SAARLAND UNIVERSITY

Facurry or MatHEMATICS AND COMPUTER SCIENCE

BAcHELOR’STHESIS

RuNTIME VERIFICATION OF CRITICAL
WEB-BASED SysTEMS wWiTH LoLA

Author Supervisor
Marvin Hofmann Prof. Bernd Finkbeiner, Ph. D.
Advisor

Maximilian Schwenger

Reviewers
Prof. Bernd Finkbeiner, Ph. D.
Prof. Dr. Jens Dittrich

Submitted: 034 October 2018

ii

Eidesstattliche Erkldrung

Ich erklédre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbstindig
verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet
habe.

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not
used any other media or materials than the ones referred to in this thesis.

Einverstandniserkldarung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versio-
nen in die Bibliothek der Informatik aufgenommen und damit veroffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to
the public by having them added to the library of the Computer Science Depart-
ment.

Saarbriicken, 03™ October, 2018

Abstract

A bug in the code base of a given program can expose the system and can cause
failures. These may impact not only the availability of the system but also the in-
tegrity of the data. Bugs are hard to predict and can cause millions of dollars in
damage. Therefore, preventing these bugs is an important objective, principally,
but not only, considering critical systems like financial applications.

In web-based systems, automated testing is a common approach to detect bugs
before they are deployed into a production environment, preventing the bugs from
causing harm to the system. However, testing can only verify code paths explicitly
chosen to be tested, and actual usage can differ. This pushes the responsibility to
the developers to decide what code paths are critical and require a test. At the same
time, tests can also contain bugs and impose a maintenance overhead.

Therefore, a solution is desirable, that can help to protect from damages caused
by bugs. This solution needs to be easy to use while imposing as little as possible
additional overhead onto the developers. At the same time, it should cover all tra-
versed code paths and be human readable in what is checked. Moreover, it should
not itself be a source of bugs.

We introduce Ruby-Lola, a framework for synchronous runtime verification of
web-based systems. Ruby-Lola is based on the Lola stream-based specification lan-
guage, a simple and expressive language that can describe correctness/failure states
of a system. The framework provides a domain-specific language to write specifi-
cations for runtime verification in an object-oriented way, allowing for references
between database tables and a clean syntax that is familiar to developers. More-
over, Ruby-Lola can be used in combination with automated tests, improving their
coverage through the specification.

We implemented the framework and applied it to a case study of a web-based
system that models an auction house, a practical and critical application. This
demonstrates that our framework is sufficient to express complex specifications and
that it can detect and mitigate critical bugs in practical applications. We also show
that the framework is easy to use and serves as additional documentation. Ruby-
Lola imposes minimal overhead related to other costs of processing user requests
and is therefore not noticeable by end users in practical usage.

Acknowledgements

I'would like to thank Prof. Finkbeiner for his support and trust in my quite practical
topic, for the guidance and important previous work, making this thesis possible.

I'also want to thank Prof. Dittrich for taking the time and making himself available
as second reviewer.

Special thanks goes to my supervisor Maximilian Schwenger for the outstanding
support, guidance and patience throughout my thesis.

Lastly I want to thank my proofreaders Marc Schulder, Ray Neiheiser, Constantin
Berhard and David Haller for their valuable feedback.

Contents

[_Abstract iii
I__Introduction| 1
[I.1 Motivating Example| 0 00 0L 2

2 Background| 5
2.1 Introduction to Runtime Verificationl 5
2.2 Introduction to Synchronous Runtime Verification| 6
23 Tntroductiontololal 6
2.4 Introduction tol.ola2.0 Streams|, 8
2.4.1 Example of Lola2.0 Streams|. 9
3__Contributionl 12
[%.1 Lola Model Streams, Field Streams, and how to Link Them Together] 12

.2 The Rails Way of Convention Over Configuration| 13

3.3 ActiveRecord Callba 14

3.4 Rails Integration of Ruby-Lola| 14
B.5 Ruby-Lola Stream Implementation| 14
B.6 EUEZ-I .ola Domain Specific Language (DSL)] 15

Technical Details of the DSL Implementation|. 19

21
41 Benchmarks|. oo o 25
5 Conclusion| 28

6 Related Workl 29

Chapter 1

Introduction

Development of critical software requires verification to ensure that no dangerous
bugs are present. There are multiple methods employed to verify software. Fol-
lowing is an evaluation of their viability in web-based software projects.

In practice, testing is the most frequently used verification method. To test a
software project, the developers write test cases that each execute a specific part of
the software and compare the result with what is expected from a correct software.
It would be computationally expensive or even impossible to test every combina-
tion of possible inputs to the software, so tests are generally written for critical and
bug prone parts of the software. The developer writing test cases is responsible for
deciding what parts are sufficiently critical. This creates the risk of forgetting edge
cases or unexpected bugs. Moreover, since tests are code themselves, they can also
contain bugs. This can result in false positives, where bugs are detected that are not
bugs. Also possible are false negatives where a bug that should have been detected
is not detected because the test itself has a bug. Software is often continuously
changing and tests have to be adapted to those changes of the code. The amount of
work to change a piece of code can easily be doubled when the developer then has
to change all the tests and make sure that no new cases were introduced that need
new tests. This overhead makes testing a liability in fast-changing environments
like the web [[15, 2] 22, 33]].

Formal verification is the method of proving that a program is correct. Decid-
ing if a program is correct is not easy. All possible inputs and states have to be
checked and verified. The more complex a program is, the more resources and
time is needed to be used to verify it. State of the art verification software employs
many techniques to reduce the amount of work required to verify software. Tools
like Astree [[12]], Cobra [23]] or Saturn [[38]] can verify complex C programs in a matter
of hours. However, the techniques employed to achieve this do not work as well for
dynamic languages like Ruby, where there are almost no assumptions the tool can
rely on, increasing the computation required. Additionally, waiting for hours to get

2 Introduction

results can hinder development and become a similar liability as the overhead of
testing [[15, 2, 22].

A middle ground would be runtime verification. This technique verifies that
a program is correct so far and makes no claims on overall correctness. Verifying
that the current state of a program is correct is computationally inexpensive com-
pared to checking all cases, which makes runtime verification attractive regarding
the overhead imposed. It also solves some of the duplications of testing, as there
is one specification detailing correct behavior and not many different tests. While
the system still does many checks, the developer has one single source of truth for
how a program should behave. It can even be combined with testing in that the
test is only a scenario and the runtime verification system does the verification of
correctness.

There is some effort to employ runtime verification for web-based systems [28),
19] 16} 24, 4] but there are problems that prevent general adoption. Current run-
time verification systems take work to integrate into existing projects, as explored
in Chapter[p} With unit tests developers are used to things just working automatically
and having to write code to connect a runtime verification system to their existing
software is hindering adoption. Providing a system that integrates itself automati-
cally on installation could help reduce this adoption hurdle.

The goal of this thesis is to ease some of the pain points in integrating runtime
verification into web-based systems. To accomplish this, we developed a new tool,
Ruby-Lola, a runtime verification system that is easy to use and integrate into ex-
isting Ruby on Rails projects. It is based upon Lola 2.0, a stream-based runtime
verification language with interesting properties [[14,[18]. Accompanying this are
case studies of using the tool in real-world use. The tool features a domain specific
language (DSL) to write human readable specifications and facilitates automated
data collection and instrumentation. It works out of the box for existing systems
with a simple installation of the Ruby gem, no setup required.

Ruby-Lola aims to create a bridge between academic runtime verification and
industry built applications. This allows for greater adoption of runtime verification
and potentially less buggy software. Startup companies developing web-based sys-
tems frequently use Ruby on Rails, so providing a tool for that framework can have
an impact on software development.

1.1 Motivating Example

There are many legal pitfalls for new companies. One important legal construct are
the terms of service that a user has to accept before they use the application.

One envisions a startup developing a website, where customers can log into
their accounts. The startup uses Ruby on Rails and has a User model for each user.
When a user creates their account, they need to accept the Terms of Service, which

1.1. Motivating Example 3

is stored in the model. The model also stores if an account is enabled, which means
it fulfills all criteria to use the service.
The code for the User class could look like Figure

class User
attr_accessor :tos_accepted, :account_enabled
end

Figure 1.1: An example User class that has fields for storing Terms of Service ac-
ceptance and if the user account is enabled. The keyword attr_accessor is used as a
shorthand in Ruby to create getters and setters for a parameter, essentially defining
it.

Said startup now risks its users finding a bug that allows them to use the service
without first accepting the Terms of Service. This could cause expensive legal fees
that need to be avoided. So the legal department writes a specification, stating that
no enabled account should exist that has not accepted the Terms of Service.

Multiple developers are working on the service, and there are multiple code
paths to account creation, so it could happen that the check for Terms of Service
was forgotten in one code path. So how to make sure that future code paths also
comply with the specification? Where should one document that it exists? What if
the specification changes? All of this is a liability that needs an easy solution.

One solution to this problem is Ruby-Lola. The developers install the library
once and start writing a formal specification from the verbal one given by the legal
department. If an account is enabled but has not accepted the Terms of Service, it
is violating the specification.

With Ruby-Lola installed, every time a part of the code tries to enable a user, the
specification checks if all legal criteria are met before allowing the change. Also, the
check is easily readable and updating the requirements is done in one place only.
Also, should the startup need users to accept their privacy policy in the future, that
check can be added with ease.

The aforementioned specification can be formulated as the following Figure

Instrumenting the system under test and performing the runtime verification
are tasks that Ruby-Lola performs automatically, the developer only has to declare
a specification.

Introduction

class User
attr_accessor :tos_accepted, :account_enabled
lola_specification do
define :legally_not_enabled, :boolean do
taccount_enabled.and(not (:tos_accepted))
end
trigger :legally_not_enabled,
"TOS acceptance missing!"
end
end

Figure 1.2: The User class from Figure [1.1| extended by a Lola specification. This
specification defines a stream of boolean type that computes if an account is en-
abled but has not accepted the terms of service. The specification adds a trigger to
that stream which rejects all changes that make the stream output true, essentially
preventing accounts from being enabled without an accepted TOS. The trigger has
an error message that a user sees when the specification was violated.

Chapter 2

Background

2.1 Introduction to Runtime Verification

It is almost unavoidable to produce a complex software without bugs [30/] In order
to prevent their existence or at least reduce it, different techniques are used. A
widespread approach to avoid this is using testing and verification.

Software testing is the process of executing a program in specified scenarios
and asserting that it behaves correctly. Testing covers a wide field of diverse, often
ad hoc, and incomplete methods for showing correctness, or, more precisely, for
finding bugs. Testing cannot prove the absence of bugs. Making sure that all exe-
cution paths through some code are covered, and all edge cases are accounted for
is time-consuming and error prone [30, 25} 37, 28} 33]].

Static verification can prove that a software system conforms to a specification.
There are techniques like theorem proving [[8]] and model checking [10]. If the
specification is without problems and the program passes the specification, one
can derive that the program is without problems too. However, static verification
of code is a very complex and computationally expensive endeavor. To prove that
some code abides by a specification, every possible execution trace through that
code has to be verified [[17]. This is possible for simple programs but gets impracti-
cal in real-world use very quickly as the space of possible states to check explodes.
One would have to code very rigorously and avoid many language features and
dynamic languages completely [27, 32, 28].

Runtime verification takes the concept of a specification that a software should
abide by. It goes around the exploding state space by letting the program run and
check its state while it runs [[14]. That way it is no longer possible to assert that the
program is bug-free in general, but it can be said that no execution of the program
so far has encountered a bug. Also, if a bug is found, it can be reacted to fairly
quickly [28].

6 Background

2.2 Introduction to Synchronous Runtime Verification

There are different ways of how one can monitor a system. Reading program traces
independent of the program itself is called completely asynchronous runtime ver-
ification. This is often achieved via log files generated by the program. Asyn-
chronous runtime verification of a program is beneficial when there is no time sen-
sitivity involved. If the log files are big and the verification resource intensive, not
interrupting the program can be a valuable property.

However, in many cases, time to detection plays an important role in runtime
verification. Verification of a system while the system is running, stopping the sys-
tem execution to do the verification is called completely synchronous. This method
leaves no delay between a specification violation happening and the detection of it.
One interesting property of completely synchronous runtime verification systems
is that if a violation is detected, it is not yet too late to mitigate it. Some such run-
time verification systems even allow the system under test to react to the violation,
potentially preventing it from even happening in the first place. This property be-
comes invaluable in critical systems like blockchain businesses, where one mistake
can mean the loss of funds [[7]].

2.3 Introduction to Lola

Lola is a stream-based specification language for the online and offline monitoring
of synchronous systems. A Lola specification describes the computation of output
streams from a given set of input streams. An in-depth introduction can be found
in the original papers [14] [18]].

A Lola specification is a system of equations of stream expressions over typed
stream variables of the following form:

input Tty

input Ttm

output Tmae1st :=ej(t1,.coytmyS1y.enySn)
output T r15n :=en(t1y..oytm, S1y.-+y5n)
Each stream expression e;(t1,...,tm,s1,...,5n) for 1 <1i < n is defined over a set

of independent stream variables t1,...,t, and dependent stream variables s1,...,sn.

2.3. Introduction to Lola 7

Independent stream variables refer to input stream values, and dependent stream
variables refer to output stream values computed over the values of all streams. All
stream variables are typed: the type of an independent stream variable t; is T; , the
type of an dependent stream variable s; is Ty .

A stream expression e(ty,...,tm,s1,...,5n) is recursively defined as follows:

e A constant ¢ of type T is a stream expression of type T.
e An independent stream variable t of type T is a stream expression of type T.
e A dependent stream variable s of type T is a stream expression of type T.

o Letf: Ty xTy x--- xTx — Tbe a k-ary operator. If for T < i < k, e; is an
expression of type T;, then f(ey, ..., ey) is a stream expression of type T.

e If b is a boolean stream expression and ej, e, are stream expressions of type
T then ite(b, ey, e;) is a stream expression of type T; note that ite abbreviates
if-then-else.

o If e is a stream expression of type T, c is a constant of type T, and i is an
integer, then e[i, c] is a stream expression of type T. Informally, eli, c] refers
to the value of the expression e offset i positions from the current position.
The constant c indicates the default value to be provided, in case an offset of
i takes us past the end or before the beginning of the stream.

The evaluation model of Lola is recursively defined with j being the evaluation
time, and val(e)(j) the evaluation function applied on the stream expression e at
the evaluation time step j as follows:

e A constant c evaluates to itself all the time:

val(c)(j) =c

¢ An independent stream variable t evaluates to the value of its stream at the
point of evaluation:

val(t)(j) = t()

¢ A dependent stream variable s evaluates to the value of its stream expression
at the point of evaluation:

val(s)(j) = s(j)

e A k-ary operator f(eq,...,ex) application evaluates to all parameters evalu-
ated and applied to the operator:

val(f(er,...,ex)(j) = f(val(er)(j),...,vallex)(j))

8 Background

¢ An if-then-else operator ite(b, ey, e;) is evaluated as follows:

val(ite(b,eq,ez))(j) = if val(b)(j) then val(eq)(j) else val(ez)(j)

e A look-back-operator e[i, c] with N being the end of the stream e is evaluated
as follows:

val(eli,c])(j) = if 0 <j+ 1< Nthenval(e)(j+1) else ¢

In addition to the stream equations, Lola specifications often contain a list of
triggers
’fl‘igger d)]) d)2> ey d)k

where ¢1,¢2,...,dx are expressions of type boolean over the stream variables.
Triggers generate notifications when their value becomes true.

input bool loginSuccess
output int attempts :=

ite(loginSuccess, 0, attempts[1,0] + 1)
output bool bruteforce := attempts > 3
trigger bruteforce

Figure 2.1: This Lola specification is tracking the login attempts of a user. If the
login attempt was not successful then the attempts counter gets increased. And if
the counter tracks more than 3 failed attempts, a bruteforce warning is triggered.

2.4 Introduction to Lola 2.0 Streams

Lola 2.0 is an extension to the Lola specification language, adding new features that
allow for the precise description of complex security properties in network traffic.
This makes Lola 2.0 a good choice for runtime verification on the web. An In-depth
introduction can be found in the original paper [18]].

Lola 2.0 extends Lola with stream equation templates of the following form:

outputTg < hpy : Tqy...,p1: Ty >NV Siny; ext @ Sext; ter: sier =

e(th---)tmysh---)5n>p1)---»pl)

Each such stream equation template introduces a template variable s of type T
that depends on parameters py,...,py of types Ty, ..., Tp,, respectively. For given
values v, ..., v of matching types T, ..., T,, we call

§<Viy..y >= e(th--->tm>31»--->Sn>P1»--->Pl)[P1/V1>---»Pl/VI]

2.4. Introduction to Lola 2.0 Streams 9

an instance of s. The template variables sin, sext, and sier indicate the following
auxiliary streams:

® sin, is the invocation template stream variable of s and has type T, x...xT,.
If some instance of s, has value vq,...,v;, then an instance s < vi,...,v; >
of s is invoked.

® st is the extension template stream variable of s and has type bool and pa-
rameter of type T,, x ... x T,,. If s is invoked with parameter values o« =
(v1,...,v1), then an extension stream s2, is invoked with the same parame-
ter values. If s&,, is true, then the value of the output stream s < vy,...,v{ >

is computed at the position.

® s¢cr is the termination template stream variable of s and has type bool and
parameters of type T, x ... x Ty,. If s is invoked with parameter values o« =
(v1,...,v1), then a terminate stream s, .. is invoked with the same parameter
values. If s{,, is true, then the output stream s < vq,...,vy > is terminated
and not extended until it is invoked again.

2.4.1 Example of Lola 2.0 Streams

Lola 2.0 extends the specification language with template streams. These streams
carry input parameters and can, for example, be used to track login attempts of
different users in their own streams, all following a general pattern.

These new streams are dynamic, meaning they each run on their own time scale.
For this, each template has three new stream expressions, invocation, extension,
and termination.

The invocation equation controls when a new stream instance is created. When
the invocation equation holds true, a new stream instance gets created, and the
parameter for it computed. There can only be one instance with that parameter, so
repeated invocations are ignored.

Example: Failed logins. We only want to track users who are failing to login. So
our invocation is failedToLogin: true and our parameter is the user id. So say user 10
failed to login, then a stream with the parameter 10 gets created. So if he failed to
log in again, the stream already exists, so it does not have to be recreated.

The extension equation controls when a stream should compute a new value.
Every time this equation is true for a stream that is already created, the stream
equation will be evaluated and the stream extended by the resulting value. This
means that not all streams have to have the same length or speed. Only streams
that were previously invoked can be extended.

Example: Since we want to see how often our users fail to login, we set our
extension equation to failedToLogin: true and our stream equation to count the

10 Background

number of times failedToLogin is true with a look back that defaults to 0. We can
then set a trigger to alert us when the amount of failed login attempts are too high.

The termination equation controls when a stream is not needed any more and
should be terminated. If a stream has been created and then the termination equa-
tions holds true, it will be terminated and completely deleted. Only previously
invoked streams can be terminated.

Example: Once a user has a successful login, we want to clear our counter. To
save space, we delete the whole thing. So our termination equation is set to failed-
ToLogin: false and will immediately discard failed attempts once one attempt is
successful. Our user 10 finally got his password right, and his stream gets deleted
immediately. He now has his attempts again.

Figure[2.2]and 2.3]show an example comparison between a Lola 2.0 specification
and a Ruby-Lola specification.

2.4. Introduction to Lola 2.0 Streams 11

input bool loginSuccess
input String uid
output bool useraction<u> := (uid=u)
output int attempts<user>

inv: uid;

ext: useraction

:= ite(loginSuccess, 0, attempts(user)[1,0] + 1)
output bool bruteforce<user>

inv: uid;

ext: useraction

:= attempts (user) > 300
trigger any(bruteforce)

Figure 2.2: This Lola 2.0 specification is tracking the login attempts of all users.
Each user has their own attempts counter. If the login attempt was not successful
then the attempts counter gets increased. And if the counter tracks more than 300

failed attempts, a bruteforce warning is triggered.

class User
define_specification do
define :attempts, :numeric do
ite(loginSuccess, 0, look_back(:attempts, 1, 0) + 1)

end
define :brute_force, :boolean do
attempts > 300
end
trigger :brute_force, "too many login attempts!"
end

end

Figure 2.3: This Ruby-Lola specification is tracking the login attempts of all users.
It works the same as Figure [2.2] but the domain-specific language allows for com-
mitting of some boilerplate. Since everything happens inside the User class, there
is no need to specify it. Also, fields of the class are implicitly defined and can be
used with no extra code. One can see how this is more readable.

Chapter 3

Contribution

3.1 Lola Model Streams, Field Streams, and how to Link
Them Together

A model is a representation of a table in the database system. One example of
a model would be a User. Each model has a set of typed fields, for example, the
string name and the integer age. Each instance of a model has all the fields attached
to it as properties, each holding a value of that type. These properties can change
over time, and not all values are valid. This aligns with Lola 2.0 streams.

To monitor different models in our runtime verification system, we create a tem-
plate stream for each model, called a model stream. We also create template streams
for each field the models have. These field streams are typed by the type of the cor-
responding field. Both the model stream and all corresponding field streams have
the model identifier as a parameter. This groups them into one logical unit that we
will later use to extend the model stream with syntactic sugar to make it behave in
object-oriented ways.

The model stream and the field stream share their invocation, extension and
termination equations. They are invoked when a new instance of the model is cre-
ated in the database. They are extended when that instance is changed and saved.
Also, they are terminated if that instance is deleted. They track the life cycle of
the instance matching their identifier parameter and can verify that said instance
behaves to the specification given.

Each model can have a Lola specification attached to it. This specification is
prepended with the model and field streams corresponding to the model and its
fields. Also, every stream expression is extended by the identification parameter
and the invocation, extension, and termination equations, converting it into a Lola
2.0 specification.

The choice of giving specification writers only the standard Lola capabilities

3.2. The Rails Way of Convention Over Configuration 13

was made for reasons of simplicity. It is easier to reason about less complex spec-
ification languages and reduces the barrier of entry into runtime verification with
Lola while conserving the needed parts of Lola 2.0 for the implementation doing
verification in the background. This way it is also possible to introduce syntactic
sugar and abstractions that further simplify writing the specification. Specification
writers do not have to think much about Lola and can reason in object-oriented
ways, matching the thinking that is needed to program the models themselves.
This reduces cognitive load and could help with adoption.

3.2 The Rails Way of Convention Over Configuration

Ruby on Rails is a framework for developing websites in Ruby. It follows the mantra
of convention over configuration. If the default path is followed, everything auto-
matically works. This reduces mundane, repetitive work and increases developer
productivity in many general cases. Ruby-Lola does the same for instrumenting
the application. Rails uses models as a way to communicate with the database, it is
an abstraction layer over a database table and adds useful functionality to it. This
means that database calls are in one central place we can tap into. Moreover, as
long as the user uses models, we can do most of the work setting Ruby-Lola up for
him.

The way model streams and field streams are designed, they map Rails models
directly with no translation required. The specification is written in Lola and can
reference all model fields without defining them beforehand. Ruby-Lola translates
these specifications as previously specified, adding model fields as input streams
in a conventional way. The result is a system that just works where the heavy lifting
is done in the background.

Ruby-Lola also allows extra information to be added to triggers. Specification
writers can add an error message to each trigger that will in most cases be directly
passed on to the user who triggered the change. It is also possible to have the sys-
tem notify developers of the violation, giving them critical information over what
exactly happened. These notifications make it easier to fix the problem that caused
a change to violate the specification. Optionally one might want to try to rescue the
operation and can do so with a callback added to a trigger. That callback can try
to fix the problems that made the model change violate the specification. Should a
specification be violated in a unit test, Ruby-Lola can fail the test and give out de-
bugging information, saving developers valuable time in repeatedly checking for
common conditions in each test anew.

14 Contribution

3.3 ActiveRecord Callbacks

Ruby on Rails uses ActiveRecord as a database abstraction layer. ActiveRecord pro-
vides callbacks for database actions that we can use to detect changes. Ruby-Lola
uses an around_update callback to first check if the specification holds, then sub-
mit the changes to the database and when the database accepts it, the new now
persistent values are added to the streams. This way it is ensured that there was
no problem saving data to the database, keeping consistency. It also allows other
callbacks to run before Ruby-Lola, allowing developers to run simple sanitization
checks before the verification.

Using ActiveRecord callbacks has the benefit of being sure that verification al-
ways happens when the database is about to be changed, no matter what code calls
it. There are ways to disable or skip these verifications in ActiveRecord, so the de-
velopers still have full control.

3.4 Rails Integration of Ruby-Lola

When the Rails application is starting up, the model is loaded to setup the database
table structure. After that, the specification gets loaded. This happens implicitly as
part of Ruby-Lolas domain specific language. Since the database table structure is
already loaded, Ruby-Lola collects all database fields and makes them available for
use by the specification. With type information available in the database schema
and provided through Rails, Ruby-Lola can perform a type check on the specifica-
tion. Additional checks are done to ensure that the specification is well defined.
All these checks will fail at application startup if the specification does not fit the
underlying structure of the model. This is the runtime equivalent of a compiler
step to check for correct types and references and ensures that the specification is
always valid and working.

This is an important step, as in a dynamic, interpreted language it would be
possible to reference undefined streams, crashing the application when the first
model instance is created. The startup consistency checks ensure that if the Rails
application can start, the Ruby-Lola specifications are all well defined and will not
crash at runtime. Having a specification crash the application would produce the
same problem runtime verification aims to protect against and would defeat the
benefits gained from using a runtime verification system.

3.5 Ruby-Lola Stream Implementation

The streams of Ruby-Lola are implemented as a ring buffer of fixed size. However,
with the dynamic nature of Ruby arrays, they are auto-extending, so even if the size

3.6. Ruby-Lola Domain Specific Language (DSL) 15

is capped, the arrays start smaller. It would be possible to have unbound arrays, but
since, with fixed look back values, we know how many values we maximally need,
we can discard excess valued from the array to save memory.

Since we are using arrays internally, lookups are very fast. This is important to
ensure that application performance does not suffer with the use of runtime verifi-
cation.

Updates to streams are committed atomically, so it is not possible to see interme-
diate results. The streams are always read consistent. This is an essential property as
otherwise, a trigger could leave streams in an intermediary state that could cause
problems. The intermediary state can be discarded if it is not needed.

Streams are also very modular, so they allow for different back-end solutions
like a Redis database to be added. This is important for future work and scalabil-
ity, as external storage solutions could allow for multiple servers and concurrent
request support, which Ruby-Lola does not currently support.

3.6 Ruby-Lola Domain Specific Language (DSL)

To write a specification, developers can use a domain specific language provided
by Ruby-Lola. The goal of this language is to allow specifications to be human
readable, easily understandable and simple to modify.

A specification is appended as shown in Figure 3.1|with the define_specification
function that takes a Ruby block containing specification definitions as its argu-
ment. An empty specification like this one will create a model stream for Example
and field streams for all fields of the Example model implicitly. Since Ruby on Rails
already knows all fields of the model, they do not need to be specified.

class Example
define_specification do
end

end

Figure 3.1: A class called Example with an empty specification.

Defining additional streams is done inside the specification with the define func-
tion, as shown in Figure This function takes the name of the newly created
stream variable, the type it should have and a Ruby block containing the stream
expression associated with it. Types of stream variables have to be explicitly stated
for clarity and safety reasons. This way the type checker can protect the devel-
oper from type errors while writing the specification. Defining a constant stream
expression is done by passing the corresponding Ruby constant.

16 Contribution

class Example
define_specification do
define :constant, :numeric do
0
end
end
end

Figure 3.2: A class called Example with a specification that defines a constant stream
variable.

Using existing stream variables can be done with a Ruby symbol named after
the referenced stream variable, as shown in Figure The symbol is matched
against the list of stream variables, and if found, the stream variable is used at the
current time step. Stream variables can be operated on as per Lola specification.

class Example
define_specification do

define :output, :numeric do
:input + 1
end
end

end

Figure 3.3: A class called Example with a specification that defines an output stream
variable from an input stream variable.

Looking up previous values of stream variables can be done with the look_up
function , as shown in Figure It takes a stream variable, an amount of steps to
look back and a default value and evaluates them as per Lola specification.

Conditional statements can be used with the ite function, as shown in Figure
It takes a stream expression of boolean type and two stream expressions of the
same type and applies a conditional as per Lola specification.

Specification violations can be specified with a trigger, as shown in Figure
The trigger function takes a boolean stream variable and optionally a string with an
error message. A specification violation is raised if the stream variable evaluates
to true. Specification violations can have different effects depending on in what
context they happen. In a unit test scenario, the test case will be failed. In produc-
tion environments, the database change will be rejected, and error messages will
be passed on to the user requesting the change. Notifications can be attached to

3.6. Ruby-Lola Domain Specific Language (DSL) 17

class Example
define_specification do
define :output, :numeric do
:input + look_up(:output, 1, 1)

end
define :fib, :numeric do
look_up(:fib, 2, 1) + look_up(:£fib, 1, 1)
end
end

end

Figure 3.4: A class called Example with a specification that defines an output stream
variable from an input stream variable and a previous value of the output. For this
the look_up function is used. The look_up function can be used to construct the

Fibonacci sequence.

class User
define_specification do
define :faulty_logins, :numeric do
ite(:login_success, O,
1 + look_up(:faulty_logins, 1, 0))
end
end
end

Figure 3.5: A class called User with a specification that counts how many consecu-
tive faulty logins a user has. If a faulty login is detected then the counter is incre-

mented, otherwise it is reset.

18 Contribution

triggers, alerting the development team of potential problems.

class User
define_specification do
define :faulty_logins, :numeric do
ite(:login_success, O,
1 + look_up(:faulty_logins, 1, 0))

end

define :too_many_logins, :boolean do
:faulty_logins > 300

end

trigger :too_many_logins, ’Error: too many logins!’
end
end

Figure 3.6: A class called User with a specification that counts how many consec-
utive faulty logins a user has. If a faulty login is detected then the counter is in-
cremented, otherwise it is reset. If the amount of consecutive faulty logins exceeds
three a trigger is raised.

Ruby-Lola provides syntactic sugar to make writing specifications fast and un-
derstanding them later easy. Each stream expression can be applied to a function
via the dot-notation. This works in line with how Ruby objects evaluate function
calls on them. The dot-notation :name.length is expanded to length(:name) and then
evaluated, as shown in Figure[3.7] Defining such functions for different types could
be done, but Ruby-Lola already brings many different functions and makes native
Ruby functions available for standard types which should be enough for most cases.

class User
define_specification do
define :name_too_long, :boolean do
:name.length > 30
end
trigger :name_too_long, ’Error: Username too long!’
end
end

Figure 3.7: A class called User with a specification that checks the length of the users
name, ensuring that it does not exceed 30 characters with a trigger. This makes use
of object oriented syntactic sugar, applying a function on a stream variable.

3.6. Ruby-Lola Domain Specific Language (DSL) 19

Ruby on Rails allows database references as a data type, which Ruby-Lola ex-
poses to the specification as shown in Figure[3.8] A references type is introduced that
can be interacted with. There are different functions available for references. One
example is the count function that returns a numeric with the amount of references
counted. A different type of function is the sum function. It does a sum over one
field stream of all referenced model streams. If the dot-notation is used for a field
stream of the referenced model, execution is chained, making different functions
available. This allows for rich specifications and complicated database designs.

class User
has_many :items
define_specification do
define :amount_of_items, :numeric do
:items.count
end
define :total_value, :numeric do
:items.price.sum
end
end
end

Figure 3.8: A class called User with a specification that expands a has-many rela-
tion. One User can have many Items. This specification counts the number of items
associated with this user and calculates their total value.

3.6.1 Technical Details of the DSL Implementation

The domain-specific language makes heavy use of operator overloading to improve
readability over conventional methods.
Example, comparing the code for:

rage + 2
with:
add(stream_of (:age), constant_stream(2))

So one can see how this improves readability. The first version has almost no
noise to it.
This works by monkey patching]l| the symbol and numeric type to add extra

Monkey patching is changing (often internal) classes after they are defined. In this case we define
a + operator on the Symbol type, which does not exist. Monkey patching can be quite dangerous, so
one needs to take care to not break contracts of patched classes.

20 Contribution

capability. Since in Ruby, the + operator on symbols is not defined, it is possible
to define it and have Ruby-Lola create a query in such cases. Numeric types like
integers are problematic as they already react to the operator + and changing that
behavior would create fundamental problems in most applications, mostly break-
ing how math works. So we added our method over the original behavior and
checked that we only create a query when otherwise there would be type clashes
with for example symbols. Also, when the original call would have worked, we
assume it was intended and hand it through to the original function.

There are some problems with operator overloading as it is not possible to over-
write logical operators like || or && or if then else. So for and and or we can use cus-
tom made functions that are confusing to read or use the single | or &, which are
bitwise operators and can be overloaded. For if then else we have to use a custom
made function named ite that may be hard to read, but at least works.

We can also define custom operators that have new meaning, as long as we
accept that the syntax is not as clean as with build in operators.

rage + 2
rage.” 2

The . used is needed for the Ruby interpreter to parse the code correctly. There
is no way to define new infix operators in Ruby, so this is an acceptable limitation.
One interesting approach would be to add logical operators in an unconventional
way that works with what Ruby allows and is still clean.

ite(:male, :age, :age + 2)
:male.?(:age).!(:age + 2)

Our library offers these methods as alternatives to the default ite and that way
we can monitor which version is preferred. Writing a specification is a lot about it
being readable years later by someone who does not know the internal workings
of Ruby-Lola. Offering choice in how one writes the specification can help in this
regard.

Chapter 4

Example

To put Ruby-Lola to the test, we have created an auction system that is then verified.
There is a variety of Items stocked in warehouses, and there are Auctions for these
items. In Figure [4.1| one can see a simplified version of said auction system. The
current system is without any restrictions and contains many bugs and problems.
Over the next pages, we will explore many of these bugs and how to prevent them
using Ruby-Lola.

class Item
attr_accessor :amount
has_many :auctions
end
class Auction
attr_accessor :amount, :bid, :bidder
belongs_to :item
end

Figure 4.1: A bidding system where users can bid on items in an auction. This
showcases an Item model which stores an amount of items left and a reference list
of auctions for this item. It also has an Auction model which has a reference to
the item being auctioned. Each auction has a highest bid and the bidder and an
amount of the item being auctioned. The code for this example is simplified to ease
reading.

To get to a minimal running example of a verification with Ruby-Lola, one has
to install the respective gem with gem ‘ruby-lola’. Now we need to define a spec-
ification. We start with an empty specification, which will not do anything yet.
Installing the gem is sufficient to set up Ruby-Lola for a Ruby on Rails project, it
will automatically install itself and expose the define_specification environment, as

22 Example

seen in Figure[d.2]

class Item
attr_accessor :amount
has_many :auctions
define_specification do
end

end

class Auction
attr_accessor :amount, :bid, :bidder
belongs_to :item
define_specification do
end

end

Figure 4.2: The example from Figure 4.1|with an empty specification attached. No
additional setup is required.

Each Item in the auction system has an amount field that displays how many
of this item are still in stock. It would not make sense to have a negative amount,
so to verify that this does not happen, one can write a specification like in Figure
For this, a stream is created that computes if amount is negative. And then a
trigger is set to alert if the condition gets true. Now, every time an Item is created
or updated, Ruby-Lola verifies that the change is valid before allowing it. If a user
tries to edit an item and set a negative amount, an error message "Amount cannot
be negative!" would be shown to them.

Similar sanitization checks can be performed for the Auction model, as seen in
Figure 4.4}

Until now, the specification only checked for current values. However, Lola can
also retrieve previous values inside a stream with a look back operator. This is
needed to ensure that each bid is bigger than the previous one. The example in
Figure 4.5/ shows how to use the look-back operator.

Sometimes one needs to reference a different model while writing a specifica-
tion. This is where the powers of Ruby-Lola come into play. Using existing refer-
ences, on can reference and access other models inside a specification. In this case,
an auction should never put up more items than are in stock. The example in Figure
4.6l shows how to reference other models.

Since each Item can have multiple auctions running at the same time, there needs
to be a check in place to ensure that the sum of all items up for auction is available
in stock. The reference, in this case, is a many reference, so aggregations can be
used on it, as shown in Figure @

23

class Item
attr_accessor :amount
has_many :auctions
define_specification do

define :amount_negative, :boolean do
:amount < O
end
trigger :amount_negative, ’Amount cannot be negative!’
end
end

Figure 4.3: This example showcases the Item model which stores an amount of
items left and a reference list of auctions for this item. It shows how to verify that
the amount will never be negative. Since amount is a field of Item, an input stream for
itis implicitly created an can just be used. Each Item created will have its individual
stream for amount, Ruby-Lola takes care of the parameter.

class Auction
attr_accessor :amount, :bid, :bidder
belongs_to :item
define_specification do
define :amount_too_small, :boolean do
:amount < 1
end
trigger :amount_too_small,
>Amount needs to be positive!’
define :bid_negative, :boolean do
:bid < 0
end
trigger :bid_negative, ’Bid cannot be negative!’
end
end

Figure 4.4: This example showcases the Auction model which has an amount and a
bid. Here each auction should put at least one item up for bidding, but the starting
bid is allowed to be zero. Negative bids are excluded. A Lola specification ensures
that these conditions are not violated.

24 Example

class Auction
attr_accessor :amount, :bid, :bidder
belongs_to :item
define_specification do
define :bid_not_bigger , :boolean do
:bid <= look_back(:bid, 1, -1)
end
trigger :bid_not_bigger,
’Bid needs to be bigger than previous bid!’
end
end

Figure 4.5: This example showcases the Auction model which has an amount and a
bid. Here each new bid should be more than the previous bid. A Lola specification
ensures that these conditions are not violated. In this case, only the previous value
is needed but one can look back as much as needed and Ruby-Lola will automati-
cally keep that many records in memory. Memory usage is therefore capped by the
biggest look back.

class Auction
attr_accessor :amount, :bid, :bidder
belongs_to :item
define_specification do
define :not_in_stock, :boolean do
:item.amount < :amount
end
trigger :not_in_stock,
>This item has not enough stock for this auction!’
end
end

Figure 4.6: This example again showcases the Auction model which has an amount
and a bid. The amount put up for auction should always be available in stock.
This is checked by using the reference to item. Here one can see the benefits of
the object-oriented way of writing such a specification, as accessing the reference
works similar to how one is used to work with a reference in Rails.

4.1. Benchmarks 25

class Item
attr_accessor :amount
has_many :auctions
define_specification do
define :not_in_stock, :boolean do
sum (:auctions.amount) < :amount
end
trigger :not_in_stock,
’This item has not enough stock for its auctions!’
end
end

Figure 4.7: This example showcases the Item model which stores an amount of
items left and a reference list of auctions for this item. Here a sum aggregation is
done on the auctions reference, specifically the amount field. The object-oriented
way of writing makes it easy to express complex queries like this one while still
staying readable for humans.

In the end, this example shows how to do a variety of verification checks inside
a human-readable specification. The full example is shown in Figure

4.1 Benchmarks

To measure the overhead introduced by this specification into the system, we con-
ducted tests simulating common user actions repeatedly and compared the time
spend inside verification code with the time spent storing the change into the database.

Our first benchmark does this with a local database and a simple specification,
results are shown Figure This scenario ignores many factors that add time to a
request, environmental factors such as internet connection, technical factors such as
the clients hardware, Rails routing and business logic. In this offline environment,
Ruby-Lola adds a 10 percent overhead per request.

With a second benchmark, we tried to produce a very inefficient specification
that does a look back over the last 10000 previously seen values, with results in
Figure This benchmark increases the overhead to about 15 percent.

In a practical setting these overheads will not be noticeable by the user. Nor-
mal requests for Ruby on Rails applications take approximately between 10ms and
200ms, depending on internet connectivity and other factors. From our offline
benchmarks, we estimate the overhead of Ruby-Lola to be between 0.01ms to 0.1ms
per request, which is less than one percent of request time, even with complicated
queries.

26

Example

class Item
attr_accessor :amount
has_many :auctions
define_specification do
define :amount_negative, :boolean do
:amount < 0
end
trigger :amount_negative,
"Amount can not be negative!’
define :not_in_stock, :boolean do
sum (:auctions.amount) < :amount
end
trigger :not_in_stock,
"This item has not enough stock for its auctions!’
end
end
class Auction
attr_accessor :amount, :bid, :bidder
belongs_to :item
define_specification do
define :amount_too_small, :boolean do
ramount < 1
end
trigger :amount_too_small,
"Amount needs to be positive!’
define :bid_negative, :boolean do
:bid < 0
end
trigger :bid_negative, ’'Bid can not be negative!’
define :bid_not_bigger, :boolean do
:bid <= look_back (:bid, 1, -1)
end
trigger :bid_not_bigger,
"Bid needs to be bigger than previous bid!’
define :not_in_stock, :boolean do
ritem .amount < :amount
end
trigger :not_in_stock,
"This item has not enough stock for this auction!’
end
end

Figure 4.8: The bidding system where users can bid on items in an auction. This
part of the specification shows simple validations that ensure no faulty data is en-
tered. Items are validated not to allow negative stock. Auctions are validated to
always auction some items. Bids need to be positive and always bigger than the
previous bid. Moreover, the amount of items put up for auction should always be

in stock. This is done through a reference to a different model.

4.1. Benchmarks 27

Measuring the overhead in actual online requests posed to be difficult, as the
time spend in Ruby-Lola code each request was less than one millisecond. So we
concluded that overhead in practical scenarios would not be noticed by application
developers or users.

user system real
lola prev x 10000: 0.551000 0.000000 (0.427589)
db stores x 10000: 2.639000 .363000 (3.749787)
lola post x 10000: 0.016000 0.000000 (0.036436)
Finished in 8.14649s

o

Figure 4.9: A simple benchmark with a small specification. We simulated 10000
model changes and summed up the time spend inside Ruby-Lola code and in re-
quests to the database. The label lola prev indicates Ruby-Lola verification code that
evaluates the specification, db stores indicates the time spend in code that saves the
Rails model to a local PostgreSQL database, and lola post indicates the time Ruby-
Lola spends storing new stream values and state.

user system real
lola prev x 10000: 0.296000 0.030000 (0.451939)
db stores x 10000: 2.142000 .406000 (4.372816)
lola post x 10000: 0.108000 0.031000 (0.129353)
Finished in 8.91038s

o

Figure 4.10: A simple benchmark with an inefficient look back, checking 10000 val-
ues each time the specification is evaluated. We simulated 10000 model changes
and summed up the time spend inside Ruby-Lola code and in requests to the
database. The label lola prev indicates Ruby-Lola verification code that evaluates the
specification, db stores indicates the time spend in code that saves the Rails model
to a local PostgreSQL database, and lola post indicates the time Ruby-Lola spends
storing new stream values and state.

Chapter 5

Conclusion

We created Ruby-Lola, a domain specific language and framework for the mon-
itoring of critical web applications. It streamlines the usage of the Lola runtime
verification language in Ruby on Rails applications.

It introduces an expressive domain specific language that is based on the Lola
stream-based specification language. The language is simple to read, but also pow-
erful enough to express temporal logics and aggregations, while restricting speci-
fications that are expensive to use, like future lookups. This allows for completely
synchronous verification of user requests, detecting bugs and rejecting changes
caused by them.

The domain-specific language reduces noise by implicitly making all model
fields available as input streams and automatically handling model stream life cy-
cles. It specification can also serve as a form of documentation for the model.

Ruby-Lola specifications are verified automatically with each new change to a
model. Violations are handled depending on the execution context. In automated
tests, a specification violation will fail the test, automatically enhancing the test suit
through the specification. In user requests, error messages can be passed on as form
validation errors, or they can silently alert developers with the problem. Changes
to the database are automatically rejected, should the specification be violated.

This allows to integrate Ruby-Lola into existing tested applications with mini-
mal effort. Even small specifications can amplify existing test suits to cover a wide
range of cases. And when a specification grows bigger, the overhead imposed is
small enough that it is not noticeable for the end user.

We conclude that Ruby-Lola can provide real value to existing projects that want
to adopt runtime verification.

Chapter 6

Related Work

There are different design decisions for runtime verification systems that make
them fit or unfit for certain use cases. For our use case, the synchronous monitor-
ing of critical web applications, we evaluated multiple runtime verification systems
and their fitness for the use case at hand.

First some general reading material for the topic of runtime verification. Sokol-
sky et al. give an overview of different approaches to runtime verification and dif-
ferent design decisions that runtime verification systems have to make [36/]. A good
first read into the topic.

For our chosen runtime verification system, we base our work on the papers
introducing Lola. Lola 1.0 [14] and Lola 2.0 [[18] introduced the Lola language,
which we implemented with Ruby-Lola. Lola 2.0 is based on Lola 1.0, and we use
language features from Lola 2.0, so both papers are cornerstones of our work. We
depend on the proofs and guarantees of Lola 1.0 and 2.0 in our work on Ruby-
Lola and ensure by design that they still hold for our implementation. Since Lola
is a synchronous runtime verification system that allows complex operations over
past values and gives safety guarantees on the specification, it became the runtime
verification system of choice for our use case.

Cassar et al. compared different runtime monitoring solutions and put them
on a spectrum of how coupled they were with the system under test [7]]. Our run-
time verification system Ruby-Lola falls into the Completely Synchronous Monitoring
category as it allows the system under test to react to violations and therefore the
monitor code stops execution completely until it is verified to comply to the speci-
fication. This distinction alone makes many runtime verification systems unfit for
our use case.

One common design decision was to patch the executable after compilation [29)
9,[15,[13,20]]. The technique falls into the synchronous category. Aspect-Oriented
Programming in Java and Aspect] are popular tools for this technique. While this
approach is convenient for the user, it has drawbacks in our use case. Patching

30 Related Work

binary files mixes user code with monitoring code, which can lead to hard to spot
errors and undefined behavior. These would be a security risk and monitoring a
system would not be worth much if the monitor produces new errors. Ruby-Lola
uses the Rails framework for instrumentation to have a strong separation between
user code and monitoring code.

A different design decision was to process log files after the fact [13,26,135]. This
is called asynchronous monitoring. It has the benefit of having future data readily
available and the time to do complex processing operations. However, for our use
case, we need to react to violations before they are committed, for example, to reject
faulty transactions.

Other runtime verification systems are intended for completely different do-
mains. Colombo et al. [[11]] investigated runtime verification in highly dynamic sys-
tems where components are not always known beforehand. In our case, we know
all the components and specifications before we test them. Distefano et al. [[16] ex-
plored monitoring via register automata as a means to restrict resource usage for
runtime verification of systems with unbounded resource generation. In our case,
the bounds are established by the database model. Should we want to monitor big
datasets for properties then that could be an interesting approach. Other works
explored real-time monitoring for runtime verification systems[34) 31]]. Achiev-
ing real-time is not necessary for web-based systems and certainly not an easy
feat. Havelund et al. [21] explored how hierarchical state machines can be used
for model testing. The general idea of the testing is similar to our scenario tests, but
hierarchical state machines do not map as easily to database entries as Lola streams
do. Armbrust et al.[1]] explored runtime verification in the spark system.

We also found some ideas for further improvements of Ruby-Lola that could be
explored in future work. Artho et al. [2]] explored how to leverage a runtime ver-
ification specification for unit test generation. This could be interesting for future
work. Generating test cases from code analysis in a dynamic language can be an in-
teresting challenge. Utilizing Rails controller route data to achieve some coverage
of possible user actions could also be worth exploring. Tools like ZapataE] could as-
sist in this process. Calinescu et al. [5] explored adapting the software at runtime,
which is something Ruby-Lola could make use of in the future. Itis not in the scope
of current work, but the design of Ruby-Lola would allow for such modifications.

Zhttps://github.com/Nedomas/zapata

https://github.com/Nedomas/zapata

Bibliography

[1]

(6]

[7]

Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu,
Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali
Ghodsi, and Matei Zaharia. Spark sql: Relational data processing in spark.
In Proceedings of the 2015 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’15, pages 1383-1394, New York, NY, USA, 2015.
ACM. ISBN 978-1-4503-2758-9. doi: 10.1145/2723372.2742797. URL http:
//doi.acm.org/10.1145/2723372.2742797.

Cyrille Artho, Howard Barringer, Allen Goldberg, Klaus Havelund, Sar-
fraz Khurshid, Mike Lowry, Corina Pasareanu, Grigore Rosu, Koushik Sen,
Willem Visser, and Rich Washington. Combining test case generation and
runtime verification. Theor. Comput. Sci., 336(2-3):209-234, May 2005. ISSN
0304-3975. doi: 10.1016/j.tcs.2004.11.007. URL http://dx.doi.org/10.1016/
j.tcs.2004.11.007.

David A. Basin, Matts Harvan, Felix Klaedtke, and Eugen Zalinescu. Mon-
poly: Monitoring usage-control policies. In RV, 2011.

Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime verifica-
tion for 1tl and tltl. ACM Transactions on Software Engineering and Methodology
(TOSEM), 20(4):14, 2011.

Radu Calinescu, Carlo Ghezzi, Marta Kwiatkowska, and Raffaela Mirandola.
Self-adaptive software needs quantitative verification at runtime. Commun.
ACM, 55(9):69-77, September 2012. ISSN 0001-0782. doi: 10.1145/2330667.
2330686. URL http://doi.acm.org/10.1145/2330667.2330686.

Tien-Dung Cao, Trung-Tien Phan-Quang, Patrick Felix, and Richard Castanet.
Automated runtime verification for web services. In Web Services (ICWS), 2010
IEEE International Conference on, pages 76-82. IEEE, 2010.

I. Cassar, A. Francalanza, L. Aceto, and A. Ingo6lfsdéttir. A Survey of Runtime
Monitoring Instrumentation Techniques. ArXiv e-prints, August 2017.

http://doi.acm.org/10.1145/2723372.2742797
http://doi.acm.org/10.1145/2723372.2742797
http://dx.doi.org/10.1016/j.tcs.2004.11.007
http://dx.doi.org/10.1016/j.tcs.2004.11.007
http://doi.acm.org/10.1145/2330667.2330686

32 Bibliography

[8] Pierre Castéran and Yves Bertot. Interactive theorem proving and program
development. coq’art: The calculus of inductive constructions., 2004.

[9] Feng Chen and Grigore Rosu. Mop: An efficient and generic runtime verifi-
cation framework. SIGPLAN Not., 42(10):569-588, October 2007. ISSN 0362-
1340. doi: 10.1145/1297105.1297069.

[10] Edmund M Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT
press, 1999.

[11] Christian Colombo, Gabriel Dimech, and Adrian Francalanza. Investigating
instrumentation techniques for esb runtime verification. In SEFM, 2015.

[12] Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine
Miné, and Xavier Rival. Why does astrée scale up? 35, 12 2009.

[13] Marcelo d’Amorim and Klaus Havelund. Event-based runtime verification of
java programs. SIGSOFT Softw. Eng. Notes, 30(4):1-7, May 2005. ISSN 0163-
5948. doi: 10.1145/1082983.1083249. URL http://doi.acm.org/10.1145/
1082983.1083249

[14] B. D’Angelo, S. Sankaranarayanan, C. Sanchez, W. Robinson, B. Finkbeiner,
H. B. Sipma, S. Mehrotra, and Z. Manna. Lola: runtime monitoring of syn-
chronous systems. In 12th International Symposium on Temporal Representation
and Reasoning (TIME’05), pages 166-174, June 2005. doi: 10.1109/TIME.2005.
26.

[15] Normann Decker, Martin Leucker, and Daniel Thoma. junitrv - adding run-
time verification to junit. In NASA Formal Methods, volume LNCS 7871.
Springer-Verlag Berlin Heidelberg, Springer-Verlag Berlin Heidelberg, 2013.

[16] Dino Distefano, Radu Grigore, Rasmus Lerchedahl Petersen, and Nikos
Tzevelekos. ~Runtime verification based on register automata. CoRR,
abs/1209.5325, 2012. URL http://arxiv.org/abs/1209.5325.

[17] Vijay D’silva, Daniel Kroening, and Georg Weissenbacher. A survey of au-
tomated techniques for formal software verification. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 27 (7):1165-1178, 2008.

[18] Peter Faymonville, Bernd Finkbeiner, Sebastian Schirmer, and Hazem Tor-
fah. A stream-based specification language for network monitoring. In
Ylies Falcone and César Sadnchez, editors, Runtime Verification - 16th Interna-
tional Conference, RV 2016, Madrid, Spain, September 23-30, 2016, Proceedings,
volume 10012 of Lecture Notes in Computer Science, pages 152-168. Springer,
2016. doi: 10.1007/978-3-319-46982-9_10. URL http://dx.doi.org/10.
1007/978-3-319-46982-9_10

http://doi.acm.org/10.1145/1082983.1083249
http://doi.acm.org/10.1145/1082983.1083249
http://arxiv.org/abs/1209.5325
http://dx.doi.org/10.1007/978-3-319-46982-9_10
http://dx.doi.org/10.1007/978-3-319-46982-9_10

Bibliography 33

[19] Sylvain Hallé and Roger Villemaire. Runtime verification for the web. In
International Conference on Runtime Verification, pages 106-121. Springer, 2010.

[20] Klaus Havelund. Runtime verification of ¢ programs. In Proceedings of
the 20th IFIP TC 6/WG 6.1 International Conference on Testing of Software and
Communicating Systems: 8th International Workshop, TestCom 08 / FATES "08,
pages 7-22, Berlin, Heidelberg, 2008. Springer-Verlag. ISBN 978-3-540-68514-
2. doi: 10.1007/978-3-540-68524-1_3. URL http://dx.doi.org/10.1007/
978-3-540-68524-1_3.

[21] Klaus Havelund and Rajeev Joshi. Modeling and monitoring of hierarchical
state machines in scala. In SERENE, 2017.

[22] Klaus Havelund and Grigore Rosu. Monitoring java programs with
java pathexplorer. Electronic Notes in Theoretical Computer Science, 55
(2):200 - 217, 2001. ISSN 1571-0661. doi: https://doi.org/10.1016/
S1571-0661(04)00253-1. URL http://www.sciencedirect.com/science/
article/pii/S1571066104002531. RV’2001, Runtime Verification (in connec-
tion with CAV "01).

[23] Gerard] Holzmann. Cobra: fast structural code checking (keynote). In
Proceedings of the 24th ACM SIGSOFT International SPIN Symposium on Model
Checking of Software, pages 1-8. ACM, 2017.

[24] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai Lee,
and Sy-Yen Kuo. Securing web application code by static analysis and runtime
protection. In Proceedings of the 13th international conference on World Wide Web,
pages 40-52. ACM, 2004.

[25] Manfred Broy Bengt Jonsson, Joost-Pieter Katoen Martin Leucker, and
Alexander Pretschner. Model-based testing of reactive systems, 2005.

[26] Sean Kauffman, Klaus Havelund, and Rajeev Joshi. nfer - a notation and sys-
tem for inferring event stream abstractions. In RV, 2016.

[27] Matt Kaufmann and].Stroother Moore. Some key research problems in auto-
mated theorem proving for hardware and software verification. 98, 01 2004.

[28] Martin Leucker and Christian Schallhart. A brief account of runtime verifica-
tion. The Journal of Logic and Algebraic Programming, 78(5):293-303, 2009.

[29] Patrick O'Neil Meredith, Dongyun Jin, Dennis Griffith, Feng Chen, and Grig-
ore Rosu. An overview of the mop runtime verification framework. Interna-
tional Journal on Software Tools for Technology Transfer, 14:249-289, 2011.

http://dx.doi.org/10.1007/978-3-540-68524-1_3
http://dx.doi.org/10.1007/978-3-540-68524-1_3
http://www.sciencedirect.com/science/article/pii/S1571066104002531
http://www.sciencedirect.com/science/article/pii/S1571066104002531

34

Bibliography

[30]

[31]

[32]

[33]
[34]

[35]

[37]

[38]

Glenford] Myers, Corey Sandler, and Tom Badgett. The art of software testing.
John Wiley & Sons, 2011.

Samaneh Navabpour, Chun Wah Wallace Wu, Borzoo Bonakdarpour, and
Sebastian Fischmeister. Efficient techniques for near-optimal instrumen-
tation in time-triggered runtime verification. In Proceedings of the Sec-
ond International Conference on Runtime Verification, RV’11, pages 208-
222, Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 978-3-642-29859-2.
doi: 10.1007/978-3-642-29860-8_16. URL http://dx.doi.org/10.1007/
978-3-642-29860-8_16.

Martin Ouimet and Kristina Lundqvist. Formal software verification: Model
checking and theorem proving. Embedded Systems Laboratory Technical Report
ESL-TIK-00214, Cambridge USA, 2007.

Jiantao Pan. Software testing. Dependable Embedded Systems, 5:2006, 1999.

Lee Pike, Alwyn Goodloe, Robin Morisset, and Sebastian Niller. Copilot: A
hard real-time runtime monitor. In Proceedings of the 1st Intl. Conference on
Runtime Verification, LNCS. Springer, November 2010. Preprint available at
http://www.cs.indiana.edu/"lepike/pub_pages/rv2010.htmll

Martin Roesch. Snort - lightweight intrusion detection for networks. In
Proceedings of the 13th USENIX Conference on System Administration, LISA "99,
pages 229-238, Berkeley, CA, USA, 1999. USENIX Association. URL http:
//dl.acm.org/citation.cfm?id=1039834.1039864.

Oleg Sokolsky, Klaus Havelund, and Insup Lee. Introduction to the special
section on runtime verification. Int. J. Softw. Tools Technol. Transf., 14(3):243—
247, June 2012. ISSN 1433-2779. doi: 10.1007/s10009-011-0218-6. URL https:
//doi.org/10.1007/510009-011-0218-6.

J. A. Whittaker. What is software testing? and why is it so hard? IEEE Software,
17(1):70-79, Jan 2000. ISSN 0740-7459. doi: 10.1109/52.819971.

Yichen Xie and Alex Aiken. Saturn: A sat-based tool for bug detection. In
International Conference on Computer Aided Verification, pages 139-143. Springer,
2005.

http://dx.doi.org/10.1007/978-3-642-29860-8_16
http://dx.doi.org/10.1007/978-3-642-29860-8_16
http://www.cs.indiana.edu/~lepike/pub_pages/rv2010.html
http://dl.acm.org/citation.cfm?id=1039834.1039864
http://dl.acm.org/citation.cfm?id=1039834.1039864
https://doi.org/10.1007/s10009-011-0218-6
https://doi.org/10.1007/s10009-011-0218-6

	Abstract
	Introduction
	Motivating Example

	Background
	Introduction to Runtime Verification
	Introduction to Synchronous Runtime Verification
	Introduction to Lola
	Introduction to Lola 2.0 Streams
	Example of Lola 2.0 Streams

	Contribution
	Lola Model Streams, Field Streams, and how to Link Them Together
	The Rails Way of Convention Over Configuration
	ActiveRecord Callbacks
	Rails Integration of Ruby-Lola
	Ruby-Lola Stream Implementation
	Ruby-Lola Domain Specific Language (DSL)
	Technical Details of the DSL Implementation

	Example
	Benchmarks

	Conclusion
	Related Work

