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Chapter 1

Introduction

The advent of wireless networks paved the way for untethered, everywhere, and anytime
use of the internet and other communication services. Cellular networks are the backbone
of modern society, and free WiFi is everywhere. Without us noticing, an enormous network
machinery ensures behind the scenes that we can exchange instant messages with our
friends, browse the internet while lining up at the supermarket checkout, make telephone
calls with our loved ones, and find our way through unknown cities.

Most wireless networks we rely on every day are organized hierarchically and require central
infrastructure, like cellular base stations and WiFi access points. However, what happens
if there is a major catastrophe which destroys the needed infrastructure, like a natural
disaster or a terror attack? Despite the lack of central infrastructure in such cases we would
like to organize efficient and effective disaster recovery measures which undeniably require
communication. Furthermore, there are also other scenarios where central infrastructure is
not available, difficult to deploy, or economically inefficient, but nevertheless, communication
is required. Those scenarios include for example communication between soldiers in combat
zones or reconstruction workers in areas destroyed by civil war.

In all those scenarios where central infrastructure is destroyed or not feasible mobile
ad-hoc networks (MANETs) pledge flexible deployments of failure-resistant communication
mechanisms. In contrast to infrastructure-based networks, MANETs do not require any
infrastructure, as they are constructed by directly connecting end devices like smartphones
and laptops. The advantage to do without central infrastructure, however, comes at the
expense of an increased complexity for applications and network protocols due to the
decentralized and highly dynamic nature of mobile ad-hoc networks. It is thus hardly a
surprise that in order to simplify MANET application development a multitude of network
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CHAPTER 1. INTRODUCTION

protocols and middleware solutions have been proposed [27] — most of which make use
of traditional programming paradigms for distributed systems [27] like remote procedure
calls, the event-based publish/subscribe paradigm, or tuple spaces.

Knowledge-based programming [9, p. 253 ff.] is the idea to use knowledge an agent, e.g., a
node in a network, possess to program its behavior. Knowledge-based programs are based
on epistemic logic [9, p. 15 ff.] which further allows the specification and verification of
epistemic properties of multi-agent systems [18]. When it comes to highly dynamic systems
like mobile ad-hoc networks, however, knowledge-based approaches for verification and
programming fail, as, in general, very little about the system is knowable by agents. For
instance, in mobile ad-hoc networks due to frequent and unpredictable network topology
changes, nodes cannot know which neighbors they have. Nonetheless, to enable efficient
communication, network protocols have to take into account the topology. Therefore,
MANET network protocols usually rely on some informal notion of beliefs, e.g., they use
beliefs about the topology to route packets. In contrast to knowledge, beliefs may be
incorrect and thus allow agents to act upon falsehoods.

The goal of this thesis is to capture this informal notion of beliefs within a formal framework
and thereby enable us to reason about beliefs, specify correctness criteria for them, and
use them as a basis for a belief-based generalization of knowledge-based programming.
Belief-based programming for mobile ad-hoc networks and distributed systems, in general,
is inspired by the belief-based human decision-making process.

Every day beliefs and desires guide actions we perform and decisions we make. A rational
being — a rather naive characterization would say — does what it believes fulfills its
desires most [31, cf.]. For instance, if you have the all-things-considered desire to eat a
cookie and you believe that there are cookies in your desk drawer, then it would be rational
for you to open the drawer and eat one of them if there actually are some. If on the other
hand, you open the drawer and it turns out, that there are no cookies in it, then it would
be rational for you to revise your beliefs accordingly to include the new evidence. Without
going into further detail regarding the philosophy behind rational decision-making and
belief-revision, this makes it plausible that the human decision-making process is based on
beliefs, desires, and the options for action available.

The larger goal we have in mind, but is out of the scope of this thesis, is to develop a general
belief-centric middleware for MANETs and distributed systems in general which provides
an interface inspired by the human decision-making process and uses the formalism of
belief-based programming we introduce as a theoretical foundation.
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1.1. STRUCTURE

The Digital Message Board Example

Besides the already introduced cookie example, we further use the example of a digital
message board used to organize a huge public event where no central infrastructure exists,
e.g., a music festival at a bunch of meadows between villages. To efficiently prepare the
event several teams of workers with fixed responsibilities exist. For instance, one team is
responsible for building the stage and another for preparing the catering. To work together,
the workers post status updates on a digital message board. However, not everyone is
interested in all messages. Rather there are team specific, i.e., intra-team, messages and
team unspecific, i.e., inter-team, messages. For this purpose, the message board provides
topics workers can subscribe to. Everyone then gets only those messages corresponding to
subscribed topics of interest. To bring new workers up to speed the message board needs
to ensure that workers who join will not only get all messages belonging to their topics of
interest posted after their arrival but rather also all previous ones.

1.1 Structure

Mobile ad-hoc networks provide the general frame and the example case of this thesis,
consequently, we begin this thesis with an introduction into the general subject matter of
MANETs. We introduce necessary terminology and discuss particular challenges in the
design of distributed MANET applications. We later come back to those challenges and
see how a belief-based MANET middleware would address them.

We then introduce a formalism for open multi-agent systems, like MANETs. In contrast to
multi-agent systems, open multi-agent systems allow agents to join and leave at runtime
[2]. The formalism serves as the general basis of the remainder.

As a first step towards belief-based programming for mobile ad-hoc networks, we subse-
quently adapt knowledge-based programs as introduced in [9] to open multi-agent systems
using the presented formalism. We further study the relation between knowledge-based
programs for multi-agent systems and our adaption to open multi-agent systems.

Knowledge-based programs as introduced in [9] and our adaption to open multi-agent
systems have the disadvantage that they are not all implementable [30] making them
unsuitable as a basis for a general MANET middleware. The behavior of a knowledge-
based program depends on the knowledge the program posses which again depends on
the behavior of the program leading to a possibly vicious infinite regress. We circumvent

Maximilian A. Köhl 3



CHAPTER 1. INTRODUCTION

this problem by introducing a notion of knowledge called nomological knowledge using
the concept of nomological systems. Nomological systems explicitly encode the options for
action the agents have by means of nomological nondeterminism. A nomological knowledge
program chooses which of the available options to take based on nomological knowledge,
i.e., knowledge about the nomological system, which eliminates the possibly vicious infinite
regress. We use this nomological framework both, to specify correctness criteria for beliefs
and as the formal basis for a general belief-oriented MANET middleware.

Afterwards, we introduce belief-based programming as a belief-based generalization of
knowledge-based programming. To this end, we introduce a formal framework to model
beliefs and study various adequacy criteria for beliefs and their revision in response to
observations similar to rationality requirements for humans. We further demonstrate the
usefulness of our approach by an example protocol defined using belief-based programs
and informally prove certain correctness properties thereof. Finally, we sketch a general
belief-centric MANET middleware which also gives an outlook on future work.

The main contributions of this thesis are, a notion of knowledge-based programs for
open multi-agent systems which use agent-type relative knowledge, a formal framework
for reasoning about nomological systems, and the concept of belief-based programming
suitable to be used as a basis for a belief-centric MANET middleware.
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Chapter 2

Mobile Ad-Hoc Networks

In this chapter, we have a detailed look at wireless networks especially mobile ad-hoc
networks, which provide the general frame for this thesis. This chapter aims to serve as a
starting point for our journey towards a general belief-oriented MANET middleware by
providing essential preliminaries, necessary terminology, and background information. We
begin with an introduction of basic terminology used throughout the thesis and subse-
quently, discuss particular challenges for the design of distributed MANET applications.
Thereinafter, we motivate and introduce the concept of distributed systems middleware
for the simplification of application development for mobile ad-hoc networks. Finally, we
introduce a model of MANETs which we refine throughout the thesis.

So let’s get started by importing the necessary terminology from [16]. A network comprises
multiple nodes which are connected to each other via links. We refer to the graph constituted
by the nodes and links of a network as the network topology. Wireless networks are networks
comprising two sorts of nodes, wireless hosts and base stations. Wireless hosts run the
end user applications and may or may not be mobile, i.e., they may or may not move
around more or less freely in their environment. Base stations relay traffic between the
wireless hosts and optionally other possibly wired networks. We distinguish two converse
architectures for wireless networks, infrastructure-based and infrastructure-less networks.
Infrastructure-based networks contain network infrastructure such as base stations whereas
infrastructure-less networks do not contain any infrastructure, i.e., they solely comprise
wireless hosts. A wireless link connects a wireless host to a base station or another wireless
host within its range. See Figure 2.1 for an example of each architecture.

Wireless links allow the direct transmission of packets, i.e., packages of information, usually
a byte string, between the two connected nodes. Depending on the structure of the network
it might be necessary for a packet to travel from its source through multiple nodes to
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Alice

Bob

(a) Infrastructure-Based

Joe

BobEve

Alice

(b) Infrastructure-Less

Key: Wireless Host Base Station Wireless Link

Figure 2.1: Wireless Network Architectures

reach its destination. We refer to this process as routing and to the number of nodes a
packet needs to pass until it reaches its destination as hops. For instance consider the
network shown in Figure 2.1b. If Alice wants to send a message to Bob, she can route
it through Eve and Joe, which constitutes two hops. In addition to the classification
into infrastructure-based and infrastructure-less networks we further distinguish between
single-hop and multi-hop networks. In a single-hop network, each node can reach every other
node within one hop, while in multi-hop networks it might be necessary to route a message
through multiple hops until it reaches its destination. Figure 2.1a shows a single-hop and
2.1b a multi-hop network. A mobile ad-hoc network (MANET) is an infrastructure-less
usually multi-hop network between multiple mobile wireless hosts [16, p. 518]. In this
thesis, we will except for comparison reasons only consider MANETs.

To deliver a packet from one node to another or to enable other kinds of communication
between nodes, e.g., exchange of instant messages, network protocols are required. A
network protocol defines rules and formats for packet exchanges between nodes to achieve
a particular communication task [16, cf. p. 9]. For instance, routing requires particular
routing protocols on each node. In our example above, a routing protocol would tell Eve
and Joe to relay the packet from Alice such that it eventually reaches Bob.

In case of the digital message board example, the mobile ad-hoc network is created by
directly connecting the end devices, e.g., smartphones, of the workers. The task of an
appropriate network protocol is to make sure, that each worker gets the messages of all
topics of interest. For instance, the workers responsible for building the stage need to get all
messages which belong to the stage-team topic and in addition all messages belonging to
the inter-team topic. Since workers may arrive later, the protocol also needs to make sure,
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2.1. CHALLENGES FOR MANET APPLICATIONS

that everyone receives all messages posted prior to their arrival. Designing appropriate
network protocols for specific communication tasks, e.g., the digital message board example,
is, in general, a great challenge and even more so for MANETs — but, what makes building
applications for MANETs a particular challenge?

2.1 Challenges for MANET Applications

Due to their highly decentralized and dynamic nature, MANETs exhibit several unique
characteristics. So, let’s see, what those unique characteristics are and which specific
challenges they raise for the design of MANET applications.

In general, distributed applications can be implemented in a centralized and decentralized
manner [29, p. 36 ff.]. Centralized applications are composed of two distinct parts, namely
a server and a client part, usually running on specific server and client nodes. In contrast to
that, fully decentralized applications do not draw this distinction and rather treat all nodes
more or less equally. In case of our example a centralized application could look like this:
A central server node stores all the information about which node is interested in which
topics. The client runs on the devices of the workers and sends the messages to the server
node which subsequently distributes them among all other interested client nodes. This
approach has the advantage that it is straightforward compared to a decentralized solution.
However, this simplicity comes at the expense of decreased reliable and performance.
Wireless hosts in MANETs are usually not considered very reliable, and even if the server
node is more reliable than other nodes in the network, we introduce a single-point of failure.
Performance-wise all the traffic in the network is concentrated around the server node,
as everything, e.g., subscribe requests and messages, has to travel to that node and in
some cases back again, e.g., messages to all interested nodes. A decentralized application
design on the other hand, if done right, distributes, for example, the information about
interests evenly and replicates it among multiple nodes. This not only increases reliability,
because, depending on the level of replication, a very high number of nodes has to fail
until the application goes down, but also spreads the traffic more evenly among all nodes
avoiding traffic concentration and congestion. Traffic congestion and reliability are issues
when it comes to MANETs. Hence, a decentralized application design, although making
the application more complicated, is preferable if not mandatory.

Another characteristic of MANETs is that nodes can move around more or less freely.
Thus, the topology of MANETs is subject to frequent unpredictable changes [27, p. 4]. This
makes routing in MANETs an exceptional challenge. For instance, routes might frequently
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break and require repairing. Furthermore, route discovery may consume a good deal of
network resources. In contrast routing overhead in infrastructure-based networks is usually
much less, as the topology is much simpler (especially in single-hop networks) and does
not change frequently. Besides, wireless hosts moving from one base station to another can
be handed over gracefully [16, p. 541 f.]. Also, infrastructure is often much more reliable
than the wireless hosts which comprise a MANET. Hence, if infrastructure is available
or easy to deploy and routing is required, then infrastructure-based networks should be
used. MANET applications and network protocols need to deal with frequent topology
changes as well as node failures efficiently and effectively [27, p. 4]. Done right, however,
MANETs may be more reliable than infrastructure-based networks, since they do not
introduce a single-point of failure — in an infrastructure-based network, every node is cut
off immediately if the base station is destroyed — but rather tolerate a higher number of
node failures. While in traditional networks usually the application does not need to be
aware of the topology, it has been argued, that in MANETs due to their dynamic nature
some sort of cross-layer architecture which gives an application access to topology and
other information about the network itself is more efficient [6, e.g.].

Furthermore, MANETs often lack a central authority. This opens the doors for adversarial
nodes which may tamper with the network, applications, and protocols. Unsurprisingly,
making MANETs tolerant towards such nodes is again a difficult challenge. Since infras-
tructure is usually provided by a trustworthy authority, this problem does not or at least
not to that extent arise for infrastructure-based networks and centralized applications
where server nodes are provided by a trustworthy authority as well.

While much more could be said about challenges in the design of distributed MANET
applications, the three major points mentioned, i.e., the need for fully decentralized ap-
plications, the need to deal with frequent topology changes, and the lack of trustworthy
authorities, show that the advantages MANETs offer, e.g., the flexible and easy deployment
of communication mechanisms and increased reliability, come at the expense of an increased
complexity for both, applications and underlying network protocols. Hence, it is hardly a
surprise that several middleware solutions and libraries emerged aiming to simplify the
development of distributed and decentralized applications for MANETs [27].

2.2 MANET Middleware

A middleware is a piece of software between the operating system and the application
(see Figure 2.2) [3] — or, to be more precise, in our case a piece of software between
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Middleware
(distributed system services)

APIs

Application Application. . .

Platform Interface Platform Interface. . .

Figure 2.2: Distributed System Middleware

the application and the network primitives (the platform interface) provided by the
operating system. The middleware provides a high-level application programming interface
(API) to the application and handles all the low-level communication details [3, cf.].
The fundamental idea of distributed systems middleware is to abstract away much of the
underlying complexity and provide an easy to use and reason about high-level programming
interface with well-defined semantics. The application programming interface is supposed
to be generic such that it can be used for a variety of different applications.

2.2.1 Application Programming Interface

Depending on the type of middleware its API provides different high-level abstractions. To
get a rough idea of existing solutions in the field of MANET middleware, we broadly give
an overview over two existing MANET middleware approaches in this subsection, namely
remote procedure calls and publish/subscribe systems. We also evaluate whether we could
use them for the example of the digital message board.

Remote Procedure Calls

A classical paradigm for the development of distributed applications, which is very popular
for traditional networks as well, are remote procedure calls (RPCs) [22]. The key idea
of remote procedure calls is to provide an API based on a set of procedures which when
called transparently execute on a remote machine. From the application’s point of view,
a remote procedure call just looks like calling a local procedure. Under the hood the
middleware marshalls the provided arguments into a form suitable for transmission, then
sends them over to the remote machine, where they are unmarshalled again and passed to
the corresponding local procedure. When the corresponding local procedure returns from
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execution the result gets marshaled by the middleware and is then transmitted back to
the calling machine, where it is unmarshalled and returned to the caller.

Under the assumption that neither the network nor the remote machine will fail, an RPC
middleware can provide nearly complete transparency between local and remote calls. Just
the latency is usually much higher because the function call is done over the network.
In practice, however, the amount of transparency is limited, especially when it comes to
largely dynamic networks like MANETs. While a local call might succeed or throw an
error if something with the actual task or the callee, e.g., invalid supplied arguments, went
wrong, remote procedure calls may fail in two additional ways — there could be a network
failure or the node which should run the procedure could have failed. However, often these
kinds of failures are indistinguishable by the caller.

Remote procedure calls provide a synchronous one-to-one interface, i.e., one caller calls
one callee and blocks until the call either failed or succeeded. Thus, it merely allows
two nodes to communicate with each other. In our example case of the digital message
board, a one-to-one interface is unsuitable. Instead, what is required, is a one-to-many
interface, e.g., transmit a new message to many nodes, namely those that are interested. In
general, remote procedure calls are not well suited for mobile environments, because they
neither support group communication nor asynchronous communication and present a limit
scalability [27, p. 3]. Asynchronous communication abstractions, unlike the synchronous
RCP communication abstractions, do not block the application.

Remote procedure call middleware, in general, requires a unicast routing protocol between
the caller node and the callee node. A unicast routing protocol routes messages between
two nodes. Thus, ordinary remote procedure call middleware can in principle be used on
top of any routing protocol providing unicast routing. There, however, also exist MANET
specific RPC-like middleware, e.g., implementing MANET suited many-to-many semantics
[14] which requires more sophisticated routing than unicast to be efficient.

Although we could implement our digital message board on-top of an RPC middleware the
provided interface does not fit our needs well, as we need a one-to-many interface, but an
RPC middleware provides us with a one-to-one interface. In the following, we, therefore,
have a look at a presumably more suitable middleware approach.

Publish/Subscribe Middleware

Another famous middleware paradigm is the publish/subscribe pattern which is asyn-
chronous and provides a one-to-many interface. This makes it an interesting candidate for

10 Maximilian A. Köhl



2.2. MANET MIDDLEWARE

the digital message board. The key idea of the publish/subscribe paradigm is that nodes
subscribe to certain events and get notified when these events occur. In the example of
the digital message board, we could have a message-posted event for each topic which is
emitted whenever there is a new message regarding a specific topic.

There exist several proposals, for publish/subscribe middleware, which are specially tailored
to MANETS [32, e.g.]. Just like nearly any distributed system, publish/subscribe systems
can be implemented in a centralized manner, i.e., with a central message broker, and a
decentralized manner, without such a centralized broker. In a centralized design, each node
registers itself at the broker and subsequently subscribes to particular events. When some
event is emitted, the broker is notified and then notifies each subscriber. As we already
argued, the centralized design is not well suited for mobile ad-hoc networks so MANET
publish/subscribe middleware should aim at a decentralized design. A decentralized design,
however, makes well-defined semantics more difficult to implement. A centralized broker
could keep track of the nodes, their interests, which node already received which event,
and it may even store a limit log of events to send them to new subscribers. Getting the
same guarantees for a decentralized MANET middleware is hard to achieve, and to our
knowledge, no MANET publish/subscribe system provides them.

A publish/subscribe system could provide at least part of the solution for the digital
message board depending on the exact semantics of event distribution. However, no system
provides the required log for workers which join the system later and need to be bought
up to date since a log is not part of the publish/subscribe paradigm.

Other Proposals

Besides proposals for remote procedure call and publish/subscribe middleware there is a
multitude of proposals using other paradigms, e.g., tuple spaces, partly especially tailored
to MANETs (see [27] for an overview). This subsection does not claim to be comprehensive
in any way but rather gave us a rough idea of what to expect from a MANET middleware,
how an API could look like, and what other solutions already exist.

In this thesis, we target another approach which provides a belief-centric interface. Intu-
itively the fundamental idea is to distribute beliefs about, e.g., the messages which have
been posted. The application programming interface then provides methods for introducing
new facts and specifying a distribution strategy for evidence thereof. Before digging deeper
into this, we, however, need to have a look at the other side of MANET middleware, i.e.,
the platform interface, which we cover in the remainder of this chapter.
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2.3 MANET Model

We saw examples of high-level interfaces distributed systems middleware might provide.
In this section, we have a closer look at the other side of middleware, i.e., the platform
interface provided by the operating system. To understand which primitives an operating
system might offer we need to have a look at different network protocols and how they
interact with each other. Traditionally network protocols are classified into different layers
according to the services they provide. In the following, we roughly sketch the functionality
of the five-layers of the internet protocol stack based on [16, p. 49 ff.].

The lowest layer is the physical layer. A network protocol on the physical layer specifies
how individual bits are transmitted on the actual transmission medium, e.g., in case of
MANETs electromagnetic waves. Due to the shared medium used in MANETs, the physical
layer protocol is a particular challenge on its own. It needs to account for concurrent
accesses and manage medium arbitration without a central arbiter.

On top of the physical layer there is the link layer. A network protocol on the link layer
uses a physical layer protocol and provides an interface for transmitting complete packets,
called frames, between nodes which are directly connected by a link. In case of MANETs,
the directly connected nodes are those which are in the range of each other.

Finally, on top of the link layer, there is the network layer, the transport layer, and the
application layer. A protocol on the network layer provides support for routing a packet
to nodes which are not directly connected. Transport layer protocols provide specific
guarantees like reliability or ordered transmission. On top of them, application-specific
protocols are used to provide application-specific services, e.g., instant messaging.

2.3.1 Network Primitives

The operating system exposes protocols on various layers to the middleware. For instance,
the portable operating system interface (POSIX) standard [28] exposes the transport layer
protocols TCP and UDP via sockets [28, cf.]. However, we do not want to go into further
detail here but rather study the exposed primitives on an abstract level.

It has been argued that to be efficient MANET protocols based on the internet protocol
stack must use some sort of a cross-layer architecture [7, cf.]. Most middleware which is
specially tailored to MANETs is directly based on the link layer for maximal control and
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efficiency. Thus, we focus on the link layer primitives in the following and use them in the
remainder of this thesis as a basis for our middleware considerations.

The IEEE 802.11 standard [12] defines protocols for the link and the physical layer. We
assume that the physical, as well as the link layer, is already taken care of by an IEEE
802.11 like protocol. This means that we will not consider low-level details like medium
arbitration, interference, or other properties underneath the link layer.

Definition 2.1 (MANET Link Layer Primitives)
A MANET link layer provides the following asynchronous and reliable communication
primitives: A node may send a packet to another node in its range and a node may
broadcast a packet to every node in its range. As a counterpart of these sending abilities of
nodes, the network may deliver a packet to a node.

See Appendix B.1 for an implementation of those primitives without reliability using Linux
RAW sockets, IEEE 802.11 [12] configured as independent basic service set (IBSS), and a
custom ethernet protocol for protocol discrimination [13, see p. 13]. Protocol discrimination
allows to simultaneously run multiple protocols on the link layer [13, cf.].

In practice, e.g., when using IEEE 802.11, packets are byte strings which are often restricted
in length [13, cf.] and not transmitted reliably. We assume that an appropriate encoding
of high-level structures to byte strings and vice versa exists which is known and used by
all nodes. We further assume that link layer packets can be arbitrary in size. In practice,
this can be archived by splitting them into multiple actual data link packets which are
then reassembled by the receiver. As a result of these assumptions, arbitrary large data
structures can be transmitted using the provided communication primitives. To ensure
reliability acknowledgments and retransmissions on the link layer can be used. Hence, the
primitives defined in 2.1 provide an adequate model of an IEEE 802.11 like protocol with
some extensions feasible and justifiable in practice. We formally refine these primitives in
the next section but let’s first turn to the topology and node mobility models.

2.3.2 Topology and Mobility Model

The link layer primitives leave open various explications of models for the existence of
links, i.e., models of the topology and mobility of nodes. Usually, nodes are assumed to be
scattered on a plane and then connected to each other according to their radio range (see
Figure 2.3). We use a model viewing the topology as an undirected finite graph.
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Figure 2.3: Example Topology with Two Segments

Definition 2.2 (MANET Topology)
A MANET topology is an undirected finite graph G := 〈V,E〉 with a set of nodes V and
a set of links E ⊆ V × V between them. As the graph is undirected we require that
〈v, v′〉 ∈ E with v, v′ ∈ V if and only if 〈v′, v〉 ∈ E.

As a result of this model, links in the model are bidirectional. In practice wireless links might
not conform to this restriction, however, routing in unidirectional networks is considered
quite difficult [24, p. 6] and is thus out of the scope of this thesis. Furthermore, many
existing routing protocols also require bidirectional links for their operation [23, 5, eg.],
and since the transmission powers of wireless hosts in mobile ad-hoc networks are usually
roughly equal, the assumption is realistic most of the time.

As Figure 2.3 shows a MANET might comprise multiple separated segments which we
capture formally through the connected components of the topology graph.

Definition 2.3 (MANET Segment)
A MANET segment of MANET topology G is an undirected finite connected graph
G′ := 〈V,E〉 with a set of nodes V and a set of links E ⊆ V × V between them such that
G′ is a connected component of G. Let seg(G) denote the set of all network segments, i.e.,
connected components, of MANET topology G.

Since communication between multiple segments is impossible we usually assume that
networks are single-segment networks. Nevertheless, network partitions, i.e., the separation
of one segment into multiple segments, as well as network unions respectively reunions,
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i.e., the fusion of multiple segments into one segment, happen in practice and should be
handled gracefully by any decent network protocol, middleware, and application.

In case of the digital message board, nodes interested in the same topics are assumed
to be physically close together because they work on the same physically located task,
e.g., construction of the stage or catering. So, for example, consider the network shown in
Figure 2.3. Nodes E and F could be responsible for the stage and nodes D and F for the
catering. The nodes A and B could be temporarily separated from the other workers, e.g.,
because they need to get new parts for the stage from a nearby truck. Let’s say that the
worker corresponding to node A has found the needed part for the stage and returns to
workers E and F . The application needs to cope with node A leaving the range of node B
and entering the range of node E and F . It then needs to exchange those messages posted
in the meanwhile in both original segments with all nodes in the newly formed segment
which are interested and do not yet possess the respective messages.

As we have seen, one of the main characteristics of MANETs is their dynamically and
continuously changing topology. This is caused by nodes moving around as well as entering
or leaving the network. We capture such changes abstractly through MANET operations
which take an existing topology and yield a new one.

Definition 2.4 (MANET Operations)
A MANET operation is a function from MANET topologies to MANET topologies.

There exist various, more detailed models for the mobility of MANET nodes [25, p. 327
ff.] which could be used to explicate this abstract view on the matter. Nevertheless, this
abstract model is mighty enough to distinguish different kinds of operations or combinations
of those which affect the topology in a significant way.

We introduce the following terminology for MANET operations: When a node joins the
network, then this results in a new node within the topology. Analogously, when a node
leaves the network, then this results in a node less in the topology. If a node moves around
then, this may happen without any noticeable effect on our model at all if the topology
is not changed. Otherwise, if moving affects the model, then wireless links are changed.
Joining and moving can cause network unions, i.e., the union of multiple original segments
into a single new segment. Leaving and moving can cause network partitions, i.e., a single
original segment is divided into multiple new segments.

In this thesis, we do not make any assumptions about the specific operations that happen
on the network other than fairness, i.e., that the network topology does not change with
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a frequency too high for the protocols to account for and that partitions do not happen
between parts of the network which are required to be able to communicate.
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Chapter 3

Open Multi-Agent Systems

Mobile ad-hoc networks are a specific form of open multi-agent systems (OMAS). Open
multi-agent systems are systems comprising multiple communicating agents where agents
might join or leave at runtime [2]. In case of MANETs, the agents are the nodes of the
network communicating with an environment agent using the link layer primitives described
as part of the MANET model in the previous chapter. In this chapter, we formally refine
this model and its communication primitives. To this end, we introduce a formalism for
open multi-agent systems based on previous work by Belardinelli, Grossi, and Lomuscio
[2]. The presented formalism allows the adaption of knowledge-based programs [9, p. 253
ff.] to open multi-agent systems like MANETs which we cover in the next chapter.

3.1 The Formalism

The agents within open-multi agent systems need some means to communicate with each
other. In general, there are multiple different ways to model communication in concurrent
systems [1, p. 35 ff.]. Intuitively, if two agents communicate through an action, then one
agent performs an active action while the other agent is passively affected by the action.
For instance, if a node sends a packet via the network, then the node performs an active
send action while the passive counterpart is accepted by the network. On the other hand,
if the network delivers a message to a node, then the network performs the active action,
and the node is passively affected. Moreover, actions may have different types, e.g., there
is a send and a broadcast action type, which take parameters, like a source address and a
message in case of a broadcast action. In addition, there may also be actions which are
internal, i.e., executed by a single agent and not used for synchronization.
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Formally we capture those intuitive considerations about actions as a means of communi-
cation by a notion of synchronized actions as introduced by Milner for the process calculus
CCS in [21]. Please note that we do not use the complete process calculus CCS here, but
merely import the idea of communication via synchronized actions.

Definition 3.1 (Parametric Actions)
Let Act := {α1, . . . , αn } denote a finite set of parametric action types αi. We distinguish
between active, passive, and internal actions. Let ~v ∈ D∗ be a parameter tuple from
parameter domain D, then α!(~v) denotes an active action, α?(~v) denotes a passive action,
and α(~v) denotes an internal action for every action type α. Let [Act ] denote the set of all
active, passive, and internal actions build form action types in Act , i.e.:

[Act ] := {α!(~v), α?(~v), α(~v) | α ∈ Act and ~v ∈ D∗ }

We often use α to denote an arbitrary but fixed action from [Act ].

For the MANET link layer primitives we introduce three action types, send, broadcast,
and deliver, corresponding to the respective communication primitives introduced in
Definition 2.1. We require that the parameter domain D contains node addresses as well
as packets which allows us to construct actions using the following patterns:

send(src , dst , pkt ) broadcast(src , pkt ) deliver(src , dst , pkt )

For instance, the active action send!(5, 8, “Hello!”) sends, when performed, a packet with
content “Hello!” from node 5 to node 8. After accepting the packet the network delivers it
with deliver!(5, 8, “Hello!”) if and only if there actually is a link between nodes 5 and 8.
The broadcast actions work analogously with the slight difference, that the network looks
up all neighbors and then performs a sequence of delivery actions.

In case of the digital message board example, another action type is necessary, as nodes
may not only communicate with each other but also have some internal message posting
mechanism which is triggered by the user. Therefore, we introduce another action type post
and instantiate it according to the pattern post(msg , topic), e.g., post(“Hello!”, “stage”)
is supposed to post the message “Hello!” to the stage-topic by first internally modifying
the local state and then causing a sequence of send or broadcast actions according to a
network protocol which ensures that the requirements we introduced earlier are met.

Intuitively open multi-agent systems are composed of agents of different types which have
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specific abilities and behave in a specific way. For instance, in a MANET we may have
two agent types, an environment agent type which accepts and delivers packets and an
agent type for nodes. Although dividing the agents into two types, namely, one for the
environment and one for the other agents, might be the most apparent separation there
are other use-cases for agent types. For instance, consider that we would use the digital
message board in a lecture, here we could introduce specific agent types for the lecturer
and the students with different privileges and abilities.

Definition 3.2 (Agent Types)
Let A := {A1, . . . , Ak } denote a finite set of agent types. An agent type A is a tuple
〈Q, ρ, η〉 where Q is a possibly infinite set of local states, ρ : Q → 2[Act ] is a protocol
function, and η : Q× [Act ]→ Q� is a partial effect function. For every agent type A the
effect function is required to be defined for every protocol compliant action, i.e.:

∀q ∈ A.Q : ∀α ∈ A.ρ(q) : A.η(q, α) 6= �

See Appendix A for the used notation.

An agent instance [a] is a tuple 〈A, q〉 composed of an agent type A and a local state
q ∈ A.Q. Let [A] denote the set of all agent instances of agent types from A:

[A] := { 〈A, q〉 | A ∈ A and q ∈ A.Q }

We introduce the following notation for the effect function A.η of agent type A:

〈A, q〉 α−−→ 〈A, q′〉 := A.η(q, α) = q′

In case of the digital message board, we already made plausible that there should be at
least two agent types. Since the specific explication of the local state space, the protocol
function, and the effect function largely depends on the network protocol, we postpone
their precise definition to Chapter 6 and instead continue with the cookie example which
is sufficient to demonstrate the essential features of agent types.

In case of the cookie example, the agent may perform actions of four different types, open,
close, eat, and idle, corresponding to opening the drawer, closing the drawer, eating a
cookie, and doing nothing. Opening the drawer entails an observation, i.e., whether there is
a cookie in the drawer or not. We model this observation by a parameter, i.e., the agent can
perform open!(0) if and only if the drawer is empty and open!(1) if and only if the drawer
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contains a cookie. This is made possible by using an environment agent which provides
the matching passive action based on the state of the drawer. To distinguish between the
environment agent and the agent with the desire to eat cookies, we call the latter agent
the cookie monster. One may see the nondeterministic performance of both open!(0) and
open!(1) by the cookie monster as an experiment with the goal to learn something about
the environment [21]. Figure 3.1 provides a graphical representation of the two agent types
involved in the cookie example.

1 1

00

0

initE?(1)

initE?(0)

eat?()

close?()

open?(1)

close?()

open?(0)

close?()

(a) Environment Agent

1

0

open!(1)

open!(0)

eat!()

idle()

(b) Cookie Monster

Key: State Transition

Figure 3.1: Cookie Example Agent Types

Initially, the environment agent may be in a state where there is either, a cookie in the
drawer (state label “1”) or the drawer is empty (state label “0”). Depending on whether
the drawer is currently opened (blue states) or closed (green states) and whether there is
a cookie in the drawer or not, the environment accepts passive open, close, and eat actions.
The cookie monster, of course, has the desire to eat a cookie and hence opens the drawer
to learn whether there is a cookie in it or not. If there is a cookie in the drawer, then it
performs an eat action. If it knows that the drawer is empty, i.e., either because it was
empty initially or it already ate the cookie, it just does nothing.

For convenience, we also use pseudocode to capture protocol and effect functions as well
as possible local states in a single succinct piece of code. See Code 3.3 for pseudocode
representing the environment agent of the cookie example. The parts between await
statements are executed by the effect function, and the current position within the code as
well as all local variables and the call stack are remembered within the local state. When
there is an await statement, then the agent waits for synchronization with another agent
using one of the actions in the specified set which constitutes the protocol function.
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Code 3.3 (Cookie Example: Environment Agent)

1: while true do
2: if opened ∧ cookie then
3: action := await { close?(), eat?() }
4: else if opened ∧ ¬cookie then
5: action := await { close?() }
6: else if ¬opened ∧ cookie then
7: action := await { open?(1) }
8: else
9: action := await { open?(0) }

10: switch action do
11: case open?(. . .)
12: opened := true
13: case close?()
14: opened := false
15: case eat?()
16: cookie := false

In contrast to traditional multi-agent systems, where agents cannot join or leave at runtime,
we cannot use a fixed set of agents when formalizing open multi-agent systems. Instead,
what is needed is some means to initialize new agents and destruct existing ones. In case of
the digital message board, initialization allows new workers to be added to the system and
destruction allows existing workers to leave the system. Also in the cookie example, the
environment could either be initialized with or without a cookie in the drawer by means of
a special initE action (see Figure 3.1a).

We use special actions for initialization as well as destruction of agents of specific types
which not only allow to initialize agents of the respective type in the beginning but rather
use the already existing synchronization mechanism to initialize new agents at runtime.
For instance, the environment agent type in Figure 3.1a could be initialized by another
agent which performs an active initE action with some parameter.

Definition 3.4 (Agent Initialization and Destruction)
Agents of a specific agent type A are initialized by means of actions of an agent initialize
synchronized action type initA and destructed by means of an agent die internal action
die(). Let ε denote the uninitialized state. We require ε ∈ A.Q for all agent types A. For
every agent type A the protocol function A.ρ needs to satisfy:
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∅ 6= A.ρ(ε) ⊆ { initA?(~v) | ~v ∈ D∗ }

That is, it must be possible to initialize an agent of type A using initA!(~v) with some
parameters ~v. If the agent die action die() is protocol compliant, then the agent needs to
be in the uninitialized state ε after destruction, i.e.:

∀q ∈ A.Q : A.η(q, die()) ∈ { ε,�}

An agent must not be in the uninitialized state after every other action, i.e.:

∀q ∈ A.Q, α ∈ [Act ], α 6= die() : A.η(q, α) = � ∨ A.η(q, α) 6= ε

Using those specific actions we can use the same mechanism to initialize new agents
and to destroy them which we also use for other synchronized actions. To fully formalize
synchronization between agents we first need to introduce a notion of global states.
Intuitively the global state of a system is defined by the local states of all its agents. We
capture this intuition through the following formalization.

Definition 3.5 (Global State)
Let N := { a1, a2, . . . } denote a possibly infinite set of agent names. A global state is a
mapping s : N → [A] from agent names a ∈ N to agent instances [a] ∈ [A]. The active
set of a global state s is the set of agent names of initialized agents:

active(s) := { a ∈ N | s(a).q 6= ε }

A global state s is finite if and only if the set of initialized agent instances is finite, i.e.,
the set active(s) is finite. We define the extension [A]s of an agent type A with respect to
a global state s, i.e., the set of all names of agents of type A, by:

[A]s := { a ∈ N | s(a).A = A }

Let [N ] denote the set of possible global states with agents with names from N , i.e.:

[N ] := { s : N → [A] }

A set S ⊆ [N ] of global states is agent type stable if and only if each agent has a unique
type across all states s ∈ S, that is:
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type-stable(S ⊆ [N ]) := ∀s, s′ ∈ S, a ∈ N : s(a).A = s′(a).A

Based on the local behavior of agents comprising a system we are now able to define a
global transition relation which captures synchronization between agents.

Definition 3.6 (Transition Relation)
We define a global transition relation T ⊆ [N ]× [Act ]× [N ] on global states by means
of the following inference rules. For convenience we introduce the following notational
shortcut for global state transitions:

s
α−−→ s′ := 〈s, α, s′〉 ∈ T

Active and passive actions are executed in a synchronized fashion, i.e., there are two agents,
one performs an active action and the other the passive counterpart. Thereby the local
state transitions are recorded within the global successor state, and all other agents stay
in their previous local state. Formally that is:

∃a, a′ ∈ N , a 6= a′ : s(a) α?(~v)−−→ s′(a) s(a′) α!(~v)−−→ s′(a′) (3.6a)
∀a′′ ∈ N , a 6= a′′ 6= a′ : s(a′′) = s′(a′′) (3.6b)

s
α(~v)−−→ s′

Internal actions are executed by an individual agent without synchronization with other
agents, i.e., they only affect the local state of the performing agent, and the local states of
all other agents stay the same. Formally that is:

∃a ∈ N : s(a) α(~v)−−→ s′(a) (3.6c)
∀a′ ∈ N , a 6= a′ : s(a′) = s′(a′) (3.6d)

s
α(~v)−−→ s′

We define the set of successors of state s by post(s), i.e.:

post(s) :=
{
s′ ∈ [N ]

∣∣∣ ∃α ∈ [Act ] : s α−−→ s′
}

Using those definitions, we are finally able to define formal models for open multi-agent
systems where agents can communicate by means of synchronized actions and join or leave
at runtime.
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Definition 3.7 (Open Multi-Agent System)
Given a possibly infinite set N of agent names, we model an open multi-agent system M
as a tuple 〈N , I〉 where N is a set of agent names and I ⊆ [N ] is an agent type stable set
of finite initial states with ∀s ∈ I : active(s) > 0.

The key idea here is that the initial states already contain an adequate and possibly infinite
number of existing but uninitialized agents such that they can be initialized by other
agents using the special synchronized actions we introduced in Definition 3.4.

By requiring that ∀s ∈ I : active(s) > 0 we require that some of the agents are already
initialized in the beginning. These agents could either be directly set to be in a specific
state or initialized using their respective initialization action. By requiring that the initial
states are finite, we ensure, that at every point in time only a finite amount of agents is
initialized, as the transition relation ensures that one cannot jump from a finite state to an
infinite state. Furthermore, type stability of the initial states ensures that there is a direct
mapping between an agent name and an agent type which holds globally in all reachable
states because the transition relation preserves agent type stability.

We now introduce some other definitions we need in the next chapter.

Definition 3.8 (Paths of the System [1, cf. p. 95])
A finite path fragment π̂ from s0 to sn is a finite state sequence s0s1 . . . sn ∈ [N ]∗ such
that for every 0 < i ≤ n there exists an action α ∈ [Act ] such that si−1

α−−→ si, i.e.:

finite-path(π̂) := ∀0 < i ≤ |π̂| : ∃α ∈ [Act ] : π̂[i− 1] α−−→ π̂[i]

An infinite path fragment π starting in s0 is an infinite state sequence s0s1 . . . ∈ [N ]ω such
that for every 0 < i there exists an action α ∈ [Act ] such that si−1

α−−→ si, i.e.:

infinite-path(π) := ∀0 < i : ∃α ∈ [Act ] : π[i− 1] α−−→ π[i]

We define the set of infinite path fragments starting in s and the set of infinite paths of
M by:

paths(s) := { π ∈ [N ]ω | π[0] = s and infinite-path(π) }

paths(M) :=
⋃

s∈M.I

paths(s)
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Notation 3.9 (Agent Type Extension)
Since every agent a ∈ N is required to have a unique type across all possible initial states
s ∈ I and the transition relation T preserves the agent type (see Definition 3.6) we can
define the extension of agent type A with respect to OMASM denoted by [A]M, or just
[A] if the reference OMAS is clear from the context, by:

[A]M := [A]s for some s ∈M.I

Definition 3.10 (Reachable States)
We define the set of reachable states of OMASM by:

reach(M) := { s′ ∈ [M.N ] | ∃s ∈M.I : ∃π̂ ∈ [N ]∗ : finite-path(sπ̂s′) }

An open multi-agent systemM is adequate if and only if it is deadlock free, i.e., every
reachable state has at least one successor state. For the remainder of this theses, we assume
that all investigated systems are deadlock free.

Definition 3.11 (Deadlock Free)
An OMASM is deadlock free or reactive if and only if every reachable state has at least
one successor state. Formally that is:

deadlock-free(M) := ∀s ∈ reach(M) : ∃s′ ∈ reach(M), α ∈ [Act ] : s α−−→ s′

3.1.1 Comparison to Previous Work

Besides the logic part of [2], there are two main differences between the formalism for
the system model. First, we use synchronized actions without fixed arity instead of joint
actions with fixed arity. Second, we make no assumptions about the nature of local states,
i.e., use black-box states, instead of the local states as database approach.

Synchronized Actions

Belardinelli et al. use joint actions in [2] as means of communication between agents. Joint
actions are tuples of actions containing an action for each agent. They are executed all
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together atomically through a global transition relation, i.e., this transition relation takes
a global state and an action for each agent and then returns a set of possible successor
states. In principle both techniques could simulate each other, i.e., every system which can
be modeled with one type of action can also be modeled with the other. However, they
have an effect on the logic we introduce in the next chapter which is also based on [2]. We
leave further investigation of this impact open to future work.

The difference that matters for us is that synchronized actions formally encapsulate an act
of communication between precisely two agents and they can be seen as experiments, e.g.,
in the example above open!(0) is an experiment to find out whether the drawer is empty
[21, cf.], as that action is only executed if its passive counterpart is enabled. This direct
use for experimentation is not possible with joint actions, because they are executed no
matter what other agents do, or in which state they are [2, cf. p. 3]. We use these kinds of
experiments and encapsulation of a single act of communication in Chapter 6 when we
introduce belief-based programming and take the observation of a synchronized action
as evidence for something, e.g., open!(0) is evidence for an empty desk drawer. For joint
actions, a similar approach does not make much sense, as a joint action is not a single act
of communication but rather an atomically executed version of multiple communication
acts being evidence for different propositions on their own. Whether and how a joint action
can be disassembled into those individual communication acts depends on the global
transition function and presumably would introduce much formal overhead and complexity.
Therefore, we use synchronized actions here and in the remainder of the thesis.

The other difference of joint and synchronized actions is how they treat concurrency.
Synchronized actions explicitly represent concurrency by interleaving of actions while joint
actions execute all the actions atomically in parallel. This has an impact on necessary
fairness constraints because with joint actions in every step each agent gets to perform an
action while this is not the case for synchronized actions.

We leave the exact formal details of the differences between synchronized and joint actions
open for future work and use synchronized actions for the presented reasons.

Back Box Local State

Belardinelli et al. assume more structure on the local states of agents in [2]. In particular,
they represent an agent state as a finite set of database records and directly use them
to define the semantics of their logic, i.e., a predicate P (~x) with parameters ~x holds if
there exists an entry ~x on some agent in the database table corresponding to P . Instead
of using such database instances as local states of the agent and then directly using these
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records to define an epistemic logic, we use black-box states which will later be interpreted
by an interpretation function. This approach generalizes the database approach because
database instances may still be taken to be local states and predicates can appropriately
be defined as we see in the next chapter.

3.2 State-Based Programs

A program, e.g., implementing a network protocol, running on an agent can be disjoint in
two parts. One part implements the effect of an action on the local state, and the other
decides which actions to perform based on the current local state. The former part is
formally captured within the effect function, while the latter is modeled by the protocol
function. We already encountered a version of such programs in terms of the pseudocode
used to specify agent types.

Within open multi-agent systems agents might have multiple options for an action. These
options can be modeled explicitly by using nondeterminism or may be implicitly assumed.
For example, in a MANET a node can send a packet containing the string “Hello World” or
a packet containing the string “Hallo Welt”. However, it cannot just arbitrarily do things,
like directly communicating with nodes which are not in its range or move faster than
the speed of light. To decide between these possible actions an agent must rely on the
information contained in its local state. We now formally introduce a canonical notion of
decision programs which are based on direct tests on the local state of an agent. In the
next chapter, we generalize local decision programs to knowledge-based programs.

Definition 3.12 (Local Decision Programs [9, cf. p. 181])
A local decision program P for an agent type A is a set P ⊆ TL × [Act ] where TL denotes
a set of local state tests which can be evaluated using a local decision procedure:

decideL : TL × A.Q→ B

We require that decideL is computable by the agent. Given an appropriate decision procedure
the program P induces a protocol function ρP :

ρP (q) := {α | 〈t, α〉 ∈ P : decideL(t, q) = >}

We say that P represents the decisions of agent type A in the given OMAS if and only if
ρP = A.ρ, i.e., the program yields the exact same actions as the protocol does. An agent
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type A in an OMAS implements the decision program if and only if the program represents
the decisions of the agent.

Implementing local decision programs is straightforward, as assuming that the effect
function is given, and the induced protocol function only includes actions which are
actually possible for the agent, then we can just use the induced protocol function as the
protocol function of an agent type constructed using the local state space, the existing effect
function, and the induced protocol. Please note that such programs, although they are
implementable, are not guaranteed to yield OMAS which are adequate, i.e., deadlock-free.
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Chapter 4

Knowledge-Based Programming

The fundamental idea of knowledge-based programming is to utilize the knowledge about
the system an agent posses to program its behavior. In the last chapter, we introduced
local decision programs which allow defining the behavior of an agent based on local state
tests. In this chapter, we extend local decision programs with knowledge tests, yielding a
notion of knowledge-based programs [9, p. 253 ff.] for open multi-agent systems.

Knowledge-based programming is the first step towards the more general approach of
belief-based programming. In contrast to beliefs, knowledge must not be false, i.e., every-
thing an agent knows about the system is in fact true. Thus, belief-based programming
can be understood as a generalization of knowledge-based programming allowing agents
to act upon falsehoods. In Chapter 6, we show how to generalize knowledge-based pro-
gramming to obtain a sensible and useful programming paradigm. This, however, requires
the understanding of knowledge-based programming as introduced in this chapter.

We approach the subject matter of knowledge-based programming as follows. Prior to any
application to and formalization within our formalism, we have to become clear about the
nature of knowledge itself. Based upon these considerations about the nature of knowledge,
we subsequently define a logic which includes knowledge (epistemic) and branching time
operators based on [2]. The presented logic is used as a language for both, knowledge tests
appearing in knowledge-based programs and as a means for the specification of epistemic
and temporal correctness properties we want a system to satisfy.

The Nature of Knowledge

In this thesis we use the possible worlds model of knowledge [9, p. 15 ff.]. The intuition
of this model of knowledge is, that an agent knows ϕ, if ϕ holds in all global states (or
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worlds) it has to consider possible. Which global states an agent has to consider possible
depends on the information the agent possesses which is encoded in its local state. Since
this model of knowledge is state-based we need to use a state-based logic as a basis. To
apply this model of knowledge to our formalism, we thus use a variant of modal logic.

The possible worlds model entails some details regarding knowledge. First, as a result of
the model, everything which is known is actually true, because it is the case in all states
the system could be in as far as the agent knows and the actual state has to be in this set.
Thus, the notion of knowledge satisfies the most central necessary condition of knowledge,
namely, that falsehoods are not knowable. Furthermore, the objects of knowledge are
propositions, i.e., sets of possible states (or worlds). As a result thereof, agents are logically
omniscient, i.e., they know all logical truths, as those hold in every state, as well as all
implications of their knowledge, as these hold in every state they consider possible as well
because these are implications of what holds in those states [9, p. 31 ff.].

Formalizing Knowledge

Given the possible worlds model of knowledge — which is the standard model of epistemic
logic and knowledge-based programming — we now formalize this model within our
formalism. Intuitively, the set of states an agent has to consider possible is a subset of the
reachable states of the system. The system cannot be in a state which is not reachable.
Among all the reachable states an agent can only distinguish those classes of global states
in which it has different local information, i.e., has distinct local states. If an agent has the
same local state in two reachable global states, then it has to consider both states possible,
when being in the respective local state. We formally capture this notion by equivalence
classes of indistinguishable reachable global states.

Definition 4.1 (Indistinguishable Global States)
Based on the set of reachable states reach(M) we define agent-relative equivalence classes
[s]aM of global states s ∈ reach(M) by:

[s]aM := { s′ ∈ reach(M) | s(a).q = s′(a).q }

In global state s, an agent a has to consider all states s′ ∈ [s]aM possible, as they are
all indistinguishable given its local state, and they are all reachable. Thus, the system
could be in any of these states, as far as agent a knows. Intuitively, agent a knows that ϕ,
denoted by Kaϕ, if and only if ϕ is true in all those indistinguishable states.
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To make an example from the area of MANETs: If an agent has to consider two global
states possible, one, where there is a link between two nodes and another, where this link
does not exist, then it does neither know that there is a link, nor that there is no link,
since either could be the case. On the contrary, if an agent has to consider only such states
possible, where there is a link, then it knows, that there is a link.

Knowledge in MANETs

Regarding our example of a digital message board, what would be useful knowledge for the
nodes? Let’s start with something fundamental like the network topology of the MANET
itself. To route messages through the network to everyone who is interested, the nodes need
to (partially) know the network topology to determine routes. The topology is entirely
given by the set of all links between the nodes. So, it would be useful, if every node would
know whether there is a link between nodes v and v′, then it could use, e.g., breadth-first
search to determine the shortest path in hops to a specific node.

For a system to actually work with this knowledge, we have a temporal requirement,
namely, that the nodes eventually know about those links they need to route packets. This
might be a subset of the links, but for simplicity, we assume, that they eventually need
to know all links. Please note, this somehow conflicts with the highly dynamic nature of
MANETs, but we postpone this detail to Chapter 6.

To summarize, for knowledge-based programming in MANETs we would like nodes to be
at least able to act upon knowledge about links, namely sending messages along a path
they know exists, and we need that the nodes eventually obtain this knowledge which is a
temporal and epistemic correctness property. So, if we look at this example, then we need
a logic which allows expressing temporal and epistemic properties and some first-order
quantification, e.g., eventually for all nodes and all links.

To this end, we introduce a first-order variant of an epistemic logic including temporal
branching time operators in the next section. The logic not only provides a language for
knowledge tests about the system including its temporal evolution, but it can also be used
to specify epistemic and temporal properties like the one we have seen.

4.1 Epistemic Branching-Time Logic

Computation tree logic [4] (CTL) is a well known and studied branching-time logic. It is
usually defined over a fixed set of atomic propositions [1, p. 317]. We already saw that
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we need quantification to express interesting properties about open multi-agent systems.
Instead of using a fixed set of atomic propositions we borrow the concepts of predicates
and quantification from first-order logic.

Definition 4.2 (Predicates)
Let P := {P1, . . . , Pm } denote a finite set of predicate symbols. A predicate interpretation
I over an interpretation domain U is a function I : P → 2U∗ mapping predicate symbols
P to a set of arguments which satisfy the predicate, i.e., P (u1, . . . , un) with ui ∈ U for
1 ≤ i ≤ n is satisfied by I if and only if 〈u1, . . . , un〉 ∈ I(P ). We call the values u ∈ U
individuals. We also refer to U as the universe.

For our example a predicate could be link(v, v′) which holds if and only if there is a wireless
link between the nodes v and v′. To evaluate whether a predicate holds in a given global
state or not, we assign an interpretation to each reachable state.

Definition 4.3 (Interpretation Assignment)
An interpretation assignment ν for OMASM assigns a predicate interpretation to each
reachable state s ∈ reach(M) of an open multi-agent systemM, i.e.:

ν : reach(M)→ P → 2U∗

In the case of link we can define an interpretation assignment by

ν(s)(link) := s(e).q.G.E

where e is the agent name of the environment agent and G.E is the set of edges of the
network graph stored in its local state. As a result, 〈v, v′〉 ∈ ν(s)(link) holds if and only if
there is a link in state s between nodes v and v′. Hence, link(v, v′) holds in state s if and
only if in state s exists a link between nodes v and v′.

Based on these predicates we now inductively define a logic which allows building more
powerful statements including temporal and epistemic expressions.

Definition 4.4 (CTLKx Syntax)
We define the syntax of CTLKx formulae ϕ inductively by means of the following ab-
stract grammar where Pi ∈ P is a predicate symbol, x ∈ ΣX is a variable symbol,
c ∈ ΣC is a constant symbol, and τ1, . . . , τn is a variable amount of first-order terms:
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ϕ ::= Pi(τ1, . . . , τn) | τ1 ≡ τ2 | ∃x. ϕ | ¬ϕ | ϕ1 ∧ ϕ2 | Aψ | Eψ | κ (state formula)

κ ::= Kaϕ | Kxϕ (epistemic formula)

τ ::= x | c (first-order term)

ψ ::= Xϕ | ϕ1 U ϕ2 (path formula)

In addition we define the derived operators ∀, ∨, →, and ↔. The universal quantifier ∀
is defined as the dual of the existential quantifier, i.e., ∀x. ϕ := ¬(∃x.¬ϕ), and the other
boolean operators ∨, →, and ↔ are as usual derived from ∧ and ¬ [1, see p. 232].

Since CTLKx is a derivate of CTL we also introduce the usual derived CTL operators [1,
p. 318, p. 334] where “true” is a zero-ary predicate with ∀s : ν(s)(true) := { 〈〉 }:

AFϕ := A(trueUϕ) EFϕ := E(trueUϕ) EGϕ := ¬AF¬ϕ AGϕ := ¬EF¬ϕ

E(ϕ1Wϕ2) := ¬A((ϕ1 ∧ ¬ϕ2)U(¬ϕ1 ∧ ¬ϕ2))

A(ϕ1Wϕ2) := ¬E((ϕ1 ∧ ¬ϕ2)U(¬ϕ1 ∧ ¬ϕ2))

A CTLKx formula ϕ is well-formed if and only if it does not contain unbound variables,
i.e., each occurrence of x and Kx is preceded by an existential quantifier ∃x. in the syntax
tree. Let the set of all well-formed CTLKx formulae ϕ be denoted by Φ. In the remainder,
we implicitly assume that formulae are well-formed.

The CTLKx syntax is based on the syntax of FO-CTLKx as defined in [2, p. 3] with two
main differences. First, the predicates do not have a fixed arity, and second, there is no
distinction between agent variables and individual variables. Instead, we later introduce
syntactic sugar to express quantification over agents of a specific type.

CTLKx Semantics

We now define the semantics of CTLKx formulae which are evaluated in the context of a
given state of an OMAS and an assignment for variable and constant symbols.

Definition 4.5 (Variable and Constant Assignment)
A variable and constant assignment is a function σ : ΣX ·∪ ΣC → U assigning to each
variable symbol x ∈ ΣX and constant symbol c ∈ ΣC an individual from U . We say that,
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x is bound to u ∈ U by σ if and only if σ(x) = u. Let ΣX
C := ΣX ·∪ΣC denote the set of all

variable and constant symbols. We assume without loss of generality, that ΣX
C and U are

disjoint. For convenience we further define σ(u) := u for u ∈ U . Let Σ ⊆
{
σ : ΣX

C → U
}

denote the set of all assignments such that all constant symbols are assigned to fixed values
from U , i.e., ∀σ, σ′ ∈ Σ : ∀c ∈ ΣC : σ(c) = σ′(c).

Definition 4.6 (CTLKx Semantics)
Given an OMAS M, a reachable state s ∈ reach(M), a variable and constant assign-
ment σ ∈ Σ, and an interpretation assignment ν, we define a satisfaction relation � by:

〈M, s, σ〉 � Pi(τ1, . . . , τn) iff 〈σ(τ1), . . . , σ(τn)〉 ∈ ν(s)(Pi)

〈M, s, σ〉 � τ1 ≡ τ2 iff σ(τ1) = σ(τ2)

〈M, s, σ〉 � ∃x. ϕ iff ∃u ∈ U : 〈M, s, σ[x 7→ u]〉 � ϕ

〈M, s, σ〉 � ¬ϕ iff 〈M, s, σ〉 6� ϕ

〈M, s, σ〉 � ϕ1 ∧ ϕ2 iff 〈M, s, σ〉 � ϕ1 and 〈M, s, σ〉 � ϕ2

〈M, s, σ〉 � Kaϕ iff ∀s′ ∈ [s]aM : 〈M, s′, σ〉 � ϕ

〈M, s, σ〉 � Kxϕ iff σ(x) ∈M.N and 〈M, s, σ〉 � Kσ(x)ϕ

〈M, s, σ〉 � Aψ iff ∀π ∈ paths(s) : 〈M, π, σ〉 � ψ

〈M, s, σ〉 � Eψ iff ∃π ∈ paths(s) : 〈M, π, σ〉 � ψ

〈M, π, σ〉 � Xϕ iff 〈M, π[1], σ〉 � ϕ

〈M, π, σ〉 � ϕ1Uϕ2 iff ∃j ≥ 0 : 〈M, π[j], σ〉 � ϕ2 and ∀0 ≤ i < j : 〈M, π[i], σ〉 � ϕ1

The CTLKx semantic is based on the semantic of FO-CTLKx as defined in [2, p. 4]
with the main difference that predicates are freely definable on global states through an
interpretation assignment. This allows expressing system properties which depend on local
states of multiple agents. For instance, in a temperature sensor MANET, the property of
the average temperature among all nodes is not a property defined via an individual node.
In [2] predicates are defined via a union of agent local database instances, comparable to a
union of agent local predicate interpretations. Hence, FO-CTLKx does not allow to define
predicates based on multiple local states of multiple agents. In our formalism database
instances can be encoded in the local states and predicate assignments can be created
accordingly. Therefore, our formalism is more expressive regarding predicates.

Agent-Type Quantifiers

The other main difference between [2] and CTLKx is that CTLKx does not distinguish
between agent and individual variables. Instead, we provide syntactic sugar to quantify over
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agents of a specific type and define Kxϕ to be not satisfied if x is bound to an individual
which is not an agent-name. Based on that we define the following syntactic sugar for
agent-type quantifiers which is made possible by the freely definable predicates.

Notation 4.7 (Agent-Type Quantifiers)
Assuming that the interpretation domain U contains all agent names, i.e., N ⊆ U , we
define an existential quantifier over agents of type A as syntactic sugar by:

∃x : [A]. ϕ := ∃x. is-agent(x,A) ∧ ϕ

Whereby is-agent(x,A) is an auxiliary predicate which holds if and only if the value bound
to x is an agent name for an agent of type A in the respective OMAS, i.e.:

ν(s)(is-agent) := { 〈a,A〉 | s(a).A = A }

Analogously to the universal quantifier over individuals, we define an universal quantifier
over agents of type A by the dual of the agent-type existential quantifier:

∀x : [A].ϕ := ¬(∃x : [A].¬ϕ)

Before we have a look at useful examples, we prove that agent-type quantifiers have the
intended semantics, i.e., that ∃x : [A].ϕ holds if and only if there is an agent name which
denotes an agent of type A and is bound to the variable x such that ϕ is satisfied.

Theorem 4.8 (Semantics of Agent-Type Quantifiers)
The agent-type quantifier ∃x : [A].ϕ has the intended semantics, i.e.:

〈M, s, σ〉 � ∃x. is-agent(x,A) ∧ ϕ⇐⇒ ∃a ∈ [A]s : 〈M, s, σ[x 7→ a]〉 � ϕ (4.8)

Proof If ∃x.is-agent(x,A) ∧ ϕ, then there is an u ∈ U such that is-agent(x,A) and ϕ
are satisfied by assignment σ[x 7→ u]. Since is-agent(x,A) is satisfied, x has to be bound
to an u such that s(u).A = A, hence u ∈ [A]s. Therefore, there exists an a ∈ [A]s such
that ϕ is satisfied under the assignment σ[x 7→ a], i.e., ∃a ∈ [A]s : 〈M, s, σ[x 7→ a]〉 � ϕ.

If there exists an agent name a ∈ [A]s such that ϕ is satisfied by assignment σ[x 7→ a],
then is-agent(x,A) and ϕ are satisfied by assignment σ[x 7→ a]. Hence, σ[x 7→ a] satisfies
is-agent(x,A) ∧ ϕ by Definition 4.6. Since [A]a ⊆ N ⊆ U , also a ∈ U . Therefore, there
exists an u ∈ U such that is-agent(x,A) ∧ ϕ is satisfied by the assignment σ[x 7→ u]. �
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The agent-type quantifiers come in handy when we need to express properties like that
every node in the MANET knows about every wireless link. Formally we express this by

∀x : [N ].∀v.∀v′. link(v, v′)→ Kxlink(v, v′)

where N is the agent-type of nodes. If we combine this with the temporal operator for
all-paths eventually, AF , we can express the property that every node eventually knows
all the links between all nodes:

AF∀x : [N ].∀v.∀v′.link(v, v′)→ Kxlink(v, v′)

We now formally incorporated implicit knowledge in terms of the possible worlds model
into the formalism. Please note, this does not mean, that an agent can explicitly compute
what it implicitly knows given its local state. As we show in the next chapter knowledge
in open multi-agent systems is undecidable in general.

The main goal of this chapter is to introduce a notion of knowledge-based programs for
open multi-agent systems by extending local decision programs with knowledge tests based
on CTLKx formulae. We now have all the basic tools needed to define knowledge-based
programs for open multi-agent systems based on the presented logic.

4.2 Knowledge-Based Programs

Knowledge-based programs have been introduced in [9]. The fundamental idea is to extend
the local state tests of regular decision programs with additional knowledge tests which test
the implicit knowledge of an agent. We extend the approach of knowledge-based programs
to our formalism and by that to open multi-agent systems.

The original notion of knowledge-based programs used a notion of agent-relative knowledge
as a basis for decisions. Although we have introduced a notion of agent-relative knowledge
for open multi-agent systems — constituted by the agent-relative Ka operator — we cannot
use it directly for knowledge-based programs because programs must be agent-type relative
for open multi-agent systems. Thus, we adapt the notion of agent-relative knowledge
programs to agent-type relative knowledge programs. To this end, we introduce knowledge
sets which allow us to introduce a notion of agent-type relative knowledge.
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Knowledge Sets

We start with an agent-relative knowledge set which, as we show, adequately captures the
notion of agent-relative knowledge.

Definition 4.9 (Agent-Relative Knowledge Set)
We define the agent-relative knowledge set KaM(q) ⊆ Φ of agent a in state q, i.e., the set of
all formulas ϕ ∈ Φ the agent a knows when it is in state q, by:

KaM(q) := {ϕ ∈ Φ | ∀s ∈ reach(M), s(a).q = q : 〈M, s, σ〉 � ϕ }

Please keep in mind, that Φ by Definition 4.4 contains only well-formed formulae, i.e.,
formulae without free variables. By Definition 4.5 every σ ∈ Σ assigns the same individuals
to constants. Hence, we can use an arbitrary σ ∈ Σ here, because the variable assignments
do not matter and the constant assignments are identical across all σ ∈ Σ.

Theorem 4.10 (Agent-Relative Knowledge Set)
The agent-relative knowledge set adequately captures agent-relative knowledge, i.e.:

ϕ ∈ KaM(s(a).q)⇐⇒ 〈M, s, σ〉 � Kaϕ

Proof by equivalence transformation:

ϕ ∈ KaM(s(a).q)
(4.9)⇐⇒ ∀s′ ∈ reach(M), s′(a).q = s(a).q : 〈M, s′, σ〉 � ϕ
(4.1)⇐⇒ ∀s′ ∈ [s]aM : 〈M, s′, σ〉 � ϕ
(4.6)⇐⇒ 〈M, s, σ〉 � Kaϕ �

Based on agent-relative knowledge sets, we define an agent-type relative knowledge set,
for each agent type A and local state q ∈ A.Q.

Definition 4.11 (Agent-Type-Relative Knowledge Set)
Given an agent type A and a local state q ∈ A.Q, we define the agent-type relative
knowledge set KAM(q) of agent-type A in state q by:

KAM(q) :=
⋂

a∈[A]M

KaM(q)
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Intuitively this means, that the agent-type relative knowledge set comprises those formulae
that are known by every agent of type A in state q. To further investigate the relation
between agent-relative and agent-type relative knowledge we define a notion of self-
knowledge, i.e., under which circumstances an agent knows which agent it is.

Definition 4.12 (Agent Self-Knowledge)
An agent a of type A knows that it is agent a of type A in local state q if and only if no
other agent a′ of type A ever reaches local state q. Formally:

know-selfM(q, a) := ∀a′ ∈ [A]M, a′ 6= a : ∀s ∈ reach(M) : s(a′).q 6= q

Intuitively this means, if agent a is in state q it knows, that it must be agent a as no other
agent of its type can be in state q. This is an adequate extension of the possible worlds
model, as it captures which concrete agents an agent has to consider possible for itself.
For traditional multi-agent systems, there exists only one agent of each type, and thus
agents implicitly know which agents they are as they know their type. We now prove that
if an agent knows which agent it is, then the agent-type relative knowledge set is identical
with the agent-relative knowledge set (see Theorem 4.14).

Lemma 4.13 (Unreachable State Knowledge Set)
If a local state q is never reached by an agent a, then Ka

M(q) = Φ. Formally:

(∀s ∈ reach(M) : s(a).q 6= q) =⇒ Ka
M(q) = Φ

Proof If (∀s ∈ reach(M) : s(a).q 6= q), then there is no s ∈ reach(M) such that s(a).q =
q. If there is no s ∈ reach(M) such that s(a).q = q, then ∀s ∈ reach(M), s(a).q = q :
〈M, s, σ〉 � ϕ holds for every ϕ ∈ Φ. Thus, KaM(q) = Φ, by Definition 4.9. �

Theorem 4.14 (Agent-Type-Relative and Agent-Relative Knowledge)
If an agent a of type A knows that it is agent a in state q, then the agent-type relative
knowledge in q is identical to the agent-relative knowledge of a in q. Formally:

know-selfM(q, a) =⇒ KAM(q) = KaM(q)

Proof If know-self(q, a), then ∀a′ ∈ [A], a′ 6= a : Ka′(q) = Φ by Definition 4.12 and
Lemma 4.13. Therefore, KA(q) = Ka(q) by Definition 4.11 and 4.9. �
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Theorem 4.14 allows us to capture the original notion of agent-relative knowledge programs
[9, see p. 253 ff.] by explicitly requiring that the agents know who they are. Hence,
agent-type relative knowledge programs for open multi-agent systems are an extension
of knowledge-based programs in traditional multi-agent systems where this assumption
is implicitly present. Before we define knowledge-based programs for open multi-agent
systems, we define knowledge tests which are used by knowledge-based programs in addition
to local state tests.

Definition 4.15 (Knowledge Tests)
We define the syntax of knowledge tests by the following abstract grammar

k := ¬k | k1 ∧ k2 | Kϕ

where ϕ ∈ Φ is a CTLKx formula. The other boolean connectives are defined as usual. Let
TK denote the set of knowledge tests.

Given a knowledge test k, a state q, and a function K for a knowledge set, we define the
semantics of knowledge test k recursively through the following evaluation function:

J¬kKK(K, q) :=

> iff JkK(K, q) = ⊥

⊥ otherwise

Jk1 ∧ k2KK(K, q) :=

> iff Jk1K(K, q) = Jk2K(K, q) = >

⊥ otherwise

JKϕKK(K, q) :=

> iff ϕ ∈ K(q)

⊥ otherwise

Based on knowledge tests we define knowledge-based programs as an extension of local
decision programs.

Definition 4.16 (Knowledge-Based Programs)
An knowledge-based program PK [9, cf. p. 253 ff.] for an agent type A is a set PK ⊆
TL×TK × [Act ] where TL again denotes a set of local state tests and TK denotes the set of
knowledge tests. A knowledge-based program PK induces the following protocol function:

ρPK
(q) :=

{
α
∣∣∣ 〈tl, k, α〉 ∈ P : decideL(tl, q) = > and JkKK

(
KAM, q

)
= >

}
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Just like for local decision programs we say that PK represents the decisions of agent type
A in the given OMAS if and only if ρPK

= A.ρ, i.e., the program yields the exact same
actions as the protocol does. An agent-type A in an OMAS implements a knowledge-based
program if and only if the program represents the decisions of the agent.

Let’s take a step back from the definitions and reconsider the cookie example, how could a
knowledge-based program for the cookie monster look like? While explaining the original
program, we already used the term “knows”, namely, that the cookie monster eats the
cookie if it knows that there is a cookie. With the formalism of knowledge-based programs
we can now obtain a knowledge-based program (see Code 4.17) which exactly captures
this intuitive description of the behavior in terms of knowledge and is implemented by the
cookie-eating OMAS introduced in the last chapter (see Figure 3.1).

Code 4.17 (Cookie Monster Knowledge-Based Program)

1: if ¬K(cookie()) ∧ ¬K(¬cookie()) then { open!(1), open!(0) }
2: if Kcookie() then { eat!() }
3: if K¬cookie() then { idle() }

The first line of Code 4.17 checks whether the agent knows that there is a cookie or that
there is no cookie in the drawer. If the agent does neither know that there is a cookie, nor
that there is no cookie, then it opens the drawer. As a result of opening the drawer the
agent knows whether there is a cookie or not, as the observation, i.e., open!(1) or open!(0),
is stored in the local state (see Figure 3.1b). If the agent now knows, that there is a cookie,
then it eats the cookie. If it knows, that there is no cookie, then it idles.

Unlike local decision programs which can be implemented straightforwardly, knowledge-
based programs require a more sophisticated synthesis step, i.e., searching for an OMAS
which implements a program for a specific agent [30]. This is mainly due to an infinite
regress, i.e., what agents know in the agent-type relative sense in a certain local state
depends on their actions, and their actions are defined utilizing their knowledge.

Implementability

Consider the knowledge based-program Code 4.18 and assume the drawer is initially opened
and the agent knows that there is a cookie in it.
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Code 4.18 (Unimplementable Knowledge-Based Program)

1: if K(AG cookie()) then { eat!() }
2: if ¬K(AG cookie()) then { τ }

The two knowledge tests are exhaustive and disjoint, i.e., exactly one of them must evaluate
to true. If the agent itself does not eat the cookie, then no other agent does. Hence, if the
agent does not execute eat!(), AG cookie() holds and the agent knows that it holds, as it
knows, initially that there is a cookie in the drawer. Hence, K(AG cookie()) would hold,
if the agent would not decide to eat the cookie, but, if K(AG cookie()) holds, the agent
decides to eat the cookie. This means, we can never execute eat!(). But neither can we not
execute eat!() because then we would have to execute eat!(). This leads up to a vicious
infinite regress, i.e., knowledge depends on the actions taken and the actions taken depend
on the knowledge without any hope to eventually well-ground the knowledge or actions.
The knowledge-based program Code 4.18 is thus not implementable. Whether a program
has an actual implementation is often not obvious or even undecidable [19] and makes
it thus very hard for a programmer to program something. This makes knowledge-based
programs unsuitable as a basis for a general MANET middleware, although proving a
useful notion of knowledge-based programming.

4.3 Algorithmic Knowledge Programs

Another weaker explication of knowledge-based programming are algorithmic knowledge
programs [9, p. 402 ff.]. Algorithmic knowledge programs are based on an algorithmic
inference capacity which allows computing explicit agent-type relative knowledge given
the local state of an agent.

Definition 4.19 (Algorithmic Inference Capacity)
An algorithmic inference capacity for an agent type A is a function from CTLKx formulae
and local states to a three-valued truth domain [9, cf. p. 394 f.], i.e.:

ΛA
M : Φ× A.Q→ {>, ?,⊥}

We define the extension
[
ΛA
M

]
(q) of an algorithmic inference capacity in state q as the set
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of formulae which are known according to the inference capacity, i.e.:

[
ΛA
M

]
(q) :=

{
ϕ ∈ Φ

∣∣∣ ΛA
M(ϕ, q) = >

}

Definition 4.20 (Soundness of Inference Capacity [9, cf. p. 397])
An inference capacity is sound if and only if every formula which is known according to
the inference capacity in state q is actually known in state q, i.e.:

∀q ∈ A.Q : ∀ϕ ∈ Φ :
ΛA
M(ϕ, q) = > =⇒ ϕ ∈ KAM(q)

ΛA
M(ϕ, q) = ⊥ =⇒ ϕ 6∈ KAM(q)

Definition 4.21 (Completeness of Inference Capacity [9, cf. p. 397])
An inference capacity is complete with respect to a subset Ψ ⊆ Φ of CTLKx formulae if
and only if:

∀q ∈ A.Q : ∀ϕ ∈ Ψ : ΛA
M(ϕ, q) ∈ {>,⊥}

An inference capacity is complete if and only if it is complete with respect to Φ.

Explicit knowledge is more fine-grained than implicit knowledge. It is defined on a pure
syntactical level, and it is thus technically possible that logically equivalent formulae
evaluate differently. Algorithmic knowledge provides a solution for the logical omniscience
problem, i.e., that agents are omniscient assuming the possible worlds model [9, cf. p. 333],
but in practice, they are not most of the time. An algorithmic inference capacity which is
both sound and complete, however, does resemble implicit knowledge completely.

Based on algorithmic knowledge we define algorithmic knowledge programs.

Definition 4.22 (Algorithmic Knowledge Program)
An algorithmic knowledge program PKA is a knowledge-based program with different
semantics for the induced protocol, namely that knowledge tests are evaluated using the
algorithmic inference capacity instead of agent-type relative knowledge sets, i.e.:

ρPKA (q) :=
{
α
∣∣∣ 〈tl, k, α〉 ∈ P : decideL(tl, q) = > and JkKK

([
ΛA
M

]
, q
)

= >
}

If we write down an algorithmic knowledge program, then finding an algorithm which is
both sound and complete with respect to all occurring knowledge queries is as hard as
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the original problem of implementing knowledge-based programs. Also, programs based
on algorithmic knowledge might not be implementable in the sense that there exist such
algorithms, as algorithmic knowledge produced by a sound and complete inference capacity
is essentially implicit knowledge leading up to the same potentially vicious infinite regress.
Thus, the problem merely shifts to the knowledge deduction algorithm, and we are back to
square one. We now face the challenge that knowledge-based programs are too strong, in
the sense that they are based on knowledge about the same system in which the actions
get executed leading to a possibly vicious infinite regress, and for algorithmic knowledge
programs we need adequacy criteria weaker than soundness and completeness but still
strong enough to be useful. Otherwise, we get the same problems as for knowledge-based
programs for algorithmic knowledge programs.

4.4 Towards a MANET Middleware

While this chapter provides the first major contribution of this thesis, namely a notion
of knowledge-based programs for open multi-agent systems, it also raises two further
challenges for the general applicability of knowledge-based programs.

We have seen in this chapter that, although the idea of knowledge-based programs is
very appealing and the first step in the right direction towards belief-based programming,
they have a major shortcoming. Not every program is implementable, and it could be
challenging or even impossible for the programmer to see whether the current program
she writes will be implementable. Moreover, the knowledge model itself is too strong. Very
much in MANETs is not knowable within the possible worlds model of knowledge. For
instance, unpredictable and not observable topology changes make it impossible to know
anything about the topology, as the agents cannot update their local states synchronously
to topology changes and hence, an agent has to consider many topologies possible. As a
matter of fact, an agent cannot know anything about the topology if one does not restrict
topology changes to a very limiting model.

In the next two chapters, we tackle those two shortcomings by weakening knowledge-based
programs. In the first step, we tackle the first shortcoming arriving at something very
similar to knowledge-based programs but guaranteed to be implementable. In the second
step, we weaken the knowledge aspect itself by introducing beliefs. This makes it finally
possible to act upon beliefs about the topology and can be explicated in useful ways
although, unlike knowledge, beliefs are not required to be true.
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The Nomological Framework

Not all knowledge-based programs as introduced in the last chapter are implementable
[30] and it might not be obvious or even undecidable [20] whether they are or not. This
makes them unsuitable as a basis for a general MANET middleware. In this chapter, we,
therefore, weaken the notion of knowledge-based programs such that the resulting notion of
knowledge-based programming guarantees implementability of all programs which adhere
to some very basic criteria. The resulting nomological framework also serves as a general
basis for belief-based programming as well as for normative adequacy criteria for beliefs
and thus plays a central role in this thesis.

We begin this chapter with a brief investigation of the fundamental problem which allows for
unimplementable knowledge-based programs. Subsequently, we introduce the nomological
framework, explain how it circumvents this fundamental problem.

Knowledge-based programs require a synthesis step, where we search for a system which
implements them [19]. This is required because knowledge tests are evaluated within
the same system in which the actions are performed [8]. Which actions are performed
depends on the knowledge which on the other hand depends on the actions performed.
Another notion of knowledge-based programs has been introduced in [15] and [26] where
the knowledge is assumed to be explicitly stored in the local state making those programs
more like our local decision programs [8, cf. p. 7].

The key problem which leads to unimplementable knowledge-based programs is — as we
already saw in the last chapter — that knowledge tests are evaluated within the same
system in which the actions are performed leading to a possibly vicious infinite regress.

The fundamental idea of this chapter is to distinguish two views on a system, both
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described using the formalism for open multi-agent systems introduced in Chapter 3. The
nomological view and the actual view captured by the nomological system and acutal
system respectively. Knowledge tests are evaluated on the nomological view, i.e., in the
nomological system, while actions are performed on the actual view, i.e., in the actual
system. This circumvents the infinite regress problem by separating the system in which
knowledge tests are evaluated from the system in which actions are performed. Hence, it
circumvents the fundamental problem of knowledge-based programs. In the remainder, we
have a closer look at both views and how they are related to each other.

5.1 Nomological System

A nomological system is an open multi-agent system which describes general laws. These
include the options for action available to agents utilizing nondeterminism and the nomo-
logical effects of those actions on agents.

The word nomological refers to basic physical laws or rules of reasoning and originates
from the Greek word nomos for law and logos for reason. It is often used in philosophy to
distinguish between different kinds of modalities, e.g., ϕ ∨ ¬ϕ is a logical necessity while
that nothing can move faster than the speed of light is a nomological necessity [10, cf. p.
5], i.e., necessary by the laws of physics. These nomological necessities restrict the way the
actual world can evolve, e.g., it is not possible that an object moves faster than the speed
of light in the actual world.

Just like the laws of physics restrict our actions and determine their effects, the nomological
system restricts the options for action of agents within an OMAS and determines at least
partially their effect. We refer to the agent types of the nomological system as nomological
agent types. We refer to the actions an agent can perform as the nomological actions or
options and to their effect as the nomological effect. Just like humans have the innate
ability to learn, we require that agents have some kind of innate nomological abilities, that
is, actions they are capable of performing and corresponding nomological effects of those
actions. These abilities must be strong enough such that they can be used to do what the
agents are supposed to do.

Freedom of choice, i.e., that an agent can choose between multiple actions is modeled by
means of nomological nondeterminism, i.e., nondeterminism in the nomological system
which is resolved by choosing an action in the actual system. This gives us a first idea of
how we obtain the actual system. We use a program which uses knowledge an agent posses
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about the nomological system to resolve the nomological nondeterminism, i.e., decides
which of the available options for action to perform.

To make an example of how this could look like: Let’s assume you have two options for
action, you can either turn on a stove with a pot of water on it, or you cannot do so. If
your turn on the stove, the water will eventually boil. This effect is nomological, it is done
to the water by the laws of physics, and you cannot influence it. You can, although, decide
whether you initially want to turn on the stove or not. It works just the same within the
nomological framework, agents cannot influence nomological effects, but they can decide
between several nomological possibilities for action explicitly encoded in the nomological
system by means of nomological nondeterminism.

Agents act within the frame of the nomological system. Maybe, we would like to move
faster than the speed of light, but that is just nomologically impossible, so we cannot do it.
We have to stick to options which are nomologically given. The same holds for the agents
in a MANET, maybe a node wants to send a message to a node within another MANET
segment, but that is just nomologically impossible. An adequate nomological MANET
model would capture these possibilities for action of the nodes.

Nomologically enforced actions are actions the agent has no control over, they are basic
reactions triggered by interacting with other agents. They are comparable to, e.g., the blink
reflex of human beings which bypasses the human brain completely and just immediately
reacts to an external stimulus. The same is true for nomologically enforced actions which
cannot be prevented using a decision program running on the agent, as they are directly
triggered and bypass any decision procedure.

Figure 5.1 shows a nomological cookie-eating model. The agent can decide to do nothing
in each state, the agent can decide to open the drawer in the initial state, and the agent
can decide to eat the cookie, after opening the drawer and seeing that there is a cookie.
This intuitively encodes all nomologically possible actions.

It is crucial to note here that the agents need some means to know which actions are
nomologically possible to choose among them which directly leads to knowledge, e.g., in
Figure 5.1 the agent may only eat the cookie if there actually is a cookie. If one wants
to prevent this kind of knowledge leakage, then every action has to be possible in every
state. Nevertheless, an action could still fail to synchronize, e.g., because the environment
does not let an agent eat a cookie which is not there. This would allow an agent to do
experiments to learn something about the environment but somehow contradicts the idea
that the nomological options are actual options for action. Another way to deal with
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Figure 5.1: Nomological Cookie Monster Agent Type

knowledge leakage is to map actions like eating a cookie which is not there to error (sink)
states, which would require agents to learn somehow which actions they actually can
perform, or ignoring them altogether.

5.2 Nomological Knowledge

The acquisition of knowledge is also a nomologically enforced effect. We cannot decide what
we know. Rather it is given by how the world works. We can although decide which actions
to perform based on our knowledge which might indirectly modify our knowledge. So, agents
do not get to decide what they know and what they do not know, at least not directly. They
can, however, decide to perform actions selected among the nomological options for action.
Performing certain actions leads to an implicit effect on their knowledge. Nomological
knowledge is the knowledge agents have about the nomological system. LetMN denote a
nomological OMAS. We can now formally define agent-relative and agent-type relative
nomological knowledge by means of knowledge sets onMN .

Definition 5.1 (Nomological Knowledge Sets)
We define agent relative nomological knowledge of agent a by KaMN

and agent-type relative
nomological knowledge of agents of agent type A by KAMN

.

Based on this knowledge set definition we define nomological knowledge programs.

Definition 5.2 (Nomological Knowledge Programs)
Let PN ⊆ TL × TK × [Act ] be a nomological knowledge program. Given an additional
state space Q for storing non nomological state, nomological knowledge programs induce a
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protocol function for augmented states 〈qn, q〉 ∈ A.Q×Q:

ρPN
(〈qn, q〉) :=

{
α
∣∣∣ 〈tl, k, α〉 ∈ PN : decideL(tl, 〈qn, q〉) = > and JkKK

(
KAMN

, qn
)

= >
}

We call PN valid for nomological agent type A if and only if the actions chosen are a
subset of the nomological options of A and a superset of the nomologically enforced actions,
formally encoded by means of an enforcement protocol ρE, i.e.:

∀q ∈ Q : ρE(qn) ⊆ ρPN
(〈qn, q〉) ⊆ A.ρ(qn)

If PN is valid for A we obtain an augmented agent type A′ with

A′.Q := (A.Q×Q) ∪ { ε }

A′.η(〈qn, q〉, α) := 〈A.η(qn, α), η(〈qn, q〉, α)〉

A′.ρ(〈qn, q〉) := ρPN
(qn, q)

where η : A.Q × Q → Q is an additional effect function for the augmented states. The
augmented agent type needs to fulfill Definition 3.2 and 3.4. For simplicity we treat the
uninitialized state ε and 〈ε, ε〉 equivalently. If at least one of the effect functions that make
up A′.η is undefined for the given parameters, then A′.η is also undefined. We can now
implement PN by swapping the original agent type A inMN with the augmented agent
type A′ in all initial states of the nomological system yielding a new systemM. Formally
we replace each initial state s ∈MN .I with a state s′ such that

s′(a) :=

〈A
′, 〈s(a), q0〉〉 iff s(a).A = A

s(a) otherwise

where q0 ∈ Q is either ε, if s(a) = ε, or some other arbitrary state from Q.

In Definition 5.2 we use the nomological knowledge to decide which actions to take and
then derive a new OMAS by replacing the protocol of the respective compatible agent type.
Since the program is required to be valid implementing nomological knowledge programs
can be seen as reducing nomological nondeterminism, i.e., the resulting system contains
less nondeterminism than the original nomological OMAS.

Programs based on nomological knowledge can do more than deciding which actions
to take. Since the knowledge is also available when updating the augmented state (see
Definition 5.2), we can use knowledge to compute this state and then use local state tests
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based on these computation results. We see how we can utilize this extended notion and
use knowledge respectively beliefs to compute successor states in the next chapter.

According to the nomological notion of knowledge an agent does not know what it will do
in the future. This makes sense since what it will do might depend on what others do which
again might depend on what the agent itself does. So, this could again lead to a possibly
vicious infinite regress which we prevent by not making any assumptions about the future
actions of an agent. However, an agent might be able to resolve some nondeterminism in
the nomological system by carefully analyzing its own nomological knowledge program
and those of others and check whether some decisions only depend on already determined
knowledge. Furthermore, after fixing a nomological knowledge program for a specific agent
type, we get a new nomological system which could be used as a basis for other agents, i.e.,
technically we could fix various decisions of the agents which are already determined in an
iterative process and by that resolve nondeterminism potentially strengthening knowledge
in each step. We leave further investigation of this open to future work.

Depending on the particular scenario, it might make sense to restrict the options for action
to active actions and enforce that an agent accepts all nomologically possible passive
counterparts for actions of other agents. For instance, for MANETs, an agent might choose
which packets to send, but it cannot decide which packets to accept.

Definition 5.3 (Actual System)
Given valid nomological knowledge programs for a set of nomological agent types A ⊆ A
we build the actual system by transforming all the agent types appropriately such that the
resulting system implements the nomological knowledge programs for each agent type.

The main difference between nomological knowledge programs and knowledge-based
programs is that they are not evaluated within the nomological system but rather used to
strengthen the nomological system, i.e., resolve nondeterminism. This means, that what is
nomologically knowable is not influenced by the actions taken. Which tackles the main
problem of knowledge-based programs, namely the possibly vicious infinite regress.

If we again recap Code 4.18, then we can now simply execute the program without having
any difficulties. AG cookie() just does not hold even if the agent does never decide to
eat the cookie because in the nomological system there always exists a path such that
eventually the cookie has been eaten, since the agent could decide to do so in each step.
This means that KAG cookie() evaluates to false and the agent just does nothing, which
does not influence wether AG cookie() holds in the nomological system.
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So, Definition 5.2 provides well-defined semantics for every valid nomological knowledge
program. The semantics are not arbitrary but weaker than those of knowledge-based
programs. In contrast to knowledge-based programs, formulae known nomologically may
be false in the actual system. For instance, if an agent decides to never eat the cookie in
the actual system, then there exists no path in the actual system such that the cookie is
eventually eaten. However, such a path exists in the nomological system.

To be able to implement a nomological knowledge program we need to be able to decide
nomological knowledge for the respective agent type. However, in general, both nomological
and actual knowledge are undecidable.

Theorem 5.4 (Undecidability of Knowledge)
Whether ϕ ∈ KaM(q) is undecidable in general.

Proof Consider an arbitrary but fixed turing machine TM . Construct an agent which
given TM and an input I simulates TM on I. If TM halts, then the agent makes a
transition into a special state h. We define a predicate H as follows:

H(s) :=

{ 〈TM〉 } s(a).q = h

∅ otherwise

Now AFH(TM ) holds if and only if TM eventually halts. The agent knows right after
initialization whether TM halts or not, as this is determined. However, this knowledge is
surely not decidable since as it would decide the halting problem. �

Due to the possibly infinite state space of agent types, the formalism itself is Turing
complete. It is possible to capture the content of the tape of a Turing machine in the local
states of an agent type. The effect function then allows capturing the transition relation
of the Turing machine. This allows an agent to simulate the Turing machine.

Corollary 5.5
It follows from Theorem 5.4 that the model checking problem for OMAS is undecidable,
as deciding whether 〈MH , s, σ〉 � AFH(TM ), whereMH denotes the OMAS constructed
in Theorem 5.4, is undecidable in general.

As a result of Theorem 5.4 we cannot directly compute the implementation for all valid
nomological knowledge programs although there exists an implementation of every valid
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program. Computing the implementation as specified in Definition 5.2 requires us to decide
nomological knowledge. However, if both the reachable state space and the universe is
finite, then we can adapt the satisfaction set based CTL model checking algorithm [1, see
p. 341 ff.] to automatically compute nomological knowledge by augmenting states with
additional information for satisfaction assignments. We also think that this is possible for
an infinite universe when imposing that the satisfaction assignments for each state are
finitely representable and this finite representation allows for the needed operations on
satisfaction assignments when computing satisfaction sets.

Nomological knowledge programs can be seen as an explication of algorithmic knowledge
programs, but instead of requiring sound and completeness regarding the actual system we
require sound and completeness regarding the nomological system, and we can use model
checking algorithms to decide this knowledge in the finite case.

Nomological knowledge programs, however, raise the question how the nomological effect
function has to be designed such that the agents gather sufficient knowledge. If we can
come up with some correctness criteria for the nomological knowledge of agents, e.g., that
they eventually know ϕ if ϕ globally holds, then finding a nomological effect function can
be seen as a synthesis problem, i.e., coming up with a nomological state space and effect
function which satisfies the correctness specification.
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Belief-Based Programming

Knowledge-based programming, in general, has a serious shortcoming. It only accounts
for those propositions and corresponding formulae an agent actually knows. In mobile
ad-hoc networks and other highly dynamic and decentralized systems, however, most of
the time very little about the system is knowable. That is why we use beliefs to generalize
the approach of knowledge-based programming in this chapter. In contrast to knowledge,
beliefs may be incorrect and thus allow an agent to act upon falsehoods. Nevertheless, to
be useful beliefs certainly must not be arbitrary.

We begin this chapter with a brief motivation of belief-based programming by showing that
existing MANET protocols already rely on some informal notion of beliefs. The goal of
this chapter and the whole concept of belief-based programming is to capture this notion
within a formal framework and thereby enable us to reason about such beliefs, specify
correctness criteria for them, and use them for programming. To this end, we introduce
a formalism which allows to model beliefs as well as their revision and subsequently
investigate various normative requirements for beliefs. Based on that framework we further
generalize knowledge-based to belief-based programming. Finally, we demonstrate the
usefulness of our approach using the example of an interest-based routing protocol inspired
by the digital message board example. We conclude this chapter with a rough sketch of a
general belief-centric middleware which also gives an outlook on future work.

To get a better intuition for the limitations of knowledge-based programming, let us start
with a concrete example of a proposition which we would like to use in MANET protocols
but is not knowable. Most nontrivial network protocols for MANETs need to route packets
at some point. For instance, in case of the digital message board, we need to route new
messages to everyone who is interested. While naive broadcast-based flooding of a network
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with a packet might suffice to deliver the packet, this is certainly not an efficient use of
network resources. Hence, an efficient routing protocol has to take at least partial aspects
of the topology of the underlying network into account. An example of useful knowledge
regarding the network topology would be, whether there is a link between two nodes v and
v′ which could then be used as part of a route. However, due to frequent and unpredictable
changes in the network topology, it is in general not knowable whether there is a link
between two nodes v and v′. The topology in MANETs does change without the nodes
immediately noticing. Hence, nodes have no chance to update their local state on link
changes and as a result, cannot distinguish between global states where these links exist
and states where they do not. According to the possible worlds model of knowledge, they,
therefore, can generally not know whether there is a link or not.

Many common routing protocols for mobile ad-hoc networks have some kind of mechanism
to either discover new routes on-demand [23, eg.] or to proactively distribute routing tables
in the network [5, eg.]. Both types of protocols have in common that routing information
might be outdated, i.e., does not match the current topology of the network and contains
routes with broken links. Thus, both types of protocols already rely on some informal
notion of beliefs — they use the routing information they believe is correct to route packets
even though it might not be correct. If they become aware of a broken route, they revise
their beliefs accordingly and no longer use this route although it could be the case that
in the meantime the route exists again. Further, these beliefs cannot be characterized as
knowledge in any way, neither as knowing that a route exists nor as not knowing that a
route does not exist. The goal of this chapter is to provide a formal framework not only to
describe such beliefs but also study normative criteria for them.

6.1 Belief Theories

So, how to model beliefs of agents within a system? Let’s start by listing some properties
of beliefs we would like to capture with the formal model. We do so, using the example of
MANET routing protocols and network links introduced above.

The first most obvious or even defining property of beliefs is that beliefs in contrast to
knowledge might be incorrect. While this is the property of beliefs which makes them
attractive for highly dynamic systems it also raises an important question: If truth is not
an adequacy criterion for beliefs then, how can we distinguish adequate beliefs which are
useful from those which are not? After introducing a descriptive theory of beliefs in this
section, we extensively study normative criteria in the next section.
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Another very interesting property of beliefs is that they may come in different certainties
or degrees. For example, we are usually more certain about the current weather at our
current location than about the weather far away. In case of MANET routing protocols,
a node might analogously be more certain about links nearby than links far away. This
is reasonable since information about existing or broken links takes more time to travel
to a node the further away this node is from those links in the topology. Thus, in the
meantime, the information about those links could already be outdated.

Moreover, beliefs are inherent to local states and unlike knowledge cannot be defined
without interpreting the internal structure of them. For example, whether a node believes
that there is a link between two nodes, is not a relation between a black-box local state
and the system but rather explicitly encoded in the local state itself, e.g., in the form
of a routing table. While it made sense to take sets of indistinguishable global states as
the objects of knowledge, this raises the question what the objects of beliefs are. Instead
of sets of indistinguishable global states, we chose CTLKx formulae to be the objects of
beliefs and study the implications of this choice later in this chapter.

The formal model of beliefs needs to capture these characteristics. Instead of directly
coupling beliefs with agents or their types we introduce a more general approach. A belief
theory comprises a set of belief states which encode particular beliefs and can be interpreted
with a belief inference capacity. A belief inference capacity assigns to each belief state and
CTLKx formula a belief degree from some belief domain. To revise beliefs in response to
new information, a belief theory provides, similar to agent types, a belief effect function
which takes a belief state and new information in the form of an observed action and maps
them to a successor belief state encoding the revised beliefs.

Definition 6.1 (Belief Theory)
A belief theory TB is a quadruple 〈QB, ηB,Γ,B〉 comprising a set of belief states QB, a belief
effect function ηB : QB × [Act ] → QB, a belief inference capacity Γ : Φ × QB → B, and
a strictly partially ordered belief domain B. We refer to the elements b ∈ B of the belief
domain as belief degrees and to the partial order on B by �. A belief theory interprets an
agent type A if and only if QB = A.Q and ηB = A.η.

Please note that belief theories are a very general tool to study beliefs. We may use them
to ascribe beliefs to agents by defining a belief theory interpreting the respective agent
type or as an independent theory as part of an agent type enabling the agents to act upon
beliefs. In both cases we refer in the following to the belief state of agent a in global state
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s of some OMASM as s(a).qB. In the former case, the agent’s belief state is identical to
the full local state of the agent, i.e., s(a).qB = s(a).q, while in the latter case the belief
state is just part of the agent’s local state. Further, we omit the s(a) and refer to the belief
state merely by qB if the global state s is irrelevant.

6.1.1 Belief Domains

The belief degrees a belief domain B provides together with the partial order � on them
enable us to distinguish between different levels of certainty. An agent in belief state qB is
more certain that ϕ than that ψ if and only if Γ(ϕ, qB) � Γ(ψ, qB). In this thesis, we use
a five-valued, totally ordered belief domain providing two degrees of belief and disbelief
respectively and one belief degree to express indifference.

Definition 6.2 (Belief Domain)
We define the five-valued totally ordered belief domain B5 by:

B5 := {⊥, ↓, ?, ↑,>} with > � ↑ � ? � ↓ � ⊥

In the remainder of this thesis, we implicitly assume, except otherwise stated, that the
belief domain of a belief theory is this five-valued belief domain B5. Although there are
other possibilities to explicate belief domains, this belief domain already provides enough
belief degrees for many interesting cases like MANET routing protocols.

Definition 6.3 (Terminology for Belief Theories)
We further define the following useful terminology for belief theories based on B5. An
agent a is certain of ϕ in belief state qB if and only if Γ(ϕ, qB) = >. An agent a believes ϕ
in belief state qB if and only if Γ(ϕ, qB) ∈ { ↑,>}. An agent a disbelieves ϕ in belief state
qB if and only if Γ(ϕ, qB) ∈ { ↓,⊥}. An agent a is indifferent of ϕ in belief state qB if and
only if Γ(ϕ, qB) = ? and an agent a knows ϕ in global state s if and only if it believes ϕ
and ϕ is actually true, i.e., Γ(ϕ, s(a).qB) ∈ { ↑,>} and 〈M, s, σ〉 � ϕ.

It is crucial to note that Definition 6.3 provides us with a different notion of knowledge
than the possible worlds model. While Definition 6.3 still fulfills the necessary condition
that knowledge must not be false, it understands knowledge as true beliefs. This notion of
knowledge explicitly decouples knowledge from certainty, i.e., agents may be certain of ϕ
without knowing that ϕ and agents may know ϕ without being certain of it.
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6.1.2 Evidence

A useful concept when it comes to beliefs and their revision is evidence. For example,
imagine a MANET routing protocol using heartbeats on links to check, whether those
links still exist. While a received heartbeat should be evidence that the link is still up, a
missing heartbeat should be evidence that the link is broken. Within our formal model,
agents perceive the system through the lens of a sequence of observations in terms of
actions. Hence, evidence comes in the form of these observations.

Definition 6.4 (Observations)
An atomic observation is an action α ∈ [Act ]. Based on atomic observations we define
finite observation fragments %̂ as finite sequences of atomic observations, i.e., %̂ ∈ [Act]∗,
and analogously infinite observation traces % by % ∈ [Act]ω. We usually treat atomic
observations as finite observation fragments of length one.

In general, it is important to distinguish the descriptive model of evidence, i.e., what is
evidence given a specific belief theory and belief state, from normative requirements, i.e.,
what should be evidence. While the former is belief-theory and belief-state relative, the
latter is a universal, although system relative, normative criterion.

Intuitively, a finite observation fragment %̂ is evidence for a formula ϕ relative to belief
state qB if and only if it strengthens the belief in ϕ, i.e., starting in belief state qB and after
processing %̂ with the belief effect function the degree of belief that ϕ is greater compared
to the original belief degree assigned to ϕ in belief state qB.

Definition 6.5 (Evidence)
A finite observation fragment %̂ = α1α2 . . . αn is evidence for ϕ relative to belief state
qB ∈ QB and belief theory 〈QB, ηB,Γ,B〉 if and only if:

Γ(ϕ, qB) ≺ Γ(ϕ, ηB(ηB(. . . ηB(qB, α1) . . . , αn−1), αn))

The same observation fragment is counter-evidence for ϕ if and only if:

Γ(ϕ, qB) � Γ(ϕ, ηB(ηB(. . . ηB(qB, α1) . . . , αn−1), αn))

In case that the belief degrees assigned to ϕ before and after processing a finite observation
fragment %̂ are incomparable using �, we are unable to tell whether the agent is more
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certain that ϕ before or after the observation of %̂. Hence, we can neither classify the
observation as evidence nor as counter-evidence in such cases. Furthermore, for infinite
observation traces the concept of evidence makes no sense because an agent never is in a
state where it observed an infinite trace of actions.

The concept of evidence is beneficial when analyzing belief theories. It allows us to reason
about the information carried by individual communication acts between two agents and
its effects on the belief state. For example, we may study the role of the ordering of (atomic)
observations, or whether observations are idempotent, i.e., multiple (consecutive) identical
observations have no effects on the beliefs beyond the initial observation.

6.2 Normative Requirements

To be actually useful beliefs certainly must not be arbitrary. Imagine a network protocol
which takes a missing heartbeat as evidence that there is a link, and a received heartbeat
as evidence that there is not. If routing a packet succeeds based on such inadequate beliefs,
then this is pure luck. Therefore, it is important to have normative requirements separating
good and useful belief theories from those that are arbitrary and useless.

In this section, we study various normative requirements for belief theories based on the
descriptive framework introduced in the previous section. Whether a belief theory leads to
adequate and useful beliefs can usually not be judged in isolation but rather with respect
to a specific system, an agent type, and the needs of the respective agent type.

6.2.1 Consistency Criteria

Let’s start with consistency criteria. Consistency criteria check whether the beliefs together
with the disbeliefs are compatible, e.g., with an OMAS. Hence, they only make sense if
the belief theory is qualitative, that is, it allows to partition all CTLKx formulae in three
sets, those formulae which are believed, those which are disbelieved, and those which are
neither [11]. Let B+(qB) and B−(qB) denote the set of believed and disbelieved formulae
in qB respectively. For B5 we define those sets according to Definition 6.3 by:

B+(qB) := {ϕ ∈ Φ | Γ(ϕ, qB) ∈ { ↑,>}}

B−(qB) := {ϕ ∈ Φ | Γ(ϕ, qB) ∈ { ↓,⊥}}
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The most basic and minimal consistency criterion is that beliefs and disbeliefs are logically
consistent, i.e., there is some OMASM, context 〈M, s, σ〉, and interpretation assignment
ν such that all believed formulae are satisfied, but no disbelieved formula is.

Definition 6.6 (Logical Belief Consistency)
A belief theory is logically consistent if and only if for all belief states qB ∈ QB there exists
an OMASM, context 〈M, s, σ〉, and interpretation assignment ν such that:

〈M, s, σ〉 �

 ∧
ϕ∈B+(qB)

ϕ

 ∧
 ∧

ϕ∈B−(qB)
¬ϕ



For instance, believing both ϕ∧ψ and ¬ϕ∨¬ψ as well as believing ϕ∧ψ but disbelieving
¬(¬ϕ ∨ ¬ψ) is logically inconsistent for all ϕ, ψ ∈ Φ. In both cases we can easily prove by
contradiction that the logical consistency criterion is not met.

In contrast to knowledge, beliefs can be logically inconsistent. This is due to the fact that
we have chosen CTLKx formulae instead of sets of states to be the objects of beliefs. If we
would have chosen non-empty sets of global states as the objects of beliefs and based on
that defined whether a formula is believed analogously to knowledge as truth in all those
states, then logically inconsistent beliefs would not have been possible, as it is logically
impossible that logically inconsistent formulae hold in any of those states. In addition,
the beliefs of agents would have been closed with respect to the logic, i.e., agents would
believe all logical truths and implications of their beliefs.

Logical consistency is a very basic criterion and does not take into account what is possible
with respect to a specific system model. For instance, that there is a link between nodes
v and v′ but no link between v′ and v, is logically consistent. However, it is not possible
with respect to a MANET model which guarantees bidirectional links.

Definition 6.7 (System Consistency)
A belief theory is consistent with an OMASM if and only if for every belief state qB ∈ QB

there is a reachable state s ∈ reach(M) of the system which is compatible with the belief
inference function, i.e., for every CTLKx formula ϕ ∈ Φ it holds that:

(ϕ ∈ B+(qB) =⇒ 〈M, s, σ〉 � ϕ) and (ϕ ∈ B−(qB) =⇒ 〈M, s, σ〉 6� ϕ)

Intuitively Definition 6.7 states that what is believed and disbelieved in belief state qB
altogether is possible within the system, i.e., there is a reachable state such that every
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believed formula is satisfied in that state and every disbelieved formula is not. For instance,
with respect to a MANET model which guarantees that links are bidirectional, believing
link(v, v′) and disbelieving link(v′, v) is inconsistent with the system because there is no
state in its model such that link(v, v′) is satisfied but link(v′, v) is not.

Belief theories which are consistent with respect to a specific system are also logically
consistent as Definition 6.6 is met by the respective model. Further, they allow the definition
of a modal belief operator which closes the belief theory logically and with respect to the
system. We define a set of states which are compatible with a belief state by:

Bs(qB) :=

 s ∈ reach(M)

∣∣∣∣∣∣ 〈M, s, σ〉 �

 ∧
ϕ∈B+(qB)

ϕ

 ∧
 ∧

ϕ∈B−(qB)
¬ϕ


Definition 6.7 ensures that this set is non-empty for every belief state and therefore can be
used as a basis for a modal belief operator which is defined as follows:

〈M, s, σ〉 � Ba ϕ iff ∀s′ ∈ Bs(s(a).qB) : 〈M, s′, σ〉 � ϕ

We may use this definition to automatically close a belief theory logically and with respect
to a specific system using a model checking algorithm for the system.

Another useful consistency criterion, called epistemic consistency, is that the beliefs of
an agent are consistent with its implicit knowledge, i.e., an agent should not believe ϕ if
it implicitly knows ¬ϕ and analogously an agent should not disbelieve ϕ if it implicitly
knows ϕ. In the following, we define a slightly modified version of this intuition, which is
relative to an agent type, i.e., based on agent-type relative knowledge. This is reasonable
since belief theories are usually considered relative to an agent type.

Definition 6.8 (Epistemic Consistency)
A belief theory is consistent with the knowledge of agent type A in an OMASM if and
only if the agent-type relative knowledge in every local state q ∈ A.Q is compatible with
the belief inference function, i.e., for every CTLKx formulae ϕ ∈ Φ it holds that:

(
ϕ ∈ B+(q.qB) =⇒ ¬ϕ 6∈ KAM(q)

)
and

(
ϕ ∈ B−(q.qB) =⇒ ϕ 6∈ KA

M(q)
)

Where q.qB denotes the belief state portion of local state q.

It is crucial to note that consistency criteria are safety properties, as they are trivially
fulfilled by a belief inference capacity yielding ? for every formula ϕ.
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6.2.2 Completness Criteria

One way to ensure that something is believed or disbelieved is to define completeness
criteria. Completeness criteria may depend on the epistemic needs of an agent. For instance,
an agent running a routing protocol needs beliefs about links.

Definition 6.9 (Completeness Criteria)
An belief inference capacity is complete with respect to a subset Ψ ⊆ Φ of CTLKx formulae
relative to a subset B ⊆ B of belief degrees if and only if:

∀qB ∈ QB : ∀ϕ ∈ Ψ : Γ(ϕ, qB) ∈ B

Completeness criteria have the disadvantage that they do not account for the temporal
evolution of a system. Sometimes it takes some time until a belief or disbelief is justified,
and in the meantime, the agent should be indifferent. For instance, imagine a routing
protocol which discovers new routes. Until route discovery is complete, it makes neither
sense to believe that a route exists nor that it does not. Instead, the agent should be
indifferent until it is justified in believing either.

Furthermore, merely having some arbitrary but consistent beliefs is not useful. However,
completeness criteria do not ensure that beliefs are grounded in facts. For instance, an
agent can consistently believe in the existence of arbitrary links, since the existence of
arbitrary links is consistent with the MANET model and further it cannot know that some
of those links do not exist if they do not. Therefore, we study normative requirements that
try to ground beliefs in facts about the system in the next two subsections.

6.2.3 Temporal Criteria

Temporal criteria are based on the temporal evolution of a system. They ensure that
something good is eventually believed. Like completeness criteria, they depend on the
epistemic needs of an agent and are not meant as universal criteria. Furthermore, temporal
criteria may be applicable only to a subset of CLTKx formulae that have certain properties
with respect to the system, e.g., that they hold eventually.

The first class of temporal criteria, we introduce, is suited for those formulae which hold
for all paths globally when holding in some state. An example of such a formula is whether
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a message m has been posted to the digital message board. If a message has been posted,
then it stays posted forever as messages cannot be removed.

Definition 6.10 (Weak-Eventually Globally Criteria)
We assume that ϕ is a formula which holds for all paths globally when holding in some
state, i.e., AG (ϕ→ AGϕ). An agent a should not believe that ϕ until ϕ actually holds
and the agent should eventually believe ϕ if ϕ holds, i.e.:

A (¬B(a, ϕ)Wϕ) ∧ AG (ϕ→ AFB(a, ϕ))

Where B(a, ϕ) is a binary predicate taking agent names and CTLKx formulae as arguments
which holds in a global state s if and only if ϕ ∈ B+(s(a).qB). For convenience we allow
variables to leak into the CTLKx formulae passed as arguments to B.

In case of the digital message board we can now use such a criterion to express the property
that every node eventually believes that a message has been posted if and only if the
respective message has actually been posted:

∀x : [N ]. ∀m. A (¬B(x, posted(m))Wposted(m)) ∧AG (posted(m)→ AFB(x, posted(m)))

Further, this property can easily be extended to also account for topics:

∀x : [N ]. ∀t. ∀m. interested(x, t) ∧ belongs(m, t)→

A (¬B(x, posted(m))Wposted(m)) ∧AG (posted(m)→ AFB(x, posted(m)))

Where interested(x, t) checks whether agent x is interested in topic t and belongs(m, t)
checks whether message m belongs to topic t. If a message belongs to a topic of interest,
then the respective node should eventually believe that the message has been posted if
and only if it has actually been posted.

Although this criterion might sound useful at first glance, beliefs are not necessary for
formulae which fulfill the condition AG (ϕ → AGϕ). If ϕ is the case forever if ϕ is the
case, then ϕ is in principle also implicitly knowable.

The condition AG (ϕ→ AGϕ) is, however, not satisfied by formulae about the network
topology in a MANET because their truth value can change. Therefore, we cannot apply
such criteria to our motivating example of links in a mobile ad-hoc network. However,
formulae like these are the very reason why we introduced the belief-based approach in
the first place. So, how can we specify correctness criteria for them?
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All those network protocols which use beliefs about the topology have in common that they
require some kind of stability of the network. The topology must not change too fast for the
protocol to accommodate. In other words, the topology is required to stay partially stable
for long enough periods such that the believed routes are actually correct and packets
delivered via them reach their destination. We capture these stability requirements in the
general case for belief theories with the following requirement.

Definition 6.11 (Belief Stability Requirements)
If the system is stable for a formula ϕ, then the qualitative beliefs about ϕ should eventually
correctly reflect the state of the system, i.e., for all paths π ∈ paths(M):

(∃i : ∀i′ ≥ i : 〈M, π[i′], σ〉 � ϕ) =⇒ (∃j ≥ i : ∀j′ ≥ j : ϕ ∈ B+(π[j′](a).qB))

(∃i : ∀i′ ≥ i : 〈M, π[i′], σ〉 6� ϕ) =⇒ (∃j ≥ i : ∀j′ ≥ j : ϕ ∈ B−(π[j′](a).qB))

It is further possible to modify Definition 6.11 to require correct beliefs after a certain,
finite amount of discrete time steps. Please note that during the process of stabilization, a
belief stability requirement gives us no guarantees about the beliefs at all.

We do not spell this out formally, but stability is precisely the requirement needed for
MANET network protocols. If the parts of the topology necessary for routing stay stable
long enough, then the information about routes encoded in the local state by means of
routing tables or something similar should be correct. As a result thereof, when using
those routes, the packets reach their destinations. Stability requirements ensure that beliefs
eventually converge towards knowledge in the sense of true beliefs.

6.2.4 Causality Criteria

The criteria introduced so far merely provide means to analyze existing belief theories but
give us no hint how to revise beliefs in response to observations. On the other hand, if we
design belief theories we have something in mind. For instance, when updating a belief
state in response to a received heartbeat such that it encodes the belief that there is a
link, we do so for a reason and not just because it satisfies some of those criteria presented
above. The question is, what is this reason and how to formalize it?

Intuitively, in case of a received heartbeat, we update the belief state accordingly because
there is a causal relationship between the reception of a heartbeat and the existence of
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a link. Taking inspiration from David Lewis’ counterfactual theory of causation [17] we
capture this relation using a counterfactual conditional. The reception of a heartbeat was
caused by the existence of a link because the agent would not have received the heartbeat
if there would not have been the link. When updating belief states in response to the
heartbeat, we also assume that the cause of the reception is still present and we are justified
in doing so because we assume stability of the topology. So, stability together with the
causal relationship can give us a full formal justification why a received heartbeat should
indeed be evidence for the existence of the respective link.

In general, we can use the counterfactual analysis to ascribe implicit information about
the evolution of the system to observations, which provides together with other properties
of the system, like stability, a theory of how we should design belief theories. The ultimate
goal, which is out of the scope of this thesis, is to automatically synthesize belief theories
based on such properties and counterfactual relationships.

When working with a counterfactual conditional, the tense of the antecedent is essential
for the information carried by the observation. For instance, the counterfactual conditional
that an agent would not have observed α if ϕ would not have been the case, ascribes
implicit knowledge about the past to α, namely, that ϕ was eventually the case. On the
other hand, the counterfactual conditional that an agent would not have observed α if ϕ
will not be the case, ascribes implicit knowledge about the future to α, namely, that ϕ will
eventually be the case. Belief theories can be understood as means which take the implicit
knowledge coming with observations and transform them with the help of other properties
of the system, like stability, into useful assumptions, i.e., beliefs, about the present. These
beliefs can then be used to decide which actions to perform.

Recap, the reason why we used synchronized actions instead of joint actions for our
formalism was that they allow a clear separation of individual communication acts (see
Section 3.1.1) which enables this analysis as well as the concept of evidence.

This subsection aimed to give us an intuition for the design of belief theories useful in the
remainder of this thesis. We leave out the formal details of causality and counterfactual
conditionals and instead turn directly to belief-based programs.

6.3 Belief-Based Programs

The fundamental idea of belief-based programming is to utilize beliefs to decide which
actions to perform. Thus, the basis of every belief-based program is a belief theory which
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should produce adequate and useful beliefs needed by the respective program. Similar to
knowledge tests we define belief tests which are used by belief-based programs.

Definition 6.12 (Belief Tests)
Given a belief domain B we define belief tests by means of the following abstract grammar
where b ∈ B is a belief degree and ϕ ∈ Φ is a CTLKx formula:

β ::= ¬β | β1 ∧ β2 | b1 ≡ b2 | b1≺ b2 (belief test)

b ::= b | B ϕ (belief term)

Given a belief theory 〈QB, ηB,Γ,B〉 and a belief state qB ∈ QB we evaluate belief terms b
to belief degrees b ∈ B using the following evaluation function:

evalB(b,Γ, qB) := b

evalB(B ϕ,Γ, qB) := Γ(ϕ, qB)

Similar to knowledge tests we define truth-value semantics for belief tests:

Jb1 ≡ b2KB(Γ, qB) :=

> iff evalB(b1,Γ, qB) = evalB(b2,Γ, qB)

⊥ otherwise

Jb1≺ b2KB(Γ, qB) :=

> iff evalB(b1,Γ, qB) ≺ evalB(b2,Γ, qB)

⊥ otherwise

The truth-value semantics for ¬β and β1 ∧ β2 are defined analogously to knowledge tests
and the other boolean connectives are defined as usual. In addition we define a notion of
greater-equal on belief terms as syntactic sugar by:

b1 4 b2 := b1 ≡ b2 ∨ b1≺ b2

For B5-belief theories we further define the following syntactic sugar for belief tests:

B ϕ := B ϕ < ↑

Kϕ := B ϕ ≡ >

Please note that the syntactic sugar for B5-belief theories is unambiguous as the belief
term B ϕ must occur as an operand of ≡ or ≺ but the belief test B ϕ must not.

Let TB denote the set of all belief tests.
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In general there are multiple ways to use belief theories and tests for programming. A belief
theory can be used as part of the local states of an agent type. That is, the agent saves the
belief state as part of the local state and updates it using the belief effect function with every
observation. However, this notion of belief-based programming has a few disadvantages
because it directly couples the belief theory with an agent type and a program. As a result,
whether a belief theory is adequate and fulfills certain normative requirements with respect
to the system or the agent type depends on the behavior of the program. Also, there is
no way of enforcing certain actions, e.g., a heartbeat, which ensure correctness of beliefs.
Further, the direct coupling potentially leads to infinite regress problems similar to those
we saw for knowledge-based programs as the beliefs of an adequate theory depend on the
behavior of the program which depends on those beliefs.

To prevent those problems right from the beginning, we use a different approach. Instead
of directly coupling a belief theory with an agent type and a program, we explicate the
nomological framework with belief theories. That is, we use a nomological agent type and
interpret its nomological states with a belief theory. We then use this belief theory and the
respective nomological agent type to derive agent types for the actual system analogously
to Definition 5.2 using a belief-based program.

Definition 6.13 (Belief-Based Programs)
Since the nomological states are belief states of the respective belief theory, belief-based
programs are an explication of the nomological framework. Let PB ⊆ TL × TB × [Act ] be
a belief-based program inducing the following protocol function:

ρPB
(〈qB, q〉) := {α | 〈tl, β, α〉 ∈ PN : decideL(tl, 〈qB, q〉) = > and JβKB(Γ, qB) = >}

Belief-based programs are implemented analogously to nomological knowledge programs
(see Definition 5.2) by constructing a new agent type using the nomological agent type
and a program, and then replace the original agent type with the new one.

Decoupling the actual program and the belief theory allows us to analyze and prove
adequacy criteria for the respective belief theory with respect to the nomological system
and agent type, independent of the behavior of the program. With enforcement protocols,
we are also able to construct nomological agent types and corresponding belief theories
which satisfy normative requirements independent of the behavior of the program. With
the larger goal of a general belief-centric middleware in mind, this is essential since it
gives every belief-based program well-defined semantics by yielding guarantees about the
adequacy of beliefs which hold no matter what the application does.
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Cookie Example Revisited

Before we present a full example using the introduced approach for a MANET routing
protocol inspired by the digital message board example, we give a brief intuition for
belief-based programs using the cookie example. We capture the original cookie example
by means of the belief-based program Code 6.14.

Code 6.14 (Cookie-Eating Belief-Based Program)

1: if K(desire(eat-cookie)) ∧B(cookie()) then { open!(1), open!(0) }
2: if K(desire(eat-cookie) ∧ cookie()) then { eat!() }
3: if K(¬desire(eat-cookie)) ∨ ¬B(cookie()) then { idle() }

Intuitively Code 6.14 encodes the following behavior. Whenever the agent is certain that
it has the desire to eat cookies and it believes that there is a cookie in the drawer, then
it opens the drawer. As a result, it learns whether there is a cookie in the drawer. If the
agent is now certain that it has the desire to eat and that there is a cookie in the drawer,
then it eats the cookie. If the agent is certain that it has no desire to eat a cookie or does
not believe that there is a cookie in the drawer it just does nothing.

6.4 Interest-Based Routing

So, how to apply belief-based programming to real problems from the area of distributed
systems? In this section, we show the usefulness of our approach by building a routing
protocol for MANETs inspired by the example of the digital message board. To this end,
we proceed as follows: We first describe the protocol informally to get an intuition of how
it works and what abilities we need the nomological system to provide. Based on these
considerations we then design a nomological system and a belief theory which we use
as the basis for the belief-based program implementing the protocol. Along the way, we
informally argue for certain correctness properties of the nomological system, the belief
theory, and the protocol as well as its practical feasibility.

Informal Description

The network protocol we implement provides unreliable, many-to-many, interest-based
routing. That is, nodes can announce their interest in certain topics, and then messages
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belonging to a specific topic are routed to every node interested in the respective topic. The
protocol is unreliable in a sense that it does not ensure that every node gets all messages
belonging to its topics of interest in the face of network reconfiguration.

The routing protocol is based on zones. A k-zone around a node v is a subgraph of the
topology containing all nodes reachable from v with at most k hops. We assume that all
nodes interested in a specific topic are connected via their zones. Imagine there are three
nodes v1, v2, and v3, all interested in topic t. In this case, each node needs to have at least
one other node within its zone. For instance, while it is valid that the nodes v1 and v2

are in each others zone, and node v2 and v3 are in each others zone, but not v1 and v3

are not in each others zone, it is not valid, that v1 and v2 are in each others zone, but
neither of them is in the zone of v3 essentially isolating v3. Please note that in general it is
not sufficient that every node has at least one other node within its zone. For instance,
imagine that there is another node v4, then it is not valid, that v1 and v2 are in each others
zone, and v3 and v4 are in each others zone, but neither v1 nor v2 is in the zone of v3 or v4

because all interested nodes need not be connected by their zones.

This assumption is reasonable, especially in case of the digital message board example,
since topics are usually either local, i.e., related to physically located circumstances like
a lecture, or global. In the local case, the nodes interested in the topic are near each
other, and in the global case, the nodes interested are most likely spread evenly across the
topology since the global topics are not related to physical circumstances.

The idea of the network protocol is to pass messages from zone to zone. That is, if a node
gets a new message it looks which nodes in its own zone are interested in that message.
It then computes an efficient tree to send the message to all those nodes and sends the
message along the tree. On reception, the other nodes repeat the same process. As a result,
the message diffuses through the network to all interested nodes.

So, a node needs adequate beliefs about its zone. It needs information about the topology
of its zone to compute the routing trees for messages and it needs information about which
of the nodes in its zone are interested in which topics.

6.4.1 Nomological Model

Belief-based programs are based on the nomological framework (see Definition 6.13). So,
the first step towards a belief-based program implementing the protocol is to design an
appropriate nomological model including an environment agent and a nomological agent
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type for nodes with sufficient abilities together with a belief theory such that we can
implement the protocol. In particular, this means that the nomological model needs to
ensure that the agents develop adequate beliefs about their zone.

Environment Agent

We begin with the environment agent. Instead of imposing fairness constraints on the
system, we build a fair scheduler right into the environment agent. The scheduler also
allows for a global, discrete notion of time enabling timeouts and message delays. We use
timeouts to distribute routing information periodically. The environment implements a
discrete event simulator [25, p. 2 ff.]. We queue discrete events, called commands, ordered
according to their execution time, using a discrete timestamp, in a priority queue.

Code 6.15 (Environment Agent)

1: while queue 6= ∅ do
2: cmd , time := queue .pop()
3: switch cmd do
4: case send?(src , dst ,msg)
5: queue .schedule(time , deliver(src , dst ,msg))
6: case broadcast?(src ,msg)
7: for all dst ∈ { v′ ∈ G.V | 〈src , v′〉 ∈ G.E } do
8: queue .schedule(time , deliver(src , dst ,msg))
9: case notify(node , handle)
10: await notify!(node , handle)
11: accept_commands(node)
12: case deliver(src , dst ,msg)
13: if 〈src , dst 〉 ∈ G.E then
14: await deliver !(src , dst ,msg)
15: accept_commands(dst)
16: modify_network( )

In each iteration of the main event loop, we first pop the next command together with
its timestamp from the queue (line 2) and subsequently execute the respective command.
If the command tells us to send a packet (line 4), then we schedule a delivery command
to be executed immediately (line 5). If the command tells us to broadcast a packet (line
6), then we schedule a delivery command to be executed immediately (line 8) for each
node within the range of the source node (line 7). If the command tells us to notify a
node that a timeout expired (line 9), then we notify the node by means of an active notify
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action (line 10). Afterwards, we accept new commands from that node (line 11). If the
command tells us to deliver a packet (line 12) and there is a link between the source and
the destination node (line 13), then we deliver the packet by means of an active delivery
action (line 14). Afterwards, we accept new commands from the destination node (line 15).
After the execution of a command we allow the network to reconfigure (line 16).

The procedure modify_network modifies the topology graph of the network in
some unspecified way. Part of this procedure is to initialize new nodes, destroy existing
ones, and move them around in the network. Since the exact details are not essential to
the routing protocol, we leave them out.

The procedure accept_commands (see Code 6.16) accepts new commands to be
scheduled in the command queue of the environment after the delivery of a packet or
the expiration of a timeout. To this end, we introduce a done() action which tells the
environment that the respective agent has no more commands to schedule and is ready to
pass the control back to the scheduler. The procedure accept_commands accepts
send and broadcast actions (line 4) and schedules them for execution with a message delay
∆Tt (line 7). It further accepts timeout actions (line 4) which register a timeout at the
scheduler with a custom delay delta and some handle handle (line 9) which is passed back
to the agent later (see Code 6.15) and is used to identify the timeout.

Code 6.16 (Accept Commands from Nodes)

1: procedure accept_commands(node)
2: action := null
3: while action 6= done?() do
4: action := await { send?(. . .), broadcast?(. . .), timeout?(. . .), done?() }
5: switch action do
6: case send?(. . .) or broadcast?(. . .)
7: queue .schedule(time + ∆Tt, action)
8: case timeout?(handle , delta)
9: queue .schedule(time + delta , notify(node , handle))

Theorem 6.17 (Discrete Time Progression)
We require that the packet delay ∆Tt as well as timeout delays delta are greater than zero
and that an agent only schedules a finite number of commands in each round. As a result,
the discrete time used by the scheduler (time in Code 6.15) increases monotonically after
a finite number of discrete time steps of the system.
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Node Agents

For both active actions performed by the environment agent, i.e., deliver! and notify!, we
define a handler Code 6.18 and Code 6.19 respectively. We use guards to ensure that the
respective handlers only accept delivery and notify actions intended for the respective node.
Please note that we assume here that each node has a unique address self .id . A guard
directly translates to the protocol of the nomological agent type and thereby enforces that
the belief-based program can, e.g., only accept packets intended for the respective node.
We further need to enforce some actions allowing a nomological agent type to aggregate
adequate beliefs about its zone. To this end, each node floods its zone with a packet
containing information about its neighbors and its interests.

Code 6.18 (Packet Delivery Handler)

Guard: dst = self .id
1: procedure deliver?(src , dst , msg)
2: switch msg do
3: case hello(seq , node , ttl , neighbors , interests)
4: if seq ≥ zone [node ].seq then
5: if seq > zone [node ].seq then
6: zone [node ].ttl := 0
7: zone [node ].neighbors := neighbors
8: zone [node ].interests := interests
9: if node = src then

10: self .neighbors .add(node)
11: else
12: self .neighbors .remove(node)
13: await timeout!(〈node , seq〉,∆Td)
14: if ttl > zone [node ].ttl then
15: zone [node ].ttl = ttl
16: await broadcast!(hello(seq , node , ttl − 1, neighbors , interests))
17: case message(. . .)
18: handle_msg(message(. . .))
19: await done!()

The procedure deliver? (see Code 6.18) handles a deliver action performed by the environ-
ment. We allow two sorts of messages, messages processed by the belief-based program,
denoted by message(. . .), and hello messages which are nomologically enforced. Each hello
message comprises a sequence number seq , a node id node , a time to live ttl , a set of node
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ids neighbors , and a set of topics interests . Sequence numbers are required to be unique
for each message and monotonically increasing with respect to the node with id node . The
idea of hello messages is that each node periodically floods its zone with them and thereby
distributes information about its own neighbors and its interests within its zone. If a node
receives a hello message (line 3), it first checks whether it has already seen a newer hello
message from the respective node (line 4). If this is the case, then it ignores the message
altogether. If it has not seen a newer message, it checks whether it has already seen the
respective message (line 5). If the message is completely new, then it stores the information
carried by the message about the node node in its local state (lines 6-8). If the respective
node is a direct neighbor (line 9) then it adds the node to its own neighbors (line 10), if not
it removes it from the set of its neighbors1 (line 12). We further register a timeout (line 13)
which removes the node from the zone and the neighbor set (see Code 6.19) after a certain
amount of time if no new hello message is received. If the time to live of the message is
greater than the previously seen time to live (line 14), then the node rebroadcasts the
message with a decreased time to live (line 16). The time to live is decreased to ensure
that a hello message is only distributed within a zone of a node.

Code 6.19 (Timeout Event Handler)

Guard: node = self .id
1: procedure notify?(node , handle)
2: switch handle do
3: case 〈node , seq〉
4: if zone [node ].seq = seq then
5: delete zone [node ]
6: self .neighbors .remove(node)
7: case TICK
8: self .seq = self .seq + 1
9: await timeout!(TICK ,∆Th)

10: await broadcast!(hello(self .seq , self .id , k, self .neighbors , self .interests))
11: await done!()

When a node is notified about a timeout the procedure notify? handles the timeout (see
Code 6.19). Depending on the handle associated with the timeout the node either removes
a node from its zone (lines 3-6) or broadcasts a hello message containing its neighbors and
interests (line 10) and subsequently reschedules the TICK timeout (line 9). The TICK

1 Please note that we assume here that removing an element from a set which is not an element of the set
succeeds without an error and leaves the set untouched.
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timeout ensures with the rebroadcasting code of Code 6.18 that each node floods its zone
periodically with information about its direct neighbors and its own interests.

So, the nomological agent type of nodes does the following. It floods its own zone periodically
with information about its neighbors and its interests. Since zone membership is reflexive,
it also receives such information about each node in its zone. It stores this information
and deletes it after a certain amount ∆Td of discrete time if it does not hear again from
the respective node. Intuitively, the information stored in the local state variable zone
constitute beliefs about the zone which we need to interpret with a belief theory.

6.4.2 Belief Theory

Based on the nomological states of nodes we define a belief theory interpreting those states.
This belief theory is then used as a basis for the belief-based program implementing the
network protocol. Based on the stored information about the direct neighbors of each node
within the zone, we define the belief inference capacity for the link predicate by:

Γ(link(v, v′), qB) :=

↑ iff v ∈ zone [v′].neighbors or v′ ∈ zone [v].neighbors

↓ otherwise

While this definition is nomologically consistent, i.e., consistent with the nomological
system, the following alternative definition would not be nomologically consistent:

Γ′(link(v, v′), qB) :=

↑ iff v ∈ zone [v′].neighbors

↓ otherwise

According to our MANET model links are bidirectional (see Section 2.3) and the nomo-
logical network protocol does not ensure that the information stored in the neighbor-
hood sets are consistent. Therefore, it is possible that v ∈ zone [v′].neighbors but not
v′ ∈ zone [v].neighbors . In this case, the former definition nevertheless provides beliefs
which are consistent with the system while the latter definition does not.

We further define the belief inference capacity for the interest predicate based on the
stored information about the interests of nodes within the zone:

Γ(interested(v, topic), qB) :=

↑ iff topic ∈ zone [v].interests

↓ otherwise
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For complex formulae the belief inference function for ϕ∧ψ is recursively defined by taking
the minimum of the belief degrees assigned to ϕ and ψ and the belief inference function for
¬ϕ is recursively defined by swapping belief and disbelief degrees for ϕ. Further, every other
predicate and formulae with temporal or epistemic operators are assigned the indifferent
belief degree.

6.4.3 Belief-Based Protocol

Based on the nomological system and the belief theory defined above we are now able to
write belief-based programs that use beliefs about the zone of a node. To construct the
routing tree, we use the belief-based procedure Code 6.20. We first query which nodes are
interested in a certain topic (line 2) and subsequently what links exist within the zone
(line 3). Then we use the links to construct a tree to those nodes (line 4).

Code 6.20 (Belief-Based Routing-Tree Construction)

1: procedure construct_tree(topic)
2: nodes := { v ∈ U | B interested(v, topic) }
3: E := { 〈v, v′〉 ∈ U2 | B link(v, v′) }
4: return routing_tree(nodes , E)

Code 6.21 (Message Handler)

1: procedure handle_msg(message(id , tree , topic , content))
2: if id 6∈ seen_ids then
3: seen_ids .add(id)
4: if topic ∈ self .interests then
5: new_tree := construct_tree(topic)
6: await broadcast!(message(id , new_tree , topic , content)
7: if succssors(self .id , tree) 6= ∅ then
8: await broadcast!(message(id , tree , topic , content))

Whenever a node receives a packet which is supposed to be handled by the belief-based
program, the procedure handle_msg (see Code 6.21) is executed. Please note that this
does not match the exact formal definition of belief-based programs where the execution of
the belief-based program and the nomological system is done in parallel (see Definition 6.13).
So strictly speaking a message is delivered to the nomological part and the belief-based
part but each part reacts solely to those messages that are intended to be processed by
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the respective part. The procedure handle_msg first checks whether the message
has already been seen (line 2). If this is not the case, then it adds its id to the set of seen
message ids (line 3). We assume that every message has a unique global id. According
to the protocol, a node needs to rebroadcast a message in its own zone if the node is
interested in the respective topic itself. If the node is interested in the topic (line 4), it
constructs a new routing tree using its beliefs about its zone (line 5) and then rebroadcasts
the along this tree (line 6). If the node is part of the routing tree of the original message
and has successors in this tree (line 7) it, in addition, needs to rebroadcast the message
along the existing tree (line 8). Since we store the ids of seen messages, we only deal once
with each message.

6.5 Belief-Centric Middleware

As we saw in the last section, belief-based programs can be used to write network protocols
for MANETs. However, this approach required the manual design of a nomological system
and a corresponding belief theory. Our initial goal was to derive a general belief-centric
MANET middleware. In this section, we briefly sketch how a belief-centric middleware
could look like. Building an actual belief-centric middleware is out of the scope of this
thesis.

The key idea of a belief-centric middleware is to provide basic building blocks for building
nomological open multi-agent systems and restrict their composition in such a way that
belief theories can be synthesized based on the needs of belief-based programs and the
properties of the system such that certain adequacy criteria are met.

A belief-centric middleware naturally addresses the challenges we presented in Section 2.1.
The approach is inherently decentralized and able to deal with the dynamic nature of
MANETs. In addition, we can use belief degrees to account for the lack of a central authority
and trustworthiness of nodes. For instance, we could assign trust degrees to observations
which influence how belief degrees are updated, i.e., a less trustworthy observation results
in more uncertainty of the revised beliefs.
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Conclusion

We began this thesis with the idea to use beliefs to generalize the concept of knowledge-
based programming and thereby make it useful for highly dynamic systems like mobile
ad-hoc networks. We introduced a formalism for open multi-agent system which models
communication between agents using synchronized actions. Based on this formalism
we adapted knowledge-based programs to open multi-agent systems. We saw that the
traditional notion of agent-relative knowledge-based programs is not suited for open
multi-agent systems. We, therefore, introduced agent-type relative knowledge and built
knowledge-based programs for open multi-agent systems based on it. To tackle the infinite
regress problem arising from the definition of knowledge-based programs and making them
unsuitable as a basis of a general MANET middleware we introduced the nomological
framework which separates the system from which the knowledge is derived from the
system in which the actions are performed. Finally, we introduced a formal model of
beliefs which enables us to capture the informal notion of beliefs already used in existing
MANET protocols. We studied based on this framework various correctness criteria for
beliefs and, among other things, saw why existing MANET protocols are justified in taking
specific observations as evidence for existing routes. We then used the belief framework to
explicate the nomological framework and introduced belief-based programs which provide
well-defined semantics independent of the program making them suitable as a basis of a
general MANET middleware. We showed the usefulness of our approach by means of an
example network protocol and sketched a general belief centric middleware their details
we left open for future work.
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Notation

Notation A.1 (Disjoint Set Union)
Given two disjoint sets A and B, ·∪ denotes the disjoint union:

A ·∪B := A ∪B

Notation A.2 (Named Tuple Components)
To refer to individual components of a tuple, we use the name introduced by the definition,
i.e., let t := 〈a, . . . , z〉 be a tuple with components a to z, then we refer to component a by
“t.a”. Furthermore, we omit the index when we refer to components of a tuple introduced
with an index, i.e., let t′ := 〈a1, . . . , z1〉 be a tuple with components a1 to z1, then we refer
to component a1 by “t′.a”.

Notation A.3 (Variant Functions)
Given a function f : A→ B then f [a 7→ b] for a ∈ A and b ∈ B is an a-variant of f defined
by:

f [a 7→ b](x) :=

b iff x = a

f(x) otherwise
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Notation A.4 (Partial Functions)
Let � denote an unique value representing undefined. To describe partial functions
f : A→ B as total functions, we use the notation f : A→ B� which is equivalent to
f : A→ (B ·∪ {�}):

f : A→ B� ≡ f : A→ (B ·∪ {�})

Dom(f) := { a ∈ A | f(a) 6= �}

Notation A.5 (Power Set)
Let A denote a set. The power set of A denoted by 2A is defined by:

2A := {B | B ⊆ A }
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Code

B.1 Linux IEEE 802.11 Link Layer Primitives

The following code provides the MANET communication primitives on top of IEEE 802.11
IBSS on Linux using Unix RAW sockets. It specifies its own ethernet protocol to distinguish
between different protocols running on top of the data link layer.

1 #!/usr/bin/env python3
2 # -*- coding:utf-8 -*-
3

4 import socket
5 import struct
6

7 from subprocess import check_call
8

9

10 WIFI_SSID = 'BeliefNetwork' # ad-hoc network SSID
11 WIFI_FREQUENCY = 2417 # ad-hoc network frequency in MHz
12

13 ETHERNET_PROTOCOL = 0x0700 # non-standard ethernet protocol number
14 BROADCAST_ADDRESS = b'\xff' * 6 # ethernet broadcast address
15

16 _ethernet_frame = struct.Struct('! 6s 6s H') # ethernet frame header format
17

18

19 def _make_frame(source, destination, payload):
20 """ Make an ethernet frame. """
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21 header = _ethernet_frame.pack(destination, source, ETHERNET_PROTOCOL)
22 return header + payload
23

24

25 def format_mac(mac_address):
26 """ Returns the colon separated hex representation. """
27 return ':'.join(f'{byte:02x}' for byte in mac_address)
28

29

30 def configure(interface):
31 """ Configure the WLAN interface appropriately. """
32 # disable network-manager for all WIFI interfaces
33 check_call(['nmcli', 'r', 'wifi', 'off'])
34 # unblock the WLAN interface
35 check_call(['rfkill', 'unblock', 'wlan'])
36 # shut network link down
37 check_call(['ip', 'link', 'set', interface, 'down'])
38 # reconfigure the WLAN interface to IBSS
39 check_call(['iw', interface, 'set', 'type', 'ibss'])
40 # set up the network link
41 check_call(['ip', 'link', 'set', interface, 'up'])
42 # join the IBSS network
43 check_call(['iw', interface, 'ibss', 'join', WIFI_SSID, str(WIFI_FREQUENCY)])
44

45

46 class DataLink:
47 """ Interface to the 802.11 data link layer. """
48

49 def __init__(self, interface):
50 self.interface = interface
51 protocol = socket.ntohs(ETHERNET_PROTOCOL)
52 self.socket = socket.socket(socket.AF_PACKET, socket.SOCK_RAW, protocol)
53 self.socket.bind((interface, 0))
54 self.address = self.socket.getsockname()[4]
55

56 def broadcast(self, payload):
57 """ Broadcast to all nodes within range. """
58 frame = _make_frame(self.address, BROADCAST_ADDRESS, payload)
59 self.socket.send(frame)
60

61 def send(self, address, payload):
62 """ Send a packet to a specific node in range. """
63 frame = _make_frame(self.address, address, payload)
64 self.socket.send(frame)
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65

66 def recv(self):
67 """ Receive data sent by other nodes in range. """
68 data, address = self.socket.recvfrom(4096)
69 header = data[:_ethernet_frame.size]
70 payload = data[_ethernet_frame.size:]
71 destination, source, protocol = _ethernet_frame.unpack(header)
72 return destination, source, payload
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Remarks

The used icons originate from OpenClipart and are released into public domain.

Base Station https://openclipart.org/detail/171413/wireless-router

Wireless Host https://openclipart.org/detail/171417/laptop
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