:

Always, when a proces® is permitted to enter the critical sectiagf it will
eventually leaves within n system steps.

Let p represents the propositio“entersS”and ¢ the proposition P leavessS”,
then the above property can be expressed in BTL as follows:

Ojo,001 (0 — Co,n-119)-

One may argue that the same property can also be expresstbsical LTL,
usingn next operators, as follows:

O — (¢vOlgV O(..(¢VOq)...)).
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However, the size of the specification is exponentially¢agpmpared to the BTL
formula.

BTL not only expresses system properties in a compact founalso leads
to better complexity of the verification algorithms, whidale aliscussed in Chap-
ter 4. BTL can also be seen as a special casmedfic temporal logic (MTL)
with discrete time intervals. MTL, which was introduced bgwnans in [13], is
an extension of LTL used to express quantitative tempo@bgnties of reactive
systems.

In the automata-theoreticapproach to verification, a verification problem is
first reduced to aautomata-theoretiproblem [4], such as taking the intersection
of two automata, emptiness checking, membership checkmg¥herun-time
verification problem can be reduced to the membership chggikioblem of au-
tomata [8], i.e., a trace of the system execution satisfiespecification, if it is
accepted by the corresponding specification automaton.

Alternating automataare efficient datastructures farm-timeverification due
to their succinctness and linear translation from LTL speations [8]. Alter-
nating automata, in the context afn-timeverification, were first studied in [6],
where a collection of algorithms based on alternating aataris presented. The
algorithms traverse the trace in different ways, Beeadth-First Depth-Firstand
Reverse Two of the algorithmspPepth-Firstand Reverseneed the trace of the
system execution to be available offline. TBeeadth-Firstalgorithm can work
online, but it has an exponential space complexity in the efanput formula.

We introducemetric alternating automata(MAA) and a translation mecha-
nism from BTL formulas to MAA. MAA extendilternating automataby intro-
ducing time constraints on transitions. A transition iskdad in MAA, if and
only if, the corresponding time constraint is fulfilled. Calgorithms monitor a
system execution against an intended behavior by checkiregher a given ex-
ecution tracep is accepted by the specification automatnThree algorithms,
theForward-Backwardalgorithm, theOptimized Breadth-Firstlgorithm and the
Genericalgorithm are presented to cheglagainst4. The Forward-Backward
unrolls A into a DAG (directed acyclic grapld) and then travers&sbackwards to
detect an accepting rynin A. The space complexity of the algorithm is quadratic
in the size of4 and linear is the size gf TheOptimized Breadth-Firsalgorithm,
which extends th8readth-Firstalgorithm presented in [6], has space complexity
constant inp and exponential ind. The algorithms outperform each other for
different sublogics of BTL. Th&eneric algorithm, presented in Chapter 4, com-
bines theBreadth-FirstandForward-Backwardalgorithm to optimize the overall
complexity.

For a BTL specificationp and an execution trage the Genericalgorithm, in
the worst case, runs in spa@€C'¥l) and timeO(C!#! x | p|), whereC is the max-
imum integer constant appearinggn For the same specification when translated
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into classical LTL, the best known algorithms run in sp&@°*/#l) and time
021« | p]).

We also present a restricted sublogic of BTL, call8tghtly-restricted
Bounded Temporal Logi¢(SBTL). SBTL is strong enough to express most of
the system properties commonly used in practice. For SBTindita, the space
complexity of theGenericalgorithm reduces t@ (|| * C2 x 22(#D),

1.2 Background

1.2.1 Linear Time Temporal Logic

Linear time temporal logi€LTL) is based on a linear model of time. Linear time
means that each moment in time has one and only one succEésselis bounded
in the past (i.e., we have a start time) and unbounded in tiueefifi.e., there are
infinitely many moments in the future). Reactive systemskar@wvn for their
ongoing interaction with their surroundings and their terminating behavior
[2]. Thus, a system execution is an infinite sequence ofstalbe correctness
of a system execution is proved by checking the temporalromglef the infinite
state sequence. Temporal logic is a simple and natural wepecify the ordering
of events without referring to absolute time measures.

Temporal properties are mainly classified istfety properties andiveness
properties [17]. Asafety property asserts that “nothing bad”will happen in future,
while alivenessproperty asserts that “something good”will eventually pin
future. TheMutual exclusionproblem is a famous example ofafety property
[2], where we require that no two processes are able to aecsisared resource
simultaneously. An example oflaenessproperty is theguaranteed servicg],
where it is required that each request for a certain resasregentually enter-
tained.

1.2.2 Run-Time Verification

Model checkindMC) [16] is a widely used technique to prove a system'’s desig
correctness against a formal specification. Despite intemssearch, applications
of MC are mostly restricted to finite state systems. Softwacoelel checkings
extremely hard due to the large (possibly infinite) statespabe explored. Thus,
MC is mostly used for verifyingCommunication Protoco)$lardware Circuitsor
some abstract representationsSofftware Systems&ince one can not completely
rule out possible differences between the actual impleatiemt and the abstract
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model, verifying an abstract model does not guarantee thieataess of the actual
system.

One of the alternatives is to check the system while it is imgunT he research
community has proposedin-time verification as an light-weight alternative to
MC for Software Systeni§]. In run-time verification, a particular trace of the
system execution is verified against a formal specificatistead of exploring the
whole state space. Although, not as comprehensive asRwv@-timeverification
has a lot of attention in recent years in the area of softwardeation.

1.2.3 Alternating Automata

In automata based verification, a verification problem isuced to a known
automata-theoretiproblem. Unfortunately, most of the operations on nondeter
ministic automata are very costly and are not feasible inyncases Alternating
automataare efficient data structures for verification purposes.eéxample, the
complementation of a nondeterministic automaton is exptale while comple-
mentation of aralternating automatons a linear operation.

Alternating automata generalize nondeterministic autanitgy allowing a
choice to be marked as either universal or existential. Aensal choice means
that a word is accepted if all the paths through the automlathto acceptance.
An existential choice means that a word is accepted if oné®fphaths through
the automaton leads to acceptance. A run of a nondeterinimistomaton is
a sequence of states, whereas a run ofal@rnating automatonbecause of
universal choice, is a tree.

1.3 Overview

We begin with an introduction ofetric alternating automata (MAA) and
Bounded Temporal LogidBTL ) in Chapter 2. In Chapter 3, we present veri-
fication algorithms based on MAA, and analyze their compiesi In Chapter 4,
we present th&enericalgorithm and analyze its complexity for different sublog-
ics of BTL. Chapter 5 constants the concluding remarks aboutvork. A brief
tutorial of the online monitoring tool 'OPrA, which impleemts the framework,
is presented in the appendix.



Chapter 2

Metric Alternating Automata

2.1 Introduction

In the automata-theoretic approach to verification, a \eation problem is first
reduced to an automata-theoretic problem, and then solvttebmethods known
already for automata. The most common practice is to tremsiatemporal logic
specificationp into anautomaton.4, and then perform different operations.dn
For exampleruntime monitoring of a system’s execution can be reduced to the
membership checkingroblem. We use a similar approach to the one discussed
in [6], where an LTL formulay is translated into aalternating automaton4 and
then a given execution tragas checked against for acceptance.

In our framework, we usBounded Temporal LogiBTL), presented in Sec-
tion 2.4, to express time-bounded temporal properties trEmslation from a BTL
formula to analternating automatoris exponential. We introduce a variantadf
ternating automatacalledmetric alternating automatéMAA). MAA associate
time-bounds on transitions, which leads to a linear traiwsidrom BTL formulae
to MAA.

Metric alternating automatdike alternating automataallow dual branching
modes, that is, a universal branching mode and an existéméiaching mode.
Universal branching, represented by conjunction over sigmaata, means that
a state sequence is accepted by the automaton if all patistdeacceptance,
whereas existential branching, represented by disjumatieer subautomata,
means that a state sequence is accepted if any of the pathtleadceptance.
Nodes ofmetric alternating automatare marked as either accepting or rejecting,
represented by and0 respectively. A run of anetric alternating automatqrdue
to conjunction over subautomata, is a tree instead of a sequi states in case
of nondeterministic automaton. Ain tree is accepting if every path in the tree
ends at araccepting node
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2.2 Syntax and Semantics

Definition 2.1. (Metric Alternating Automaton) Given a set of clockg’, a
metric alternating automatord is defined as follows:

A= ey empty automaton
| N automaton node
| AANA conjunction of two automata
| A VvV A disjunction of two automata
| A

metric sub-automaton

where N is a node of anetric alternating automatodefined in Definition 2.2,
andd € NU {oo} is a metric.

Definition 2.2. (Node of a Metric Alternating Automaton) Given an input
alphabet, a node\ of ametric alternating automatoris defined as follows:

N = (v,acc) leaf node
| (F,d,acc) timernode

where,
* v € () is an input letter.
* 0 is a sub-automaton expressing the next-state relation.
» Fis a boolean function oveé¥ U {co}.
* acc € B.

In general, a clock of #med automatomepresents the time elapsed since the
last reset. In our formalism, a clocks a decreasing sequence of positive integers,
such that;,; = ¢; — 1 foralli > 0.

Nodes of ametric alternating automatonare classified into two types. A
leaf node that represents a state formukand a timer node represents a boolean
function F over a set of clocks.

Example 2.1. Figure 2.1 illustrates the construction ofnnaetric alternating
automaton.A that specifies themed-languagel given below:
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Figure 2.1: Metric alternating automaton for the timed lamge £ =
{o|Vi.((o; Fa) = 35 >i.(0; =b)andj —i < 4)}

L={c|Vi.((o; EFa) — 3j>i.(o; Eb)andj —i < 4)},
wheres; ando; represent thé and thej*" input letter ino respectively, and, j
are positive integers.

The languag€ consists of alsequencesuch that ifa holds at a certain posi-

tion, thenb must holds within four time units. In simple words, we can &t the
maximum distance between the position whetelds and the positiohholds is
at most four time units.
The nodes of the automaton are graphically representedundenl squares and
circles, as shown in Figure 2.1. A rounded square represen&&cepting node,
while a circle represents a rejecting node. éxecution traces a member of the
languagel if it is accepted byA. Acceptance conditions ofl are discussed in
the sections to follow.

Definition 2.3. (Execution Trace) Given a set of system variable, an execution
tracep : sg, s1, S2..., IS @n infinite sequence of states, where a staie a truth
assignment to the variablesin

2.3 Run of a Metric Alternating Automaton

In automata theory, a run of a nondeterministic automatarsisquence of states.
However, a run of anetric alternating automatqrbecause of the conjunction
over sub-automata, is a tree.
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Definition 2.4. (Run Tree) A run tree of ametric alternating automatons de-
fined as follows:

T:= er empty tree
| (N, T) anode with a subtree
|

T.T  composition of two subtrees

whereN represents a node of anxgetric alternating automatan

Definition 2.5. (Run) Given anexecution tracep and ametric alternating au-
tomaton A, a run treeT with an associated clockis called a run op in A if
one of the following conditions holds:

A= ey and T =ep
A= (v,acc) and T = ((v,acc),er), andpy = v

B p#£e T ={F,bacc), T, F(c) =true and
A= (F,0,acc) and T’, with a clocke — 1, is a run ofpy, po, ps... in 4.
B T = T,.T,, Ty, with a clocke, is a run ofp in Ay,
A= AiAA  and and T,, with a clocke, is a run ofp in As,.
B T ,with a clocke, is a run ofp in A,

A= AivA  and or T, with a clocke, is a run ofp in A,.

A= Al and T, with a clockd, is a run ofp in A,.

Definition 2.6. (Accepting Run) Arun T of ametric alternating automaton4d
is accepting if all the branches @f end at accepting nodes.

Definition 2.7. (Model) An execution trace is a model of anetric alternating
automaton.4, denoted ap |~ A if there exits an accepting run pfin A.

Definition 2.8. (Language) The language ometric alternating automatonA4,
denoted ag£’(.A), is the set of all models oAl.

Example 2.2. Figure 2.2 shows two rufd; and 7, of the metric alternating
automaton.A (shown in figure 2.1) against two different input sequengeand
o9 given below:

o1 = (—a,b) — (a,—b) — (—a,-b) — (—a,-b) — (a,—b) — (a,b)
oy = {(a,b) — (a,—b) — (—a,—=b) — (—a, by — (a,—b) — (—a,—b).
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t=4 t=4
/\ (=3 /\ t=3

no ny Ng g iy N2
/\ (=2 /\ t=2

ng n N2 ng n o
t=4 =1 t=4 t=1

no N9 N2 Mg n2 n2

t=4 t=3 t=0 /\
Un ng ns ng no n1
7,

Figure 2.2: Runs/; and7; of input sequences; and o, in the specification
automatonA4, shown in Figure 2.1.

According to Definition 2.7,0; | A if there is an accepting run of; in

A. The run tree7; is accepting, by Definition 2.6, as all the branches end at
accepting nodesf, ny,n3). Thus,o, is a model ofA. On the other handy,
produces’Z; which, by our definition, is not accepting, as some of the tinas
end at the rejecting noded), as shown in the figure. Since there does not exists
any accepting run for the input sequengg the sequence is rejected by the
specification automatad ando, is not a model ofA.

2.4 Bounded Temporal Logic

We present Th&ounded Temporal Logi(BTL) as an alternative specification
language td.inear-time Temporal Logi€LTL). LTL, discussed briefly in Chap-
ter 1, does not succinctly express time-boundedemporal properties. BTL
allows one to express time-bounded temporal propertiesiceacompact form
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by parameterizing temporal operators with both finite arfohite time bounds.
The time-bounded properties, when expressed in BTL haeelsgarithmically
smaller compared to LTL.

For example, the property that “Always every p-state isciotd by a g-state
within 100 time units” can be modelled in BTL as follows:

D[o,oo} (p - <>[0,100}Q)-
Similarly, the property that “Within 20 system steps a pestaiggers an infinite
sequence of g-state” can be expressed in BTL as follows:

<>[0,19} (p - D[o,oo}Q)-

Definition 2.9. Bounded Temporal Logic(BTL) Given a set of propositions P,
Bounded Temporal LogiBTL can be inductively defined as follows:

[z1,22] ¥
@u[m,m}gp

wherep € P is a propositiong;, s € NU {oo} andz; < 5 < 0.

Given anexecution trace, a state formula”, BTL formulaeyp and«, a BTL
formula holds at position & j < |p| , written as f, j) = ¢, is formally described
as follows:

For a state formula:
(p,j) E=p iff the assertion p holds at;.

For the boolean connectives:

(p,J) Ewny it (p,j) Eeand(p,j) E v
(p,J) Ewvyy it (p,j) Ewor(pj) E .
(pJ) E e iff  (p,7) ¥ ¢

For temporal operators

(0, 7) EOuy e it (pd) Epforalli € [z + j, 22 + j]

(0,7) E Quraayp It (pi) E p forsomei € [z1 + j, z2 + J]

(0, 7) E Uz, w0 iff - (p,i) = 1 for somei € [z; + j, 22 + j] and
(z1+j=ior(pk) Eeforallk e |x; +5,i—1]),
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wherez, + j < |p|.

(0,7) B Oy anp 1t (p,i) Eoforalli € [z, +j,[p] — 1]

(0, 7) B Quraap It (p,i) = ¢ for somei € [z + 4, [p] — 1]

(0, §) E Uz, 200 i (p,7) = ¢ for somei € [z, + j, |p| — 1] and
(z1+j=io0r(p k) Eeforalk ez, +75,i—1]),

where,x; + j < |p| <z + 7.

<p7 .]) ’: D[:vl,:vﬂ(p alWayS true
<p7 .]) ’: <>[:v1,:v2}()0 alWayS false
(p,7) F pU, 2p0  always false

where,z; +j > |p|.

Given BTL formula ¢ and ¥, weak until W and dual until’R operators
can be expressed as follows:

° (paj) ): @W[m,xQW = (paj) ): @U[:cl,:vg}w or (paj) ): <>[I17I2]SO

* (0,J) F PRz = (p,7) F (0 Uizy 20 7)

Note 2.1. BTL does not support the the next operator, howefgnp can be
used to specify thap holds at the next state.

2.5 BTL to MAA translation

In this section, we present the translation from a BTL forartola MAA. To make
the translation from a specification to an automaton mordaigie, we define
translation function®,, ¥, ¥,, U5 andW¥, which we later use in the construction
of the MAA. Given MAA A, A, A, , the translation functiond,, ¥, ¥y, ¥,
andV, are be defined as follows:

To(A) = (Oaz>0,Te(A),00) V(A 2 = 0,6, 1)) A (A))
V(A = (Daz>0,0,(A), 1))V (A= 0,6, 1)) A (A))
Uy(A) = ((Mz.x>0,9,(A),)V{dz.z=0,¢,1)) N A
\1’3(./41,./42) = (<)\JI T > 0, \IIQ(.Al, ./42), 0) A .Al) V ./42
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The translation rules from BTL specificatignto metric alternating automaton
A(yp) are given below:

For a state formula p:

Alp) = (p,1)
For BTL formulaeyp andy):
A(p A1) = A(p) NA()
Alpve) = Alp) VA
.A( [z1 xQ]SO) = (\Ifl((Q/Z(A(w)))mz—m))m—l
.A( [x1 xQ]SO) = (\I]O((W4(A(@)))m2_$1))$1_1
A(Sou[ml :BQ ) = (WO((\I!3(A(Q0),A(¢)))x2_$1))$1_1

Note 2.2. In translation from BTL to automaton, all BTL formulae aresasied
to be in negation normal form, that is, all the negations Hmaen pushed to state
level such that there is no temporal operator within the saimegation.

Given BTL formulaey and ), Figure 2.3 shows the construction of met-
ric alternating automatal,, A,, A; and A, from the respective BTL formulae
<>[£B1,:B2}90! D[rhrz]@ and@“{xl,mw-

Proposition 2.1. For every BTL formulap, there exists anetric alternating au-
tomaton A4, and the size o# is linear in proportion to the size qf.
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Al . A(O[xl,xﬂ(p> "42 : A(D[ﬂclwz]@)

Ag : A(@U[m,m]lﬁ)

Figure 2.3: Construction ahetric alternating automata (MAAJrom BTL for-
mulae.
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Chapter 3

Verification Algorithms

3.1 Introduction

In this chapter, we present online verification algorithnasdd on metric al-
ternating automata(MAA). Our algorithms check an execution trace against a
formal specification, expressed munded temporal logidBTL). BTL, as dis-
cussed in Chapter 2, is a compact version of LTL, where tealfmmerators are
parameterized with discrete time intervals.

To check an execution trace against the intended behawdighow a similar
approach to the one presented in [6]. The idea is to transl&le. specificationo
into ametric alternating automatos, and then check whether a given execution
tracep is accepted byl or not. p is accepted by, according to Definition 2.6, if
there exists aun 7 of pin A, such that every path throughends at an accepting
node.

Three algorithms are presented to check whether afrwf p exists in A
or not. The first algorithm, calleBorward-Backwardalgorithm, unrollsA4 into
a configuration treeT and then traverse$ backwards, starting from leaves, to
detect7 as a subtree iT. The algorithm follows a very simple technique, but
it generates d that grows exponentially in the size pf The second algorithm,
called Optimized Forward-Backwardalgorithm, unrolls the automaton into a
more compact datastructure, calledanfiguration DAGG, and then traverses
backwards to detect in G. The space complexity of the second algorithm is
linear in the size ofp| and quadratic in the size of. The third algorithm is an
optimized version of th&readth-Firstalgorithm presented in [6].

15
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3.2 Forward-Backward Algorithm

As discussed in Section 3.1, tRerward-Backwardalgorithm detects aun 7 of
anexecution trace in the specification automato#. The algorithm first trans-
lates.A into aconfiguration treeT, defined in Definition 3.1, and then evaluates
T backwards to deted as a subtree iff. At a given system stef, represents
all the system configurations that are consistent with tieeifipation so far. The
initial configuration is computed by translating the speaeifion automatond into

T. The algorithm works in two phases, i.e., fioeward expansiorand theback-
ward evaluationof T. Theforward expansiorexpandsT from the leaves, while
thebackward evaluatioevaluatesl backwards, starting from the leaves.

Definition 3.1. (Configuration Tree) A configuration treeT, generated by un-
rolling ametric alternating automatow, is defined recursively as follows:

er empty tree
N, T),res) node with a sub-tree

| (p N,

| (p,(TAT),res)y aconjunctive branching pointwith two sub-trees
| (p,(TV T),res) adisjunctive branching point with two sub-trees
| (p,{d, T),res)  ametric sub-tree

where, N is a node ofA, p is a parentonfiguration treed € N U {cc} and
res € {—1,0,1}.

Procedure Forwar d( S;)
Input : A setS; of node-clock pairs of a configuration trde
Output: A set of node-clock pairs + expansion bfs side effect.
begin
Sy — 10
for each(X, c) € S, do
if X = (pp, ((F,6,acc),er),0) then
L T « translate(d)

X — {pp, ((F,0,acc), T'),0)
S;«— S;UGet-Leaves(X, T, c—1)

return S;
end

Definition 3.2. (Translation from an MAA to a Configuration Tree ) For a
metric alternating automataA, the translation functiotranslate(.4), from A to
aconfiguration treeis defined as follows:
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translate(e4) =
translate(\N)

I
translate(A; vV As)

(

(

€
<€T7 <N7 €T>> 0)

(er, (translate(A;) V translate(A;)), 0)
(er, (translate(A;) A translate(A;)), 0)
(er, (d, translate(A,)), 0)

translate(A; Vv A,)
translate(.A?) =

Procedure Get - Leaves(p, T, c)
Input : A parent pointep, a configuration tred and a clock..
Output: A set of node-clock pairs of expand@d assignment of parent
pointer inT as side effect.

begin
switch T do
case(p’, (N, er),res)
p D
| return {(T,¢)}
case(p’, (T, V Ty),res)
pep
| return Get - Leaves( T, Ty,c)UCet-Leaves(T, Ty, c¢)
case(p/, (Ty A\ Ty),res)
pep
| return Get - Leaves( T, Ty,c)UCet-Leaves(T, Ts,c)
case(p’, (d, T'), res):
p D
| return Get - Leaves(T, T,d)
return ()
end

3.2.1 Forward Expansion

A configuration tree T, maintained by thé&orward-Backwardalgorithm, is ex-
panded at every system step to generate all the possiblessaraconfigurations.
The procedurd-or war d expandsT from the leaves by adding subtreesTo
For war d takes as input a set; of pairs (X, c¢), whereX' is a leaf of T and ¢
is an associated clock. For each node-clock pair(F, 4, acc,)T),c) € S;, the
subautomatod is translated into aconfiguration subtred™, using the function
translate. Each newly added” is then passed to the proceduget - Leaves
with clock valuec — 1 to compute the set of node-clock pairs for As a side ef-
fect,Get - Leaves assigns each subtreeTha parent pointef=or war d returns
as output a sef; of node-clock pairs for the expandéd



18 CHAPTER 3. VERIFICATION ALGORITHMS

The construction of @onfiguration tredrom ametric alternating automaton
is shown in the functiotranslate. Eachmetric subautomatowith a metricd is
translated into anetric subtree€T,,,......, such that the clock associated Wi}, ;.
is initialized withd.

Procedure Eval - Back( T)
Input : A configuration treeT.
Output: A configuration tree
begin

T, — €T

switch T do

case(pp, (N, T'), res)

res «— result(T)

if res # 0 then
| T. <« Eval - Back(pp)

ase<pp7 <T1 A T2>7 7“68)
res < result(T;) and result(T;)
if res # 0 then

| T, < Eval - Back(pp)

o

ase<pp, <T1 Vv T2>7 T‘€8>
res «— result(T;) or result(T;)
if res # 0 then

| T. <« Eval - Back(pp)

(%]

ase(pp, (¢, T'), res)
res < result(T)

if res # 0 then
| T, <« Eval - Back(pp)

O

if T, = erthen
[ return T
else

| return T,

end

3.2.2 Backward Evaluation

At each system step the expansion afamfiguration treeT is followed by the
backward evaluatiorof T. In thebackward evaluationT is traversed backwards
to detect an acceptingin 7 in T. The Backward evaluatiorf T, as the name
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suggests, starts with the leaves and traversésckwards. A leaf nodd” with

an associated clockis checked, using the functievaluate [Definition 3.5],
whether it is a part of or not. The result of the evaluation &f, either1 or
—1, is propagated upwards following the parent pointer. Thaduation result 1
or -1 implies that’ is a part of7 or X' is not a part of/ respectively. Similarly,
the parent subtreBy of X is then checked whether it belongsZoor not. The
recursive process continues until the rooffofs reached or a subtree rooted at a
disjunctive or a conjunctive branching point is evaluated.t

Disjunctive branching pointy§/ and conjunctive branching poinfs of T have
a variableres which is used to mark the status of the branching points. \For
res = 1,res = —1 orres = 0 implies that at least one of the subtrees rooted at
\/ belongs to7, all the subtrees rooted §t do not belong tdZ” or at least one
of the subtrees rooted §t is not fully evaluated respectively. Similarly, fgk,
res = 1,res = —1 orres = 0 implies that all the subtrees rooted/gtbelong to
7, at least one of the subtrees rooted\atloes not belong t@ or at least one of
the subtrees rooted @t is not fully evaluated respectively.

The procedurd&val - Back propagates the result upwardsTirby updating
the value of the booleare s for each subtree iit. Eval - Back returns as output a
subtreeT” in T that is evaluated to eithéror —1. The existence df is detected in
T, if and only if, Eval - back propagates the resultill the root of T. Similarly,
a rejecting sequence is detected, if and only if, the rodt o evaluated te-1.

Definition 3.3. For a givenconfiguration treeT = (P, X, res), the functionre-
sult(T) returnsres.

Definition 3.4. Given a valuer € {—1,0,1}, the logical operatorand andor
used in the procedugval - back have the following semantics:

= —1

—1
0

and
and
and
and
and
or
or
or
or
or

|
[—
| |
— R o8 &8 o8
I 1 | I T |

|
8 R, oOoO8 —R,8 = O8
I
—_—_ 08 8 8 8

At the final position of the tracg, the algorithm applies the accepting condi-
tion and evaluates each leafi®using functioreval-final.
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Procedure Eval - Tree( S, eval p;)
Input : A setS of node-clock pairs of aonfiguration trega function
eval, and the current system state
Output: A set ofconfiguration trees

begin
S—10
for each(p, (N, er),res) € S do
res <« eval((N, ¢), pn)
if res # 0 then
| S« SUEval - Back(p)

end

Definition 3.5. For a given node-clock paif\V, c), and a system state, the
functionevaluateis defined as follows:

—1 otherwise

evaluatg ((v, acc), c), p;) _ ( 1 ifpiFv )

0 if F(c) =true
evaluatg ((F, 0, acc), c), p;) = <_1 othe(mz)ise )

1 if F(c) = true
evaluate(((F, €, acc), c), p;) = <_1 othe(m)uise )

Definition 3.6. For a given node-clock pairV/, ¢), and the final system state,
the functioneval-final is defined as follows:

eval-final(((F,6,0),¢c), p,) = —1

—1 otherwise

eval-final(((F,6,1), ¢}, p) = ( L iff(c)ztrwa)

eval-final((\V, ¢), p,) = evaluatg (N, c), p,)

3.2.3 How it works

The main moduld-or war d- Backwar d takes a program trage and a metric
alternating automatal and checks whethgr is a model of A. At system step
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Procedure For war d- Backwar d( A, p)
Input : An automatond and aprogram tracep.
Output: A boolean.
begin
R « translate(.A)
Sy« Cet - Leaves(e, R, )
for n=1...|p| —1do
S «— Eval - Tr ee(S,, evaluate p,,)
if R € Sandresult(R) # 0 then
| returnresult(R)
Sy «— Forwar d(S;)
return R € Eval - Tr ee(S;, eval-final[De finition3.6], p,) and
result(R) =1
end

0, a configuration treeR is initialized by translating4 to R. The procedure
Cet - Leaves is called to computes a s8t of node-clock pairs fofR. For each
subsequent system stéfmr war d- Backwar d works as follows:

1. Calls the procedurBval - Tr ee, with functionevaluateas an argument,

to evaluate each¥’, ¢) € S. The evaluation result is propagated upwards in
R using procedur&val - Back.

2. Terminates with success or failureifis evaluated td or —1 respectively.

3. Calls the procedureéowar d to expandR and to compute the successor set
of node-clock pairs.

4. Repeats step 1, 2 and 3 untiteaches its last state.

3.2.4 Example

In this section, we discuss the working of therward-Backwardalgorithm based
on an example automatad, shown in Figure 3.1, and an example execution
tracep = [(a, —p, ~q), (—a,p, —q), (—a,—p, q)]. The specification automaton
represents the BTL formukajo o) (a A ( ($o,22) Upo, q))-

As discussed earlier, th@rward-Backwardalgorithm unrolls4 into aconfig-
uration treeT and then detects a ruh of A in T such thatZ” starts from the root
of T and ends at the accepting nodes. Figure 3.2 shows diffeoafigarations
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( (Cro,yp) Uoz q)))

Figure 3.1: A Construction of metric alternating automatofrom the BTL for-
mula o e (@ A ((Cro,1p) Uz 4 ))-

of T at each system step. Eacahetric subtrean T is annotated with an associ-
ated clock. The dotted lines represent subtreek tinat do not belong t@, the
thick lines represent the subtrees that belong tand the normal lines represent
subtrees that are not fully evaluated yet.
To checkp againstA for acceptancehorward-Backwardworks as follows:
Step &

» The algorithm translated into T, as shown in Figure 3.2(1a).

* The nodes ofT are evaluated to either1,1 or 0, and the procedure
Eval - Back propagates the evaluation result upwardgjras shown in
Figure 3.2(1b). The dotted lines show the propagation ofrésailt —1,
while a thick line shows the propagation of the regulRecall that an eval-
uation result is propagated only if it is1(failure) or1(success). The timer

nodesng, n3 andns are evaluated to as the associated time constrains are
fulfilled.

» The subtrees ifT that are evaluated in the previous step are removedand
is reduced to a compact form, as shown in Figure 3.2(1c).

Step 2

* The procedure Forward expan@drom thetimer nodes,, n3 andns, as
shown in Figure 3.2(2a), with clocks decremented by
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translate Eval-Back Reduction
—_— - = - =

Forward Eval-Back .
E—— —_— Reduction
—_—

N

(2¢)

3 (2b) 4
00
Eval-Back
oo
n/0/ :\’\> 2 :\:j\/\\
e 3 -7 N
n1 . Ny //”\\\
SR N3 Ny
1 ~
O ns
73 Ny
(3a) (30)

Figure 3.2: A stepwise construction otanfiguration tree

» The procedur&val - Back propagates the result of the evaluation of nodes
n1, n21, ng andny upwards inT, as shown in Figure 3.2(2b). Here, tim@er
nodens under the clock scopeis also evaluated te-1, as the associated
time constraint is not fulfilled.

« Tis again reduced to a compact form, as shown in Figure 3.2(2c)
Step 3

* The procedure Forward expanfifrom thetimer nodes:, andns, as shown
in Figure 3.2(3a).
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At the final step, the nodes are evaluated by applying thepditg condi-
tion. The node, is state-satisfied and accepting, while all other nodes are
either not state-satisfiea.{, n4) or rejecting ., n3, n5). The propagation
of the evaluation result is shown in Figure 3.2(3b).

* p is accepted, as there exists an accepting rup iof A. Figure 3.2(3b)
shows a7 that starts from the root of and ends at accepting node, (
under clock).

Claim 3.1. For a giverexecution trace and ametric alternating automatod, let
T be theconfiguration treegenerated by thEor war d- Backwar d by unrolling

A. Then, the siz&,, of T, at positionz in p, is always bounded b Z z* and
1=0
the number of leaves,, in T are bounded by™, whereX = |A|andK € Z+.

Proof. Base CaseAt the system step, 7; < K « X andL; < X. This istrue
as the algorithm, at the first step simply translatesto T and the size ofl is
linear in|.A|. The number of leaves are at most as the number of nodes i#
are always bounded hy.

Induction: At system step,, we assume that,, < K*ZXi andL, < X".

=0
To complete thénductionstep, we must prove that at system step 1,

n+1
Znpt K Y X'andL,, < X",

=0
As per our assumptior,, < X" at system step. Each leaf adds a subtree of
maximum sizeK x X by translating a subautomaton . into a configuration
subtree We have at mosk™ new subtrees added 0 at system step + 1, each
of size at mostX. The sum of the sizes of newly generated subtrees is bounded
by X" x K x X.

The upper bound of,, ., of T, at system step + 1, after expansion can be

computed a follows:

Znn K+ X'+ (X"EK « X
=0
= Zp S Kx ) X'+ X"

=0
n+1

:>Zn+1§K*ZIEi

=0
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The number of leave$,, ., in the expanded™ are equal to the number of
leaves of newly added subtrees at system stef. Since the size of each newly
generated subtre€’ is bounded byX, the number of leaves in eadh’ are at
most.X.

Hence, the upper bound &f, , ; is computed by the following expression:

Ly < (2")*xx
= Ln-‘rl S Xn+l

Theorem 3.1. Given a program tracg and a metric alternating automatom,
For war d- Backwar d runs in timeO(|.A|”l) and space)(|.A|”)

Proof. As shown in Claim 3.1, the size of tlwanfiguration tree T, maintained
ol

by For war d- Backwar d, at system stefp| is bounded by« Z |AJ".

Since the space required by the algorithm is linear in tmisioz'l', the space
complexity ofForward-Backwards O(|.A]!"!)

Similarly, the running time ofFor war d- Backwar d is also linear ir|T|. The
forward expansiorunrolls A to T, which is a linear process. Durirtgackward
evaluationnone of the edges are visited twice, therefoaekward evaluatiors
also linear. Thus, the running time Bbr war d- Backwar d is O(|.A|*!).

]

Theorem 3.2. Given a program tracg and ametric alternating automatonA,
Forward-BackwardA, p) = true, if there exists an accepting run pfn A.

The correctness of tHeorward-Backwardirectly follows from the definition
of an acceptingun.
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3.3 Optimized Forward-Backward Algorithm

The Forward-Backwardalgorithm presented in Section 3.2, usesoafiguration
tree T that grows exponentially in the size of an execution traaechSan expo-
nential growth ofT makes the algorithm inefficient for practical purposes.

Recall that in theForward-Backwardalgorithm, the procedur&or war d
computes a seb; of pairs (X,c) for T, where X’ is a node inT under the
scope of a clocke. For any two node-clock pairé(p, (N, T'),res), c) and
((p,(N", T'),res), c) in S, the Forward-Backwardalgorithm constructs two
similar successor subtre@sand T”, if N' = N’ andc = ¢. We use the term
isomorphicto refer to such node-clock pairs. The above observatiotivates us
to think about replacing all similar subtrees with just onbtsee. The idea seems
simple, but it may result into a construction which has npldtipredecessors of a
single successor. We present a modified version ottimdiguration tree called
configuration DAGT that allows us to have multiple predecessors. We also mod-
ify our Forward-Backwardalgorithm slightly to work or. The new algorithm is
calledOptimized Forward-backwardlgorithm.

Definition 3.7. (Configuration DAG) A configuration DAGG, generated by un-
rolling A, is defined as follows:
G:= ¢g empty DAG
| (Sp, (N, c),res) aleaf
| (Sp, (A, Ss), res) aconjunctive branching point with a set of sub-DAGs
| (Sp, (V, Ss),res) adisjunctive branching point with a set of sub-DAGs

where, N is a node of4 , S, is a set of parentonfiguration DAGsS; is a set
of configuration DAGsc € C'is a clock andes € {—1,0, 1}.

The above definition allows us to join more than two sub-DA@isee con-
junctively or disjunctively. Aconjunctive branching poinf\ is evaluated t@rue
if all of the sub-DAGs are evaluated toue. Whereas, alisjunctive branching
point is evaluated tarue if any of the sub-DAGs is evaluated toue.

Definition 3.8. (Translation from an MAA to a Configuration DAG ) For a
metric alternating automatod and a clocke, the translation functiortrans-
late(A, c) is defined as follows:

translate(e 4, ¢) = €g
translate(\V, c) (0
translate(A1 V Ay, c) (0, (v, {translate(. A, c¢)} U {translate(A;, ¢)}), 0)
translate(A1 ANAsz,c) = (0, (A {translate(A;, c¢)} U {translate(A;, ¢)}), 0)
translate(Ag, c) = translate(Ay, d)

, (N 0),0)
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Procedure Get - Leaves( S,, G)
Input : A setS, of parentconfiguration DAGs aconfiguration DAGG.
Output: A set of nodes ofs + assignment of parent pointers@as a
side effect.

begin

switch Gdo

casecg

| return 0

case(S,,, X, res)

pp < Pp

| return {(S,,, X', res)}
ase(Syp, (V, Ss), res)

pp < Pp

return (+) Get - Leaves({G}, F)
L E €Ss
ase(S,p, (A, Ss),res)

pp < Pp

return |+ Get-Leaves({G},FE)
E €Ss

O

O

end

Definition 3.9. For a setS, of branching points and a chitgbnfiguration DAGG,
the functionadd-child( S,,G) is defined as follows:

add-child(S,,G) = U (S (@ 8u{G}),0)

<Sp,(x,Ss),res>ESb

Definition 3.10. For a setS,, of branching points and a chilcbnfiguration DAG
g, the functionremove-child( S;,G) is defined as follows:

remove-child(S,, G) = U (S (@S —{G}),0)

<Sp,(x,SS),res>ESb

3.3.1 Forward Expansion

The forward phase of th®ptimized Forward-Backwari similar to the forward
phase of théorward-Backwardalgorithm discussed in Section 3.2.1, i.e., to gen-
erate all possible successor configurations by expandaaptifiguration DAGT.
However, theDptimized Forward-Backwardlgorithm does extra computations to
keep the size off smaller. As stated above, tisenfiguration treeT maintained
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Procedure Forwar d( S;)
Input : A setS, of leaves of aconfiguration DAGG.
Output: A set of leaves of expanded + expansion ofs as a side effect.
begin
Sy — 0
for eachX € S, do
if X = (S,, ((F,6,acc),c),0) then
G « translate(d,c — 1)
S, « remove-child(S,, &)
S, «— add-child(S,, G)
S; — S;lHGet - Leaves(S,, G)

return S;
end

by the Forward-Backwardalgorithm contains multiple copies of the same sub-
trees inT. Theoptimized forward-backwardlgorithm avoids such duplication by
merging isomorphic node-clock pairs.

We assume that the union operatigfi beside computing union of two
sets, merges the isomorphic leaves. For example,igammorphic leavest; =
(Sp, (N, ¢),res) and Xy = (5], (N, c),res) can be replaced by a single leaf
X = (S,US,,(N,c),res). By using functionadd-child, X' is added to every
element of the sef, U S,,. Similarly, using functionemove-child, x; and; are
removed fromS, andS], respectively.

3.3.2 Backward Evaluation

Thebackward evaluatiotraverses theonfiguration DAG G) backwards to detect
arun 7 in G. In the Forward-Backwardalgorithm, the procedurBval - Back
propagates the result upwards in ttanfiguration tre€ollowing a single parent
link. However, in theOptimized Forward-Backwardlgorithm, G allows every
sub-DAGG;,;, in Gto have a sef, of predecessors. The evaluation resulGof;,
is propagated upwards i@ following everyp € S,, as shown in the procedure
Eval - Back. The operationand andor are applied over a set instead of a pair.
The proceduré&val - Back returns a setS of DAGs that are evaluated to
either—1 or 1. To keepG in a compact formEval - Back removes all the sub-
DAGs in Gthat are evaluated te1 or 1. The removal of the sub-DAGS results in
a situation where we havedasjunctiveor aconjunctivebranching poini3 over a
set{G'} of sizel. In such a situationEval - Back reduces the evaluation ¢f
to the evaluation oG, and replaces by G.
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Procedure Eval - Back( S, G)
Input : A setS of configuration DAG®nd aconfiguration DAGG.
Output: A set ofconfiguration DAGs
begin
S —{G}
for each(S,, (z,S;),res) € S do
if = = Athen
| res «— andg cg result(E)
else
| res « orgcg, result(E)

if res # 0 then
| S"« S’UEval - Back(S,, (S, (z, Ss), res))
else
Ss — S, —{G}
if S;={FE}then
S, «—remove-child(S,, (S,, (z, Ss),res))
L S, «—add-child(S,, £)

re_turn S’
end

3.3.3 How it works

The main moduld~ORWARD- BACKWARD takes a program trageand a metric
alternating automatod and checks whetheris a model ofA or not. At system
step0, aconfiguration DAGR is initialized by translatingd to R. The setS; of
leaves ofR is initialized by the proceduréet - Leaves.

For each subsequent system stemy, war d- Backwar d works as follows:

1. Calls the procedurgval - DAG with functionevaluateas an argument, to
evaluate each, ¢) € S;.

2. Terminates with success or failureRfis evaluated ta or —1 respectively.

3. Calls the procedureowar d to expandR and to compute, fof, the suc-
cessor set of node-clock pairs.

4. Repeats step 1, 2, 3 and 4 unlgssaches its last state.

At the final position of the tracg, the algorithm applies the accepting condi-

tion and evaluates each leafi®using the functioreval-final.
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Procedure Eval - DA S;, eval p;)
Input : A setS, of leaves of aonfiguration DAGsa functioneval and
the current system state.
Output: A set ofconfiguration DAGs
begin
S=19
for each(S,, X, res) € S; do
res < evallX, p;)
if res # 0 then
| S« SUEval - Back(Sy, (S, X, res))

return S.
end

Procedure For war d- Backwar d( A, p)
Input : An automaton4 and aprogram tracep.
Output: A Boolean.
begin

R « translate(.A, co)

S, « Get - Leaves (0, R)

for n=1...|p| — 1do

S «— Eval - DAGS;, evaluate p,,)

if R € Sandresult(R) # 0 then
| returnresult(R)

Sy «— Forwar d(S;)

return R € Eval - DAGS;, eval-final, p,,) andresult(R) = 1
end

3.3.4 Example

The working of theForward-Backwardalgorithm was discussed, in Section 3.2.4,
based on an exampéxecution tracend an example specification automaton.

We take the same automatgh shown in Figure 3.1, and the same execution
trace p = [{a,—p,—q), (—a,p,—q),(—a,—p,q)] to discuss howOptimized
Forward-Backwardwvorks?

The Optimized Forward-Backwardlgorithm unrollsA into a configuration
DAG G and then detects a pafhin G, such thatZ starts from the root off and
ends at the accepting nodes. Figure 3.3 shows differenigroations ofj at each
system step. The dotted lines represent sub-DAGstimat do not belong t@’,
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Figure 3.3: A stepwise construction otanfiguration DAG

thick lines represent the sub-DAGs that belon@toand normal lines represent
sub-DAGs that are not fully evaluated yet. The clocks ardhpdsdown to the

level of the leaves. A leaf df is represented a¥¢, where, is a node of4 and
¢ is an associated clock.

To checkp againstA4 for acceptencerorward-Backwardworks as follow:
Step &
» The algorithm translated into G, as shown in Figure 3.3(1a).

» The nodes ofj are evaluated te-1, 1 or 0, and the proceduréval - Back
propagates the evaluation result upward§ jras shown in Figure 3.3(1b).
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The dotted lines show the propagation of the resdult while a thick line
shows the propagation of the result The timer nodes, n; andn? are
evaluated t® as the associated time constrains are fulfilled.

* The sub-DAGs irg that are evaluated in the previous step are removed and
G is reduced to a compact form, as shown in Figure 3.3(1c).

Step 2

* The procedure Forward expandg$rom thetimer nodesu, n} andn? with
clocks decremented by As shown in Figure 3.3(2a), the sub-DAGs with
isomorphic nodegn’, n}) are merged.

» The procedurd&val - Back propagates the result of the evaluation of the
nodesn;, n3,n3, n3, n} andn} upwards inG, as shown in Figure 3.3(2b).

» The compacy, after reduction, is shown in Figure 3.3(2c).
Step 3

* The procedure Forward expanfifrom thetimer nodes:, andn2, as shown
in Figure 3.3(3a).

At the final step, the nodes are evaluated by applying thepditg condi-
tion. The nodes? andn3 are state-satisfied and accepting, while all other
nodes are either not state-satisfied or rejecting. The geaipmn of the eval-
uation result is shown in Figure 3.3(3b).

* pis accepted as there exist§asuch that/” starts from the root off and
ends at an accepting nodg, as shown in Figure 3.3(3b).

Theorem 3.3. Given a program trace and a metric alternating automaton
A constructed from a BTL formulgy, FORWARD- BACKWARD runs in time

O(X? % (M. + 2) = |p|) and space) (X2 x (M, + 2)  |p|) , where M, is the

largest constant appearinggn(excludingoo) and X = |A|.

Proof. The proceduré&ORWARD- BACKWARD maintains econfiguration DAGG
during its execution and the space complexitfzxGRWARD- BACKWARD s linear
in the size ofG. At each system stel, is expanded by the procedurer war d

form the leaves. The siz8g, of G at a system step is bounded by x Z M,

=0
whereM € Z7 is the upper bound of the increment in the sizg @t each system
step.
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The proceduré&or war d takes a sef; of leaves(S, (N, ¢}, res) of G, where
N is a node ofA paired with an associated clock The size ofS; is always
bounded byX * (M, + 2), as the number of nodes i are bounded by .

For war d expandsj from each leafF € S;. EachE generates a sub-DAG
G’ by unrolling the subautomatahn and the size off’ is bounded byK x X (
as translation frond to G’ is linear). Since there are at mastx C' elements in
S, and every element increments the siz&/dfy at mostxX, the upper bound of
increment in the size df is given byM = K x X2 x (M, + 2).

After merging isomorphic leaves, the number of leaves isiced to at most
X *x C, but the number of edges remains the same.

Hence, the space complexity BORWARD- BACKWARD is O(X? * (M, +
2) * |p]).

Overall running time oFORWARD- BACKWARD is also linear is the size @f.
The forward expansiomf G is linear as the construction fronmaetric alternating
automatonto a configuration DAGSs linear. Duringbackward evaluationnone
of the edges ing is visited twice. Each edge is immediately removed by the
procedureEval - Back, once it is visited during backward evaluation.

The running time of the algorithm, for, is thereforeD(X? x (M, + 2) * |p|).

]

Corollary 3.1. Given a program trace and ametric alternating automaton
A, constructed from an LTL formula, FORWARD- BACKWARD runs in time
O(X? x |p|) and spac&®(X?  |p|), whereX is the size ofA.

Proof. BTL is equivalent to the classical LTL if all the temporal ogt®rs have
lower bound9) and upper boundso, except the special case where a bounded
diamond<(; ;; is used in place of the next operator of classical LTL. Theks$o
associated witkp, ;) are initialized with0 (as shown in the construction of au-
tomata in Chapter 2).

Every nodeV of A can only be paired with a single clock value from the set
{0, c0}. The number of leaves of tlenfiguration DAGG is bounded byX .

Hence, the space complexity BORWARD- BACKWARD is O(X? x |p|) and
the running time is als®(X? « |p|).

]

Definition 3.11. (Finitely Bounded Temporal Logic) (FBTL) A sublogic of
BTL, such that all of the temporal operators are parametdnwith finite interval
bounds.

Lemma 3.4. Given a program trace and a metric alternating automatom,
constructed from FBTL formula, FORWARD- BACKWARD runs in timeO (X3 x
(M. + 1)%) and spac&)(X? x (M. + 1)?), whereX is the size of4, and M, is
the maximum constant appearing4n



34 CHAPTER 3. VERIFICATION ALGORITHMS

Proof. As proved in Theorem 3.3, the size otanfiguration DAGG) is incre-
mented by at mosk? x (M, + 2) at each system step. The factaf + 2 in the
above expression reducesith + 1, as in FBTL the number of clocks are bounded
by M.+ 1. The number of leaves i@ are bounded by * (M. + 1) and increment
in |G| at any system step is bounded Ky * (M, + 1).

The maximum number of steps required to fully evaluates bounded by
Csum, andCy,,, is the sum of the lengths of intervals appearingin

Thus, the total size af is bounded byX? x (M, + 1) * Cyyp, OF X35 (M, +1)3
asCyum < X x (M. +1).

The complexity ( both space and running time FGIRWARD- BACKWARD, as
proved in Theorem 3.3, is linear i¥|. Hence, forp, FORWARD- BACKWARD
runs is spac€(X? « (M. + 1)?) and timeO(X? * (M. + 1)?).

[

3.4 Optimized Breadth-First Algorithm

The Optimized Forward-Backwardlgorithm, presented in the previous section,
has a quadratic and a linear space complexity in the sizepot iormulay and
length of an execution tragerespectively. The algorithm is useful for checking a
smaller prefix ofp against a relatively larger size @f To monitor a larger (possi-
bly infinite) p, the essential requirement is to bring down the space cotitypte
constant in the size gf. One of the solutions is to use tBeeadth-Firstalgorithm
presented in [6], as the space complexity of the algorithmdependent of the
size ofp.

We present a modified version of tlBgeadth-Firstalgorithm that works on
metric alternating automata For ametric alternating automatom! translated
from a BTL formulay, the algorithm maintains a sét of system configura-
tions that are consistent with the prefix of axecution trace» seen so far. A
configurationC' € S is a set of pairs(V,t), where N is a node ofA and
c € {0,1..., M., 00} is an associated clock, and.. is the maximum constant
appearing inp. p is accepted by if there exists at least orn@ < S that leads to
an accepting system state.

Definition 3.12. (Configuration) A Configuration is a set of paifsV/, ¢), where
N is a node of anetric alternating automatandc is an associated clock.

Definition 3.13. For ametric alternating automatop, and an associated clock
¢, the functioninit (A, ¢) that computes a sef of configurations is defined as
follows:
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init (€4, ¢) =0

init (Y, ¢) _ (V)

init ((A2), ¢) = init(Ay, d))

init (.Al \/.AQ,C) = init ./41,0) U init (AQ,C)

(
init (A, A As,c) = init (A, ¢) @ init (As, )

where,® denotes the following:

Procedure BREADTH- FI RST( A, p)
Input : An automatond and aprogram tracep
Output: A boolean
begin
S «— init(A)
for n=0...|p| —2do
S — 1)
for eachC'in S do
L if state-satisfie(C, p,,) then
| S« S"U SuccessofC)

L S5

S —0

for eachC'in S do

if state-satisfiedC, p,_1) and final(C') then
| S S'u{C}

return S’ «— ()
end

Definition 3.14. For a configuratiorC' , the functionSuccessaC) is define as
follows:

successofC) = &) init(s,c—1)

((F,6,acc),c)eC

Definition 3.15. For a configuratiorC' and a system state the functionstate-
satisfiedC, s) returnstrue if

for every X € C, evaluatg X, s) returnstrue.
Definition 3.16. For a configuratior” , the functionfinal (C) returnstrue if

for every(A,c) € C, A.acc = 1.
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The algorithm presented above works exactly likeBneadth-Firstalgorithm
presented in [6], but the space complexity of the algorittoesichange a big
times.

For ametric alternating automaton, translated from BTL formula, the
space requirement f@readth-Firstis bounded by2**(M-+2) where X = |A]
and). is the maximum constant appearingdn

The maximum constant/, in practice is very large as compared_Xoand
therefore the space complexity of the algorithm is much éidbr practical pur-
poses. We present an optimization to the above algorithtmeldace the complex-
ity to exponential inX and quadratic inV/.. The optimization reduces the size of
C by removing redundant entries i, which ultimately reduces the number of
configurations , i.e., the size 6f.

Recall that without any optimization, that maximum possisize of the’' is
X x (M. +2). We claim that if the size of” is X + y, then there exists at leagt
redundant entries in' that can be removed.' is called a compact configuration
if there does not exist a redundant entryin

3.4.1 Example

For ametric alternating automaton! , shown in Figure 3.1, and thexecution
trace p = [(a, —p, 7q), (—a, p, ~q), (—a, —p, )], the Optimized Breadth-Firsal-
gorithm checks againstA by generating all the possible configurations at each
system step. The program traeés accepted if at least one of the configurations
generated at the initial system step leads to an acceptirfggaoation. We denote
a node-clock pair agV/, ¢) by A in this section.

The set of configurations generated at system steband3 are given below:

Step 1: The functioninit (A4), at system step 1, computes the following set of
configurations:

51 = { {n80}7 {n(l)ov ng}v {nfov nil’;v ng}v {nfov nzllv ng} }

Two configurations{n{°} and{n$°, n},ni} in S; are state-satisfied, and are
used to generate successor configurations for the nexnsgstp.

Step 2: At system step 2, the sét, of configurations is computed using

functionSuccessoms follows:

S, = successof{ng°}) U successof{n°, ni, n})
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# { {n80}7 {n(fo7 n%}v {nio7 /n’%)? ng}? {ln’(l)o7 nlllﬁ ng}? {n§7 ng}?
{n3. ng} {n5, nz}, {ni, nz}, {ng, i, ng}, {ng, nj, n3} }

Three configuration$ni°}, {n, n?} and{n}, n$, nZ} in S, are state-satisfied,
and are used to generate successor configurations in Step 3.

Step 3: At the system step 3, the sé} of configurations is computed us-
ing functionSuccessoas follows:

Ss = successof{ng°}) U successof{ny, nz}) U successaf{n3, ng, n2})

= {{ng°} {nt°, 3} {n3°, ny, 3}, {nf°, ni, 3}, {ny, mi},
{na, nia}, {ng, s}, {nig, ns}, {ng, ni, nz}, {n, ni, ns},

{ny} {ng, ng}, {ni,ns} }

The final setS; of configurations has one configuratifnl } that is accepting
and state-satisfied, while all other configurations areeeitlot sate-satisfied or not
accepting. Thusy is accepted by.

Definition 3.17. (Redundant Entry) For a system configuratiofi, an element
e € C'is a redundant entry, iff there exists another elemért C, such that’
subsumes.

Definition 3.18. (Compact Configuration)A configurationC' is acompact con-
figurationif C' does not contain eedundant entry

The Optimized Breadth-Firsalgorithm maintains a sef. of compact con-
figurations We assume that the union operatien besides taking a union of
sets, removesedundant entrieon fly. The size of each configuratiaii is
bounded by the number of nodes in the specification automdtaas each el-
ement(N, c) € C has distinct\N. The size ofS,, as proved in Theorem 3.7, is
bounded by( M. + 2).

Claim 3.2. For a system configuratiafi, let (\/, ¢) and (N, ¢’) be two elements
in C; either(N, ¢) subsumesN, ¢) or (N, ¢’) subsumesN c).

Proof. To prove our claim, we make the following case distinctions:

Case L:N = (v, acc)

The evaluation of non-timer nodes does not depend on the \@flthe clock.
Thus,(N, c¢) < (N, ) and any of the pair can be picked randomly.

Case 2N = (Az.x > 0,6,1)
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e c>0andd >0
The accepting timer node-clock paifd/,c) and (N, ) assert that the
specification subformula represented by the subautomateiti hold for
the nextc and ¢ system steps respectively. The assertion implies that
(N,c) = (N,d)if ¢ > ¢ and(N,¢) = (N,c) if ¢ > ¢. Thus, the
pair with a greater clock value subsumes the other one.

ec=0o0rcd =0
Since the function\ is evaluated tofalse when applied t@), C' is state
satisfied, iff every element if' is evaluated tarue. Thus, a node-clock
pair with a clock valu#) subsumes all other elementsan

Case 3N = (Az.x > 0,4, —1)

e c>0andd >0
The rejecting timer node-clock paita/, ¢) and (N, ¢/) assert that the spec-
ification subformula represented by the subautomatewll hold within
the nextc and ¢ system steps respectively. The assertion implies that
(N,c) = N,d)if ¢ > dand(N,d) = (N,¢) if ¢ > ¢. Thus, the
pair with a lesser clock value subsumes the other one.

ec=0o0rcd =0
Same as in the previous case.

Case 4N = (Az.x = 0,e4,1)

ec>00rcd >0

Since the function\ is evaluated tgfalse when applied td), a node-clock
pair with a clock value greater th@nsubsumes all the other element€in

e c=0andd =0
This case makes two pairs equal, and therefore any of theqaairbe picked
randomly.

O

Lemma 3.5. For ametric alternating automatonl and an execution trage let
S be the set of configurations generatedBREADTH- FI RST at any position in
p. Then the maximum size of argpnfigurationC' € S is bounded byX, where
X =|A].



3.4. OPTIMIZED BREADTH-FIRST ALGORITHM 39

Proof. As proved in Claim 1.2, any two node-clock pairs appearinganfig-
uration C' having the same automaton node can be replaced with a siagle p
Therefore, every elemeritV, ¢) € C' has a distinct\/, where\ is a node in4
andc is an associated clock. The number of automaton nodes ideduny X,
therefore the maximum size of ady e S is bounded byX.

]

The correctness of thereadth-Firstalgorithm follows directly from the cor-
rectness oBreadth-Firstalgorithm presented in [6].

Theorem 3.6. Given anexecution trace and ametric alternating automatou,
BREADTH- FI RST(A, p) =true, if there exists an accepting run pin A.

Theorem 3.7. Given an execution tracep and ametric alternating automa-
ton A constructed from BTL formulap, BREADTH- FI RST runs in space
O(X * (M. + 2)%) and in timeO (X * (M, + 2)*¥), whereX = |A| and M, is
the maximum constant appearinggr(excludingoc)

Proof. The procedur@dBREADTH- FI RST generates, at each system step, a set
S of configurations. A configuratiod’ € S is a set of node-clock pairs, such
that each{\V,c¢) € C has a distinct\'. C' is mapping from a set of nodes of
A {Ni..Nx} to the set of clock value§0, 1..., M., co}. Thus, the size of each

C € S'is bounded byX and the size of is bounded by M7, + 2)*.

Hence, the space complexity BREADTH- FI RST is O(X * (M, + 2)¥)

The running time oBREADTH- FI RST is the running time of the procedure
For war d at each system step times the number of system steps. At gstelims
step,For war d takes a configurations st of maximum size(M, + 2)* and
constructs a successor configurationsetf size at most M, + 2)X. The size
of each configuratio' € S; is bounded byX. Each node-clock paiP € C
generates a successor configuration$eof size at mostX. Thus, the total
number of configurations generated are bounded by2X * (M, + 2)% or X
(M, + 2)*X.

Hence, the running time BREADTH- FI RSTis O(X x (M. +2)*X). O

Corollary 3.2. Given anexecution trace and ametric alternating automatou,
constructed from an LTL equivalent BTL formulga BREADTH- FI RST runs in
time O(2X  |p|) and space(2¥), whereX is the size ofA.

Proof. For an LTL equivalent BTL formula, the the size of a set of node-clock
pairs is bounded by the size of as each nodd/ in the specification automaton
can be paired with eithéror co. Thus, for a giverexecution tracethe complexity
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of BREADTH- FI RST for ¢ is reduced ta?(2/¥l) in space and?(22¢! x |p|) in
time.
0]



Chapter 4

Generic Algorithm

4.1 Introduction

The algorithms presented in Chapter 3 have their strengithsvaaknesses based
on the type of input formula. ThBreadth-Firstalgorithm is better suited for
a larger program trace (possibly infinite) with a smallertélyi bounded inter-
vals. For LTL formulae, where the maximum interval boundeotthanoco is 1,
the Breadth-Firstalgorithm performs to its maximum potential. Tgtimized
Forward-Backwardalgorithm has better running time and is useful for a reddyiv
larger specification size and shorter prefix of a progranetrabus, thé®ptimized
Forward-Backwardalgorithm is better suited for an input formula that has only
the finitely bounded temporal operators.

The above observation leads to a new framework where botinitdlgns can be
combined capitalize on their relative strengths. We inticeda rather inelegant but
an effective approach to make the best use oFtrevard-BackwarcandBreadth-
First algorithms. The idea is to use tBeeadth-Firsttechnique on the top level,
and useOptimized Forward-Backwartechnique for subformulae that have only
finitely bounded temporal operators.

We present &enericalgorithm that combines thHareadth firsttechnique and
forward backwardtechnique in a single algorithm. For different sublogics of
BTL, the Generic algorithm works as efficiently as the corresponding special
ized algorithms for those sublogics. We also introduce dogudbof BTL called
Slightly-Restricted Temporal LogeeBTL. SBTL does not allow any unbounded
temporal operators within the scope of bounded temporalatpes. We believe
that SBTL is strong enough to specify most of the system pitigseused in prac-
tice. The complexity ofsenericis reduced considerably when a specification is
given in the form of SBTL.

41
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4.2 The Algorithm

This section presents th®enericalgorithm, which combines thBreadth-First
algorithm and théptimized Forward-Backwardlgorithm to optimize the over-
all complexity. The algorithm translatesnaetric alternating automaton! into
an annotated metric alternating automatof,,. The additional information as-
sociated with4, guides the algorithm to apply eithéreadth firstor forward
backwardtechniques for eacimetric subautomato,,,c;,ic € Aq.

The Generic algorithm works mainly like théreadth-Firstalgorithm as it
computes a set of configurations at each system step. UhléBreadth-First
algorithm, the evaluation of a configuration can not be miyareduced to the
evaluation to its successor configuratio@&nericmaintains a set of sets of con-
figurations in the form of @onfiguration DAGG) , defined in Definition 4.4G
is expanded and evaluated backwards in the same way as dureOptimized
Forward-Backwardalgorithm.

Definition 4.1. (Annotated Metric Alternating Automaton) An annotated
metric alternating automatord is defined as follows:

€A empty automaton

N an automaton node

AN A conjunction of two automata
AV A disjunction of two automata
(A4 k) metric sub-automaton

wherek € NU {oo}.

Definition 4.2. The functioncons-sumthat takes anetric alternating automaton
A and returns sum of the constant appearingljms defined as follows:

cons-sune 4) =0
cons-suni\) =0
cons-sunf.A¢) = d+ cons-sum.A)

cons-sumA; V A;) = cons-suni.4,) + cons-suni.A,)
cons-suntA4; A Ay) = cons-suniA;) + cons-suni.A,)

Definition 4.3. The functionannotate that takes ametric alternating automaton
and returns aannotated metric alternating automatda defined as follows:

annotate(e4) =0
annotate(\V) = N
annotate( A%) = (annotate(Ay), d + cons-sunf A, ))

annotate(4; V A;) = annotate(A;) vV annotate( A,)
annotate(4; A A;) = annotate(A;) A annotate(As)
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Definition 4.4. (Configuration DAG) A configuration DAGG, generated by
unrolling A, is defined as follows:

G:= ¢¢ empty DAG
(Sp, (N, c),res) aleaf represents a node-clock pair

(Sp, (N, S),res) aconjunctive branching point with a set 6f

|
| (S,, C,res) a leaf represents a set of node-clock pair
|
| (S,, (V,S),res) adisjunctive branching point with a set 6f

where N is anode of4 , S, is a set of pointers to parecbnfiguration DAGs
c is a clock, S is a set ofconfiguration DAGsC' is a set of pairgV, ¢), and
res € {—1,0,1}.

Note 4.1. There are two types of leaves in the above definition odfiguration
DAG. We use the term “typel”for a leaf that represents a node-clock pair, and
use to the term “typdés”for the leaf that represents a set of node-clock pairs.

Definition 4.5. (Translation from an AMAA to a Configuration DAG ) For a
metric alternating automato# and an associated clockthe translation function
translate (A,c) is defined as follows:

translate(ey, c) =0

translate(\V, c) = (0,(N,c),0)

translate(.A4, v Ay, e) = (0, (v, {translate(A;, c)} U {translate(A;, ¢)}), 0)
translate(A1 ANAs,c) = (0, (A, {translate(A;, c)} U {translate(A;, c)}), 0)
translate((A¢, k),c) = translate(Ay, d)

Definition 4.6. Given an annotated metric alternating automatofy a clock c,
the functioninit (A4, c) is defined as follows:

init (e 4, ¢) =0

init (N, c) = {({NV, 0}, €0)}

init (A, k),c) = {(0, {translate(Ay,d)})}
init ((Ad, 00),c) = init(Ay,d)
inlt(Al\/.AQ,) = init(Al,C)Uinit(Ag,C)
init (A, A As,c) = init(Ay,c) @ init (As, )

where,® denotes the following:

{(Ch, Dy (Co DV} @ {(CL DIyt DYy = LG8 DU D)

~ li=1l.n,j=1.m}

Definition 4.7. (Configuration) For ametric alternating automaton4 , a con-
figuration is a paifC, D), where
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« C'is a set of pairgV, ¢), where N is a node of4 andc is an associated
clock.

» D is a set of configuration DAGS.

For an alternating automato# and an execution trage the algorithm gen-
erates a seb of possible system configurations at every system stepgubim
functioninit. The initial configuration se%; is computed by callingnit with ar-
gumentA. p is accepted byl if and only if there exists at least one configuration
in S that leads to an accepting configuration.

A configuration(C, D) € S leads to an accepting configuration if and only if
the following holds.

« (Cis state satisfied.
e All d € D are evaluated to.

* Atleast one of the successor configuration§'déads to an accepting state.

Procedure Gener at e- DAG S)
Input : A setS of configurations.
Output: A configuration DAG
begin

D' 0

for each(C, D) € S do

\; X —(0,C,res)

G, — (0, (N, {X} U D),0)
D' — D'U{G,}
G — (0, (v.{D'}),0)

return G
end

4.2.1 Translation from a Configuration to a DAG

In the Breadth-Firstalgorithm, the evaluation of a configuration is instantly re
duced to the evaluation of its successor configurations. iigorationC'C' in
the configuration se$, generated bysenericusing the functionnit, contains a
set D of DAGs. The evaluation of’C' can not be reduced to the evaluation of
successor configurations unless edck D is fully evaluated. Sinc&eneric
generates DAGs for the subautomata representing the soubifms having only
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finitely bounded intervals, all € D are evaluated within a finite number of sys-
tem steps. Everg'C' € S is stored for a finite number of system steps before its
evaluation is reduced to the evaluation of successor canfigns.

The algorithm stores§' in the form aconfiguration sub-DAGG). The transla-
tion from S to G is shown in the procedur@ner at e- DAG. G is adisjunctive
branching pointover a setD,,;, of configuration sub-DAGSS,, (A, {(G, C,0)} U
D) constructed by translating every configuratign D) € S, where the sef,
contains the links to the parent configurations.

Procedure For war d( S;)
Input : AsetsS, of leaves of aonfiguration DAGS.
Output: A set of leaves of the expand€d+ expansion of; as a side
effect.

begin

S;— 0

for eachX € S; do

switch X do

case (S, C,res)

S, < remove-child (S,, X)

S  Q init(sc—1)
((F,b,acc),c)eC

G «— Gener at e- DAGY’)

S, <« add-child (S,, G)

| S;«— S{UGet - Leaves(S,,G)

ase(S,, ((F, 6, acc), c),0)

S, < remove-child (S, X)

G « translate(d,c — 1)

S, <« add-child (S,, G)

| S;«— S{UGet - Leaves(S,,G)

O

return S;
end

4.2.2 Forward Expansion

A configuration DAG (G) maintained by thé&enericalgorithm is expanded at
each system step by the procedbmr war d from the leavesFor war d takes
a setS, of leaves ofG and expand§ by computing aconfiguration sub-DAGor
each leaf inS,.
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The setS; contains both typed and typeB leaves. The expansion is done
differently for the typeA and the type3 leaves. For typel leaves( is expanded
in the same way as discussed in Section 3.3.1. However, per Byleaves,G
is expanded by computing a s&tof configurations first, and then translating
S to configuration sub-DAGSimilarly for type A leaves, the algorithm merges
isomorphideaves of type3 on the fly to avoid producing duplicate sub-DAGs.

Procedure Eval - DAGE S;, eval p;)

Input : A setsS, of leaves of aonfiguration DAGa functioneval and
the current system state.

Output: A set ofconfiguration DAGs
begin

S—10

for each(S,, X, res) € S; do

if X = (N,c)then

| res«—evalX,p;)

else

L for each(N,c) € X do

| res —resand eval(N,c), p;)

if res # 0then
| S« SUEval - Back(S,, (S, X, res))

re_turn S.
end

4.2.3 Backward Evaluation

Thebackward evaluationf aconfiguration DAGQJ starts off from the leaves. The
procedureEval - DAGtakes a se$; of leaves oG and evaluates every elementin
S;. The evaluation result is propagated upwards using theeduoeEval - Back
presented in Section 3.3.4; contains both typel and typeB leaves. A type
A leaf is evaluated in the same way as previously done byCiitei m zed
For war d- Backwar d algorithm. However, a typ& leaf (S, C, res) is evalu-
ated to—1, 1 ando, if one of (N, ¢) € C is evaluated to-1, all (N, ¢) € C are
evaluated to-1 or one of(N, ¢) € C'is evaluated t® respectively.

4.2.4 How it works

The proceduréENERI Ctakes a program trageof lengthn and ametric alter-
nating automaton4 and checks whether is a model ofA. A set.S of initial
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Procedure GENERI C( A, p)
Input : An automatond and aprogram tracep.
Output: A Boolean.
begin
S — init (A, )
R < Gener at e- DAGS)
S; « Get - Leaves (0, R)
for n=1...|p| — 1do
Sq <+ Eval - DAG(S;, evaluate p,,)
if R € S;andresult(R) # 0then
| returnresult(R)
for each(S,, X,res) € S; do
| S, < remove-child (S,, (S,, X, res))
| S, « Forwar d(S;)

return R € Eval - DAGS;, eval-final) andresult (R) = 1
end

system configurations is computed and then translated intmfiguration DAG
R. R is passed to the procedu@et - Leaves to compute the set; of leaves.
The algorithm from step to stepn — 1 works as follows:

1. Calls the proceduréval - DAGto evaluateR backwards from the leaves.

2. Terminates with success or failureif in the previous step, is evaluated to
1 or —1 respectively .

3. Removes all the sub-DAGs R that are evaluated tbor —1.

4. Calls the procedureor war d to expandR from the leaves, and computes
a set of leaves of expand&d

5. Repeats step 1, 2, 3, 4 and 5 uptikaches its last state.

At the final position of the trace, the algorithm applies the accepting con-
dition and evaluates each leaf in tbenfiguration DAGusing the functioreval-
final.

4.2.5 Example

Figure 4.2 shows the detection of an accepting run o&xecution tracep =
[{a, —p, ~q), (—a, p, ~q), {(a, —p, q)] in the specification automatad. .4, shown
in Figure 4.1, is constructed from the BTL formuay o ( a A (($o,12)Uj0,0019))-
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A(Qo,00)(@ A (((Qpo,yp) U, 1))

Figure 4.1: A Construction of metric alternating automatofrom the BTL for-
mU|a<>[0,oo}(a A ( (<>[0,1]p) U[O,oo] q ))

As discussed in previous sections, Genericalgorithm stores system config-
urations in the form &onfiguration DAGG. The algorithm tries to detect a path
G that starts at the root ¢f and ends at accepting nodes.

The dotted lines represent sub-DAGsdrthat do not belong t@, the thick
lines represent the sub-DAGs that belond/tpand normal lines represent sub-
DAGs that are not fully evaluated yet. The tydenode ofG is represented as
N¢, whereN, is a node of4 andc is an associated clock. The typenode is
represented by a set of nodesAf

To checkp againstA for acceptenceizenericworks follow:

Step 1

» The algorithm generates the initial setof configurations ford and then
translatesS into G, as shown in Figure 4.2(1a).

» Both the typed and the type3 nodes oG are evaluated, and the procedure
Eval - Back propagates the evaluation result upwardg;jras shown in
Figure 4.2(1b). The dotted lines show the propagation ofrésailt —1,
while a thick line shows the propagation of the redult

* The sub-DAGs irg that are evaluated in the previous step are removed and
G is reduced to a compact form, as shown in Figure 3.3(2c).
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init Eval-Back
-

Reduction
—_— =

{no} - {no}
n3 {n1,ns}
{n1,ns} o Amns) (1c)

(10)

Forward Eval-Back .
e —_— Reduction
_—

Forward Eval-Back

= [Acceprea |

{n2}

nst {ninef <o {ns}
{ni,ns} "
ng o om
(3a) (3b)

Figure 4.2: A stepwise construction otanfiguration DAG

Step 2

G is expanded from the typd nodesn! by constructing aonfiguration
sub-DAGstranslated from subautomaton using the functranslate. For
each typeB node{nq} and{n,ns}, G is expanded by constructirgpn-
figuration sub-DAG#shat are translated from successor configurations. The
expansion ofj is shown in Figure 4.2(2a).

* The procedurdval - Back propagates the evaluation result of the nodes
nd, {na}, {n1,ns} and{ny, ns} upwards inG, as shown in Figure 4.2(2b).

» The compacy, after reduction, is shown in Figure 4.2(2c).
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Step 3

» The procedure Forward expan@ifrom thenodes{n,} and{ns}, as shown
in Figure 4.2(3a).

At the final step, the nodes are evaluated by applying thepitgy condi-
tion. The nodeqn;,n,} and{n,} are state-satisfied and accepting, while
all other nodes are either not state-satisfied or rejeciihg.propagation of
the evaluation result is shown in Figure 4.2(3b).

* pis accepted, as there exist tWc, starting from the root af and ending
at the accepting node$i(;, n»} and{n,}), as shown in Figure 4.2(3b).

Theorem 4.1. Given a program trace and analternating automaton4, con-
structed from BTL formulg, GENERI C runs in timeO(|p| * ((M,+2)2X=Y) +
(M. +1)*Y?)) and spac® (X * (M, + 1)((M. +2)?E=Y) + (M, + 1) x Y?)),
where M. is the largest constant appearinggdn{excludingeo), X = |A| andY
is the sum of the sizes of subautomata representing FBTlosufae inp

The correctness of th@enericalgorithms follows from the correctness of the
Optimized Forward-Backwardnd the correctness of tiB@eadth-Firstalgorithm.

Theorem 4.2. Given a program tracg and an automatosl, GENERI C (A, p)
=true, if there exists an accepting run pin A.

Theorem 4.3. Given a program trace and analternating automaton4, con-
structed from BTL formula, GENERI C runs in timeO(|p| * ((M,+2)2X=Y) 4
(M. +1)*Y?)) and spac€® (X * (M, + 1)((M. + 2)?&=Y) + (M, + 1) x Y'?)),
where M. is the largest constant appearinggr{excludingoc), X = |A| andY
is the sum of the sizes of subautomata representing FBTlosuifae inp

Proof. Like theOptimized Forward-Backwardlgorithm, presented in Chapter 3,
CENERI Calso maintains aonfiguration DAGS during its execution. The space
complexity of GENERI C is linear in the size ofj. At each system stey is
expanded by the proceduF®r war d form the leaves. To find out the overall
space complexity of the algorithm, we need to find out theament in|G| at a
given system step.

The procedurd-or war d takes a seb; of leaves ofG and expandg from
each(S,, X',res) € S;. As discussed in Section 4.4.2, contains both typel
and typeB leaves. Since all thisomorphic leaves G are merged on the fly, the
number of the typel nodes is bounded by * (M. + 1) (Lemma 3.4), while the
number of typeB leaves is bounded by\/, + 2)>X=Y) (Theorem 3.7).
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Each of typeA leaves adds a sub-DAG of size at méStby unrolling the
specification subautomatiane 4 . Similarly, each of type3 leaf adds a sub-
DAG of size at mostM, + 2)* Y by translating a set of successor configurations
to aconfiguration sub-DAGThus, X x (M, + 1) leaves of typed increment the
size ofG by at mostX * (M. + 1) and(M, + 2)* leaves of typeB increment the
size ofG by at most(M, + 2)2X. The total increment in the size gfis therefore
bounded by M, + 2)2X% + (M, + 1) x Y2.

Everyconfiguration sub-DA@enerated at a given system stejs fully eval-
uated withinn+ X « (M. + 1) system steps (Lemma 3.4). Lets take a%ef con-
figurations, generated by the the functioit at a system step. Each(C, D) € S
is translated into @&onfiguration sub-DAG’ = (S,, (A, {(G’, C,0)}U), 0), where
S, is the set of parent edges. At system step 1, the procedurd-or war d
replaces the leafG’, C,0) € G’ with the successorconfiguration sub-DAG;”,
generated by translating a set of successor configuratiofi's At a system step
m < n+ Mqx X, every element € D is fully evaluated and removed from,
resulting inD = (). The proceduré&val - Back reduces the evaluation ¢f to
the evaluation of;” and replace§’ by G”.

Thus, an increment in the size Gfmade at any system step is decremented
from G within the nextX = (M, + 1) system steps. The overall size®fs always
bounded byX x (M, + 1)((M. + 2)2X=Y) + (M, + 1) x Y?).

Hence, space complexity GENERI Cis O(X x (M. + 1)((M, +2)*X-Y) +
(M, +1)xY?)).

Overall running time ofSENERI Cis the increment inG| at each system step
times the number of system steps. Thus, the running tingENERI Cis O(|p| *
(M, +2)25Y) 4+ (M, +1) x Y?))

]

4.3 Slightly-Restricted Bounded Temporal Logic

This section presents a sublogic of BTL, cal®ghtly-Restricted Bounded Tem-
poral Logic(SBTL). SBTL does not allow temporal operator to be paranzdtd
infinite intervals to be nested in a subformula guarded byrgteal operators to
be parameterized with a bounded interval. Thenericalgorithm make use of
this restriction to optimize the overall space complexity.

SBTL is strong enough language to specify most of the pragsedf reac-
tive systems in practice. For example, the property thatdgs every p-state is
followed by a g-states for 5 time units” can be expressed inlS&s follows:

Ojo,00) (0 — Ojo,99)
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Similarly, the property that “always every p-state is fatkxd by a g-state within 5
time units” can be expressed in SBTL as follows:

Oio,00) (P = $p0,419)

Definition 4.8. Slightly-Restricted Bounded Temporal Logc Let ¢ be a FBTL
formula, a SBTL formulay can be defined inductively as follows:

o= ¥
| pAgp
| pAgp
| D[O,oo]@
} 00,001

OU0,00) P

Lemma 4.4. For a BTL formulay that does not contain any subformula that
corresponds to FBTLGENERI Cruns in timeO(X * (M, + 2)* x |p|) and space
O(X * (M, + 2)*), wherel, is the largest constant appearingdmand X = |¢|.

Proof. For a metric alternating automatao#, translated fromp, the function
init does not generateonfiguration DAGs Each configurationC, () in the
configuration setS, generated bynit, is translated into aonfiguration DAG
G = (S,, (N, {(G,C,0)}),0) by the procedur€ener at e- DAG. In backward
evaluation G’ is instantly reduced to a single leaf no@,, C, 0) by the procedure
Eval - back. In the next system steps,, C, 0) is replaced by theonfiguration
sub-DAGtranslated from the set of successor configuratiorgs.of

Thus, G is a disjunctive branching poinbver a set of typeB leaves. As
we know from Theorem 3.7, the number of typeleaves is always bounded
by (M, + 2)% and the size of the typ& leaves is bounded by(. Hence, the
space complexity oBENERI C, for ¢, is O(X * (M, + 2)%).

The running time oENERI Cis linear in the increment ifG| at every system
step times the number of system steps. HeGERJERI Cruns in the timeD (X x
(M +2)%) O

Lemma 4.5. For ametric alternating automatom, translated from FBTL for-
mulay, GENERI Cruns in timeO((M,.+1)%+ X3) and spac®((M.+1)%x X3),
where), is the largest constant appearingdrand X = | A|.

Proof. For ¢, the functioninit generates a single configuratigh {G}) , where
G is aconfiguration DAQranslated fromA.

The space complexity @ENERI C, as proved in Theorem 4.3,0¥( X (M. +
(M. +1)2X=Y) 1 (M. + 1) * Y?)), whereX is the size of4 andY is the sum
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of sizes of subautomata representing FBTL subformulas. &Me X = Y, as
@ is a FBTL formula. Substitutingl for Y in the above expression, the space
complexity of GENERI C, for ¢ reduces ta@((M, + 1)? x X3).
Similarly, the time complexity o6ENERI Cfor BTL formula isO(X * (M. +
1) (M 42)2X=Y) (M, +1)*Y?)). By substitutingX for Y, the time complexity
of GENERI Cgets reduced t@((M, + 1) x X3).
]

Lemmas 4.4 and 4.5 prove that tligeneric algorithm is as efficient as
Breadth-First for BTL specification and as efficient aSptimized Forward-
Backward for FBTL specification respectively.

Theorem 4.6. For ametric alternating automatom, translated from SBTL for-
mulay, GENERI Cruns in timeO(X * (M, + 1) * (2257Y) 1 (M, + 1) * Y?))

and spac®(|p| * (22X—Y) 1 (M, + 1) * Y?)) ,wherel, is the largest constant
appearing inX = | A| andY” is the sum of sizes of subautomata that corresponds
to FBTL subformulae inp .

Proof. GENERI C maintains system configurations in the form afanfiguration
DAG (G). Theorem 3.3 proves that the space complexitGENERI C is linear
in the increment inG| at every system step timés/. + 1) « X, and the running
time is bounded by the increment|i@| at each system step timgs.

In ¢, we have FBTL subformulae of total sizeinside a top level LTL formula
of size X — Y. For aconfiguration DAGS generated by unrollingl, the number
of type B leaves are bounded k&Y (corollary 3.2) and the number of typé
leaves is bounded by * (M, + 1)(lemma 3.4).

Each of typeA leaf adds a sub-DAG of size at madst by unrolling the spec-
ification subautomaton . Similarly, each of typeleaf adds a sub-DAG of the
size at most{ M, + 2)*~Y by translating a set of successor configurations to a
configuration sub-DAGThus,Y * (M, + 1) leaves of typed increment the size
of G by at mosty’? x (M, + 1) and2*~Y leaves of type3 increment the size &f
by at mos22X~Y), The total increment in the size ¢fis therefore bounded by
o(XY) 4 (M, +1) % Y2

Hence, forp, GENERI Cruns in space) (X * (M. + 1) x (22X=Y) + (M, +
1)+ Y?)) and in timeO(|p| * (2X=Y) + (M, + 1) * Y?)).

]

Theorem 4.7. For an execution trace, and ametric alternatingautomatonA,
translated from BTL formula, the space complexity ;BENERI C for different
sub-logics of BT L is given below:
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0(2%) if pisaLTL formula
O(X3 % (M. +1)?) if ¢ is a FBTL formula
O(X (M, +2)(22X=Y) 4 (M, + 1) * Y?)) if ¢ is a SRBTL formula
O(X % (M + 1) ((Me +2)*X=Y) (M, + 1) *Y?)) if pisaBTL formula
where,
e X =|A|.

* Y is the sum of the sizes of subautomata representing FBT Lufiaen

* M., is the maximum constant appearinggr{excludingoo).

Theorem 4.8. For an execution trace, and ametric alternatingautomatonA,
translated from input formula, the time complexity ofSENERI C for different
sub-logics of BT L is given below:

O2% = |p|) if ©is an LTL formula

O(X3 x (M, +1)%) if pisa FBTL formula

O(lp| * (2*3=Y) 4+ (M, + 1) * Y?)) if pis a SRBTL formula

O(lpl * (M. +2)*X=Y) 4 (M, + 1) x Y?)) if pisaBTL formula
where,

. X = A

* Y is the sum of the sizes of subautomata representing FBTLuiarm

* M., is the maximum constant appearinggr{excludingoo).



Chapter 5

Conclusion

In this thesis, we presented a framework to monitor timerolea temporal prop-
erties of a running system. The specification language BTiLonty allows us
to express time-bounded temporal properties in a compatt, fout also leads to
efficient algorithms.Metric alternating automatdMAA), with time constrains
on transitions, provide a linear translation mechanisrmfBI L specifications to
MAA. The algorithm based oalternating automatg AA) can be easily extended
to work on MAA.

A collection of specialized algorithms for different subios of BTL is
presented with their respective complexity analysis. Upmimized Forward-
Backwardalgorithm has a better running time and space complexity=®FL
specifications, where all the temporal operators have foutends. On the other
hand, theOptimized Breadth-Firsalgorithm performs much better when all the
temporal operators have infinite bounds, i.e., LTL spedifics. Normally, BTL
specifications contain a mixture of both finitely and infiljtbounded temporal
operators. Th&enericalgorithm dynamically applies specialized techniques for
different sublogics of BTL. It not only handles all the sudplcs of BTL (includ-
ing LTL), but also performs as efficiently as the specialiaggbrithms for those
sublogics.

Typically, in BTL specifications,the infinitely bounded tporal operators ap-
pear on top of the finitely bounded temporal operators. We liasmally classi-
fied such properties &lightly-restricted Bounded Temporal LodBBTL), pre-
sented in Chapter 4. The complexity of tGenericalgorithm is reduced consid-
erably for the SBTL specification.
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CHAPTER 5. CONCLUSION



Bibliography

[1] Z. Manna and A. Pnueli, “Temporal Verification of ReaetiSystems:
Safety”, Springer-Verlag, New York, 1995.

[2] Z. Manna and A. Pnueli,"Temporal Verification of Reae€tiSystems:
Progress”, Springer-Verlag, New York, 1996.

[3] M.Y. Vardi, “Alternating Automata and Program Verificah”, in: J.Van
Leeuwen, editors, Computer Science Today. Recent Trend<Danelop-
ments LNCS 1000, Springer-Verlag, 1995 pp. 471-485.

[4] M.Y. Vardi, “An Automata-Theoretic Approach to Lineaefporal Logic”,
in: F. Moller and G. Birtwistle, editors, Logics for Concancy. Structure and
Automata, LNCS 1043(1996), pp. 238-266.

[5] O. Kupferman and M.Y. Vardi, “Weak alternating automatee not that
weak”, J.LACM , 2(3):408-429, 2001.

[6] B. Finkbeiner and H. Sipma, “Checking Finite Traces dshiternating Au-
tomata”, in: K. Havelund and G. Rosu , editors, Runtime Veatiion 2001,
Electronic Notes in Theoretical Computer Science 55(2004)1-17.

[7] B. Finkbeiner, S. Sankaranarayanan and H. Sipma, “Ciitig Statistics over
Runtime Executions”, in: K. Havelund and G. Rosu , editotstime Verifi-
cation 2002, Electronic Notes in Theoretical Computer sme70(2002), pp
1-17.

[8] B. Finkbeiner, “Verification Algorithms based on Altexting Automata”.
PhD thesis, Stanford University, 2002.

[9] R. Alurand T.A. Henzinger, “Real-Time Logics: Complexand Expressive-
ness”, In Proceedings of the Fifth Annual Symposium on LagiComputer
Science (LICS), IEEE Computer Society Press, 1990, pp.48H0-

57



58 BIBLIOGRAPHY

[10] R. Alur and T.A. Henzinger, “Logics and Models of Reahig: A Survey”,
In: Real Time: Theory in Practice, Lecture Notes in Comp&eience 600,
Springer-Verlag, 1992, pp. 74-106.

[11] T.A. Henzinger , Z. Manna and A. Pnueli, “Temporal prooéthodologies
for real-time systems”, Proceedings of the 18th ACM SIGPLBNEACT
symposium on Principles of programming languages, p.3@3-Banuary 21-
23,1991, Orlando, Florida, United States

[12] T.A. Henzinger. “The Temporal Specification and Veafion of Real-Time
Systems”. PhD thesis, Stanford University, 1991.

[13] R. Koymans. “Specifying Real-Time Properties with ket Temporal
Logic”. RealTime Systems, 2(4):255-299, 1990.

[14] P. Bellini , R. Mattolini and P. Nesi, “Temporal logicerfreal-time system
specification”, ACM Computing Surveys (CSUR), v.32 n.1,4R, March
2000.

[15] Z. Manna and A. Pnueli, “The Temporal Logic of ReactiveldConcurrent
Systems,” Springer-Verlag, New York, 1991.

[16] E.M. Clarke, O. Grumberg and D.A. Peled, “Model CheckinThe MIT
Press, 1999.

[17] M. Abadi and L. Lamport, “The existence of refinement mpiags”, Else-
vier Science Publishers Ltd., Essex(UK), 1991.



Appendix A

OPTrA - A Runtime Monitoring
Software

In this chapter we present a software tool, called OPrA (@nkProgram An-
alyzer), for online monitoring of a running program. OPrApi@ments the
framework discussed in this thesis. The first version of OBl the Forward-
Backwardalgorithm. All the other algorithms will appear in the comiversion.

A.1 General Description

The Software tool OPrA (Online Program Analyzer) is an omlmonitoring
tool, that monitors a running program against a high-lepelcfication written
in Bounded Temporal LogiBTL). A given programpP is instrumented with ad-
ditional instructions to emits relevant even8.,when runs, emits events which
are then checked against the specification by a monitor mgriniparallel.

The Software is divided into four modules, which are diseddsriefly in the
following subsections:

A.1.1 Formula Translation

The Formula Translatorreads BTL specification scripf from a text file and
translatesl” to ametric alternating automatonl. The translation fronp to A is
done by thé~ormula Translatoras follows:

» Parses to check against the syntax and semantics of the BTL.

« If T is syntactically a and semantically correEgrmula Translatorpro-
duces a syntax treg€ from Y.

59
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» 7T is then transformed into theegation normal formsuch that negation are
pushed to the proposition level.

» 7T, in the negation normal form, is then translated intoetric alternating
automatonA according to the translation rules defined in Chapter 2.

» Return the automatod as output.

A.1.2 Program Instrumentation

Theinstrumentation modultakes a specification scrifft and program segment
P ,written inC0 (a subset of” langueage), and produces an instrumented 3de
that can compiled with any standat) compiler.”’ contains additional instruc-
tions to emit events, and also the specification séfiphserted, as comments, at
the top of the program fileY’ is produced after replacing each propositionfin
with their respective index numbers. The boolean constantsand false are
replaced withl and0 respectively. GiverP andY, the program instrumentation
works as follows:

 Parsesp script to extract the set of predicat8s that appears ip. Predi-
cates or boolean functions over program variables. Eadtfidatepred €
S, is assigned a unique integer valkey and then put into a list,, of pair
(pred, key). Keys are assigned in increasing order staring ®ith and 1
are reserved for the boolean constantse andtrue respectively.

» Eachpred € S, in the specification scripf is replaced by their respective
key, and the resultant specification scrifftis written at the top of instru-
mented prograr®’ enclosed in the comments.

 TraversesC, to compute a lisiC,,, of pair (var, plist), wherevar belongs
to a set of program variablds that appears iff'. The list£,, maps each
var € V to asetS’ C S, such thatpar appears in every element 8f.

» ParsesP to compute a set of program instructigh that updates the value
of any £ € V. This is done my looking at each assignment instruction in
the program text. The s@t; consists of all the assignment instructions that
contains a program variablé € V, such thatr appears on the left side of
the assignment operator.

» For each assignment instructidne Pi that updates variable@r € V,
computes the s&’ of predicates , such that eaéhe S’ containsvar.

* Insert new instruction after each assignment instructien”: to emit the
event.
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A.1.3 Event Recognizer

The Event Recognizerecognizes the events emitted by the running program. A
change in the value of program variableesults in changing truth value of the set
S of predicates appearing in the input formula. The modulentaas a listC of

pair (id, val), whereval is a predicate’s truth value and uniquely identifies each
predicate. The lisC is computed by parsing the specification sciipof a BTL
formula . Event Dispatchereceives a paifid, val), from the running program
and updateg. After updatingl, Event Recognizemotifiesmonitoring module
about the change in system state.

A.1.4 Runtime Monitoring

Runtime Monitomonitors the instrumented prograPagainst the formal speci-
ficationY. The stepwise activities dtuntime Monitoare given below:

1. Parses the specification scrifit, and also initializes the listC of
pair(id, val), whereid is an index number of a proposition, and! rep-
resents its truth-value.

2. InvokeFormula translatorto translate the specificatiof to ametric alter-
nating automaton

3. Initializes theEvent Recognizer

4. Waits for the notification from th&vent Recognizesbout system’s state
change.

5. When receives the notification of state change fromBhent Recognizer
and verifies the new system state against the specification.

6. Repeat the last two steps unless program terminateswtithe following
results:

* Program trace satisfies the specification.
* Failure is detected during execution.

A.2 Specification Script

In this section we define the grammar for the specificatioipsar, which we
use to writeBounded Temporal LogBTL formula. The predicates over program
variables are enclosed in curly braces. The grammar ruéedefined below:
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formul a::=
| (formula)
| binary-fornul a
| unary-fornula
| proposition
unary-fornul a:= tenporal -operator formula
| sinple-operator formul a
bi nary-fornmula::= fornula tenporal -operator fornula
| formula sinple-operator formul a
t enpor al - operat or ::= toperator interval
| formul a si npl e-operator formul a
proposition:= {predicate}
| constant
interval = ¢
| [number  nunber]
| [nunber -]
t operator : (the temporal operator for strong until)

= U
| W (the temporal operator for weak until)
| R (the temporal operator for the dual of until)

| G (the temporal operator for always)

| F  (the temporal operator for Eventually)

| (the temporal operator for next)

<

si npl e- operator ::= and (the boolean operator for conjunction)
| or (the boolean operator for disjunction)
| xor (the boolean operator for exclusive conjunction)
| not (the boolean operator for negation)
| —  (the boolean operator for implication)
|

< (the boolean operator for equivalence )

pr edi cat e ::= ”C language boolean expression
nunber ::="An integer’

const ant ::= truefalse
The precedence of temporal and non-temporal operatorgas delow:
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CO Program BTL specification

63

BTL —= Automaton

Instrumentation

Metric alternating
Automaton

Instrumented Program

Events

Compile Running Program

Runtime Monitor

Executable Program J

Execute

B

Yes No

Figure A.1: The architecture of the software tool OPrA (@aliProgram Ana-
lyzer).
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e operators appear at the same line have equal precedence.
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A.3 Software Architecture

The Figure A.1 shows the architecture of the software toal”lOFhe spftware
takes the specification scrifit and a progran®P as inputs.Y contains the script
for the BTL specificationp, stating which system’s property is to be monitored.
P is instrumented in accordance wilhy to produce the instrumented program
P’. At the same timep is translated to anetric alternating automatond. P’ is
compiled withC'0 compiler, and executed. During the executi@remits events,
which are received by thRuntime Monitor Runtime Monitorchecks whether a
sequence of events emitted By are accepted byl or not.



