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Abstract. This thesis presents a model of FlexRay’s physical layer protocol and a
suitable data structure for model checking such models.

The FlexRay standard, developed by a cooperation of leading companies in the
automotive industry, is a robust communication protocol for distributed components in
modern vehicles. The key challenge in the analysis is that the correctness of FlexRay’s
physical layer protocol relies on the interplay of the bit-clock alignment mechanism
with the precise timing behavior of the underlying asynchronous hardware. This thesis
presents a timed automata model of the physical layer protocol and the underlying
hardware.

Model checking such data-intensive systems using a semi-symbolic state space rep-
resentation, which represents timing information symbolically but discrete information
explicitly, turns out to be infeasible. To overcome this problem, this thesis presents
Zone State Diagrams (ZSDs), a novel data structure combining difference bound matri-
ces with reduced ordered binary decision diagrams. In terms of the size of the instances
that can be handled, the performance of a model checker using ZSDs is better than the
standard semi-symbolic approach on several benchmarks and the FlexRay model, and
sometimes even better than Uppaal, e.g., in the case of the FlexRay model. While
Uppaal is the fastest on all benchmarks, ZSDs are often a bit slower than the standard
semi-symbolic approach.

ZSDs represent the discrete part of the state space symbolically as well as the timed
part. Thus data-intensive state spaces can be more efficiently represented with ZSDs
than with semi-symbolic state space representations, as used, e.g., by Uppaal.
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Chapter 1

Introduction

This thesis explores a novel approach for storing the state space during timed reacha-
bility model checking of systems with a small number of clocks but a huge number of
discrete states. The example for such a system used in this thesis is the physical layer
protocol of the FlexRay vehicle bus protocol. The model of this protocol incorporates
asynchronous behavior and a complicated communication procedure. Thus, manual
analysis of the model is difficult due to the complexity of the interactions in the model.
However, a model checking approach can handle this complexity, given the appropriate
algorithms and data structures.

First, a short introduction to timed model checking and a description of the problem
considered in this thesis and the proposed solution is given in the remainder of this
Chapter. Chapter 2 reviews the concepts needed for the understanding of timed model
checking, like timed automata, and explains the standard approach for representing
the timed state space. The notion of data-intensive real-time systems is introduced in
Chapter 3. Chapter 4 proposes an alternative timed state space representation, zone
state diagrams, designed specifically for data-intensive real-time systems. The FlexRay
protocol is described in Chapter 5, and a model of a data-intensive real-time system,
FlexRay’s physical layer protocol, is described in Chapter 6. Chapter 7 compares the
performance of timed state sets and zone state diagrams on the task of model checking
the model of FlexRay’s physical layer protocol and on the Fischer, Gear Production
Stack and Leader Election benchmarks. Chapter 8 sums up the obtained results and
discusses possibilities for further investigation of the idea behind zone state diagrams
and of further improvement of methods for model checking data-intensive real-time
systems. Finally, Appendix A briefly describes a variant of model of FlexRay’s physical
layer protocol which is of interest for investigation of FlexRay’s physical layer protocol.

1.1 Discrete Model Checking

Model checking is a formal method based on a model of a system and is used to find
errors and to prove properties of the modeled system. According to Baier and Katoen
[BK08, p 8],
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2 CHAPTER 1. INTRODUCTION

“Model checking is a verification technique that explores all possible system
states in a brute force manner.”

or, as they define it more precisely [BK08, p 11],

“Model checking is an automated technique that, given a finite-state model of
a system and a formal property, systematically checks whether this property
holds for (a given state in) that model.”

The model of the system consists of the discrete states the system can be in, and the
transition relation, i.e., a collection of rules describing how the systems goes from one
state to an other state. Variables over a discrete domain as well as the control location
of the system are all encoded in the discrete state. This thesis will only consider
reachability model checking, e.g., properties of the form “The system does never reach
state X” will be proven.

1.2 Timed Model Checking

In timed model checking, not only the order in which discrete states are visited is
important, but also the exact point in time. The model of the system is enriched
with variables that measure time, so called clocks. A state of a timed system is a
pair containing the discrete state, called location, and the valuation of the clocks. The
transition relation can now also refer to clocks, i.e., it contains rules how to get from
one location to the other at what time. It is also possible to restrict the time that the
system can stay in a certain location.

1.3 Complex Systems

Model checking turns out to be quite useful for systems of low complexity, as it does
find errors humans would easily overlook even in simple systems. Its real strength
is the ability to also cover the cases nobody would have thought of when testing, as
model checking exhaustively explores every possible behavior of the system. However,
when model checking is used to investigate very complex systems or systems with many
discrete variables that cannot be easily abstracted from, the technique eventually runs
into trouble if the number of possibilities is too high and cannot be handled anymore
in reasonable time using a reasonable amount of memory [LCL88].

1.3.1 Timed State Space Explosion

Models of very complex systems can often not be exhaustively explored in an efficient
way. Techniques like, e.g., symmetry reduction and symbolic representation are used to
overcome this problem, but nevertheless many safety-relevant systems are too complex
to be efficiently model checked. In pure discrete model checking, the use of reduced
ordered binary decision diagrams (BDDs), which are described in Section 2.1, enabled
a huge increase in the size and complexity of models that can be checked [BCM+92].
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However, if the system can only be modeled in a way that leads to an exponential
blowup of the reachable state space, this so-called state space explosion still limits the
practical use of model checking.

For timed model checking the situation is even worse. The use of symbolic repre-
sentations for the timing aspects of the system, e.g., clock zones [Alu99], is imperative,
but still the complexity of systems that can be handled is very limited. Early models of
the FlexRay physical layer protocol described in Chapter 5 could not be verified at all
using the state-of-the-art timed model checker Uppaal due to lack of memory. After
some refinement of the model using abstraction to reduce the state space, Uppaal was
able to verify safety properties for simple instances of the model described in Chapter 6.

1.3.2 Idea: Reverse Hierarchy

A thorough discussion of the difficulties of Uppaal to check the FlexRay model high-
lighted inefficient space usage by Uppaal. A model like the one from Chapter 6 has a
very large discrete part and just a very limited real time related behavior. If the timed
state space is stored in a way similar to timed state sets as described in Section 2.6,
every location is extended with timing information, i.e., a collection of clock zones. In a
system with many discrete locations and only a limited number of different clock zones,
these zones are thus stored multiple times. In the naive approach, having 1,000,000
locations and just 1000 different clock zones means that at least 999,000 stored clock
zones are copies of already stored clock zones.

For systems expected to have a larger number of locations than clock zones, this
redundant storage leads to unnecessary memory consumption. However, expanding
locations with timing information is a natural approach, as a systems behavior is de-
scribed in terms of what it does if it is in a certain location and certain restrictions on
the timing aspects hold. A location extended with timing information thus represents
the common view on the behavior of systems.

To exploit the characteristics of such a system, i.e., the large discrete part and the
small timing part, this thesis presents a novel approach that significantly reduces space
consumption in the timed state space representation. The timed state space is repre-
sented the other way round: The timing information is extended with the locations, as
realized by zone state diagrams, introduced in Chapter 4. This can significantly reduce
redundant storage if many different locations have the same timing requirements, as
it is the case in the model described in Chapter 6. The reversed paradigm does of
course not guarantee that redundancy is reduced in all cases, as the number of location
/ clock zone pairs is still the same. But it does guarantee that every zone is stored
at most once, and only locations are stored multiple times. Huge sets of locations, in
turn, can be efficiently stored using BDDs. The use of BDDs to store sets of locations
will usually reduce the amount of memory needed dramatically. However, off the shelf
BDD libraries cannot be used in a mapping from locations to sets of clock zones, they
can only be used if the direction of the mapping is reversed, i.e., if clock zones are
mapped to sets of locations.

As the exploration of the model is still based on the locations extended by timing
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information, a certain computational overhead is introduced by reversing the order, as
the information about the timed state of the model has to be converted to the new
format in each step. However, a comparison of the results from Table 7.3 and Table 7.2
in Chapter 7 indicates that this overhead is small while the efficiency gain is huge when
model checking the FlexRay model.
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Preliminaries
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2.6.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6.2 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 Binary Decision Diagrams

For representing sets of bit vectors, reduced ordered binary decision diagrams (BDDs)
[Bry86] are very efficient[BCM+92]. Basically, a BDD is a directed acyclic graph similar
to a binary decision tree, with a total order on the variables occurring on the paths from
the root to a leaf. The nodes are labeled with variable names, while the corresponding
two outgoing edges are labeled with 1 and 0. There are two leaves, one labeled with
true and one labeled with false. A valuation of variables is contained in a BDD that
uses no other variables, if and only if there is a path from the root to the true leaf
such that at every node, the edge corresponding to the value of the variable this node

5
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is labeled with is taken. If the valuation is not contained in the BDD, then there is
such a path starting at the root and ending in the false leaf.

The graph is organized such that valuations that are identical for the first i variables
and valuations that are identical from the jth variable on have paths that share the
corresponding edges.

Moreover, all path in a BDD either end in the false leaf or in the true leaf, so edges
leading to a subgraph where the true leaf is no longer reachable can be redirected to
the false leaf immediately, and the subgraph can be removed. Vice versa, all edges
leading into a subgraph were the false leaf is no longer reachable can be redirected to
the true leaf, which also allows to remove now unreachable parts of the graph, thus
reducing its size. If both edges that leave a node go to the same node, the value of the
variable the node is labeled with does not influence the rest of the path, so the value
does not have to be checked, and the respective node can just be removed, redirecting
all incoming edges to the node that was the target of the two outgoing edges.

The size of a BDD strongly depends on the variable ordering.
Formally, BDDs represent binary functions f : 2V → B for some finite set of

boolean variables V . Given two binary functions f and f ′, their disjunction is defined
as (f ∨ f ′)(x) = f(x) ∨ f ′(x) for all x ⊆ V .

Taking the individual bits of the vector as assignments for the variables in V , a BDD
representing function f contains a bit vector x if f(x) = true and does not contain this
vector if f(x) = false. So if a bit vector x′ is added to a BDD bdd representing f , the
resulting BDD bdd′ = bdd ∨ x′ represents the binary function f ′ that is defined by

f ′(x) =

{
true : x = x′

f(x) : x 6= x′

.

2.2 Timed Automata

A popular formalism for modeling components of timed systems are timed au-
tomata [AD90, AD94]. Clarke et al. start their detailed description of timed automata
in [CGP99, p 265] with the short characterization:

“A timed automaton is a finite automaton augmented with a finite set of
real-valued clocks.”

In a location of the automaton, time can elapse, i.e., if time elapses, all clocks
increase at the same rate.

When the automaton transitions from one location to another, some of the clocks
can be reset to to zero. The transitions between two locations can also be equipped
with a guard, i.e., a constraint on the clock valuations that determines whether the
transition is enabled and can be taken or not.

The locations can be equipped with invariants that restrict the clock valuations
that may be reached in this location. The location has to be left before this invariant
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is violated and cannot be entered if the valuations of the clocks do not satisfy the
invariant, thus disabling the respective incoming transition.

2.2.1 Syntax

With X being a finite set of clock variables, ranging over the nonnegative reals (R≥0),
the set of clock constraints over X, C(X), is defined as follows: Let x ∈ X be a clock
variable and let c ∈ N0 be a constant integer, a clock constraint ϕ ∈ C(X) is of the
form

ϕ = true | x ≤ c | c ≤ x | x < c | c < x | ϕ1 ∧ ϕ2

where ϕ1, ϕ2 ∈ C(X).
Formally, a timed automaton is a 6-tuple A = (L, l0, I,Σ,∆, X) where

• L is a finite set of control locations,

• l0 ∈ L is the unique initial location of the automaton,

• I : L → C(X) maps each location to an invariant, i.e., a clock constraint that
has to hold while the automaton is in the corresponding location,

• Σ is a finite set of actions,

• ∆ ⊆ L×Σ×C(X)×2X×L is a set of edges, The 5 tuple δ = 〈l, a, ϕ, λ, l′〉 ∈ ∆ is an
edge from location l to location l′ with action a, guard ϕ, i.e., a clock constraint
that has to be satisfied to enable the edge, and a set λ of clocks to be reset to
zero when the edge is taken, and

• X is a finite set of nonnegative real-valued clocks.

2.2.2 Semantics

A clock valuation ~v : X → R≥0 maps each clock to a nonnegative real value. The set
of all clock valuations over X is denoted by V(X). If the clocks are numbered from 1
to |X|, ~v ∈ V(X) can be represented as a vector with |X| dimensions by assigning the
value of the ith clock to the ith dimension. Resetting clock x ∈ X to zero in ~v ∈ V(X)
results in the new valuation ~v[x := 0]. ~v[λ := 0] is obtained by resetting all clocks in
λ ⊆ X to zero in ~v. For d ∈ R≥0, the valuation ~v + d assigns to each clock x ∈ X the
value

(
~v + d

)
(x) := ~v(x) + d.

A (timed) state of a timed automaton is a pair (l, ~v) of control location l ∈ L and
clock valuation ~v ∈ V(X). The initial valuation is the zero vector ~0. Thus, the initial
state of the automaton is (l0,~0). The automaton can change its state using two types
of transitions.

The first type of transition, the so called discrete transition, uses an enabled edge
to get to a different control location, not changing the clock valuation. An edge
〈l, a, ϕ, λ, l′〉 ∈ ∆ is enabled in state (l′′, ~v) if and only if the automaton is in the
right location (l′′ = l), the valuation satisfies the guard (~v � ϕ), and the valuation after
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execution of the discrete transition using this edge satisfies the invariant of the new
location (~v[λ := 0] � I(l′)). If the enabled discrete transition using edge 〈l, a, ϕ, λ, l′〉
is executed in state (l, ~v), the resulting state is (l′, ~v[λ := 0]).

There is a second type of transitions, the so called delay transitions corresponding
to the elapsing of time in a location. A delay transition with delay d is enabled in
state (l, ~v) if and only if the invariant of location l is not violated during the elapsing
of time, i.e.,∀0 ≤ d′ ≤ d . ~v + d′ � I(l). As the invariants are convex, this requirement
is equivalent with ~v � I(l)∧ ~v+ d � I(l). If an enabled delay transition with delay d is
executed in state (l, ~v), the resulting state is (l, ~v + d). Note that for model checking
purposes, infinite zeno, i.e., time converging, sequences of transitions are not allowed.

2.3 Networks of Timed Automata

To describe timed systems, several timed automata can be composed to a network.

The composition of the timed automatonA1 = (L1, l
1
0, I1,Σ1,∆1, X1) and the timed

automaton A2 = (L2, l
2
0, I2,Σ2,∆2, X2) with a disjoint set of clocks (X1 ∩X2 = ∅) is

defined as the timed automaton A1||A2 = (L1 × L2, (l
1
0, l

2
0), I,Σ1 ∪ Σ2,∆, X1 ∪ X2)

where I(l1, l2) = I1(l1) ∧ I2(l2) and the transition relation ∆ contains all transitions
formed according to the following rules:

• If a ∈ Σ1 ∩Σ2 then for all 〈l1, a, ϕ1, λ1, l
′
1〉 ∈ ∆1 and for all 〈l2, a, ϕ2, λ2, l

′
2〉 ∈ ∆2,

〈(l1, l2), a, ϕ1 ∧ ϕ2, λ1 ∪ λ2, (l′1, l′2)〉 ∈ ∆.

• If a ∈ Σ1 \ Σ2 then for all 〈l1, a, ϕ1, λ1, l
′
1〉 ∈ ∆1 and for all l2 ∈ L2,

〈(l1, l2), a, ϕ1, λ1, (l
′
1, l2)〉 ∈ ∆.

• If a ∈ Σ2 \ Σ1 then for all l1 ∈ L1 and for all 〈l2, a, ϕ2, λ2, l
′
2〉 ∈ ∆2,

〈(l1, l2), a, ϕ2, λ2, (l1, l
′
2)〉 ∈ ∆.

The global timed automaton representing the whole system can be formed by in-
crementally composing the timed automata that represent the individual components.
Note that for model checking purposes, the global timed automaton does not neces-
sarily need to be constructed completely. In practice, model checkers use on-the-fly
techniques to explore the reachable product states until the property can be proven or
disproven.

2.3.1 Extended Automata Syntax

An extension to the classical definition of timed automata are extended timed au-
tomata [BDL04]. The syntax used to describe the variant of extended timed automata
used in the model described in Section 6 is similar to the syntax used by the model
checking tool Uppaal as described in [BDL04] with some minor changes.

For the extended automata used in Section 6, three concepts are added to the timed
automata concept:
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1. Integer and boolean variables that have a specified range and thus just a finite
number of values, are part of the state space. The values of these variables can
be referred to in guards and can be updated when edges are taken.

2. Actions are replaced by so called synchronization channels using broadcast syn-
chronization. If an edge has no synchronization label, then it is treated like an
edge with an action that no other edge in a different automaton uses, i.e., it does
not need to synchronize with any other edge. A synchronization label specifies
the identifier of the synchronization channel and whether the edge is sending or
receiving on that channel. A sending edge can be taken whenever it is enabled,
independent of any synchronization. A receiving edge will be taken if and only if
it is enabled and a sending edge using the same synchronization channel is taken
at the same time, i.e., receiving edges have to synchronize to sending ones.

3. A location that is declared committed has to be left before time can pass or some
edge not starting in a committed location can be taken.

All these three concepts can be expressed in terms of classical timed automata.

1. The values of integer and boolean variables can be encoded into extra control
locations. The updates of variables can be encoded by directing the edge to
the respective location encoding the new value. Likewise, if a constraint on a
variable is used in a guard the respective edges do only start at locations that
encode values satisfying the constraint.

2. Synchronization channels using broadcast synchronization can be encoded into
the locations, edges, and actions of a timed automaton by building the full prod-
uct automaton. The broadcast synchronization on a channel is simulated by indi-
vidual edges for each combination of a guard from a sending edge with negated or
not negated guards from all receiving edges. Checking all combinations of satis-
fied or unsatisfied guards allows to transition to the appropriate product location
that represents the behavior that all enabled receiving edges were taken.

3. To simulate the behavior of committed locations, all incoming edges of committed
locations reset some otherwise unused clock and the location gets the additional
invariant that this clock may not become bigger than 0, thus preventing the
passage of time. If an extra boolean variable is added indicating whether some
automaton is in a committed location, this variable can be used to disable all
edges not starting in a committed location.

Figure 2.1 shows the syntax used to describe locations and transitions.

• Synchronization is the optional broadcast channel on which this transition syn-
chronizes. A “!” indicates that taking this transition forces all other enabled
transitions that synchronize with this channel to be taken as well, making this
transition broadcasting on this channel. A “?” indicates that this transition will
be taken if and only if it is enabled and a transition which is broadcasting on the
channel is taken.
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CInitial location indicated by this arrow:

Invariant
LocationName

Synchronization
Guard
Update

“C” marks a committed location

Figure 2.1: Syntax of locations and transitions

• Guard is a formula evaluating to a boolean value that indicates whether the
transition is enabled.

• Update is a comma-separated list of updates of variables or resets of clocks that
are executed when the transition is taken.

• Invariant is a logical formula that has to be true while the automaton stays in this
location. This forces the automaton to leave this location before the Invariant
is violated and disables any transition leading into a location with a violated
Invariant .

• A committed location has to be left before any transition not leaving a committed
location can be taken.

(from ExitLocation)
EntryPoint

ErrorClone

(NextSegment)SaveLocation

Small arrows represent transitions in the
next segment, indicating a “Next Segment”-
location

Small arrows represent transitions entering
the Error-location in other segments

Figure 2.2: Syntax used to describe split automata

In order to make bigger automata easier to understand, they can be split into
segments using the auxiliary syntax shown in Figure 2.2.

• NextSegment is a location representing the parts of the automaton reachable by
the incoming transitions that are described in the next segment. It is indicated
by gray color, smaller size and the name of the EntryPoint of the next segment
in brackets.

• EntryPoint is the location entered in this segment by entering the “Next
Segment”-location of the previous segment.
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• ErrorClone is a location indicating an error state. It is reachable from various
segments of the automaton, incoming transitions in other segments are indicated
by small arrows. The location is marked in red.

• SaveLocation is a location from which no error state can be reached. The location
is marked in green.

In the example shown in Figure 2.2, the location “EntryPoint” is also the “ExitLoca-
tion” of this segment, as there is a transition from EntryPoint to NextSegment.

2.4 Finite Representation

Recall that a state of a timed automaton is a pair consisting of a control location l and
a clock valuation ~v. As a valuation ~v maps clocks to R≥0, there can be uncountably
many states of a timed automaton. In order to perform an exhaustive search on the
reachable states of such an automaton, an equivalent symbolic representation that has
a finite amount of reachable states is needed.

2.4.1 Clock Regions

If a valuation assigns a value to a clock that is bigger than the biggest constant used
for comparison in some guard or invariant, the behavior of the automaton will not be
influenced by the concrete value of that clock. A value of a clock is maximal if it is
bigger than the biggest constant any clock is compared to in any guard or invariant.
If a valuation assigns a maximal value to a clock, the actual value can be abstracted
from.

Alur et al. [ACD90] proposed to partition the set of all clock valuations into a finite
number of equivalence classes, the so called clock regions. Two valuations ~v1, ~v2 ∈ V(X)
are in the same clock region if and only if all of the following conditions are fulfilled:

• Both valuations consider the values of the same clocks to be maximal, i.e., ~v1(x)
maximal if and only if ~v2(x) maximal.

• Both valuations agree on the integer parts of the non-maximal clock values, i.e.,
b~v1(x)c = b~v2(x)c.

• Both valuations consider the non-integer parts of the same non-maximal clock
values to be zero, i.e., b~v1(x)c = ~v1(x) if and only if b~v2(x)c = ~v2(x).

• Both valuations agree on the order in which the non-maximal clock values will
change their integer part, i.e., ~v1(x) − b~v1(x)c ≤ ~v1(x

′) − b~v1(x′)c if and only if
~v2(x)− b~v2(x)c ≤ ~v2(x′)− b~v2(x′)c.

Two states (l, ~v) and (l′, ~v′) are region equivalent if and only if (1) l = l′ and (2) ~v
and ~v′ are in the same clock region.
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Regions are a useful finite abstraction as two region equivalent states (l, ~v1) and
(l, ~v2) have two interesting properties that guarantee that every path in the original
automaton is simulated in the region equivalence abstraction:

1. If there is an edge that allows to take a discrete transition from (l, ~v1) to (l′, ~v′1),
then this edge also allows to take a discrete transition from (l, ~v2) to (l′, ~v′2) where
(l′, ~v′1) and (l′, ~v′2) are region equivalent.

2. If there is a delay transition from (l, ~v1) to (l, ~v′1), then there is also a delay
transition from (l, ~v2) to (l, ~v′2) such that (l, ~v′1) and (l, ~v2)

′ are region equivalent.

Thus, using region equivalence, the infinite state space of a timed automaton can
be abstracted to a symbolic state space with a finite number of states.

2.4.2 Clock Zones

Alur [Alu99] proposes clock zones, convex sets of clock valuations characterized by
conjunctions of clock difference constraints. With x1, x2 ∈ X, c ∈ Z, and ≺∈ {<,≤},
the constraints defining a clock zone are of the form (1) x1 ≺ c, (2) c ≺ x1, or (3)
x1 − x2 ≺ c. Since a clock never has a negative value and all values above the biggest
constant are represented by the same value, the value of a clock is always bounded
from below and from above. Constraints of the form (1) or (2) can, thus, always be
written in the form −c0,i ≺ xi ≺ ci,0. A special zero clock x0 always having the value 0
is used to write all such constraints involving only one clock as the conjunction of two
constraints of the form (3):

x0 − xi ≺ c0,i ∧ xi − x0 ≺ ci,0

Thus, the general form of a clock zone is

0 ≤ x0 ≤ 0 ∧
∧

0≤i 6=j≤|X|

xi − xj ≺ ci,j .

As the zero clock is always 0, the constraint on the zero clock 0 ≤ x0 ≤ 0 is implicit
and does not have to be mentioned in the description of a clock zone.

2.4.3 Difference Bound Matrices

Dill [Dil90] proposed difference bound matrices (DBM) to represent clock zones. Each
entry zi,j of a matrix corresponds to the constraint xi − xj ≺ ci,j . The entry indicates
which constant ci,j ∈ Z is to be used in the constraint and whether the ≺ is < or ≤.
For example, the entry z0,3 = (−2, <) represents the constraint x0 − x3 < −2. As the
zero clock x0 is always 0, this DBM entry expresses x3 > 2.

Recall, if the biggest constant used in the automaton is exceeded by the value
of a clock, the value of that clock is abstracted by ∞. If no upper bound for a clock
difference is given, the entry in the DBM for that clock difference will be (∞, <), which
is a safe over-approximation.
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As an example, consider the clock zone

x1 − x2 ≤ 1 ∧ 2 ≤ x1 ≤ 3 ∧ x2 < 3

which can be represented by the following DBM:

+\− x0 x1 x2
x0 (0,≤) (−2,≤) (∞, <)
x1 (3,≤) (0,≤) (1,≤)
x2 (3, <) (∞, <) (0,≤)

However, this DBM representation of the zone is not unique. There are implicit con-
straints that are not mentioned. From 2 ≤ x1 and x1 − x2 ≤ 1 follows 1 ≤ x2, a fact
not mentioned by the DBM above. Thus, this information can be added to the DBM
and the resulting DBM still describes the same zone:

+\− x0 x1 x2
x0 (0,≤) (−2,≤) (−1,≤)
x1 (3,≤) (0,≤) (1,≤)
x2 (3, <) (∞, <) (0,≤)

In a similar manner, x2 − x1 < 1 can be deduced from x2 < 3 and 2 ≤ x1. Generally,
the clock difference xi − xj is bounded from above by the sum of the upper bounds of
xi − xk and xk − xj .

Formally, the rule is: If xi − xk ≺i,k ci,k and xk − xj ≺k,j ck,j then
xi − xj ≺i,j ci,k + ck,j with ≺i,j=≤ if (≺i,k=≤) ∧ (≺k,j=≤), and ≺i,j=< otherwise. If
this reasoning comes up with a tighter bound than the one listed in the respective DBM
entry, the DBM entry can be replaced by an entry describing the tighter bound. This
process is called tightening. If all entries in the DBM are tightened until further tight-
ening will not change the DBM any more, a canonical DBM representation of the zone
is obtained. Let ζ denote the set of all canonical DBMs. The canonical representation
of the example zone is:

+\− x0 x1 x2
x0 (0,≤) (−2,≤) (−1,≤)
x1 (3,≤) (0,≤) (1,≤)
x2 (3, <) (1, <) (0,≤)

Note that in canonical form, it is cheap to check if the zone represented by the DBM is
empty, as a empty zone has some unsatisfiable constraints that lead to a tighter bound
than xi − xi ≤ 0 for some i in the canonical form of the DBM representing that zone.
Thus, a canonical DBM can be checked for emptiness by examining the entries on the
diagonal of the matrix. Moreover, it is easy to check for semantical equality of two
canonical DBMs.

A valuation satisfies a DBM if the valuation satisfies all constraints encoded in the
DBM. Let z ∈ ζ, then JzK := {~v ∈ V(X) | ~v � z}.

In the following, canonical DBMs are used to represent clock zones on a technical
level.
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Intersection

As guards or invariants can be interpreted as zones, they can as well be described as
DBMs. Thus intersection of DBMs is needed to analyze timed automata using DBMs.

The intersection of two zones has to satisfy the conjunction of the constraints of
these two zones. Let the DBM z be the intersection of z′ ∈ ζ and z′′ ∈ ζ. For every
entry zi,j , the tighter one of the two bounds represented by z′i,j and z′′i,j is chosen. The
resulting DBM has then to be tightened to its canonical form.

Clock Reset

For analyzing transitions of timed automata using DBMs, a method to reset clocks in
DBMs is needed.

Let the DBM z = z′[λ := 0] be the result of resetting all clocks in λ ⊆ X to zero in
z′ ∈ ζ. Then for all 0 ≤ i, j ≤ |X|,

zi,j =


(0,≤) xi ∈ λ ∧ xj ∈ λ
z′0,j xi ∈ λ ∧ xj /∈ λ
z′i,0 xi /∈ λ ∧ xj ∈ λ
z′i,j otherwise

In case z and z′ are empty, the entries (0,≤) for zi,j with xi, xj ∈ λ might not be
tight, thus the resulting DBM also has to be tightened to its canonical form.

Time Elapsing

For analyzing timed automata when time can elapse in a location, an operation to let
time elapse in a DBM is needed.

Let the DBM z = z′⇑ be the result of letting time elapse in z′ ∈ ζ. Then for all
0 ≤ i, j ≤ |X|,

zi,j =

{
(∞, <) i 6= 0 ∧ j = 0

z′i,j otherwise

Federations

A set of DBMs is called a clock federation, representing a set of zones and, thus, a set
of clock valuations. A valuation satisfies a federation if it satisfies at least one of the
DBMs contained in the federation. A clock federation can represent non convex sets of
clock valuations: The set can be represented as a union of (convex) clock zones that,
in turn, are represented as DBMs.

Formally, let ξ be a federation:

JξK = {~v | ∃z ∈ ξ.~v ∈ JzK}
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The binary set operator union does extend to federations straightforward. Let ξ, ξ′

be federations:

ξ ∪ ξ′ = {z | z ∈ ξ ∨ z ∈ ξ′}

However, the intersection of two federations is defined as the set of all nonempty
intersections of DBMs from the two federations, where only one of the two intersected
DBMs is taken from each federation. Let ξ, ξ′ be federations:

ξ ∩ ξ′ := {z′′ | ∃z ∈ ξ, z′ ∈ ξ′.z′′ = z ∩ z′ ∧ ¬empty(z′′)}

Finally, subtracting federation ξ′ from federationξ results in removing all valuations
of ξ′ from ξ, which is defined as a federation ξ′′ representing the remaining valuations.
Let ξ, ξ′, ξ′′ be federations with ξ′′ = ξ \ ξ′:

Jξ′′K := {~v | ∃z ∈ ξ.∀z′ ∈ ξ′.~v ∈ JzK ∧ ~v /∈ Jz′K}

2.4.4 Zone Graph

States of a timed automaton can be grouped into so called zones. A zone is a pair of
a location l and a clock zone (represented by a DBM) z.

For an edge δ = 〈l, a, ϕ, λ, l′〉 ∈ ∆ of a timed automaton and a zone (l, z), the clock
zone that is obtained by executing the transition using edge δ and then letting time
elapse is referred to as succ(z, δ). For the zone (l, z), succ(z, δ) is obtained by executing
the following steps:

1. To find the clock valuations that enable δ, the clock zone is intersected with the
guard ϕ: z ∧ ϕ.

2. The clocks in λ are reset in the result: (z ∧ ϕ)[λ := 0]

3. To exclude clock valuations that violate the invariant, the result is intersected
with the invariant of the new location: (z ∧ ϕ)[λ := 0] ∧ I(l′).

4. Time is elapsed in the result:
(
(z ∧ ϕ)[λ := 0] ∧ I(l′)

)⇑
.

5. To exclude the new valuations that violate the invariant, the result is intersected
with the invariant of the new location again.

Thus, succ(z, δ) =
(
(z ∧ ϕ)[λ := 0] ∧ I(l′)

)⇑ ∧ I(l′) is obtained.

The zone graph is a transition system for the automaton A = (L, l0, I,Σ,∆, X)
with zones of A being states of the zone graph. The initial state of the zone graph
is the zone formed by the initial location of A and a clock zone where all clocks have
value 0, time has elapsed, and the invariant is fulfilled, (l0, [X := 0]⇑ ∧ I(l0)). Note
that [X := 0] � I(l0) is required. For each edge δ = 〈l, a, ϕ, λ, l′〉 ∈ ∆, the zone graph
contains an edge from state (l, z) to state (l′, succ(z, δ)).
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2.5 Reachability Model Checking

In order to answer the question if a system modeled by a timed automaton does ever
reach a certain state, the zone graph of the automaton is explored. In so called forward
reachability model checking, states that are reachable from the initial state are explored
to check if a certain state is contained in a reachable state.

A state is reachable from another state, if there is a sequence of transitions leading
from the latter to the former. With R being a set of states in a zone graph, let
post(R) be all states reachable from some state in R by taking exactly one edge in
the zone graph. Formally, post(R) = {(l′, z′) | ∃(l, z) ∈ R : ∃〈l, a, ϕ, λ, l′〉 ∈ ∆ :
succ(z, 〈l, a, ϕ, λ, l′〉) = z′}.

To find the set of reachable states, the post operator is iterated in order to find its
least fixed point. Algorithm 1 gives a definition in pseudo code.

Algorithm 1 Basic algorithm for calculating the least fixed point of reachable states.

R0 := initial states
i := 0
repeat
i := i+ 1
Ri := Ri−1 ∪ post(Ri−1)

until Ri = Ri−1

Algorithm 2 shows a basic breadth first reachability check for a state with location
lerror in pseudo code. It uses the fact that it is not necessary to apply post to all
reachable states in every iteration, but only to the states that are newly found to be
reachable.

2.6 Timed State Sets

Traditional timed model checkers like Uppaal[BDL04] and Kronos[DOTY95] use
an explicit mapping from locations to timing information, e.g., as provided by timed
state sets (TSSs). In this Section, a formal definition of the usual timed state space
representation, TSSs, is given.

2.6.1 Definition

A TSS maps a location to a set of DBMs: TSS : (L→ 2ζ). A set of DBMs is called a
federation. Let Θ denote the set of all TSSs.

The empty TSS, θ0, maps every location to the empty set of DBMs:

∀l ∈ L : θ0(l) = ∅

A new TSS can be formed by applying the mapping operation [l 7→ z] to a TSS, which
adds the DBM z to the set of DBMs to which the TSS maps the location l. Consider
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Algorithm 2 Basic breadth first exploration of the reachable state space checking the
reachability of error location lerror .

R := initial states
FIFOqueue := empty queue
for all (l, z) ∈ R do

enqueue (l, z) in FIFOqueue
end for
repeat

dequeue (l, z) from FIFOqueue
for all (l′, z′) ∈ post({(l, z)}) do

if l′ 6= lerror then
if (l′, z′) /∈ R then

enqueue (l′, z′) in FIFOqueue
R := R ∪ {(l′, z′)}

end if
else

return lerror reachable
end if

end for
until FIFOqueue = empty queue
return lerror unreachable

a TSS θ′ = θ[l 7→ z], with z ∈ ζ and l, l′ ∈ L:

θ′(l′) :=

{
{z} ∪ θ(l′) if l′ = l

θ(l′) else

Finally, the set of location-valuation pairs represented by a TSS is defined as

JθK := {(l, ~v) ∈ L× V(X) | ∃z ∈ θ(l).~v � z}.

2.6.2 Operations

In this Section, the binary set operators are defined for TSSs in a straightforward
manner, using the definitions for federations from Section 2.4.3. Let l ∈ L, and θ, θ′ ∈
Θ:

(θ ∪ θ′)(l) := θ(l) ∪ θ′(l)
(θ ∩ θ′)(l) := θ(l) ∩ θ′(l)
(θ \ θ′)(l) := θ(l) \ θ′(l)
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Part I

Zone State Diagrams
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Chapter 3

Data-Intensive Real-Time
Systems

Models describing real world systems tend to consist of a large number of locations,
depending on the level of abstraction. If these models cannot describe the system with
an adequate accuracy in a purely discrete manner, formalisms like hybrid automata or
timed automata can provide the desired expressivity.

Model checking large networks of timed automata is hard. This thesis is going to
present an approach that allows to model check a certain class of large network of
timed automata, namely data-intensive real-time systems[EGP10]. A data-intensive
real-time system is a network of timed automata that has many locations (recall that
“location” includes integer variables), but only few clocks.

Controllers of real world systems are implemented in hardware or software that
basically is a state based version of some algorithm used to control the system. The
environment the controller of the system has to deal with can also often be abstracted
to a state based model to a certain extent. Thus, data-intensive real-time systems
are common real world examples, as a large part of many real world systems can be
modeled as a discrete automaton, and only small parts cannot be modeled without
modeling real time. The model of the physical layer protocol used by the FlexRay
automotive bus protocol shown in Chapter 6 is a witness of a data-intensive real-
time system: The model uses just two clocks, but many discrete variables and lots of
locations. This is because the operation of the protocol can be completely modeled in
a discrete fashion, and only the model of the underlying hardware introduces the need
to use timed automata, as the hardware contains oscillators that cannot be modeled
in a purely discrete way.

Initial attempts to model check early variants of the FlexRay model with Uppaal
showed that the state space arising from a exploration of the model was huge and
difficult to handle for Uppaal. As described in Section 2.6, Uppaal uses an explicit
mapping from locations to sets of DBMs to represent the state space. This has a
drawback when representing data-intensive real-time systems: If the few clocks just
give rise to a number of clock zones that is smaller than the number of locations (the
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value of discrete variables is also encoded into locations), many locations will map
to sets containing the same clock zones. As the clock zones are not shared in the
state space representation, many clock zones will be represented several times, wasting
memory.

Two ideas to exploit the characteristics of data-intensive real-time systems in order
to design a more space efficient state space representation are combined in this thesis:

• Reversing the direction of the mapping between the locations and the timing
information.

• Using a BDD library to represent the sets of locations space-efficiently.

The use of BDDs is helpful for systems with many locations, as large sets of locations
can be represented concisely using BDDs. The use of some of-the-shelf BDD library
for representing sets of locations is only efficient if clock zones are mapped to sets of
locations, and not the other way round, because for efficient semi-symbolic exploration
of the state space, it is necessary to have a quick implementation for looking up whether
a particular zone (i.e., a pair of a location and a clock zone) is contained in a state space
representation or not. A clock zone, represented as a canonical DBM, can be hashed
using Uppaals DBM library, thus looking up the corresponding BDD is possible in
constant time, if the state space is organized as a hash map that maps DBMs to BDDs.
If BDDs would be mapped to sets of DBMs, it would not be possible to find the BDD
that contains the location in constant time, as hashing a location to find the right
BDD would caricature the use of BDDs in the first place. These ideas are concretized
in Chapter 4.
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In this Chapter, an alternative to the standard state space representation is pre-
sented. A TSS as presented in Section 2.6 is a mapping from locations to clock valua-
tions. The approach presented in this Chapter reverses the direction of this mapping.
By mapping DBMs to location information, a specialized data structure is created,
providing a space-efficient storage for the state space of data-intensive real-time sys-
tems.

4.1 Definition

A zone state diagram (ZSD) maps a DBM to a set of locations: ZSD : (ζ → 2L). Let
D denote the set of all ZSDs.

The empty ZSD, d0, maps every DBM to the empty set:

∀z ∈ ζ : d0(z) = ∅

A new ZSD can be formed by applying the mapping operation [z 7→ l] to a ZSD, which
adds the location l to the set of locations to which the ZSD maps the DBM z. Consider
a ZSD d ′ = d [z 7→ l], with z, z′ ∈ ζ, l, l′ ∈ L, and d ∈ D:

d ′(z′) :=

{
{l} ∪ d (z′) if JzK = Jz′K
d (z′) otherwise

23
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Finally, the set of location-valuation pairs represented by a ZSD is defined as

Jd K := {(l, ~v) ∈ L× V(X) | ∃z ∈ ζ.~v � z ∧ l ∈ d (z)}.

Note that this definition can also be written as:

Jd K :=
⋃
z∈ζ

d (z)× JzK.

A ZSD is equivalent to a TSS iff they represent the same set of location-valuation
pairs. Formally, let d ∈ D, θ ∈ Θ:

d ≡ θ ⇔ Jd K = JθK

4.2 Operations

In this Section, the binary set operators are defined for ZSDs. The union operator,
needed for reachability analysis, is straightforward. However, intersection and subtrac-
tion are slightly more subtle.

A state of a timed automaton is a pair consisting of a location and a clock valuation.
States are an obvious choice for a foundation for formal considerations on properties
of ZSDs.

The JxK-operator for x ∈ {D,Θ} preserves the binary set operations union, inter-
section and subtraction, defined in the following. The proofs for preservation under
JxK are provided along the way.

4.2.1 Union

Conveniently, the union of two ZSDs is straightforward: Let z ∈ ζ, let d , d ′ ∈ D:

(d ∪ d ′)(z) := d (z) ∪ d ′(z)

The following lemma states the preservation of the union operation under the JxK-
operator:

Lemma 4.2.1. For d , d ′ ∈ D, the following holds:

Jd K ∪ Jd ′K = Jd ∪ d ′K

Proof.

Jd K ∪ Jd ′K = {(l, ~v) ∈ L× V(X) | ∃z ∈ ζ.~v � z ∧ l ∈ d (z)}
∪ {(l, ~v) ∈ L× V(X) | ∃z ∈ ζ.~v � z ∧ l ∈ d ′(z)}

= {(l, ~v) ∈ L× V(X) | ∃z ∈ ζ.~v � z ∧
(
l ∈ d (z) ∨ l ∈ d ′(z)

)
}

= {(l, ~v) ∈ L× V(X) | ∃z ∈ ζ.~v � z ∧ l ∈
(

d (z) ∪ d ′(z)
)
}

= {(l, ~v) ∈ L× V(X) | ∃z ∈ ζ.~v � z ∧ l ∈
(

d ∪ d ′
)
(z)}

= Jd ∪ d ′K
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4.2.2 Intersection

The intersection of two ZSDs maps a DBM z to the union of all intersections of the
two sets of locations mapped at by two DBMs respectively, the intersection of those
DBMs being equivalent to z. Formally, let z ∈ ζ, let d , d ′ ∈ D:

(d ∩ d ′)(z) := {l ∈ L | ∃z′, z′′ ∈ ζ.l ∈
(

d (z′) ∩ d ′(z′′)
)
∧ JzK = Jz′K ∩ Jz′′K}

The following lemma states the preservation of the intersection operation under the
JxK-operator:

Lemma 4.2.2. For d , d ′ ∈ D, the following holds:

Jd K ∩ Jd ′K = Jd ∩ d ′K

Proof.

Jd K ∩ Jd ′K = {(l, ~v) ∈ L× V(X) | ∃z′ ∈ ζ.~v � z′ ∧ l ∈ d (z′)}
∩ {(l, ~v) ∈ L× V(X) | ∃z′′ ∈ ζ.~v � z′′ ∧ l ∈ d ′(z′′)}

= {(l, ~v) ∈ L× V(X) | ∃z′, z′′ ∈ ζ.~v � z′

∧ l ∈ d (z′) ∧ ~v � z′′ ∧ l ∈ d ′(z′′)}
= {(l, ~v) ∈ L× V(X) | ∃z, z′, z′′ ∈ ζ.~v � z ∧ JzK = Jz′K ∩ Jz′′K
∧ l ∈ d (z′) ∧ l ∈ d ′(z′′)}

=
{

(l, ~v) ∈ L× V(X) | ∃z, z′, z′′ ∈ ζ.~v � z ∧ JzK = Jz′K ∩ Jz′′K
∧ l ∈ {l′ ∈ L | l′ ∈ d (z′) ∧ l′ ∈ d ′(z′′)}

}
=
{

(l, ~v) ∈ L× V(X) | ∃z ∈ ζ.~v � z

∧ l ∈ {l′ ∈ L | ∃z′, z′′ ∈ ζ.l′ ∈ d (z′) ∧ l′ ∈ d ′(z′′)

∧ JzK = Jz′K ∩ Jz′′K}
}

= {(l, ~v) ∈ L× V(X) | ∃z ∈ ζ.~v � z ∧ l ∈
(

d ∩ d ′
)
(z)}

= Jd ∩ d ′K

4.2.3 Subtraction

The ZSD resulting from subtracting a ZSD d ′ from a ZSD d , maps a DBM z to
all locations l that are mapped at by d from some DBM z′ where all clock valuations
contained in z are contained in z′ but are not contained in any DBM z′′ that is mapped
to l by d ′. Formally, let z ∈ ζ, let d , d ′ ∈ D:

(d \ d ′)(z) :=
{
l ∈ L | ∃z′ ∈ ζ.l ∈ d (z′) ∧ z ∈

(
{z′} \ {z′′ ∈ ζ | l ∈ d ′(z′′)}

)}
The following lemma states the preservation of the subtraction operation under the

JxK-operator:

Lemma 4.2.3. For d , d ′ ∈ D, the following holds:

Jd K \ Jd ′K = Jd \ d ′K
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Proof.

Jd K \ Jd ′K = {(l, ~v) ∈ L× V(X) | ∃z′ ∈ ζ.~v � z′ ∧ l ∈ d (z′)}
\ {(l, ~v) ∈ L× V(X) | ∃z′′ ∈ ζ.~v � z′′ ∧ l ∈ d ′(z′′)}

= {(l, ~v) ∈ L× V(X) | ∃z′ ∈ ζ.~v � z′ ∧ l ∈ d (z′)}
∩ {(l, ~v) ∈ L× V(X) | ∃z′′ ∈ ζ.~v � z′′ ∧ l ∈ d ′(z′′)}

= {(l, ~v) ∈ L× V(X) | ∃z′ ∈ ζ.~v � z′ ∧ l ∈ d (z′)

∧ @z′′ ∈ ζ.
(
~v � z′′ ∧ l ∈ d ′(z′′)

)
}

= {(l, ~v) ∈ L× V(X) | ∃z′ ∈ ζ.~v � z′ ∧ l ∈ d (z′)

∧ ∀z′′ ∈ ζ.
(
~v 2 z′′ ∨ l /∈ d ′(z′′)

)
}

= {(l, ~v) ∈ L× V(X) | ∃z, z′ ∈ ζ.~v � z ∧ l ∈ d (z′)

∧ ∀~v′ � z.
(
~v′ � z′ ∧ ∀z′′ ∈ ζ.

(
l ∈ d ′(z′′)⇒ ~v′ 2 z′′

))
}

=
{

(l, ~v) ∈ L× V(X) | ∃z ∈ ζ.~v � z

∧ l ∈
{
l′ ∈ L | ∃z′ ∈ ζ.l′ ∈ d (z′)

∧ z ∈
(
{z′} \ {z′′ ∈ ζ | l′ ∈ d ′(z′′)}

)}}
= {(l, ~v) ∈ L× V(X) | ∃z ∈ ζ.~v � z ∧ l ∈

(
d \ d ′

)
(z)}

= Jd \ d ′K

4.3 Implementing Zone State Diagrams

In order to use ZSDs for timed model checking, the implementation of the ZSD concept
was integrated into a prototype timed model checker that checks reachability of states
in an extended timed automaton1. As only forward reachability model checking is used
in this prototype, just the union operator unify is implemented.

The prototype model checker uses bit vectors to code a location of the automaton.
A set of locations is encoded using a BDD that represents all bit vectors in the set.
The BDDs are implemented using the Cudd library [Som09]. Note that the Cudd
library will try to find a more efficient variable ordering from time to time, a procedure
that dominates the runtime of the prototype in the long run, thus leading to a space
efficient, but slow representation of the locations. The Uppaal-DBM library [Ben02]
is used for representing DBMs. A state of the automaton is encoded as a pair of a
location vector and a clock federation.

ZSDs are basically a mapping from DBMs to sets of locations. Thus, a ZSD is
implemented as a hash map that maps DBMs to location BDDs, using the hashing
function provided by the Uppaal-DBM library [Ben02]. A ZSD has a function unify

that can be used to add states or sets of states to the ZSD.
First, consider the case of adding a state, i.e., a pair of a location and a federation,

to a ZSD as shown in Algorithm 3. For every DBM in the federation, the location

1Behrmann et al. describe extended timed automata in [BDL04].
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Algorithm 3 The function unify(loc, F) takes a location vector loc and a federation
F and returns whether this pair was already contained in the ZSD, adding the state
described by the pair to the ZSD. For DBM d, ZSD [d] represents the BDD mapped to
by d in ZSD.

changed := false
for all DBM d ∈ F do

if d ∈ ZSD then
if loc /∈ ZSD [d] then

ZSD [d] := ZSD [d] ∨ loc
changed := true

end if
else

ZSD [d] := loc

changed := true
end if

end for
return changed

is added to the BDD the DBM maps to in the ZSD. The union of two ZSDs can be
implemented similar, as shown in Algorithm 4: A mapping can always be described as
a set of pairs, and ZSDs map DBMs to BDDs. Every pair of a DBM d and location
set LOC from the one ZSD is added to the other ZSD.

Algorithm 4 ZSD Y has the function union(Z) taking a ZSD Z and transforming Y
into the union of Y and Z. For DBM d, Y [d ] represents the BDD mapped to by d in
ZSD Y.

for all (DBM ,BDD) (d, LOC) ∈ Z do
Y [d] := Y [d] ∨ LOC

end for

Forward reachability model checking tries to find a fixed-point of the set of reachable
states using the post operator defined in Section 2.5 to find all immediate successors
of reachable states of the automaton. As shown in Algorithm 2 from Section 2.5, it is
not necessary to apply post to all reachable states in every iteration, but only to the
states that are newly found to be reachable. To exploit this source of efficiency, the
set of newly found states is over-approximated by adopting Algorithm 3 to collect all
changes it makes to a ZSD.

Finally, the function unifyMany adds several states to a ZSD and returns a set of
the states that were newly added and have not been in the ZSD before, as shown in
Algorithm 5: For all states, if the location of the state is not mapped to by all DBMs
of the state’s federation, collect the appropriate DBMs in the federation new and add
the pair consisting of the location and new to the set of newly found states.

A specific location is contained in a ZSD, if it is in one of the BDDs mapped at by one
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Algorithm 5 The function unifyMany(results, delta) takes a set of states results,
which was produced by the application of post to the ZSD, and a set of states delta.
It adds all states from results not contained in the ZSD to the ZSD and to delta.
Finally, unifyMany returns whether the ZSD has been changed. For DBM d, ZSD [d ]
represents the BDD mapped to by d in the ZSD.

added := false
for all (location, federation) (loc, F) ∈ results do
new := empty federation
for all DBM d ∈ F do

if d ∈ ZSD then
if loc /∈ ZSD [d] then

ZSD [d] := ZSD [d] ∨ loc
new := new ∪ {d}
added := true

end if
else

ZSD [d] := loc

new := new ∪ {d}
added := true

end if
end for
delta := delta ∪ {(loc, new)}

end for
return added



4.3. IMPLEMENTING ZONE STATE DIAGRAMS 29

of the DBMs in the ZSD. So, checking reachability is relatively straightforward. Note
that in the implementation of the algorithms, all empty states containing no valuations
or no locations are of course immediately removed and no longer considered.
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The growing use of embedded devices in cars has given rise to the development of
communication protocols specifically tailored to an automotive context. The commu-
nication has to be fast and reliable. Slow communication or uncorrected errors can
have catastrophic consequences in safety-critical applications such as drive by wire.

FlexRay is a communication protocol developed by the FlexRay consortium which
consists of major industrial companies such as BMW, Bosch, Daimler, Freescale, Gen-
eral Motors, NXP Semiconductors, and Volkswagen. FlexRay was first used in BMW’s
X5 car for the pneumatic damping system. The fifth generation of BMW’s 7 Series
uses FlexRay for safety critical systems such as brake control. The development of
FlexRay finished in 2009, the newest available specification version is 2.1 revision A
[Fle05].

Verification of FlexRay is an active field of research. Beyer et al. [BBG+05] pre-
sented a manual deductive correctness proof for FlexRay’s physical layer protocol under
the assumption of a fault free underlying hardware layer. Schmalz [Sch06, Sch07] gave a
semi automatic correctness proof, using Isabelle/HOL and the NuSMV model checker
for the proof obligations. Knapp and Paul [KP07] integrated this correctness proof
into a deductive correctness proof for an implementation of a programming model for
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Figure 5.1: FlexRay single channel hybrid network

a distributed time-triggered real-time system at instruction set architecture level, using
worst-case execution time analysis, while Alkassar et al. [ABK08b, ABK08a] extended
the correctness proof for FlexRay’s physical layer protocol to formalize the correct-
ness of a real-time scheduler for an automotive bus inspired by FlexRay. All these
approaches assume a fault free underlying hardware layer.

5.1 Architecture

The FlexRay protocol is used to organize communication in a network. The network,
which is also called cluster, is formed of so called nodes, each of which has a FlexRay
controller, which is described in Section 5.1.2.

Each FlexRay controller can be attached to embedded devices or computers. The
cluster can be configured in a bus or star network architecture or a hybrid combination,
as shown in Figure 5.1, and can support a maximum of 64 controllers. Each controller
can support up to two independent communication channels.

5.1.1 Time Organization

A FlexRay cluster organizes the access to the channel separately for each channel
by trying to maintain a channel-wide schedule, thus a time division multiple access
(TDMA) scheme is used. The correctness of critical parts of the scheme is demonstrated
by Alkassar et al. in [ABK08b, ABK08a]. The timing hierarchy is shown in Figure 5.2
and described in the following.

In one cycle of communication, one static slot is reserved for usage by each node,
thus, every node connected to the channel gets the chance to use the bus. This static
segment of the cycle is followed by a dynamic segment where every node is allowed to
try to send a message outside the normal schedule. Thus, time critical communication
is faster. The end of the cycle consists of a small symbol window for protocol related
communication using so called symbols and finally a network idle time during which
the local view of the global time is adjusted to achieve some degree of synchronization
with the rest of the cluster.



5.1. ARCHITECTURE 35

Communication cycle

Static
segment

Dynamic
segment

Symbol
window

Network
idle time

static slot static slot

Figure 5.2: FlexRay communication cycle schedule

5.1.2 Controller Architecture

Each node in a FlexRay network has a FlexRay controller, which is connected to the
electronic device that is to be connected using the FlexRay protocol and to the FlexRay
network, which will be called bus in the following, regardless of its architecture. The
controller provides a standardized interface to the electronic device and controls the
communication over the FlexRay network.

As shown in Figure 5.3, a FlexRay controller consists of a distribution-and-control
layer, one communication layer per channel and one bit-level layer per channel. The
controller consists of six processes each of which can be attributed to one of the layers.
The processes belonging to the communication or bit-level layer are instantiated once
for each channel.

Distribution and control

The FlexRay controller communicates with the host using the controller host interface,
while the protocol operation control controls the protocol’s operation. The clock syn-
chronization processing and the macrotick generation try to establish a shared view of
time throughout the whole cluster.

Controller Host Interface. The controller host interface (CHI) provides a well
defined interface for all communication between the host and the FlexRay controller.
The host can use the interface to control the configuration of the controller or check
the controller’s status. The CHI distributes the commands of the host to the relevant
processes of the controller.

The CHI buffers all incoming and outgoing communication via the FlexRay bus.

Protocol Operation Control. The protocol operation control controls the overall
behavior of the protocol by controlling the status of the other processes of the controller.

Clock Synchronization Processing. The clock synchronization processing (CSP)
tries to establish a shared view of the time for the whole cluster by keeping the local
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view of the time close to the views of other nodes. To achieve this, it analyses the
synchronization information provided by the clock synchronization startup and the
frame and symbol processing and calculates values for the macrotick generation that
are then used to reduce the difference between the local view of time and the view of
time of the synchronization nodes in the rest of the cluster.

Macrotick Generation. A macrotick is a time unit used to measure the lengths of
slots, segments and communication cycles that are described in Section 5.1.1.

The macrotick generation adjusts the length of the macroticks and adjusts the
length of the communication cycle during the network idle time, according to the
values calculated by the CSP.
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Communication

The communication layers of each channel operate independent of each other. The clock
synchronization startup triggers the clock synchronization. The media access control
guards the access to the communication channels. The frame and symbol processing
handles the meta data attached to received messages.

Clock Synchronization Startup. The clock synchronization startup process waits
for startup signals on the bus and records their arrival time. This data is sent to
the CSP, which synchronizes the local view of the time with the rest of the cluster as
described in Section 5.1.2. A detailed implementation and mathematical description
of this process can be found in [Böh06].

Media Access Control. The media access control (MAC) controls the access to
the bus by enforcing the compliance with the schedule based on the local view of the
global time as described in Section 5.1.1. The MAC decides when to send a symbol
or when to send a message, which will be called message frame in the following. The
MAC furthermore attaches meta data to the outgoing communication by assembling
the frame header which is described in [Fle05, Chapter 4]. Figure 5.4 shows the format
of a frame.

11111

Reserved Bit
Payload preamble indicator

Null frame indicator
Sync frame indicator

Startup frame indicator

Frame ID

11 bits

Header CRC covered area

Pay-
load
length

7 bits

Header
CRC

11 bits

Cycle
count
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Header Segment

Data 1 Data 2 Data n

0 . . . 254 bytes

Payload Segment

CRC CRC

24 bits

CRC

Trailer Segment

Figure 5.4: Format of a frame

Frame and Symbol Processing. The frame and symbol processing (FSP) controls
the integrity of the communication. It analyzes the meta data of incoming commu-
nication to check if the message has the right format and is consistent with the local
assumptions about the time (see 5.1.1). The FSP then either reports an error or, if
there is none, removes the meta data before passing the message on. Furthermore, the
FSP forwards meta data that can be used for synchronization to the CSP, which is
described in Section 5.1.2.

Bit Level

The bit level layer consists of the coding and decoding process (CODEC), which handles
all communication via the bus, i.e., symbols or messages. In the following, the focus
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is on messages. CODEC sends messages via the bus using FlexRay’s physical layer
protocol adding a cyclic redundancy code (CRC) that enables the receiver to recognize
errors. CODEC also receives messages from the bus using the physical layer protocol,
and checks for consistency with the attached CRC and the header CRC from Figure 5.4.

A detailed implementation and mathematical description of a CODEC can be found
in [Ger07].

The correct operation of the physical layer protocol is at the heart of the problem of
the correctness of FlexRay. Thus, proving the correctness of the physical layer protocol
is the prerequisite for arguing about FlexRay’s overall correctness.

5.2 Coding and Decoding

While the higher levels of the FlexRay protocol manage the communication process,
i.e., decide when to send and what to send, and when to listen for messages, CODEC
is responsible for actually transmitting information from one node to the other nodes
of the cluster. The rest of the protocol operates under the assumption that CODEC
works as intended. So, proving the correctness of the physical layer protocol used by
CODEC is vital.

FlexRay uses two types of communication, message frames, and symbols.

5.2.1 Frames

Messages are enriched with meta data before they are given to the encoding process
(ENC). A frame consists of a 5 byte header, containing the meta data, and a payload
section, which contains up to 254 message bytes, and finally a 3 byte CRC covering
the header and the payload section.

5.2.2 Symbols

Symbols are used for the wake up procedure and for testing the availability of the
bus, they do not transport more information than the fact that the symbol itself is
sent. They have a predefined format that is relatively simple and reliable compared to
frames. Thus, if the CODEC can handle frames correctly, it is easy to check if it can
also handle symbols correctly.

5.3 Physical Layer Protocol

A physical layer protocol is a protocol used to transmit data using some physical layer,
the receiver and the sender being only connected through this physical layer, e.g., a
wire. In the following, the setting in which the physical layer protocol will be operated
is presented. Afterwards, the format used to structure the transmitted bit stream
is presented and finally the mechanism adding redundancy before transmission and
removing this redundancy after reception of a message is discussed.
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5.3.1 Setting

The simple task of sending messages using a bus becomes difficult in a decentralized
setting. For embedded devices in cars, a decentralized communication architecture as
provided by FlexRay is needed for reasons of reliability and efficiency. Several problems
have to be tackled in such a setting.

Asynchronous Clocks

Every node in a FlexRay cluster has its own oscillator. The frequency of these oscilla-
tors may deviate as much as 0.15% from the standard. Furthermore, as these oscillators
are not started at the same time, their frequencies can be arbitrarily drifted against
each other right from the start. So, the clock edges derived from these oscillators will
almost never occur at the same time in all nodes of the cluster.

Even if the delay that the signals acquire while traversing wires is ignored, a change
of the value on the bus due to actions triggered by some rising clock edge of the sender
will arrive at the position on the bus where the receiver is listening at a point in time
that is not connected to the receivers rising clock edges. While the functionality of most
of the FlexRay protocol can be described and analyzed using two valued logic with a
simple cycle-based model, the transfer of messages over the bus can only be described
and analyzed when the continuous nature of time is taken into account. Thus, the
standard binary model with cycle-based discrete time is not sufficient.

Register Semantics

Cycle-Based Digital Model. In the cycle-based digital model, in every clock cycle
the register will contain some well defined value. In the next cycle, it will still contain
this value if the enable input in the cycle before was 0. If the enable input in the cycle
before was 1, in the next cycle r will contain the value of the input of register r in the
cycle before.

Formally, let rien be the value of the enable input of register r in cycle i, let ri be
the value of the register r in cycle i and let riin be the value of the input of register r
in cycle i:

ri+1 =

{
riin iff (rien = 1)

ri else

However, for describing a setting with more than one clock, a more elaborated
model taking into account the continuous nature of time and more values than logical
1 and logical 0 is needed. In the following, a real-time model combined with a three
valued logic (high, low or undefined) is used to describe the behavior of a register with
an input connected to a circuit with a different clock.

Continuous-Time-Based Model. Figure 5.5 shows the setting of a sending and
a receiving register connected via a bus. The hardware on the sender’s side can be
described using the cycle-based time abstraction from Section 5.3.1, as can be the
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Figure 5.5: Overview of the hardware sub-architecture.

hardware on the receiver’s side, as both receiver and sender each have a clock and the
cycles of that clock can be used for abstraction. The setting depicted in Figure 5.5
cannot be fully described using the cycle-based time abstraction from standard hard-
ware models, every signal on the bus is relative to a certain point in time. As the
communication is strictly going from the sender to the receiver, this affects only the
description of the receiver’s Rx register, as it’s input is connected to the output of the
sender’s Tx register using the bus, and the sender uses a different clock, making cycle
based abstraction impossible.

To describe registers like Rx, let r(t) describe the value of register r at time t.

Several parameters have to be considered:

• τ is the cycle time of the connected clock, i.e., the time between two consecutive
rising edges of the clock

• ts is the setup time, i.e., the time that the value on the input of an enabled
register is required to be stable before the occasion of a rising clock edge

• th is the hold time, i.e., the time that the value on the input of an enabled register
is required to be stable after the occasion of a rising clock edge

• tpmax is the maximal propagation delay, i.e., the maximal time that an enabled
register needs to change its value to the new value after the occasion of a rising
clock edge and while the stable value on the input was different from the value
of the register

• tpmin is the minimal propagation delay, i.e., the minimal time that an enabled
register needs to change its value after the occasion of a rising clock edge and
while the stable value on the input was different from the value of the register

It is evident that tpmin ≤ tpmax . Note that the register represents the logical values
using voltage levels. A value below a certain voltage level is considered as logical 0
and a voltage above a certain level is considered as logical 1. Between those levels,
there is a certain range of voltage levels that cannot be interpreted as a logical value.
Furthermore, changes in a voltage level take time, which will be bounded by a worst
case for simplicity. However, generally it takes, e.g., a different amount of time to pull
the voltage on a wire up (from logical 0 to logical 1) than it takes to pull the voltage
down (from logical 1 to logical 0).
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As long as the register is not enabled, i.e., ren = 0, the value of the register stays
the same, just as in the cycle-based digital model. As soon as the register is enabled,
i.e., ren = 1, the semantics vary.

The behavior of the register r is as follows: If it is enabled, assuming a rising clock
edge at time T , a stable value on the input of the register in the interval [T − ts, T + th]
and value on the input that is different to the value of the register, rin(T ) 6= r(T ), the
value of the register is guaranteed to stay the same until T + tpmin and is guaranteed
to be the new value after T + tpmax . During the interval (T + tpmin , T + tpmax ), the
value of the register is unknown.

Figure 5.6 shows three values:

• the value of the clock1 which is connected to register R,

• the bus which is connected to the input Rin of the enabled register R,

• the output Rout of the enabled register R.

Ω designates an unknown value that is either representing logical 0 or 1 or some voltage
level in between.

Rout(t)

Rin(t)

clock(t)

X Y

ΩX Y

tpmin

tpmax

τ

tpmin − th τ − tpmax − ts

ts

th

Figure 5.6: Value of enabled register R over time t

Assuming a rising clock edge at time T and a change on the input of the register
in the interval [T − ts, T + th] the value of the register is guaranteed to stay the same
until T + tpmin , but afterwards, its value is unknown. Nevertheless, it is assumed2 that
the unknown value is stable before T + τ − ts, i.e., before it could violate the setup
times of connected registers in the next cycle.

Note that assuming sensible values for the parameters, i.e., changing a register’s
value does not violate the setup time or hold time of connected registers (τ−ts > tpmax

and tpmin > th), most of the functionality of a circuit can be described using the cycle-
based digital model from Section 5.3.1.

1A rising edge of the clock constitutes a tick of the clock.
2See [KP95, Section 5.2] for more details on the issue of metastable registers.
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As long as the register is not enabled, the value of the register does not change. As
long as the value of the stable input is the same as the value of the register, the register
also does not change. The semantics of an enabled register can be formally defined:
Assume a rising clock edge at time T , let told = T−τ+tpmax , let tnext = T+τ+tpmin , let
told ≤ t ≤ tnext and assume some change of the value ∃t′.T −ts ≤ t′ ≤ T +th∧(rin(t′) 6=
r(told )).

r(t) =


r(told ) told ≤ t ≤ T + tpmin

Ω T + tpmin < t < T + tpmax

X T + tpmax ≤ t ≤ tnext

where

X =

{
rin(T ) ∀t′.(T − ts ≤ t′ ≤ T + th)⇒ (rin(t′) = rin(T ))

Ω else

Note that, generally, Ω will be either logical 1 or logical 0. There is, however, a
very small probability that a register with a value of Ω is in a so called metastable
state[Män98], i.e., the voltage level oscillates for a while before resolving to either
logical 1 or logical 0.

If an enabled register is given a metastable input, there is again a very high proba-
bility that the register will not store this metastable value3 but that it will store either
a logical 1 or a logical 0. So, if a register at risk of becoming metastable is only con-
nected to a second register, and only the second register is used by other circuits, the
probability of having a metastable second register is negligible.

See [BBG+05] and [KP95, Section 5.2] for further details on the subject of contin-
uous time models for registers. The undesired behavior introduced by sampling Ω due
to the drifting clocks is called jitter.

Glitches

Typically in a modern car, the wires of the bus are several meters long. These wires can
sometimes have characteristics similar to antennas. Thus, electromagnetic interference
has to be taken into account. Very strong interference can always disturb electronic
communication, but smaller disturbances should be tolerable. The voltage level on the
bus might be affected by electromagnetic interference, in consequence, a logical value
sent via the bus might be replaced by an arbitrary value from Ω, i.e., it might still be
correctly read, it might be negated, or the value might be neither logical 1 nor logical 0.
Taking into account the register semantics as described in Section 5.3.1, even a small
fluctuation in the voltage level might violate the stability requirement for the input of
the register connected to the bus. Simply said, it is possible that something different
from the bit that has been sent is received. Such a falsification of a bit is called a glitch
in [Fle05, Section 3.2.2].

3A construction with two consecutive registers is a standard method of forcing a metastable value
to either logical 1 or logical 0, e.g., it is used in [Jon06, Figure 15]. If an additional small delay is
added, metastability can be excluded according to [Män98].
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If too many glitches occur, the message can be compromised. This can be recognized
using the CRC code of the message, as described in Section 5.1.2. If a glitch flips a
bit and another glitch flips one of the next 4 bits, i.e., if 2 bits in any sequence of
5 consecutive bits can be flipped by a glitch, experiments with Uppaal have shown
that the message can be compromised[GEFP10]. However, infrequent glitches can be
compensated for by the physical layer protocol. For the purpose of verification of the
FlexRay protocol, it will be assumed that the next 4 bits after a bit affected by a glitch
will not be affected by a glitch.

5.3.2 Frames

A message frame as described in Section 5.2.1 can be seen as a bit string. This string
is transmitted as a stream of bits, but the stream is structured as described in [Fle05,
Section 3.2.1.1]. Figure 5.7 shows the format of a message frame bit stream. This
structure is used for the bit clock alignment as described in Section 5.3.3.

The start of the stream is the so called transmission start sequence (TrSS4), which
consists of a sequence of low bits. The length of the sequence is fixed for the cluster
and may vary from 3 to 15 bits [Fle05, Section B.2.1]. As the bus is high idle, this long
low period can be recognized no matter how badly synchronized the nodes are on the
bit level. It precedes every transmission.

After the TrSS, the frame start sequence (FSS) signals the start of a frame transmis-
sion, as opposed to a symbol. The FSS consists of a single high bit. A receiving node
will accept a transmission even if the FSS is not received, as the FSS is just inserted
to make sure badly synchronized receivers still receive the first bit of the following
sequence, which is also a high bit.

The bit string of the message frame is partitioned into bytes. Each of these bytes
is prefixed with a byte start sequence (BSS) and then sent. The BSS consists of one
high bit followed by one low bit. The high to low transition in the middle of the BSS
is used as a trigger of the bit clock alignment.

At the end of the message frame, a frame end sequence (FES) is sent. The FES
consists of one low bit followed by a high bit.

High

Low

TrSS F
S
S

BSS 1st byte
of data

BSS BSS last byte
of data

FES

Figure 5.7: Format of a message frame bit stream

4In [Fle05], transmission start sequence is abbreviated TSS, but this shorthand is already used for
TSSs from Section 2.6.
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5.3.3 Redundancy

To achieve resilience against errors, FlexRay uses redundancy. Every bit that is to be
sent is sent 8 times consecutively, i.e., the length of a bit cell is 8 clock cycles. This
allows to correct some errors, but reduces the throughput of the protocol. This can
be implemented very easily on the sender’s side, as a simple cyclical counter counting
from 1 to 8 will suffice to control the process.

Voting

The receiver has to reconstruct the information from the samples it receives in the bit
cell and eliminate errors if possible. To achieve this, the samples from the bus are
stored in a so called voting window which contains the sample from this cycle5 and
the samples from the 4 cycles before. The value to be considered by the higher layers
of the protocol is the voted value, the value of the majority of the 5 samples in the
voting window. As described in Section 5.3.1, the values sampled from the bus using
two consecutive registers can be assumed to have a logical value of either 1 or 0. Thus,
there will always be a majority.

This voting process will add an additional constant delay of 2 cycles until a change
in the values sampled from the bus will be noticed by higher levels of the protocol.
This delay is called voting delay. The number of bits is not affected by this process,
from every bit cell several voted values are taken as there are several samples from each
bit cell.

voted value

1

0

Rxx

1

0

voting window

g
li
tc
h

Figure 5.8: Correction of a glitch through majority voting

Glitches as described in Section 5.3.1 can be corrected as shown in Figure 5.8 by
this voting procedure, as a glitch in a voting window with five bits that does not change
the majority does not affect higher layers of the protocol. However, if the glitch occurs
close to a change in the value to be sent, it might add a delay to the change. If the
glitch inverts one of the bits of the new value, it will take one more cycle until the new
value is the majority in the voting window. On the other hand, if the glitch inverts
one bit of the old value, the value will change one cycle to early. This might lead to a
situation where the last and the first sample from a bit cell, which should contain the
same logical value in every bit, are inverted. This kind of error may also be the result

5According to [Fle05, Section 3.2.6], one sample is taken in one sample clock period, which is derived
“from the oscillator clock period directly or by means of division or multiplication”. Here, a sample
clock period of one clock cycle is assumed in accordance with [BBG+05], [Böh06] and [Ger07].
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of drift between the receiver’s and the sender’s clock that can lead to violated setup or
hold times, as described in Section 5.3.1. Of course, these errors can also combine, as
shown in Figure 5.9.
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Figure 5.9: Combination of violated setup or hold time with a glitch

Strobing

Out of the voted values from a bit cell, just one is used for the higher levels of the
protocol. To avoid choosing voted values that are affected by glitches, a voted value
out of the middle of the bit cell, the fifth voted value, is chosen. The chosen voted
value is called strobed value. To decide which voted value is the fifth out of the voted
values from the bit cell, the strobecounter is used. The cyclical strobecounter counts
from 1 to 8 and can be reset to 2 whenever needed.

Bit Clock Alignment

As the receiver’s and the sender’s clock drift against each other, it is necessary to
repeatedly synchronize the strobecounter to the stream of received voted values, in
order to identify the boundaries of the sequence of voted values from one bit cell and
thus the voted value which corresponds to the fifth voted value of the bit cell.

The bit clock alignment mechanism makes use of the message frame format as
described in Section 5.3.2. At the beginning of the transmission and during the byte
start sequences, the first transition of the voted value from high to low is detected and
the strobecounter is reset to 2 for the next voted value. Thus, the second recognized
voted value of the voted values sequence from the low bit cell is considered the second
voted value from the bit cell.

If a combination of clock drift and a glitch interferes with the bit clock alignment
mechanism by delaying the recognition of the high to low transition, the strobecounter
will be off by more than 1. Thus, parts of the 6th and 7th bit of the bit cell might be
strobed instead of the fifth. This situation is shown in Figure 5.9; remember the voting
delay of 2 cycles as described in Section 5.3.3. The bit clock alignment can analogously
also happen to early.
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Only a part of a FlexRay controller is modeled, namely the physical layer protocol
that is an important part of FlexRay’s CODEC process. A physical layer protocol is
used to transmit data over some physical device, like a wire, from a sender to a receiver,
both running asynchronously to each other.

Physical layer protocols are investigated by several groups, e.g., Vaandrager and
Groot [Vd06] use simulation with Uppaal to derive invariants of the biphase mark
protocol. These invariants are then proven using the proof assistant PVS. Brown and
Pike [BP06] use the verification tool SAL to automate parts of the correctness proofs
for biphase mark and also the 8N1 physical layer protocol. However, unlike FlexRay,
8N1 and biphase mark are not designed for an unreliable physical communication link.

The model can be divided into two parts: the hardware model and the protocol
model, as shown in Figure 6.1.

The model considers the transfer of a message frame in the static segment. As the
transfer of symbols is less complex, the interesting scenario is the transfer of a message
frame.

[BBG+05, Sch06, Sch07, ABK08b, ABK08a] have already shown that the transfer
of a message frame will succeed under ideal circumstances. The focus of the model
is the area that is affected by the new parts of the error model that are described
in Section 5.3.1, i.e., glitches that flip bits on the bus. Just the transfer of a bit

47
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Figure 6.1: The structure of the model.

stream using the physical layer protocol is modeled. The correctness of the higher
levels and the ability of FlexRay to deal with errors outside the error model described
in Sections 5.3.1 and 5.3.1 naturally cannot be verified using this model.

6.1 Scenario Description

Assume a node is trying to send a message frame during it’s static slot in the static
segment, and some other node is trying to receive this frame. The number of bytes in
the frame can be configured, a frame format as described in Figure 5.4 is not assumed.
Nevertheless, the bit stream of the frame is structured by the physical layer protocol
as described in Figure 5.7.

The operation of the protocol inside the receiver and the sender is modeled as-
suming a cycle-based, two-valued-logic-based behavior, as described in Section 5.3.1.
However, to model the bus and the single register of the receiver that is connected to
the bus, a behavior as described in the continuous-time-based model from Section 5.3.1
is assumed, which will introduce jitter.

Furthermore, the possibility of a bit being flipped by electromagnetic interference,
i.e., a glitch as described in Section 5.3.1, is modeled but may only affect a bit of the
stream if none of the 4 bits received before this bit have been affected.

The sender transmits the formated bit stream, and the receiver checks if the format
of the stream complies with the standard described in [Fle05, Section 3.2.1.1]. The
receiver also nondeterministically checks if a bit of the frame is received as it was
sent. Model checking will guarantee that every bit is considered, as every bit could
potentially be checked.

6.2 Configuration Parameters

The model can be configured by setting the following constants1:

• messagelength(8) describes the length of the frame in bits. As the length of a
frame is defined in bytes, messagelength has to be a nonzero multiple of 8.

1The default values are given in brackets
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• TSSlimit(15) is the number of low bits that will be sent in a TrSS (see Sec-
tion 5.3.2).

• TSSmin(3) is the number of low bits that have to be received to recognize a TrSS.

• delayHLmin(1001) is the minimal propagation delay2 on the bus if the value
changes from high to low (see Section 5.3.1).

• delayLHmin(1001) is the minimal propagation delay on the bus if the value
changes from low to high.

• delayHLmax(5001) is the maximal propagation delay3 on the bus if the value
changes from high to low.

• delayLHmax(5001) is the maximal propagation delay on the bus if the value
changes from low to high.

• setup(1000) is the setup time of a register (see Section 5.3.1).

• hold(1000) is the hold time of a register (see Section 5.3.1).

The model uses the following shared variables4:

• Tx:=1(int[0,1]) is the value that the sender puts on the bus.

• Rx:=1(int[0,1]) is the value that the receiver samples from the bus. As two con-
secutive registers are used to sample from the bus, metastability is ignored here
(see Rxx).

• Rxx:=1(int[0,1]) is the register that forwards Rx to the rest of the sender. At least
the second register will not be metastable but have a logical 0 or logical 1 value
as described at the end of Section 5.3.1.

• VV:=1(int[0,1]) is the voted value in the current cycle of the receiver’s clock (see
Section 5.3.3).

• OldVV:=1(int[0,1]) is the voted value of the cycle before.

• EnableSyncEdgeDetect:=1(int[0,1]) enables or disables the bit clock alignment
(see Section 5.3.3).

2The minimal propagation delay may not be bigger than the corresponding maximal propagation
delay. Furthermore, it should be bigger than hold.

3The maximal propagation delay may not be smaller than the corresponding minimal propagation
delay. Furthermore, it should be smaller than 10000− setup, assuming an ideal cycle length of 10000.

4The type of the variable is given in brackets, the range of the variables can be restricted to an
interval, which is then given directly after the type. The variables are initialized with the value given
behind the “:=” sign. As the bus is high idle, variables connected to the bus or derived from those are
initialized assuming a logical 1 value for the idle bus.
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• bstr:=1(int[0,1]) is the strobed value used by the higher protocol layers(see Sec-
tion 5.3.3), i.e, the fifth voted value from each bit cell.

• savedTX:=2(int[0,2]) saves a message bit to allow the receiver to check if it cor-
rectly received this bit.5

• savedindex:=messagelength(int[0,messagelength]) saves the index of a mes-
sage bit that is to be checked by the receiver (see savedTX).6

Channels

The automata of the model synchronize using broadcast channels, i.e., all automata
that try to receive the broadcast will synchronize when the sending automaton sends
the signal, but the sending automaton does not wait for other automata, it just sends
the broadcast and proceeds no matter how many automata, if any, synchronize. To
adjust for this, the automata were designed in such a way that they do not miss their
relevant synchronization points.

The following channels are used:

• SenderCLK is the clock tick, i.e., the rising flank of the clock signal, of the senders
oscillator. It corresponds to one microtick in [Fle05].

• ReceiverCLK is the clock tick, i.e., the rising flank of the clock signal, of the
receivers oscillator. It corresponds to one microtick in [Fle05].

• ValueVoted signals that the voting mechanism has successfully updated the voted
value, VV.

• Strobed signals that the bit clock alignment has strobed a new strobed value,
bstr.

6.3 Hardware Model

The hardware model represents the clocks of the sender and the receiver in Section 6.3.1,
the output of the Tx register used by the sender to put a value on the bus, the model
of the bus with the nondeterministic glitches, the receivers Rx register used to sample a
value from the bus and finally the consecutive Rxx register used to resolve an unstable
sample to either high or low in Section 6.3.2. Figure 5.5 shows the setting of the
hardware model.

5savedTX should be initialized with 2 to indicate that no bit has been saved yet.
6savedindex should be initialized with the value of messagelength to indicate that no bit has been

saved yet.
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6.3.1 Clocks

Each FlexRay controller has an oscillator which is used to generate the clock signal.
These oscillators may deviate from the standard frequency by at most 0.15%, according
to [Fle05, Appendix A.1]. The model assumes that the clock cycle of an ideal clock
has a length of 10000. The deviation is modeled by allowing the length of a cycle to
vary between 9985 and 10015.

Sender Clock

The model models the system starting exactly from the point in time of a clock tick
from the sender, but after that clock tick has been broadcasted. The length of a cycle
may only vary due to the 0.15% deviation. Figure 6.2 shows the model of the sender’s
clock.

x ≤ 10015

SenderCLK!
x ≥ 9985
x := 0

Figure 6.2: Model of the sender’s clock

Receiver Clock

The clock of the receiver may be arbitrarily drifted against the clock of the sender at
the beginning. As the length of a clock cycle may be at most 10015, this is the maximal
length of the the first cycle. After that first clock tick, the length of the cycle may only
vary due to the 0.15% deviation. Figure 6.3 shows the model of the receiver’s clock.

y ≤ 10015 y ≤ 10015

ReceiverCLK!
y := 0

ReceiverCLK!
y ≥ 9985
y := 0

Figure 6.3: Model of the receiver’s clock

6.3.2 Bus and Register Semantics

The model of the bus and the registers that sample values from the bus has to represent
the behavior described in Section 5.3.1.
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Bus

The bus is represented by the variable RxIn, which represents the value of the bus at
the input of the receiver’s Rx register. As the bus is high idle, it initially has a stable
high value. At every tick of the sender’s clock, the variable Tx is checked: if the sender
is still putting the same value on the bus, nothing changes, but if the sender tries to
put a different value on the bus, RxIn will change its value. This change will be delayed
according to the propagation delay as described by tpmax and tpmin from Section 5.3.1.
The delay is modeled using the constants delayHLmin, delayHLmax, delayLHmin and
delayLHmax from Section 6.2.

A register as described in Section 6.3.2 needs a stable input for setup time units
before a tick of the receivers clock occurs, otherwise an uncertain value is sampled.
The uncertain value of the bus between tpmin and tpmax is modeled using a value of 2
for RxIn.

More formally, register Rx needs a stable input for setup time units before a tick-
event of the receiver’s clock occurs at time Tr. With a tick of the sender’s clock at time
Ts, the sender decides to put the new value on the bus. This new value is stable after
Ts + tpmax . Thus, we want:

Ts + tpmax < Tr − setup⇔ Ts + tpmax + setup < Tr

To model this requirement on the sender’s side, the uncertainty period is prolonged by
setup in the model7 of the bus as shown in Figure 6.4.

StableHIGH
C

CheckForLOW
x ≤ delayHLmin

ChangeToLOW
x ≤ delayHLmax + setup

UnstableLOW

StableLOW
C

CheckForHIGH
x ≤ delayLHmin

ChangeToHIGH
x ≤ delayLHmax + setup
UnstableHIGH

SenderCLK?

Tx = 1

Tx = 0
x ≥ delayHLmin
RxIn := 2

x ≥ delayLHmax + setup
RxIn := 0

SenderCLK?

Tx = 0

Tx = 1
x ≥ delayLHmin
RxIn := 2

x ≥ delayLHmax + setup
RxIn := 1

Figure 6.4: Model of the bus

Receiver Bussampler

The problem of metastability, as described in Section 5.3.1, is addressed by adding a
second consecutive register, Rxx, and is not modeled.

7We assume a constant delay for the medium connecting the senders output register with the re-
ceivers input register, which, being constant, can be ignored. The model can be adopted to reflect
variability in the delay of the connecting medium by adjusting the minimal and maximal delay accord-
ingly.
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As a logical value of either 1 or 0 is assumed after the second register, the model
nondeterministically resolves an unstable or unknown value, which is represented by a
value of 2, either to logical 1 or to logical 0 in the first register, for reasons of simplicity.

The receiver tries to sample a value from the bus using a register. This register needs
a stable value during an interval around a tick8 from the receivers clock to correctly
sample a value from the bus as described in Section 5.3.1. After a change on the bus,
the value has to be stable for setup time units before a clock tick occurs, otherwise
either 0 or 1 is nondeterministically sampled, a requirement that is taken care of by
the model of the bus described in Section 6.3.2.

After a clock tick, a stable value has to remain stable for another hold time units,
otherwise a boolean value is nondeterministically sampled. If there is no change in
the value of RxIn during the hold period, the value has been stable, as completing a
change and changing back to the original value takes more than hold time units. If
the value has changed at the end of the hold period or if RxIn has the unstable value
2, a boolean value is nondeterministically sampled.

However, the sampling process may also be affected by a glitch. The local variable
lasterror:=4(int[0,4]) is used to count the number of receiver clock cycles without a
glitch. As described in Section 5.3.1, in any consecutive sequence of five receiver clock
cycles, there may be at most one glitch. To realize this error model, the glitches are not
modeled as changes on the bus, but may strike nondeterministically and affect a bit,
which is modeled by assigning an unstable value to the bit and thus nondeterministically
sample a boolean value for this bit. After such an error, the error may not occur again
for the next four samples.

WaitForClocktick TryToSample
y ≤ hold

ReceiverCLK?
lasterror = 4
OldRxIn := RxIn

ReceiverCLK?
lasterror = 4
OldRxIn := 2, lasterror := 0

ReceiverCLK?
lasterror < 4
OldRxIn := RxIn, lasterror++

y ≥ hold ∧ RxIn 6= 2 ∧ OldRxIn = RxIn
Rx := RxIn

y ≥ hold∧
(
OldRxIn 6= RxIn∨RxIn = 2

)
Rx := 1

y ≥ hold∧
(
OldRxIn 6= RxIn∨RxIn = 2

)
Rx := 0

Figure 6.5: Model of the sampling process

Figure 6.5 shows the model of the sampling process.

8A tick designates a rising flank in the value of the clock.
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Consecutive Register Rxx

This register delays the received value by one cycle of the receiver clock. As metastabil-
ity is already resolved as described in Section 6.3.2, only the delay has to be modeled,
which is done assuming the cycle-based boolean behavior as described in Section 5.3.1.

ConsecutiveRegisterRxx

ReceiverCLK?
Rxx := Rx

Figure 6.6: Model of the consecutive register Rxx

Figure 6.6 shows the model of the consecutive register Rxx.

6.4 Physical Layer Protocol Model

The removal of redundancy through voting and the bit clock alignment is described in
Section 6.4.1. The assembly of the message bit stream and the adding of redundancy
as well as the reception and the check of the message are described in Section 6.4.2.

6.4.1 Voting and Strobing

The model of the voting and strobing process assumes a cycle-based boolean behavior
as described described in Section 5.3.1.

Voter

The last four sampled bits from the bus and the sample from the current receiver’s
clock cycle are stored in the local variables window0:=1(int[0,1]), window1:=1(int[0,1]),
window2:=1(int[0,1]), window3:=1(int[0,1]) and window4:=1(int[0,1]). The variable
window0 always holds the newest value. In every cycle, the values of the window

variables are shifted to the window variable with the next higher index, which means
that the old value of window4 is discarded, while window0 is assigned the value of Rxx.

If the majority of the window variables contains a 1, VV is set to 1. If there is no
majority containing a 1, VV is set to 0. As the size of the voting window is odd, there
is always a clear majority. Other automata may synchronize to the new VV using the
channel ValueVoted.

Figure 6.7 shows the model of the voting process.

Old Voted Value

In every cycle of the receivers clock, VV is stored in OldVV before a new VV is calculated,
as shown in Figure 6.8. This value is needed to recognize the synchronization points
for the bit clock alignment described in Section 5.3.3, as described in Section 6.4.1.
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WaitForSample
C

Vote

ReceiverCLK?
window4 := window3,
window3 := window2,
window2 := window1,
window1 := window0,
window0 := Rxx

ValueVoted!
window0 + window1 + window2 + window3 + window4 ≥ 3
VV := 1

ValueVoted!
window0 + window1 + window2 + window3 + window4 < 3
VV := 0

Figure 6.7: Model of the voting process

SaveOldVV

ReceiverCLK?
OldVV := VV

Figure 6.8: The old voted value is saved.

Bitstrobe Control

The strobecounter is used to select one voted value from each bit cell. To model the
strobecounter, the local variable Strobecounter(int[1,8]) is used. In the beginning,
Strobecounter has no default value, but is set nondeterministically.

When the new voted value, VV, is 0 and the voted value from the cycle before,
OldVV, is 1 and EnableSyncEdgeDetect enables the bit clock alignment mechanism,
Strobecounter is reset to 2 and the bit clock alignment mechanism is deactivated
using EnableSyncEdgeDetect.

Strobecounter is incremented whenever a new voted value has been calculated
until it reaches 8, then it is set to 1 in the next cycle, if the bit clock alignment does
not interfere.

When Strobecounter has the value 5 and ValueVoted signals that the voted value
for this cycle of the receiver’s clock has been found, VV is chosen as the value for bstr,
if the bit clock alignment does not interfere. The channel BitStrobed allows other
automata to synchronize to this event in order to use the new bstr value.

Figure 6.9 shows the model of the strobing process.

6.4.2 Protocol Control

The bit string that is transmitted is a frame in the static segment. The format of the
bit stream of a message frame has to be generated by the sender and is expected by
the receiver. The correct reception of the message has to be checked as well.

Sender Control

The following local variables are used:
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Figure 6.9: Model of the strobing process

• TSScount:=0(int[0,TSSlimit]) is used to count how many bits of the transmission
start sequence have already been sent (see Section 5.3.2).

• samplecounter:=8(int[1,8]) is used to count how many times one bit of the bit
stream has been sent9.

• bitcounter:=1(int[1,8]) is used to count how many bits of one message byte have
been sent10.

• bufferindex:=0(int[0,messagelength]) is used to count how many bits of the
message have been transmitted so far.

The format described in Section 5.3.2 is generated starting with the first tick of the
sender’s clock. Upon every tick of the sender’s clock, samplecounter is incremented.
Whenever one bit cell, i.e., a sequence of 8 consecutive identical samples, has been sent,
the next bit is assigned to Tx.

9As described in Section 5.3.3, every bit is sent 8 times.
10As described in Section 5.3.2, the message bytes are separated by byte start sequences.
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TSS FSS (BSShigh)

SenderCLK?
samplecounter < 8
samplecounter++

SenderCLK?
TSScount < TSSlimit ∧
samplecounter = 8
samplecounter := 1, Tx := 0,
TSScount++

SenderCLK?
TSScount ≥ TSSlimit ∧
samplecounter = 8
samplecounter := 1, Tx := 1

SenderCLK?
samplecounter < 8
samplecounter++

SenderCLK?
samplecounter = 8
samplecounter := 1, Tx := 1

Figure 6.10: Simulation of the start of the transmission

First, a transmission start sequence and a frame start sequence are modeled, as
shown in Figure 6.10.

The message is generated nondeterministically, i.e., whenever a message bit is to
be sent, it is nondeterministically decided if a logical 1 or a logical 0 will be sent and if
this bit is to be verified by the receiver, in which case savedindex is assigned a number
indicating how many bits have been send before, which is derived from bufferindex,
and savedTx is assigned the value of the bit that is sent, Tx.

The model of the message bytes and the byte start sequences that precede each
byte is shown in Figure 6.11.

In the end, a frame end sequence is modeled, as shown in Figure 6.12.

Receiver Control

Several local variables are used:

• TSScount:=0(int[0,TSSlimit + 1]) is used to count how many bits of the trans-
mission start sequence have already been received (see Section 5.3.2).

• BYTEbitcounter:=1(int[1,8]) is used to count how many bits of one message byte
have been received10.

• bufferindex:=0(int[0,messagelength − 1]) is used to count how many bits of
the message have been received so far.

When the channel Strobed signals that a new bit has been strobed (see Section 5.3.3),
the receiver tries to check if this bit is consistent with the expected format of the frame,
as described in Section 5.3.2. As soon as a received bit has not the expected value, the
error state DECerr is entered.

First, the reception of a transmission start sequence followed either by a frame start
sequence or the first bit of a byte start sequence is modeled, as shown in Figure 6.13.

The received transmission start sequence is accepted if it contains at least TSSmin

bits and at most TSSlimit + 1 bits, as TSScount is the number of bits that have been
received in this transmission start sequence: a bit of the transmission start sequence
may be received if up to TSSlimit bits have been received before.



58 CHAPTER 6. FLEXRAY BENCHMARK

(from FSS)
BSShigh BSSlow

SendBit

(FESlow)

SenderCLK?
samplecounter < 8
samplecounter++

SenderCLK?
samplecounter = 8
samplecounter := 1, Tx := 0

SenderCLK?
samplecounter < 8
samplecounter++

S
e
n
d
e
rC

L
K
?

s
a
m
p
l
e
c
o
u
n
t
e
r
=

8
s
a
m
p
l
e
c
o
u
n
t
e
r
:=

1
,
T
x
:=

1
,

b
i
t
c
o
u
n
t
e
r
:=

1
,
s
a
v
e
d
T
x
:=

1
,

s
a
v
e
d
i
n
d
e
x
:=

b
u
f
f
e
r
i
n
d
e
x

S
e
n
d
e
rC

L
K
?

s
a
m
p
l
e
c
o
u
n
t
e
r
=

8
s
a
m
p
l
e
c
o
u
n
t
e
r
:=

1
,
T
x
:=

0
,

b
i
t
c
o
u
n
t
e
r
:=

1
,
s
a
v
e
d
T
x
:=

0
,

s
a
v
e
d
i
n
d
e
x
:=

b
u
f
f
e
r
i
n
d
e
x

S
e
n
d
e
rC

L
K
?

s
a
m
p
l
e
c
o
u
n
t
e
r
=

8
s
a
m
p
l
e
c
o
u
n
t
e
r
:=

1
,

b
i
t
c
o
u
n
t
e
r
:=

1
,
T
x
:=

0

S
e
n
d
e
rC

L
K
?

s
a
m
p
l
e
c
o
u
n
t
e
r
=

8
s
a
m
p
l
e
c
o
u
n
t
e
r
:=

1
,

b
i
t
c
o
u
n
t
e
r
:=

1
,
T
x
:=

1

Se
nd
er
C
L
K
?

sa
mp
le
co
un
te
r
=
8
∧
bi
tc
ou
nt
er

=
8
∧

bu
ff
er
in
de
x
<
me
ss
ag
el
en
gt
h

sa
mp
le
co
un
te
r
:=

1,
Tx

:=
1,

bu
ff
er
in
de
x+

+

SenderCLK?
samplecounter = 8 ∧
bufferindex ≥ messagelength
samplecounter := 1, Tx := 0

SenderCLK?
samplecounter < 8
samplecounter++

SenderCLK?
samplecounter = 8 ∧ bitcounter < 8 ∧
bufferindex < messagelength
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SenderCLK?
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Tx := 1, savedindex := bufferindex + 1,
bitcounter++, bufferindex++

SenderCLK?
samplecounter = 8 ∧ bitcounter < 8 ∧
bufferindex < messagelength
samplecounter := 1, savedTx := 0,
Tx := 0, savedindex := bufferindex + 1,
bitcounter++, bufferindex++

Figure 6.11: Simulation of the transmission of the message bytes

During the reception of the transmission start sequence or of a byte start sequence,
the variable EnableSyncEdgeDetect is used to enable the bit clock alignment mecha-
nism, as is described in Section 6.4.1.

While the receiver is expecting to receive message bits, the number of bits is counted
using the variable BYTEbitcounter to find out when the next byte start sequence is to
be expected. The overall number of received message bits is counted in bufferindex.
When savedindex indicates that the next message bit is to be verified, the received
bstr value is compared to savedTx. The model of the reception of the message bytes
and their preceding byte start sequences is shown in Figure 6.14.

In the end, the reception of a frame end sequence is modeled, as shown in Fig-
ure 6.15.



6.4. PHYSICAL LAYER PROTOCOL MODEL 59

(from SendBit)
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Figure 6.12: Simulation of the end of the transmission
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Figure 6.14: Simulation of the reception of the message bytes
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Figure 6.15: Simulation of the end of the reception
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Chapter 7

Experimental Results

The effectiveness of ZSDs for timed reachability model checking has been evaluated
on several benchmarks, comparing Uppaal[BDL04] against a prototype model checker
using ZSDs or TSSs. All Benchmarks were executed on an AMD Opteron processor
with 2.6 GHz running Linux, limited to 4 GiB of memory and limited to 3 month of
computation time.

7.1 FlexRay

Several experiments on model checking FlexRay’s physical layer protocol, modeled as
described in Chapter 6, have been made using three different tools:

• Uppaal 4.0.10

• Our prototype using ZSDs

• Our prototype using TSSs

The checked property, which turned out to hold for all checked instances, was

A[]!Receiver Control.DECerr,

meaning the error state is never reached.

7.1.1 Results with Uppaal

The ability of Uppaal to check the FlexRay model was tested in different configu-
rations, as shown in Table 7.1. The most effective configuration used the parameters
-C -o 0 -S 2 to use DBMs, breadth first search, and aggressive state space reduction.
However, all configurations where able to check the correctness of a message transfer
if the message contained up to 3 bytes, but none was able to verify the correctness of
a message transfer for 4 bytes due to the inability of Uppaal to handle more than
4 GiB of memory. Unsurprisingly, breadth first search was significantly faster than
depth first search. Note that for depth first search the number of explored states listed
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in Table 7.1 is the output of Uppaal. The number is not very informative, as the
negative numbers indicate that Uppaal’s internal counter overflowed.

7.1.2 Results with our Prototype using TSSs

For fairness of comparison, our prototype was also limited to 4 GiB of memory. In order
to be able to evaluate the effectiveness of the ZSDs in comparison to the traditional
TSSs, the performance our prototype using TSSs is shown in Table 7.2. The model
checker is identical to the one using ZSDs, the only difference is the representation of
the timed state space. Using TSSs, only a message containing a single byte could be
verified.

7.1.3 Results with our Prototype using ZSDs

Our prototype using ZSDs was able to check the correctness of a FlexRay message
transfer of 10 byte, as shown in Table 7.3. Experiments for larger payloads have not
been conducted, but probably would have succeeded before eventually reaching very
large message lengths that would run into the 3 month time limit or the memory limit of
4 GiB. Note that the prototype uses BDDs, which causes the reordering heuristic used
by the BDD library to consume a large amount of time. As the memory consumption
increases with growing message length, the reordering is done more often in order to
save memory by finding variable orders that result in a more compact representation
for the BDDs. This causes the runtime for long messages to vary, as the reordering
heuristics introduce a lot of variance in the runtime.

ZSDs thus demonstrate their ability to represent the timed state space more space
efficient as done by Uppaal, however being significantly slower than the highly opti-
mized model checker Uppaal. These results demonstrate the effectiveness of ZSDs, as
compared to TSSs. While the traditional TSSs are just approximately 1.4% faster than
ZSDs on the FlexRay example, TSSs cannot handle messages with a length of more
than 1 byte. ZSDs, however, can handle far larger messages while being only slightly
slower.

7.1.4 Conclusions for FlexRay

Judging from the results shown in Tables 7.1, 7.2, and 7.3, ZSDs have great potential in
handling data-intensive systems. The prototype is considerably slower than Uppaal,
but a comparison of two instances of the prototype model checker, one using ZSDs, the
other using TSSs, shows that ZSDs are almost as fast as TSSs. Thus, the higher speed
of Uppaal does not stem solely from Uppaal’s use of a TSSs-like data structure, but
mostly from other optimizations as described, e.g., by Larsen et al. in [LLPY97].

However, ZSDs prove to be able to handle larger examples, as the prototype using
ZSDs can handle the FlexRay model for FlexRay message sizes of up to 10 bytes, and
possibly even larger ones, while Uppaal can only handle message sizes of up to 3
bytes. On the other hand, the prototype using TSSs can just handle a message size of
a single byte. In the end, the prototype using ZSDs can handle message sizes of up to
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5 bytes in less than one day, messages sizes of up to 7 bytes in less than 4 days, and
message sizes of up to 10 bytes in less than 12 days. ZSDs have not been tested on
larger message sizes because the required computational resources to find the maximal
possible message size were expected to exceed the scope of this work.

7.2 Fischer

The Fischer mutual exclusion protocol[AL91], a standard benchmark, was used to
compare the performance of three tools:

• Uppaal 4.0.11

• Our prototype using ZSDs

• Our prototype using TSSs

The verified property was mutual exclusion, i.e., no two processes are in their critical
section at the same time. The Fischer implementation for the benchmark is taken from
[EFGP10].

7.2.1 Results with Uppaal

The performance of Uppaal on the Fischer benchmark was tested extensively using
different configuration parameters, as shown in Table 7.5. The fastest configuration
for Uppaal turned out to be “-C -o 0 -S 1”, i.e., breath first search using DBMs and
conservative state space optimization. Aggressive state space consumption was not
helpful, as the state space seems to be relatively small. Unsurprisingly, depth first
search was not very effective.

7.2.2 Results with our Prototype using TSSs

A fair comparison of the performance of the data structures can only be based on
experiments using the same model checking framework. Surprisingly, as shown in
Table 7.6, our prototype is significantly slower when using TSSs instead of ZSDs (see
Table 7.7). For the Fischer benchmark with 6 processes, our prototype using TSSs hit
the limit of 3 month of computation time, indicating that for our prototype, TSSs are
a bad choice when verifying Fischer.

7.2.3 Results with our Prototype using ZSDs

As the results from Table 7.7 show, the Fischer mutual exclusion protocol benchmark
turned out to be quite hard for our prototype model checker. The ZSD based state
space representation ran out of memory for Fischer with 8 processes. Moreover, our
prototype was considerably slower than Uppaal, even compared to Uppaal started
with the worst configuration parameters. Using ZSDs, the size of the state space blew
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up quite fast. The state space seems to consist of a small discrete part and a very large
timed part.

Interestingly, the ZSD based prototype was significantly faster than the TSS based
one.

7.3 Gear Production Stack

The Gear Production Stack (GPS) benchmark taken from [EFGP10] models a manu-
facturing plant with communicating processing stations. The stations process gears in
a sequential manner. Three tools were compared on the GPS benchmark.

• Uppaal 4.0.11

• Our prototype using ZSDs

• Our prototype using TSSs

The bounded liveness property that each gear is processed in a certain amount of time
is verified.

7.3.1 Results with Uppaal

Table 7.9 shows the result of running Uppaal on the GPS benchmark with various
configuration parameters. The configuration “-C -o 0 -S 2”, i.e. using DBMs, breadth
first search, and aggressive state space optimization, turned out to be the most effective
one. Depth first exploration combined with aggressive state space optimization is very
slow: checking GPS with 6 stations took 2 days, GPS with 7 stations hit the limit of
3 month of computation time. However, with conservative state space optimization,
uppaal can handle GPS with up to 14 stations before running out of memory, while
aggressive state space optimization allows Uppaal to handle GPS with up to 15 sta-
tions for breadth first search, causing depth first search to quickly hit the time limit.

7.3.2 Results with our Prototype using TSS

Our prototype using TSS can handle GPS with up to 12 stations, before running out
of memory, as shown in Table 7.10.

7.3.3 Results with our Prototype using ZSDs

The prototype using ZSDs can handle larger instances than the TSS based one, as
shown in Table 7.11. Being able to handle GPS with up to 14 stations, the ZSD
based prototype is as effective as Uppaal with conservative state space optimization.
However, the ZSD based prototype is considerably slower than Uppaal, and also slower
than the prototype using TSSs.
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7.4 Leader Election

The Leader Election benchmark taken from [EFGP10] describes a protocol used to
elect a leader in a ring. Again, this benchmark is used to compare three tools.

• Uppaal 4.0.11

• Our prototype using ZSDs

• Our prototype using TSSs

It is checked that a leader has been elected after a certain amount of time.

7.4.1 Results using Uppaal

Leader Election is checked very efficiently by Uppaal, as shown in Table 7.13. The
fastest configuration for Uppaal was “-C -o 0 -S 1”, i.e., using DBMs, breadth first
search and conservative state space optimization. Again, depth first search in combi-
nation with aggressive state space optimization turned out to be slow.

7.4.2 Results with the Prototype using TSS

As Table 7.14 shows, the prototype using TSS can handle the Leader Election bench-
mark with up to 7 participants.

7.4.3 Results with the Prototype using ZSDs

The prototype using ZSDs can handle the Leader Election benchmark for all instances
we tested, as shown in Table 7.15. While Leader Election with up to 6 participants is
checked faster when TSSs are used, for Leader Election with 7 and more participants,
the ZSD based prototype is faster than the TSS based one. This indicates that the
growing size of the state space is better handled by ZSDs, while for smaller state spaces,
TSSs are more efficient.

7.5 Summary

Only the FlexRay benchmark demonstrated a clear superiority of the ZSD based pro-
totype over the TSS based one and even over Uppaal, in terms of the size of instance
of the benchmark that can be handled. For the Gear Production Stack, ZSDs still
are able to handle larger instances than TSSs, and Uppaal needs an aggressive state
space optimization scheme to be able to handle also a slightly larger instance than the
instances the ZSD based prototype can handle, without this scheme Uppaal can han-
dle the benchmark for the same number of participants that the ZSD based prototype.
For the Leader Election benchmark, ZSDs can handle larger instances than than TSSs,
but Uppaal seems to have no problem with large instances as well. For the Fischer
benchmark, ZSDs can handle only small instances, whereas Uppaal can also handle
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larger ones. However, the TSS based prototype can handle only very small instances
in a reasonable amount of time.

Unsurprisingly, Uppaal was generally the fastest tool on all benchmarks. For
FlexRay and Gear Production Stack, the TSS based prototype was faster than the
ZSD based one, while for Fischer, the ZSD based prototype was faster than the TSS
based one. Interestingly, for Leader Election, the TSS based prototype was faster for
small instances, while the ZSD based prototype was faster for larger instances.
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parameters message length time (seconds) states explored states stored

-o 0 -S 1 1 byte 76.33 8,800,916 7,253,864
-o 0 -S 1 2 bytes 268.64 30,059,181 25,999,231
-o 0 -S 1 3 bytes 594.22 65,706,463 56,519,926
-o 0 -S 1 4 bytes 823.39 memout

-C -o 0 -S 1 1 byte 68.44 8,800,916 7,253,864
-C -o 0 -S 1 2 bytes 250.33 30,059,181 25,999,231
-C -o 0 -S 1 3 bytes 545.53 65,706,463 56,519,926
-C -o 0 -S 1 4 bytes 601.72 memout

-o 0 -S 2 1 byte 75.59 8,800,916 6,979,613
-o 0 -S 2 2 bytes 263.50 30,059,181 24,999,598
-o 0 -S 2 3 bytes 591.82 65,706,463 54,341,183
-o 0 -S 2 4 bytes 700.50 memout

-C -o 0 -S 2 1 byte 69.29 8,800,916 6,979,613
-C -o 0 -S 2 2 bytes 245.59 30,059,181 24,999,598
-C -o 0 -S 2 3 bytes 536.52 65,706,463 54,341,183
-C -o 0 -S 2 4 bytes 655.64 memout

-o 1 -S 1 1 byte 5,548.36 608,028,007 7,272,142
-o 1 -S 1 2 bytes 20,533.01 -1,990,507,322 26,083,605
-o 1 -S 1 3 bytes 45,606.86 749,784,845 56,712,076
-o 1 -S 1 4 bytes 56,139.61 memout

-C -o 1 -S 1 1 byte 4,811.09 608,028,007 7,272,142
-C -o 1 -S 1 2 bytes 18,679.38 -1,990,507,322 26,083,605
-C -o 1 -S 1 3 bytes 41,867.40 749,784,845 56,712,076
-C -o 1 -S 1 4 bytes 42,433.53 memout

-o 1 -S 2 1 byte 5,193.38 609,506,149 6,979,451
-o 1 -S 2 2 bytes 21,204.23 -1,984,775,312 25,015,924
-o 1 -S 2 3 bytes 44,896.59 762,434,867 54,384,365
-o 1 -S 2 4 bytes 56,533.55 memout

-C -o 1 -S 2 1 byte 4,776.98 609,506,149 6,979,451
-C -o 1 -S 2 2 bytes 19,124.62 -1,984,775,312 25,015,924
-C -o 1 -S 2 3 bytes 42,987.07 762,434,867 54,384,365
-C -o 1 -S 2 4 bytes 45,165.31 memout

Table 7.1: Checking the FlexRay Model with Uppaal 4.0.10.

message length time (seconds) steps size

1 byte 278.61 4,692,982 2,273,253
2 bytes 1,427.08 memout

Table 7.2: Checking the FlexRay model with our prototype using TSSs.
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message length time (seconds) steps size

1 byte 282.40 539,079 15,330
2 bytes 4,470.75 6,652,400 58,459
3 bytes 14,341.00 16,314,890 88,911
4 bytes 45,376.26 30,323,660 111,903
5 bytes 50,465.01 49,632,336 141,540
6 bytes 298,377.91 73,249,127 174,703
7 bytes 223,513.48 102,333,790 208,172
8 bytes 910,793.86 99,623,479 271,653
9 bytes 795,268.45 129,175,628 302,717
10 bytes 970,099.11 161,907,581 335,153

Table 7.3: Checking the FlexRay model with our prototype using ZSDs.

parameters # processes time (seconds) states explored states stored

-o 0 -S 1 3 0.00 71 65
-o 0 -S 1 4 0.01 268 220
-o 0 -S 1 5 0.01 977 727
-o 0 -S 1 6 0.06 3,458 2,378
-o 0 -S 1 7 0.26 11,951 7,737
-o 0 -S 1 8 1.18 40,536 25,080

-C -o 0 -S 1 3 0.00 71 65
-C -o 0 -S 1 4 0.00 268 220
-C -o 0 -S 1 5 0.02 977 727
-C -o 0 -S 1 6 0.04 3,458 2,378
-C -o 0 -S 1 7 0.20 11,951 7,737
-C -o 0 -S 1 8 0.91 40,536 25,080

-o 0 -S 2 3 0.00 162 43
-o 0 -S 2 4 0.01 638 169
-o 0 -S 2 5 0.03 2360 611
-o 0 -S 2 6 0.15 8,394 2,117
-o 0 -S 2 7 0.70 29,044 7,155
-o 0 -S 2 8 3.30 98,494 23,793

-C -o 0 -S 2 3 0.00 162 43
-C -o 0 -S 2 4 0.00 638 169
-C -o 0 -S 2 5 0.02 2,360 611
-C -o 0 -S 2 6 0.11 8,394 2,117
-C -o 0 -S 2 7 0.54 29,044 7,155
-C -o 0 -S 2 8 2.55 98,494 23,793

Table 7.4: Checking Fischer with Uppaal 4.0.11, breadth first search
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parameters # processes time (seconds) states explored states stored

-o 1 -S 1 3 0.00 65 65
-o 1 -S 1 4 0.00 229 220
-o 1 -S 1 5 0.01 867 727
-o 1 -S 1 6 0.06 3,568 2,378
-o 1 -S 1 7 0.34 16,371 7,737
-o 1 -S 1 8 2.14 75,184 25,080

-C -o 1 -S 1 3 0.00 65 65
-C -o 1 -S 1 4 0.00 229 220
-C -o 1 -S 1 5 0.01 867 727
-C -o 1 -S 1 6 0.04 3,568 2,378
-C -o 1 -S 1 7 0.27 16,371 7,737
-C -o 1 -S 1 8 1.60 75,184 25,080

-o 1 -S 2 3 0.00 192 37
-o 1 -S 2 4 0.01 1,482 144
-o 1 -S 2 5 0.14 13,332 528
-o 1 -S 2 6 1.42 104,651 1,865
-o 1 -S 2 7 22.19 1,296,540 6,499
-o 1 -S 2 8 411.19 19,297,757 22,099

-C -o 1 -S 2 3 0.00 192 37
-C -o 1 -S 2 4 0.01 1,482 144
-C -o 1 -S 2 5 0.11 13,332 528
-C -o 1 -S 2 6 1.19 104,651 1,865
-C -o 1 -S 2 7 17.80 1,296,540 6,499
-C -o 1 -S 2 8 321.72 19,297,757 22,099

Table 7.5: Checking Fischer with Uppaal 4.0.11, depth first search

# processes time (seconds) steps size

3 0.02 287 65
4 1.40 2,925 220
5 1,106.39 35,334 727
6 timeout

Table 7.6: Checking Fischer with our prototype using TSSs.

# processes time (seconds) steps size

3 0.02 434 228
4 0.22 4,401 1,846
5 7.17 88,465 21,950
6 351.10 2,229,875 335,866
7 63,350.95 69,385,200 6,223,519
8 14,670.28 memout

Table 7.7: Checking Fischer with our prototype using ZSDs.
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parameters # stations time (seconds) states explored states stored

-o 0 -S 1 6 0.02 2,185 2,185
-o 0 -S 1 7 0.06 6,559 6,559
-o 0 -S 1 8 0.24 19,681 19,681
-o 0 -S 1 9 0.90 59,047 59,047
-o 0 -S 1 10 3.25 177,145 177,145
-o 0 -S 1 11 11.52 531,439 531,439
-o 0 -S 1 12 40.70 1,594,321 1,594,321
-o 0 -S 1 13 155.67 4,782,967 4,782,967
-o 0 -S 1 14 491.87 14,348,905 14,348,905
-o 0 -S 1 15 1,265.97 memout

-C -o 0 -S 1 6 0.01 2,185 2,185
-C -o 0 -S 1 7 0.06 6,559 6,559
-C -o 0 -S 1 8 0.22 19,681 19,681
-C -o 0 -S 1 9 0.83 59,047 59,047
-C -o 0 -S 1 10 3.04 177,145 177,145
-C -o 0 -S 1 11 10.99 531,439 531,439
-C -o 0 -S 1 12 39.46 1,594,321 1,594,321
-C -o 0 -S 1 13 154.89 4,782,967 4,782,967
-C -o 0 -S 1 14 467.34 14,348,905 14,348,905
-C -o 0 -S 1 15 1,266.76 memout

-o 0 -S 2 6 0.02 2,185 364
-o 0 -S 2 7 0.06 6,559 1,093
-o 0 -S 2 8 0.23 19,681 3,280
-o 0 -S 2 9 0.85 59,047 9,841
-o 0 -S 2 10 3.00 177,145 29,524
-o 0 -S 2 11 10.95 531,439 88,573
-o 0 -S 2 12 38.32 1,594,321 265,720
-o 0 -S 2 13 135.72 4,782,967 797,161
-o 0 -S 2 14 464.61 14,348,905 2,391,484
-o 0 -S 2 15 1,687.84 43,046,719 7,174,453
-o 0 -S 2 16 1689.42 memout

-C -o 0 -S 2 6 0.02 2,185 364
-C -o 0 -S 2 7 0.06 6,559 1,093
-C -o 0 -S 2 8 0.22 19,681 3,280
-C -o 0 -S 2 9 0.80 59,047 9,841
-C -o 0 -S 2 10 2.84 177,145 29,524
-C -o 0 -S 2 11 10.52 531,439 88,573
-C -o 0 -S 2 12 37.55 1,594,321 265,720
-C -o 0 -S 2 13 135.56 4,782,967 797,161
-C -o 0 -S 2 14 468.68 14,348,905 2,391,484
-C -o 0 -S 2 15 1,648.85 43,046,719 7,174,453
-C -o 0 -S 2 16 1,612.45 memout

Table 7.8: Checking Gear Production Stack with Uppaal 4.0.11, breadth first search
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parameters # stations time (seconds) states explored states stored

-o 1 -S 1 6 0.02 2,185 2,185
-o 1 -S 1 7 0.07 6,559 6,559
-o 1 -S 1 8 0.23 19,681 19,681
-o 1 -S 1 9 0.89 59,047 59,047
-o 1 -S 1 10 3.25 177,145 177,145
-o 1 -S 1 11 11.62 531,439 531,439
-o 1 -S 1 12 40.39 1,594,321 1,594,321
-o 1 -S 1 13 158.48 4,782,967 4,782,967
-o 1 -S 1 14 469.45 14,348,905 14,348,905
-o 1 -S 1 15 1,236.39 memout

-C -o 1 -S 1 6 0.02 2,185 2,185
-C -o 1 -S 1 7 0.06 6,559 6,559
-C -o 1 -S 1 8 0.21 19,681 19,681
-C -o 1 -S 1 9 0.81 59,047 59,047
-C -o 1 -S 1 10 3.03 177,145 177,145
-C -o 1 -S 1 11 11.18 531,439 531,439
-C -o 1 -S 1 12 39.57 1,594,321 1,594,321
-C -o 1 -S 1 13 146.12 4,782,967 4,782,967
-C -o 1 -S 1 14 525.98 14,348,905 14,348,905
-C -o 1 -S 1 15 1,376.56 memout

-o 1 -S 2 6 216,313.25 55,181,318 364
-o 1 -S 2 7 timeout

-C -o 1 -S 2 6 172,436.73 55,181,318 364
-C -o 1 -S 2 7 timeout

Table 7.9: Checking Gear Production Stack with Uppaal 4.0.11, depth first search

# stations time (seconds) steps size

6 0.19 2,549 2,185
7 0.70 7,652 6,559
8 2.70 22,961 19,681
9 10.50 68,888 59,047
10 39.73 206,669 177,145
11 147.56 620,012 531,439
12 546.20 1,860,041 1,594,321
13 1,105.99 memout

Table 7.10: Checking Gear Production Stack with our prototype using TSSs.
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# stations time (seconds) steps size

6 0.27 2,549 12
7 1.19 7,652 14
8 5.65 22,961 16
9 26.00 68,888 18
10 110.76 206,669 20
11 451.51 620,012 22
12 1778.62 1,860.041 24
13 11,108.42 5,580,128 26
14 26,592.94 16,740,389 28
15 20,462.43 memout

Table 7.11: Checking Gear Production Stack with our prototype using ZSDs.

parameters # participants time (seconds) states explored states stored

-o 0 -S 1 4 0.02 1,197 661
-o 0 -S 1 5 0.09 7,398 3,406
-o 0 -S 1 6 0.61 42,482 16,717
-o 0 -S 1 7 4.24 227,253 79,757
-o 0 -S 1 8 27.37 1,185,818 374,786
-o 0 -S 1 9 176.01 5,905,852 1,746,863

-C -o 0 -S 1 4 0.01 1,197 661
-C -o 0 -S 1 5 0.07 7,398 3,406
-C -o 0 -S 1 6 0.51 42,482 16,717
-C -o 0 -S 1 7 3.60 227,253 79,757
-C -o 0 -S 1 8 23.35 1,185,818 374,786
-C -o 0 -S 1 9 149.13 5,905,852 1,746,863

-o 0 -S 2 4 0.02 1,324 172
-o 0 -S 2 5 0.09 8,544 898
-o 0 -S 2 6 0.66 49,837 4,332
-o 0 -S 2 7 4.79 277,031 22,258
-o 0 -S 2 8 32.26 1,475,243 107,658
-o 0 -S 2 9 212.89 7,610,621 542,187

-C -o 0 -S 2 4 0.01 1,324 172
-C -o 0 -S 2 5 0.08 8,544 898
-C -o 0 -S 2 6 0.56 49,837 4,332
-C -o 0 -S 2 7 4.08 277,031 22,258
-C -o 0 -S 2 8 27.83 1,475,243 107,658
-C -o 0 -S 2 9 181.97 7,610,621 542,187

Table 7.12: Checking Leader Election with Uppaal 4.0.11, breadth first search
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parameters # participants time (seconds) states explored states stored

-o 1 -S 1 4 0.02 1,499 661
-o 1 -S 1 5 0.13 11,262 3,406
-o 1 -S 1 6 1.15 78,463 16,717
-o 1 -S 1 7 9.33 493,808 79,757
-o 1 -S 1 8 71.52 2,986,059 374,786
-o 1 -S 1 9 516.14 17,175,675 1,746,863

-C -o 1 -S 1 4 0.02 1,499 661
-C -o 1 -S 1 5 0.11 11,262 3,406
-C -o 1 -S 1 6 0.96 78,463 16,717
-C -o 1 -S 1 7 7.80 493,808 79,757
-C -o 1 -S 1 8 59.41 2,986,059 374,786
-C -o 1 -S 1 9 436.11 17,175,675 1,746,863

-o 1 -S 2 4 0.06 8,123 229
-o 1 -S 2 5 1.63 202,166 1,333
-o 1 -S 2 6 49.28 4,947,205 7,299
-o 1 -S 2 7 1,695.46 138,249,789 38,752
-o 1 -S 2 8 59,450.31 -230,436,488 194,972
-o 1 -S 2 9 2,361,935.18 1,171,666,415 987,170

-C -o 1 -S 2 4 0.04 8,123 229
-C -o 1 -S 2 5 1.38 202,166 1,333
-C -o 1 -S 2 6 42.07 4,947,205 7,299
-C -o 1 -S 2 7 1,471.18 138,249,789 38,752
-C -o 1 -S 2 8 52,818.09 -230,436,488 194,972
-C -o 1 -S 2 9 2,107,786.25 1,171,666,415 987,170

Table 7.13: Checking Leader Election with Uppaal 4.0.11, depth first search

# participants time (seconds) steps size

4 0.06 742 661
5 0.60 4,185 3,406
6 13.70 22,746 16,717
7 3,399.51 123,251 79,757
8 113,610.26 memout

Table 7.14: Checking Leader Election with our prototype using TSSs.

# participants time steps size

4 0.24 777 164
5 2.45 4,805 749
6 21.70 30,360 3,935
7 207.52 195,383 19,514
8 3,239.51 1,379,837 107,029
9 34,006.47 12,415,305 1,065,425

Table 7.15: Checking Leader Election with our prototype using ZSDs.



76 CHAPTER 7. EXPERIMENTAL RESULTS



Chapter 8

Conclusion and Future Work

8.1 Conclusion

This thesis formally describes two approaches for representing the timed state space,
timed state sets (TSSs), and the novel zone state diagrams (ZSDs). Furthermore, it
presents algorithms for implementing ZSDs for use in timed reachability model check-
ing.

As a case study, the thesis describes the state-of-the-art vehicle bus FlexRay and
presents a model of FlexRay’s physical layer protocol modeled as extended timed au-
tomata.

Finally, in order to evaluate ZSDs, the thesis compares the performance of a pro-
totype model checker using ZSDs to Uppaal’s performance on the task of checking
whether the error state of the FlexRay model is reachable. The measured running
times demonstrate the need for further optimization, while the ability of ZSDs to han-
dle large message sizes underlines the potential of the approach. Nevertheless, in an
industrial setting for safety critical systems, testing often takes several month. So,
verification times of several weeks still are a huge improvement over not being able
to verify at all and having to rely on testing or manual verification that also takes a
lot of time. Thus, ZSDs allow to improve the current quality-control procedures for
industry-sized physical layer protocols through the use of automatic formal verification.

Three other benchmarks, Fischer, Gear Production Stack, and Leader Election,
are also used for evaluation of the prototype model checker using ZSDs. Concerning
speed, Uppaal is superior to the prototype model checker using ZSDs for all three
benchmarks, and can handle instances of similar size. However, when compared to
a prototype model checker using TSSs, the ZSD-based variant is always capable of
handling larger instances of the benchmarks, sometimes being faster as well. This
leads to the conclusion that Uppaal’s good performance stems from optimizations
and is not due to its use of a TSS-like data structure for representing the timed state
space. In a fair comparison, ZSDs consistently outperform TSSs in terms of the size
that can be handled.

These results justify further investigation into data structures like ZSDs that reverse

77
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the order of the mapping from locations to zones as well as the use of BDDs for
representing large sets of locations for real-time model checking.

8.2 Future Work

Several lines of research and development can be based on this work in the future.

Optimizing ZSDs. ZSDs do store more information as needed: it is possible that
location l is stored in a ZSD for two DBMs, z, z′. If a third DBM, z′′ such that
Jz′′K ⊂ JzK ∪ Jz′K, is added and should map to l as well, the ZSD stores all three pairs
(z, l), (z′, l), and (z′′, l), while a ZSD storing just (z, l) and (z′, l) would actually contain
the same location / clock valuation pairs. It could also be the case that if JzK ⊂ Jz′K
and the ZSD stores (z′, l), (z, l) is added to the ZSD without adding new information
about location / clock valuation pairs. If this is avoided, space consumption would be
even smaller. However, representing non-convex sets of clock valuations efficiently or
even checking for (partial) inclusion of one DBM in another efficiently is hard. There
seems to be some potential for optimizations by efficiently reducing the redundancy
introduced by such phenomenons.

Greatest fixed points with ZSDs. So far only least fixed point constructions are
used by the prototype using ZSDs, the performance of ZSDs when using a greatest
fixed point construction has yet to be evaluated.

Symbolic ZSD model checking algorithm. The reachability model checking al-
gorithm in the prototype is still traditional, working through a set of location / DBM
pairs (encoded like a TSS), adding newly found states to this set as well as to the ZSD
storing the visited states. This algorithm cannot fully exploit the ZSD representation,
as ZSDs are just used for the visited states. An algorithm working on the whole set of
reachable states or of newly reached states simultaneously, e.g., by using a symbolical
post operator to execute all enabled transitions in one single step, possibly even work-
ing on a ZSD representation directly, would speed up the model checking procedure
considerably.

Fully symbolic state space representation. The idea of reversing the hierarchy,
i.e., the unconventional mapping from timing information to location data, could be
advanced to a flexible order between the individual constraints. This would enable
the use of heuristics for efficient orderings over all constraints, time constraints as well
as constraints on the boolean variables encoding the locations now stored in BDDs.
Such a flexible data structure would not have the strict separation between timing and
location data, thus probably being even more space efficient by thoroughly exploiting
redundancy.
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Investigating FlexRay’s physical layer protocol. The FlexRay model from
Chapter 6 can be a basis for further investigation of FlexRay. Several parameter con-
figurations of this model could be evaluated to observe the effects on the fault tolerance
or on the minimal requirements for other parameters. The model itself could also be
furthermore refined, speeding up verification (thus making it possible to check larger
payloads of up to the maximal 262 bytes) or making room for modeling additional
aspects of the FlexRay protocol.
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Appendix A

Model Variant

The model of FlexRay used in this thesis is a little bit less permissive than required
by [Fle05]: In Section 6.4.2 a frame start sequence combined with the first half of
a byte start sequence is required to be received as either one or two consecutive
high bits, [Fle05, Section 3.2.6.3] allows one to three consecutive high bits. To adjust
the model, the automaton shown in Figure 6.14 has to be replaced by the automaton
shown in Figure A.1, where two states, CheckFSS and BSS, have been added. Moreover,
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Figure A.1: Simulation of the reception of the message bytes

Figure 6.13 has to be replaced by Figure A.2, as A.1 has a new entry point.

However, the stricter requirements of Section 6.4.2 where met in the evaluation of
the model as described in Chapter 7. Thus, either [Fle05, Section 3.2.6.3] is overly
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Figure A.2: Simulation of the start of the reception

permissive, or the variant of a three high bit FSSBSS is designed to compensate for an
additional source of errors that was not considered in this thesis, e.g., truncation as
described in [Fle05, Section 3.2.5].
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[ABK08a] E. Alkassar, P. Böhm, and S. Knapp. Correctness of a Fault-Tolerant
Real-Time Scheduler and its Hardware Implementation. In Sixth ACM &
IEEE International Conference on Formal Methods and Models for Code-
sign (MEMOCODE’08), pages 175–186. IEEE Computer Society, 2008.
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