
Predicting Timed Traces With Neural Networks

Saarland University

Department of Computer Science

Bachelor’s Thesis

submitted by

Ayham Omar

Saarbrücken, April 2022

Supervisor: Prof. Bernd Finkbeiner, Ph.D.

Advisor: Dr. Christopher Hahn

Niklas Metzger

Reviewer: Prof. Bernd Finkbeiner, Ph.D.

Prof. Dr. Sebastian Hack

Submission: 14 April, 2022

Abstract

Recently, deep learning has been applied to the field of logical reasoning delivering

promising results as a complement to classical algorithms. Particularly the Transformer

architecture has been proved, in existingwork, to be proficient not only in predicting the

satisfiability of propositional and Linear Time Temporal Logic (LTL) formulas but also

in the ability to construct satisfying solutions for these formulas. However, applying

deep learning algorithms to formal specifications in the more complex continuous-time

domain has not been explored yet.

In this work, we introduce the problem of predicting a satisfying timed trace for a

Metric Interval Temporal Logic (MITL) formula to a state-of-the-art Transformer neural

network. Specifications in MITL contain explicit time intervals to reason about the

behavior of real-time systems, thus enforcing the Transformer to predict more profound

traces.

We describe the Transformer architecture and explain themethods used in generating

meaningful training data for a supervised training approach. Furthermore, we conduct

several experiments to determine to what extent the model learns the semantics of

MITL. We, to this end, differentiate between the semantic and syntactic accuracy of the

solutions predicted by the model.

We find that Transformers prove proficient in solving MITL formulas, reaching over

90% of accuracy in some experiments. We also observe that a trained Transformer can

predict correct solutions that deviate from the ones constructed by the data generator,

demonstrating signs of generalizing to the semantics of the logic. This generalization

property was even evident when challenging the Transformer with formulas much

longer than it encountered during training or even formulas onwhich the data generator

timed out. Concerning the stage of studying the effects of the size of the time intervals

on the Transformer, we find that the Transformer continues to deliver good results

when faced with much bigger intervals. An interesting result since solving formulas

containing big intervals is particularly expensive for most classical approaches.

Acknowledgements

I would like to acknowledge Prof. Moritz Weber for the program ”Preparatory math
courses for studies in MINT subjects (2015-2018)”1. Passing this program is what qualified

me to begin my bachelor’s study at Saarland University. But foremost, I would like to

express my sincere gratitude to my supervisor Prof. Bernd Finkbeiner, who contributed

to my interest in the subject and offered me this project. I also genuinely thank Prof.

SebastianHack for acting as the second reviewer formy thesis. Andan earnest thankyou

to both of my advisors, Christopher Hahn and Niklas Metzger, for their unconditional

support during my work on this project and for proofreading the thesis. Last but not

the least, many thanks to my sister for her continuous support and proofreading this

thesis.

1https://www.math.uni-sb.de/ag/speicher/MathRefresh.html

https://www.math.uni-sb.de/ag/speicher/MathRefresh.html

Eidesstattliche Erklärung
Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbständig verfasst

und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement in Lieu of an Oath
I hereby confirm that I have written this thesis on my own and that I have not used any

other media or materials than the ones referred to in this thesis.

Einverständniserklärung
Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die

Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent
I agree tomake both versions of my thesis (with a passing grade) accessible to the public

by having them added to the library of the Computer Science Department.

Saarbrücken, 14 April, 2022

Contents

1 Introduction 1

2 Related Work 5

3 Background 7
3.1 Artificial Neural Networks . 7

3.1.1 Neurons . 7

3.1.2 Feedforward Neural Networks . 8

3.2 Transformer Neural Network . 10

3.2.1 Word Embeddings . 10

3.2.2 Positional Encoding . 11

3.2.3 Attention . 11

3.2.4 Scaled Dot-Product Attention . 11

3.2.5 Multi-Head Attention . 12

3.2.6 The FFNN Sub-Layer . 13

3.2.7 The Complete Architecture . 13

4 Data Generation 17
4.1 Metric Interval Temporal Logic . 17

4.1.1 Syntax . 18

4.1.2 Semantics . 19

4.2 Generating MITL Formulas . 20

4.3 Constructing & Evaluating Solutions . 21

4.4 Data Sets . 24

4.4.1 Specification Pattern . 24

4.4.2 Random Formulas . 25

4.4.3 Scaled Data Sets . 26

5 Experiments & Results 29
5.1 Hyperparameter Analysis . 30

ix

5.2 Solving Pattern MITL Formulas . 31

5.3 Solving Randomly Generated MITL formulas 33

5.4 Generalization Properties . 33

5.4.1 Generalizing to the Semantics of MITL 34

5.4.2 Generalizing To Bigger MITL Formulas 34

5.5 Solving Scaled MITL Formulas . 36

6 Conclusion 39

x

Chapter 1
Introduction

The advancements of machine learning in computer science made it possible to solve

tasks for which composing a classical algorithm would be inefficient. Deep learning, in

particular, proved capable of matching or even outperforming humans in tasks such as

medical imaging evaluation [1], classification [2] and video games [3].

However, the utilization of deep learning in the field of logical reasoningwheremany

problems have high computational complexity is not yet voluminous. The rationale

behind using machine learning to tackle such problems is mostly the competency in

which a well-trained model can devise a solution to a given problem regardless of

its complexity. This ability makes deep learning an admirable substitute for classical

algorithms in practice. For instance, the predicted solutions of a model can be checked

for accuracy, a procedure that for many problems turns out to be more direct than

constructing the solution from scratch. In the infrequent caseswhere themodel predicts

faulty solutions, one can then refer to the slower but sound classical algorithms, this

technique leads to overall enhanced performance.

Existing works have demonstrated promising results in training neural networks to

decide the satisfiability of different types of logic and even in predicting satisfying

assignments to logical formulas. In [4] for example, authors have successfully trained

a neural network on solving the satisfiability problem of propositional logic (SAT).

Equivalently, authors in [5] went beyond that and managed to predict satisfying traces

for the Linear Temporal Logic (LTL) [6] in the discrete-time domain. None of the

previous results, however, have dealt with the problem of predicting timed traces in

the more complex continuous-time domain. Therefore, in this thesis, we will expand

existing work in applying deep learning algorithms to reason about the Metric Interval

Temporal Logic (MITL) [7].

MITL is a temporal language used to describe the timing properties of real-time sys-

tems. As an extension LTL, MITL is more proficiently adept at expressing requirements

where we argue about the state of the system inside designated time periods. MITL

1

1. Introduction

facilitates this by bounding its temporal operators with time intervals. One can use

MITL to express statements such as a proposition p must hold for some time between

three to five-time units in the future ([3,5] p) or a proposition p must hold for the

entire duration of a given time window ([3,5] p), that is for all time units between (and

including) three and five.

MITL expressiveness abilities ledMITL to become the specification language of choice

for applications in fields like runtime verification of real-time systems [8, 9, 10] aswell as

in model-checking in which there is a developing interest in translating MITL formulas

into timed automata [11, 12, 13].

In the objective of training a deep learning model on solving MITL formulas, we use

the prominent Transformer neural network as the basis of our model. Transformers are

sequence-to-sequence neural networks based on the encoder-decoder architecture. In

this architecture, the input sequence is passed through a stack of identical encoders re-

sulting in a prepared representation of the input sequence that is propagated afterward

into N identical decoders in the decoding block. The decoders then use a combination

of the prepared input and the embeddings of the earlier generated output sequence to

predict the following output word.

Since its introduction in [14], the Transformer architecturewas the core of state-of-the-

art NLP machine learning techniques such as BERT [15] and GPT-3 [16]. The novelty of

the Transformer architecture was essentially consuming the input sequence as a whole,

thus achieving higher parallelization during training and consequently consuming a

shorter time to train. This, along with applying positional encoding techniques and

attentionmechanisms, permits the Transformer to preserve the context of the processed

sentence more efficiently, as well as to emphasize the relevance between related input

words.

In this project, we use a supervised training approach to train a Transformer on pairs

consisting of an MITL formula and a satisfying timed trace. We then perform multiple

experiments to evaluate the accuracy of the model in predicting satisfying timed traces

when provided with an MITL formula from a held-out test set. For instance, giving the

MITL formula (c U[1,11] [1,9] e) our model predicts the timed trace c ∧ e [0, 1) −→
c ∧ e [1, 2) −→ c ∧ e [2,∞). When checking the predicted trace against theMITL formula

for satisfiability, we find the predicted solution to be accurate (more on the evaluation

process and data representation in Section 4).

On the fact that solutions to an MITL formula are not unique, we attempt to an-

swer the interesting question: Has the trained model learned the actual semantics of

the temporal logic, or is it imitating the algorithm of the data generator? We, con-

sequently, differentiate between the semantic and syntactic accuracy of the solutions

predicted by the model and seek to answer this question by testing the model on

formulas with a different pattern than the ones utilized in the training set. We also

investigate if the model can generalize to formulas longer than it has ever encountered

during training and study the effect positional encoding has on this ability. Moreover,

2

Contents

we study the impact the size of the time intervals has on the Transformer’s performance.

For the rest of this thesis, we commence by providing an overview of related work.

Next, we briefly introduce neural networks and then elaborate on explaining the

encoder-decoder architecture of the Transformer neural network. Then, we introduce

the syntax and semantics of MITL, answering the question of when a timed trace is

considered a valid solution for an MITL formula. Afterward, we present the procedure

used to obtain the required data sets of MITL formulas and their solutions, we discuss

the characteristics of each data set as well. Thereafter, we present the experiments

conducted, alongside discussing the results. Finally, we conclude in Section 6.

3

Chapter 2
Related Work

The supervised training of a Transformer neural network to predict satisfying solutions

to LTL formulas [5] is directly related to this work. Results showed that the Transformer

achieved high accuracy up to 96.8% on a held-out test set; it even predicted correct

solutions for 83% of a set of formulas on which the classical tool used to generate

the training data was timed out. Examining the advantages of using tree-positional

encoding demonstrated that its use results in the model generalizing to longer LTL

formulas than it saw during training, as opposed to using the standard positional

encoding which didn’t cause the model to generalize. Transformers, in addition, were

shown to generalize to the semantics of LTL by predicting different solutions from those

in the test set, yet those predicted solutions were correct. In a successor work of the

same authors, the further complex problem of synthesizing hardware circuits out of

LTL specifications was considered [17]. This time the authors used a tweaked version

of the Transformer neural network called the hierarchical Transformer [18] achieving

adequate results. In this project, we train a Transformer to conduct similar experiments

as in [5], yet this time, on the problem of finding a satisfying solution forMITL formulas.

Here the model has to learn the time intervals linked to the temporal operators in the

formulas, it further has to predict the intervals in the solution trace, in which each step

of the trace holds.

Another work employed deep learning in the scope of logical reasoning, trained a

graph neural network (GNN) [19] as a classifier for predicting the satisfiability of propo-

sitional logic formulas [4]. The model in this work was trained on pairs of propositional

logic formulas in their conjunctive normal form (CNF) and a single bit designating if

the formula is satisfiable or not. The model herewithin has also generalized to longer

formulas and formulas of novel distributions. Surprisingly, despite only being trained

as a classifier, the activations of the model demonstrated that it learned to solve the for-

mulas and the solutions could be decoded from the network’s activations. In our work,

we straightforwardly train the model to predict satisfying solutions rather than only

5

2. Related Work

predicting satisfiability. Moreover, the logic we utilize does not have to be transformed

into any special form and it is more exacting and includes more involved operators.

Examples of different works demonstrating the makings of applying neural networks

as a component of larger logical frameworks to ameliorate performance: In [20], authors

trained a Recurrent Neural Network (RNN) to avail determine a control strategy for

a system while ascertaining that a specification provided in Signal Temporal Logic

(STL) is not infringed. STL is a similar logic to MITL that defines predicates over real

values. In [21], authors utilized neural networks to improve the heuristics in SMT solvers

ameliorating their performance up to 100×. In a subsequent work to [4], the authors

in [22] used a simplified version of the exact architecture to predict unsatisfiable cores

of real problems, enhancing the performance of several high-performance SAT solvers.

In [23] the GNN architecture was used as an alternative for syntax trees to represent

formulas instead, leading to improvements in the performance of higher-order theorem

provers. However, In our work, we train a neural network as a standalone end-to-end

MITL solver.

Other areas where Deep Learning additionally proved capable, is detecting variable

misuses in source code and electing the proper variable to be used [24]. Moreover, in

symbolic mathematics [25], where the authors used a Transformer neural network to

predict the solutions of integration and differential equations.

6

Chapter 3
Background

Throughout this chapter, we briefly introduce the basics of artificial neural networks,

afterwards, we further describe the architecture used in this project.

3.1 Artificial Neural Networks

Artificial Neural Networks are a class of machine learning algorithms inspired by the

biological neural networks found in animal brains. Mimicking the way the brain works,

neural networks learn to predict a value from a target set for a given input through

analyzing a substantial number of pre-labeled examples in a process called training,

in which hidden patterns are detected and the parameters of the network are adjusted

accordingly.

With the gradual advancement of computational power and the influx of data, the

fixation on applying neural networks has increased drastically. Computer algorithms

predicated on neural networks reached and surpassed human-level accuracy in solving

problems in sundry relevant applications, as mentioned in Section 1.

In this section, we introduce the building blocks of neural networks and their learn-

ing process. We focus on the feedforward architecture and the supervised learning

approach as they are the relevant methods used in this project.

3.1.1 Neurons

Neural networks comprise the interconnections of numerous simple computational

units known as Neurons. As depicted in Figure 3.1 an artificial neuron receives input

values from other connected neurons, applies what is called an activation function on

the weighted sum of the inputs, and progresses to output the processed data to other

neurons in the network. A bias b is typically added to the input of a neuron, permitting

the output of the activation function to fit the predictions better. Each input connection

7

3. Background

���� �

�

��

��

�

��

Input connec�ons Input

Func�on

Ac�va�on

Func�on
Output Connec�ons

� ���� �

�

�

⋮

Figure 3.1: In addition to a bias value b, the artificial neuron receives n input values from

the neurons in the preceding layer. It then applies a mathematical function f
on the weighted sum of the inputs and proceeds to propagate the end result

to the neurons in the next layer.

is initially weighted with a random value, the weights are then updated during training

and they reflect the strength of the corresponding connection and to what extent the

input will influence the output of the neuron.

Activation functions (also called transfer functions) interpret the input signals into

output signals. Some commonly used functions are:

• The Step function:

f(x) =

{
1, if x > 0

0, otherwise

• The Sigmoid function:

f(x) = 1
1+e−x

• The Rectified Linear Unit (ReLu) function:

f(x) = max(0, x)

We view next how we can align neurons in connected layers to create a feedforward

neural network and demonstrate the training process.

3.1.2 Feedforward Neural Networks

As the most fundamental neural network architecture, the feedforward neural network

(FFNN) consists of an input layer, an output layer, and one or more hidden layers in

between. Each layer is composed of several independent neurons that carry weighted

connections to one or more neurons in the adjacent layer. In the case where each neuron

connects to all neurons found in the next layer, we call the network a fully-connected

8

3.1. Artificial Neural Networks

�

�2 ℎ 2

ℎ

ℎ

ℎ22

ℎ2

ℎ2 �

�2

�

Input Layer Output LayerHidden Layers

�� ℎ �ℎ ℎ2 �ℎ2 �

Figure 3.2: A fully-connected feedforward neural networkwith 2 hidden layers (weights

are only partially denoted for clarity)

FFNN.As it is a feedforward network, the neurons of each layer only process the outputs

provided by the neurons of the previous layer, restricting signals to only travel in one

direction, from the input layer to the output layer.

Figure 3.2 resembles a FFNN with two hidden layers. Training FFNNs to solve

a certain task using a supervised learning algorithm is conducted by subjecting the

network to a data set composed of examples of inputs and their corresponding outputs.

The training process can be considered as learning to approximate the underlying

resulting function in this data set.

While being trained, the FFNN analyzes each example in the data set by first feeding

each element of the input vector into the neurons of the first layer. Then the input

is transmitted as it is into the first hidden layer, i.e the input layer does not apply

any activation functions to the input. The neurons of the first hidden layer afterward

apply the computation that was explained in the previous section, on all the inputs

they receive and output the result of the activation function into the successive hidden

layer, if existent, or into the output layer. Finally, the neurons of the output layer are

responsible for producing the network’s prediction.

Since the weights and biases of the FFNN are randomly initiated, the predictions of

the network in the early stages of training are inaccurate. To improve the accuracy of its

predictions, the FFNN utilizes what is called a cost (or loss) function.

The cost function evaluates the accuracy of the predictions compared to the ground

truth (the correct output in the data set). Using the cost function, the loss is computed

over n data samples.

9

3. Background

As an examplewedemonstrate this computationusing theMean SquaredError (MSE)

cost function:

MSE = 1
n

n∑
n=0

(Yi − Ŷi)
2

Where n is the number of training examples analyzed, Yi the ground truth, and Ŷi the

predicted output. Here, the actual learning is realized using an optimization algorithm

that updates the weights of the FFNNminimizing the cost function, i.e., to improve the

accuracy of future predictions. The most common optimization algorithms used are

based on the gradient descent optimization approach. The goal of this approach is to

minimize the loss function to its local minimum. More details on the gradient descent

strategy and its related algorithms are elaborated on in [26].

3.2 Transformer Neural Network

The Transformer neural architecture was first introduced in [14] and since has replaced

Recurrent Neural Networks (RNNs) as the leading architecture for Natural Language

Processing (NLP). Transformers are FFNNs that employ attention mechanisms to man-

age to consume the input sequence fully instead of using recurrent cells to process the

input sequentially. This capability of consuming the sequence fully allows for a superior

parallelization that leads to more speedy training times and further allows for captur-

ing the dependencies and context between divergent words regardless of the distance

between those words. Preserving dependencies between distant words was an obstacle

for former models and though attention techniques were used to overcome this obstacle

in sequence to sequence models such as RNN [27], Transformers were still superior as

being uniquely based on attention.

Transformers are established on the encoder-decoder structure, in which both the en-

coder and decoder blocks are composed of a stack ofN identical encoders and decoders

respectively (six encoders and six decoders in the original paper [14]). The encoder

stack is used to encode the input sequence in its entirety resulting in an internal rep-

resentation of the input. This representation is afterward passed to the decoder stack

which uses it to predict the upcoming output. An overview of the complete architecture

can be seen in Figure 3.4.

In this section, we are attempting to explicate the various layers and features of the

Transformer architecture and then take a step back to introduce the workflow of the

entire Transformer network.

3.2.1 Word Embeddings

Not unique to Transformers, word embedding is a paramount process in deep learning

and especially in NLP, where each word in the input lexicon is encoded as a real-

10

3.2. Transformer Neural Network

valued vector of a designated dimension (dmodel = 512 in the original paper [14]).

The resulting embedding vectors from this process can also help to encapsulate the

syntactic and semantic kindred attributes of the input words, where words similar in

meaning are mapped closer to each other in the embedding space. There are various

word embedding algorithms that use neural networks to learn this encoding process,

the most prominent is word2vec [28].

3.2.2 Positional Encoding

Since Transformers consume the input sequence as a whole and not sequentially, the

concept of position for the different sequence tokens gets lost. To preserve the appre-

hension about the relative and absolute positions of the different words, we map each

word to a vector called the positional embedding (PE) vector. This vector is of the same

size as the input embedding vector, which allows the summation of the two as we are

going to perceive later. In [14] sine and cosine functions were used to compute the PE

vector as follows:

PE(pos,2i) = sin(pos/10000
2i/dmodel)

PE(pos,2i+1) = cos(pos/10000
2i/dmodel)

where pos is the position of the input word, and i is the dimension in the PE vector.

3.2.3 Attention

The innovation of the Transformer architecture was depending totally on self-attention

to process the entire input sequence altogether, rather than recurrently processing in-

put words in sequence. The motive behind this term is to provide additional context

information when encoding the sequence of tokens. This additional information aids

the Transformer to be more heedful to the most pertinent parts of the sentence whilst

encoding or decoding a token.

3.2.4 Scaled Dot-Product Attention

Scaled Dot-Product Attention depicted in Figure 3.3 is the method used in [14] to

calculate the attention matrix. For this method, we first need to generate three vectors

for each of the sequence tokens. These vectors are a query vector q, a key vector k, and

a value vector v. This is done by multiplying the embedding vector of each token by

three weight matricesW(Q),W(K), andW(V). These matrices are arbitrarily initialized

and learned in the course of the training. To speed up computation and enhance

parallelization, we pack all resulting vectors into matrices Q, K of dimension dk, and

V of dimension dv. Next, the computation of the final output matrix can be conveyed

with this straightforward formula:

11

3. Background

Figure 3.3: (To the left) Scaled Dot-Product Attention which is used to reveal dependen-

cies in a sequence of tokens. (To the right)Multi-HeadAttentionwhich is the

act of applying the attention method multiple times on the same sequence

[14].

Attention(Q,K, V) = softmax(
QKT

√
dk

)V

In the above formula, we multiply the Queries and Keys matrices, divide the outcome

by the square root of the Keys matrix dimension and then apply the Softmax function

on the output to obtain weights on the values. The scores of the Softmax function are

lastly multiplied by the values matrix V increasing the values of the relevant tokens

and decreasing the irrelevant ones. Scaling by

√
dk serves to halt pushing the Softmax

function into regions where it has extremely small gradients [14].

3.2.5 Multi-Head Attention

Authors in [14] found it beneficial to perform the Scaled Dot-Product Attention function

not only once, but multiple times in parallel for each token. This novel attention mecha-

nism is called ”multi-head attention” in which multiple attention sub-layers (heads) are

employed as depicted in Figure 3.3. Each head will then perform the attention function

on the entire sequence as elucidated in Subsection 3.2.4 with the only distinction that

each head is using a different set of the Q, K and V weight matrices. The output of each

head is then concatenated and multiplied with yet another weight matrixWO resulting

in the eventual attention representation of the sequence.

12

3.2. Transformer Neural Network

The benefit of replicating the attention computationwith distinct randomly generated

and learnedweightmatrices is to enhance the detection of relevantwords for each token,

where each head would disclose different dependencies.

The multi-head attention computation can be conceivable formalized as follows:

MultiHead(Q,K, V) = Concat(head1, ..., headh)W
O

Where headi = Attention(QW
Q
i , KW

K
i , VW

V
i)

Here WO
is another randomly initiated weight matrix that is jointly trained with the

model. The dimension of the weight matrices areW
Q
i ∈ Rdmodel×dk

,WK
i ∈ Rdmodel×dk

,

WV
i ∈ Rdmodel×dv

andWO
i ∈ Rhdv×dmodel

.

To bar introducing any overhead while using the multi-head attention mechanism,

we reduce the dimensions of the weight matrices in each head in consonance with their

number h, that is dk = dV = dmodel/h = 64. This reduction together with training

the heads in parallel advances to a comparable computation cost to that of single-head

attention with complete dimensionality of dmodel = 512.

3.2.6 The FFNN Sub-Layer

Adjacent to attention sub-layers, Transformers employ a FFNN sub-layer composed of

two linear transformations with a ReLU activation in between. This sub-layer is trained

jointly with the model and intends to prepare the output of one layer to the successive

one in the encoders, decoders stacks by potentially enriching its representation. The

FFNN is applied to each position in the input sequence independentlywhilst preserving

the dimension of the input, that is dinput = doutput = dmodel. The FFNN administers

the following computation:

FFNN(x) = max(0, xW1 + b1)W2 + b2

Here, W1 and W2 are weight matrices of dimensions dmodel × dff and dff × dmodel

respectively with dff = 2048 and b1 ∈ Rdff
, b2 ∈ Rdmodel

are the biases.

3.2.7 The Complete Architecture

Figure 3.4 illustrates the full architecture of the Transformer Neural Network. We

forthwith observe the exact steps a Transformer performs to predict the translation of

input sequences amid training.

The Encoder Block

In the encoder block, the multi-head attention sub-layer of the first encoder receives the

prepared input sequence that consists of the embedding and PE matrices combined.

Then, with the aid of a residual connection [29], both the input and output of the Multi-

head attention sub-layer are added and normalized. Next, the normalized matrix is fed

13

3. Background

Figure 3.4: The complete Transformer architecture represented by its main encod-

ing/decoding blocks and the different processing sub-layers in each [14].

14

3.2. Transformer Neural Network

into an FFNN that is likewise encompassed by a residual connection and followed by

an add and normalization sub-layer. Afterward, the output of the encoder is moved as

an input to the multi-head attention sub-layer of the following encoder.

The output of the top encoder of the stack is transformed into attention vectors K and

V and sent into each decoder in the decoder block. More precisely, it is sent into the

encoder-decoder multi-head attention sub-layer of each decoder.

The Decoder Block

In a similar aspect to the first encoder layer, the first decoder receives the embeddings

and positional information of the present prediction sequence (initially the sequence

only contains a special start symbol). That is when the prepared sequence is fed into a

modified multi-head attention sub-layer that is similar to the one used in the encoder

blockwith thekey contrast that all values in the input of the Softmax function correspond

to connections between the earlier predicted words and all future ones are masked

out (set to −∞), ensuring that the later prediction generated by the network depends

singularly on the outputs predicted thus far, ergo compelling the network to learn.

The normalized attention matrix from the preceding step is fed into another Multi-

head attention sub-layer. This sub-layer is as well distinct in that it gets its K and

V attention matrices from the encoder block and its Q matrix from the masked layer

underneath it. At last, a set of FFNN and normalization sub-layers will arrange the

attention matrix and pass it to the following decoder in the stack.

The output of the top decoder is pushed through two final linear and softmax layers

which will convert this output into next-token probabilities where the token with the

highest probability is selected. As a result, the predicted token is concatenated to

the prediction sequence and the decoding process is copied with this new sequence.

Decoding is complete when a special end symbol is predicted.

15

Chapter 4
Data Generation

Before evaluating our model and conducting any experiments, we need to create suffi-

cient diversified training data to attain a well equitable trained model. As our model is

designed to learn through example in a supervised training approach, we need to train

the model to approximate a function that maps MITL formulas to satisfying traces. As

such, our data sets should consist of pairs of MITL formulas and their solution traces.

To form the fundamental data sets, we need to find amethod to (i) generate satisfiable

MITL formulas (ii) construct a satisfying trace for a given MITL formula, and (iii) check

predicted traces against MITL formulas for satisfiability. On the basis that we need to

generate an abundance of samples, all of the above steps have to be done efficiently.

In the course of this chapter, we elucidate the methods we used to construct our data

sets. However, we institute by presenting our logic of interest MITL.

4.1 Metric Interval Temporal Logic

Metric Interval Temporal Logic (MITL) [7] is an extensionof Linear Temporal Logic (LTL)

[6], in which temporal operators are rather bounded by non-punctual timed intervals.

As a real-time logic,MITL candescribemore qualitative specifications in the continuous-

timedomain such as deadlines and timewindows. For instance, ifwe consider the timed

automaton depicted in Figure 4.1 modeling a simple coffee machine. One can describe

specifications like ”the coffee must be prepared within 2 to 10 time units” or ”the user

has a limitation of 15 time units to order after inserting a coin”. These specifications can

be represented using the MITL formulas (coffee_ordered −→ [2,10] coffee_prepared)

and (coin_inserted −→ ([0,15) coffee_ordered ∨ [15,∞) coin_refunded)), respec-

tively.

MITL is also considered a restriction of the originalMetric Temporal Logic (MTL) [30],

in which the constraining intervals of the temporal operators are singular, leading full

MTL over infinite words to be undecidable for both the satisfiability and model check-

17

4. Data Generation

coin inserted

� ≤

co�ee ordered

� ≤

co�ee prepared

� ≤

idle

coin refunded

� ≤

� <

�

�

order

�

� = 15�
{�}

insert {�}

� � = 5
{�}

{�}

� = 5�

� ≥ 2

Figure 4.1: A simple timed automaton representing a coffee machine.

ing problems [31]. Prohibiting punctual intervals in MITL allowed for an EXPSPACE

decision procedure for both model checking and satisfiability [7].

In this section, we present the syntax and semantics of MITL as viewed in the original

paper [7].

4.1.1 Syntax

The syntax of MITL is similar to the syntax of LTL, which will prove conducive later on

in this chapter when generating MITL formulas in Section 4.2. MITL formulas, for that

reason, are composed of propositions connected by the regular logical operators along

with the time-constrained temporal operator U.

Definition 1 (MITL Syntax)

The syntax of MITL is defined over a set of atomic propositions AP by the following

grammar

ϕ ::= p | ¬ϕ | ϕ1 ∧ϕ2 | ϕ1 UIϕ2

18

4.1. Metric Interval Temporal Logic

Where p ∈ AP is a proposition and I is a non-singular interval with l(I) < r(I) and

l(I), r(I) integer constants. The right end-point of I may also be unbounded r(I) = ∞.

Restricting intervals to integer end-points serves purely for simplification.

To improve readability of MITL formulas, we derive the temporal operators time-

constrained eventually (I) and time-constrained always (I) from the U operator seen

above as follows:

Iϕ ≡ trueUIϕ and Iϕ ≡ ¬ I ¬ϕ

Where ([1,4] a) is interpreted as ”eventually within 1 to 4 time units a should hold”

and ([1,4] a) as ”always between 1 and 4 time units a should hold”. We also derive the

usual propositional operators from the ¬ and ∧ operators.

4.1.2 Semantics

As observed in our timed automaton example viewed in Figure 4.1, MITL is interpreted

over timed states. A timed state delineates the time period inwhich this system is found

in the said state. As such, we are moving forward from defining the semantics of MITL,

to formally instituting timed state sequences, together with its two components state

and interval sequences.

Definition 2 (State and Interval Sequences)

A state sequence s̄ = (s0, s1, s2, ...) is a possibly infinite sequence of states si ⊆ AP.
Similarly an interval sequence Ī = (I0, I1, I2, ...) a possibly infinite sequence of intervals

such that:

• I0 is left-closed and l(I0) = 0;

• Ii and Ii+1 are adjacent for all i > 0;

• every time t ∈ R>0 belongs to some interval Ii.

At this moment, pairing state and interval sequences is going to result in having the

requested timed state sequence. In these types of sequences, by virtue of the adjacency

of the intervals in the interval sequence, one can perceive the state of the system at any

possible time point. As so, this concept will form the fundamentals of the notation of

the timed traces predicted by our network, more on this matter is found in Section 4.3.

Definition 3 (Timed State Sequence)

A timed state sequence τ = (s̄, Ī) is a pair of a state sequence s̄ and an interval sequence

Ī. We define a function τ∗ : R>0 −→ 2AP
, which provides a system state at every time

instant. That is, τ∗(t) = si for all i > 0 and t ∈ Ii.
We can also represent the timed state sequence τ by the possibly infinite sequence:

19

4. Data Generation

(s0, I0) −→ (s1, I1) −→ (s2, I2) −→ ...

Eventually, we show under which directives a timed state sequence satisfies an MITL

formula.

Definition 4 (MITL Semantics)

We determine the semantics of an MITL formula ϕ over a timed state sequence

τ = (s̄, Ī) inductively as follows:

τ |= p iff s0 |= p;

τ |= ¬ϕ iff τ 6|= ϕ

τ |= ϕ1 ∧ϕ2 iff τ |= ϕ1 and τ |= ϕ2

τ |= ϕ1 UIϕ2 iff for some t ∈ I, τt |= ϕ2, and for all t′ ∈ (0, t), τt
′
|= ϕ1

We name the timed state sequence τ a model of the formula ϕ or say τ satisfies ϕ iff

τ |= ϕ. We also denote the set of models of ϕ as L(ϕ), where ϕ is satisfiable iff L(ϕ) 6= ∅.

Example 4.1.1. In this example, we illustrate the semantics of all temporal operators

available in MITL through displaying a prototype MITL formula and a comparable

satisfying timed state sequence. The green color ushers when the timed state sequence

becomes satisfying to the correlated formula.

a U[1,3] b a [0, 2) −→ b [2, 3) −→ a [3, 4) −→ True [4,∞)

[1,3] a ≡ true U[1,3] a b [0, 2) −→ b [2, 3) −→ a [3, 4) −→ True [4,∞)

[1,3] a ≡ ¬ [1,3] ¬a b [0, 1) −→ a [1, 4) −→ True [4,∞)

4

4.2 Generating MITL Formulas

We make use of the fact that the syntax of both LTL and MITL is almost identical. In

fact, apart from comprising the next operator, LTL can be viewed as a special case of

MITL where all intervals in the formula are of the form [0,∞). Therefore, we will use a

familiar platform for LTL and ω-automata manipulation called Spot [32].

Spot acquires a tool called RandLTL [33] that provides a constructive andmanageable

measure to generate a great number of unique LTL formulas. With RandLTL, one can

specify a size interval for the generated formulas along with a probability distribution

for all the possible nodes in the formulas.

Togenerate the requirednumberofMITL formulas for ourproject,weutilizeRandLTL

and subsequently interpret each resulting LTL formula into an MITL one. We achieve

this by plainly concatenating random time intervals of a specified size; to each of the

temporal operators located in the LTL formula.

20

4.3. Constructing & Evaluating Solutions

Example 4.2.1. Using the command line interface of Spot, we can execute this RandLTL

command to generate 5 unique LTL formulas:

1 >randltl -n5 a b c --tree-size=12 --ltl-priorities implies=1, equiv=1, U=1, F=1,

G=1, or=1, and=1

2 G!(c -> Ga) U F(a & c)

3 c <-> (!(a <-> Fb) & (b | Fa))

4 G(a <-> (a | b)) -> F(a -> Ga)

5 a <-> (Gb <-> !(Gb | (c U b)))

6 (c & (b U (b | c))) -> Fb

In order to transform the LTL formulas intoMITL, allwe need is to append time intervals

to the temporal operators:

1 G[1,4]!(c -> G[2,4]a) U[4,5] F[2,7](a & c)

2 c <-> (!(a <-> F[1,3]b) & (b | F[1,5]a))

3 G[2,7](a <-> (a | b)) -> F[1,4](a -> G[2,5]a)

4 a <-> (G[1,6]b <-> !(G[2,6]b | (c U[1,6] b)))

5 (c & (b U[4,6] (b | c))) -> F[2,3]b

4

To complete the construction of our data sets, we have yet to find a method to build

satisfying solutions for the generated formulas. We likewise have to be able to investigate

solutions against MITL formulas for satisfiability. In the next section, we display the

two steps.

4.3 Constructing & Evaluating Solutions

For our setup, we are not only attempting to construct satisfiable traces for MITL for-

mulas but also, we are taking into account that MITL formulas do not have unique

solutions; therefore, we are seeking to validate the solutions that are predicted by the

model, which are syntactically different from the solutions in the data set.

Spot, for example, constructs an equivalent BüchiAutomaton for a given LTL formula.

This automaton Aϕ precisely accepts the language that defines the model of the LTL

formula ϕ, i.e., L(Aϕ) = L(ϕ). One can then, by searching for an accepting run in Aϕ,

construct and evaluate satisfying traces for ϕ. However, Spot does not support MITL.

A similar decision procedure for MITL was introduced in [11]. In this work, the

authors implemented a tool to translate MITL formulas into a timed automaton written

in the XML format supported by the acclaimed model-checker UPPAAL [34]. Similar

to Spot, it is presumed that one can use these automata to generate or evaluate traces.

Nonetheless, this proved to be capricious, due to the restrictions of the UPPAAL inter-

face which essentially is aimed at model checking, and as UPPAAL not being simply

configurable.

A different approach we explored for solving MITL formulas was introduced in [35].

In this work, the authors translated MITL formulas into an intermediate logic called

21

4. Data Generation

Constraint LTL over clocks (CLTLoc). This logic has a decision procedure by reducing

it into a decidable Satisfiability Modulo Theories (SMT) problem, then using an over-

the-shelf SMT solver to generate the solution traces. The translation process, however,

in addition to the time needed for the SMT solver to generate the final solution, is

drawn out to the extent that solving voluminous numbers of formulas is considered

unattainable. Adding the fact that this procedure does not support validating traces led

us to search for other options.

At last, we reached the decision to utilize an MITL manipulation tool written in

python, called Py-MTL [36] though it is unable to solveMITL formulas directly, yet with

the assistance of Spot, permit us to jointly generate satisfying traces for MITL formulas

and evaluate solutions.

Constructing Solution Traces

In order to construct a satisfying trace for a givenMITL formulaweuse the discretization

feature of Py-MTL. This feature translates the MITL formula into an equivalent LTL for-

mula that solely consists of the temporal operator Next (), the propositional operators

conjunction (∧), disjunction (∨), negation (¬), and atomic propositions. Afterward, we

use Spot to construct a satisfying trace to this LTL formula (and thereby to the original

MITL formula) if existent.

To better replicate a timed state sequence (Definition 3), we rewrite the output traces

of Spot by merging identical successive steps into one step and pairing it with a left-

closed and right-opened time interval. These intervals indicate the time span during

which their corresponding step holds. Intervals in neighboring steps are also adjacent,

allowing us to observe the values of the propositions at each possible instant.

We call this composition of the timed state sequences timed traces. For instance, the

MITL formula ([1,2] ¬a ∧ [2,4] a) is satisfied by the timed trace: ¬a [1, 3); a [3,∞).

In the following example, we will expound on the procedure of solving an MITL

formula using the afore-described method:

Example 4.3.1. Discretizing the MITL formula ([4,6](a ∧ b) ∨ [2,4] c) with Py-MTL

results in the following equivalent LTL formula:

¬(¬(4(a ∧ b) ∧ 5(a ∧ b) ∧ 6(a ∧ b)) ∧ (2 ¬c ∧ 3 ¬c ∧ 4 ¬c))

(4.1)

Next, we use Spot to construct a satisfying trace for (4.1):

true; true; c; cycle{1} (4.2)

As a final step, we merge the similar steps in (4.2) and add the corresponding intervals

to acquire the following timed trace:

a [0, 2); c [2,∞) (4.3)

22

4.3. Constructing & Evaluating Solutions

For further implicated formulas, steps in the timed trace can comprise propositional

formulas containing only the operators ∧, ∨, and ¬. 4

It is vital to note that when converting the Spot trace into a timed trace we discard

any symbolic true steps. These steps, to begin with, allow for any combination of

propositions in their respective positions in the trace. However, we concretize the trace

by arbitrarily selecting one combination. This is done to adapt the timed traces to

our evaluation process, described next, which can only operate with explicit traces. In

other words, we avoid evaluating all possible concrete traces whose number can be

exponential in the number of APs for each symbolic step. This procedure is essential,

since many solutions predicted by the model vary from the solutions in the data set, in

such cases, we have to evaluate these solutions for accuracy. This action would however

yield testing our trained model on a sufficient number of unseen samples unfeasible.

It is worth mentioning here that, although this discretization approach assisted with

Spot proves adequate, it still undergoes the impotence to solve MITL formulas that

enclose infinite intervals. As a consequence, our data sets are going to comprise finite

MITL formulas.

Evaluating Traces

Onemore feature of the Py-MTL tool is evaluatingwhether a timed trace satisfies a given

MITL formula. In this case, one has to rewrite the timed trace into a python dictionary

where each atomic proposition in the formula has its own list. This list comprises pairs

of a time point and the logical value of the atomic proposition at this time point.

Example 4.3.2. To evaluate the satisfiability of trace (4.3) in Example 4.3.1 against the

MITL formula ([4,6](a ∧ b) ∨ [2,4] c) using the Py-MTL tool, we are required to

transform the trace into the following python dictionary:

1 trace = {

2 ’a’: [(0, 1), (1, 1), (2, 0)]

3 ’b’: [(0, 0), (1, 0), (2, 0)],

4 ’c’: [(0, 0), (1, 0), (2, 1)]

5 }

4

We will employ this feature to ascertain the correctness of those predicted timed

traces that are syntactically varied from the target solutions. This will permit us later in

Section 5] to better assimilate to what extent our model has fathomed the semantics of

MITL.

In the following section, we proceed to put the tools analyzed to work and generate

our required data sets.

23

4. Data Generation

4.4 Data Sets

To demonstrate the competence of the Transformer neural network in predicting satis-

fying timed traces and to investigate the generalization properties of Transformers, we

used the methods elucidated in Sections 4.2 and 4.3 to generate several data sets in two

different fashions. Said fashions are presented in Sections 4.4.1 and 4.4.2.

Each of our data sets is split into three parts. The first part contains 80% of all samples

and is used to train the model. The second part is a validation set used to evaluate the

model after each epoch to help avoid overfitting, it contains 10% of the samples. As for

the remaining 10% of the samples, they are gathered in a held-out test set that is used

as a final resolution of accuracy for the wholly trained model.

We also elected the Polish notation as the format of the formulas and the steps of the

timed traces. This notation permits a unique representation of logical formulas without

the need for parenthesis.

The maximum size of the time intervals in the formulas is limited to a specific bound

for each of the data sets. The rationale behind limiting the size of the intervals is to

obviate constructing MITL formulas whose corresponding equivalent discretizations

are too large. This is due to the fact that constructing satisfying traces for such formulas

can easily become unfeasible under the specified timeout limit of two seconds (one

second for the discretization process, and one second for constructing the satisfying

trace). For instance, 77.71% of the formulas in our smallest data set MITLRandom35Full

(displayed later on) have an equivalent discretization formula larger than 1K in size and

10.55% larger than 10K. For some formulas, the discretization sizes even exceeded 100K.

Four Intel Xeon CPU E7-8867 v4 processors were used for the generation of all data

sets, in which 140 processes were utilized to generate samples simultaneously.

4.4.1 Specification Pattern

In this data set, we construct samples from a pool of 139 temporal specification patterns

collected from different sources in the literature [37, 38, 39, 40, 41]. These patterns

contain both derived and non-derived propositional and temporal operators as well as

up to six unique atomic propositions. Here are three randomly selected patterns:

1 G((a & !b & Fb) -> ((c -> (!b U (!b & d))) U b))

2 !(Ga | Gb | (G(a | FGc) & G(b | FG!c)))

3 FGa | GFb

To generate sufficient unique samples out of this limited number of specifications,

we conjoined various patterns after randomly substituting their atomic propositions

and appending the necessary time intervals to the temporal operators. We halted the

conjunction process once the size of the resulting formula either succeeded 82 or once

our trace construction method, from Section 4.3, timed out (> two seconds).

24

4.4. Data Sets

For this data set, time intervals were randomly selected under the constraint that

their size does not exceed 100. Through using this approach, we successfully generated

319 082 samples in 18.27 hours.

In the following, we illustrate two randomly chosen samples from the MITLPattern82

data set. Although the model is trained only on samples written in the polish notation,

we provide the infix notation for the purpose of clarity:

formula (polish): &->F[1,6]cU[29,42]ec|U[36,43]F[0,1]cb!F[0,1]U[10,41]c&cb

formula (infix) : F[1,6]c -> (e U[29,42] c) & (F[0,1]c U[36,43] b) | !F[0,1]

(c U[10,41] (c&b))

trace (polish): !e [0,1); !c [1,∞)
formula (polish): &F[21,57]|faG[16,22]->bU[3,26]aU[0,6]!a|cd

formula (infix) : F[21,57](f | a) & G[16,22](b -> (a U[3,26] (!a U[0,6] (c | d)))

trace (polish): f [0,16); !b [16,21); |&a!b&!bf [21,22); !b [22,∞)
trace (infix) : f [0,16); !b[16,21); (a & !b) | (!b & f) [21,22); !b [22,∞)

4.4.2 Random Formulas

Using the RandLTL tool disclosed in Section 4.2, we arbitrarily generated LTL formu-

las and later converted those LTL formulas into MITL by appending random integral

intervals of a delimited size to the temporal operators (See Example 4.2.1).

In this approach, the generated formulas can accommodate up to five different atomic

propositions. For the node distribution, we select equal weights on all the temporal and

propositional operators, aswell as on the constants True and False. Atomicpropositions,

however, can appear with a higher probability of three times. Moreover, we filter the

generated formulas to boost the consistency of the distribution in size.

In the following paragraph, we list the data sets generated by using this random

approach. Intervals here were bounded to size 120.

MITLRandom35Full This data set encloses 654 984 samples. Formulas here have amax-

imal size of 35 and contain both derived and non-derived temporal and propositional

operators, along with the constants True and False.

MITLRandom35Simple This data set encloses 624 930 samples. This data set varies

from the MITLRandom35Full data set by the absence of derived operators. Here, only

the operators ∧,¬,U are allowed.

MITLRandom82Simple As the name suggests, this data set encloses formulas with a

maximal size of 82 that in its turn only contain non-derived operators. It consists of only

10K samples for the purpose of evaluating the accuracy of our models when challenged

with larger-sized formulas.

25

4. Data Generation

(a) (b)

Figure 4.2: Size distribution for formulas (a) and traces (b) of the MITLPattern82 data

set. The size of the formulas and traces is on the x-axis ,while the number of

samples is on the y-axis.

(a) (b)

Figure 4.3: Size distribution for formulas (a) and traces (b) of the MITLRandom35Fulldata

set. The size of the formulas and traces is on the x-axis ,while the number of

samples is on the y-axis.

The evident size distribution of two of our largest data sets can be observed in Figures

4.2 and 4.3. We consider the size of an MITL formula to be the number of nodes in

the original LTL formula plus the number of added intervals, for example, the formula

([1,3] ¬a) has the size four. Additionally, we indicate the different data sets presented

in Sections 4.4.1 and 4.4.2 in Table 4.4.

4.4.3 Scaled Data Sets

Limiting the size of the time intervals in the previous data sets, though necessary,

imposes restrictions on the number of unique intervals established in the data sets. Yet,

this limitation contradicts actual real scenarios where time intervals can be of any size.

In order to compensate for this limitation and to be able to evaluate the performance of

26

4.4. Data Sets

Data set #Samples Int. Size #APs OPs

MITLPattern82 319 082 100 6 U, , ,∧,∨,−→,⇔,¬

MITLRandom35Full 654 984 120 5 U, , ,∧,∨,−→,⇔,¬

MITLRandom35Simple 624 930 120 5 U,∧,¬

MITLRandom82Simple 10K 120 5 U,∧,¬

Table 4.4: The data sets used for training and evaluating the Transformer; together with

the number of samples, maximum interval size, number of possible atomic

propositions, and employed operators. The maximum size of the formulas

can be deducted from the data sets labels.

the Transformer when faced with bigger, more diverse time intervals, we scale existing

data sets into ones that possess such intervals.

This is achieved as follows: for each pair of formulas and its satisfying timed trace,

we multiply both of the end-points of the time intervals with a single scalar. The scalar

is selected randomly for each pair in the data set, with the limitation that none of the

scaled time intervals exceeds the new selected size limit. As a result, we gain a new

data set with the same number of samples, still with more variety of intervals due to

the increased allowed size done by scaling. To demonstrate the validity of the resulting

data sets, we introduce the following Proposition:

Proposition 1. Multiplying the endpoints of all time intervals in an MITL formula φ and a
satisfying timed state sequence τwith a single scalar µ, yields a new formula φ′ and a new timed
state sequence τ′ that satisfies φ′.

Proof. Since the semantics of MITL is defined inductively (Definition 4), and since only

temporal operators acquire a time interval, it suffices to prove the lemma for the basic

case (φ = ϕ1 UIϕ2):

Based on the assumption τ = (s̄, Ī) |= φ, there exists a time point t ∈ I ∩ I′i, with

τ(t) |= ϕ2, where I′i ∈ Ī. It also must hold that for all t′ ∈ (0, t), τ(t′) |= ϕ1.

Since scaling intervals in τ does not change their corresponding states, we have

t∗ ∈ (I∗) ∩ (I′∗i), and τ
′(t∗) |= ϕ2. Here the superscript

∗
represents the time points and

intervals scaled by µ. For the same reason we also have for all t′∗ ∈ (0, t∗), τ′(t′∗) |= ϕ1.

Based on the semantics of MITL, we conclude that τ′ |= φ′ = ϕ1 UI∗ ϕ2.

In the following chapter, we will use this approach to scale some of the data sets

introduced above and compare the performance of the Transformer for different time

interval size limits.

27

Chapter 5
Experiments & Results

Based on the DeepLTL tool [42], we implement a Transformer neural network and train

several models to predict satisfying timed traces for MITL formulas from the differ-

ent data sets presented in Section 4.4. Alongside the Transformer’s implementation,

DeepLTL utilizes beam search [43], which is a heuristic best-first search algorithm that

aids to decode the best possible output prediction up to predetermined beam size. For

the following experiments, we used a beam size of two.

Since anMITL formula can havemultiple accurate solutions, we differentiate between

two accuracy measures when testing our models, syntactic accuracy and semantic ac-

curacy. Syntactic accuracy plainly means that the prediction made by the model is

identical to the target solution in the data set. Semantic accuracy, on the other hand,

construes the percentage of predicted solutions that are, although not identical to the

ones in the data set, still considered a valid solution to the formula. To better evaluate

the performance of our trained models, we also differentiate between false solutions

and syntactically invalid solutions.

All models in our experiment were trained using the popular Adam optimizer [44]

with β1 = 0.9, β2 = 0.98 and ε = 10−9
. Moreover, we used 4K warm-up steps for

the computation of the learning rate. The configuration parameters of Adam and the

number of warm-up steps, both were proposed in the original Transformer paper [14].

To circumvent overfitting; an occurrence where the model fits its training data too

precisely it loses its generalization abilities; we employ the early stopping method.

While training, the model is evaluated on the validation set after each epoch. When

the validation error fails to decrease for more than a predetermined number of epochs,

the learning process is interrupted and the model with the lowest validation error is

restored. In this project, we elected a threshold of eight epochs for early stopping.

All our models were trained and tested on a single NVIDIA A100 SXM4 GPU with a

40 GB memory size.

29

5. Experiments & Results

Embedding Layers Heads FC size Batch Epochs Syn. Acc. Sem. Acc.

128 4 4 512 100 175 67.82% 93.29%

128 4 4 512 100 300 69.86% 93.61%

256 4 8 512 100 175 68.13% 92.74%

128 4 4 512 512 134 71.18% 94.45%

128 4 4 512 512 203 72.53% 95.31%

128 5 6 1024 512 134 74.36% 95.97%

128 5 6 1024 750 151 74.03% 95.69%

256 5 6 1024 512 77 73.10% 94.88%

256 5 6 1700 512 86 73.91% 95.26%

128 6 8 1024 512 131 71.58% 94.52%

128 6 8 1024 512 142 72.03% 94.66%

Table 5.1: The hyperparameter analysis results of testing different Transformers on the

MITLRandom35Full data set.

5.1 Hyperparameter Analysis

In this section, we evaluate the performance of multiple Transformers, each trained and

tested on the MITLRandom35Full data set to examine the impact of the most significant

hyperparameters. The principal parameters we will be focusing on, are the number of

layers in each of the encoder and the decoder stacks, the number of heads in each layer,

the size of the embedding vectors, the dimensionality of the fully-connected FFNN,

and finally the number of examples processed in each training step (batch size). The

maximum encoding size, hence the maximum number of tokens in an input sequence,

was confined to 90 and the maximum decoding size was confined to 200. Table 5.1

summarizes the training results of the different Transformers along with the chosen

values of their hyperparameters.

Starting with a Transformer with four layers, four heads, and a small training step of

100 examples, the results were already encouraging. With an embedding vector size of

128, this Transformer predicted the exact target solutions for 67.82% of the test samples

and accurate yet new solutions for 25.47% of these samples. When training the same

Transformer formore epochs or increasing its embedding size and the number of heads,

the syntactic accuracy; although improved; the overall accuracy remarked little to no

improvement. However, increasing the batch size did not only decrease the training

30

5.2. Solving Pattern MITL Formulas

time (182 seconds vs 249 seconds per epoch) but also lead to a better overall accuracy

despite learning for fewer epochs.

Later in the table, we see that equipping a Transformer with five layers and six

heads, in addition to increasing the dimension of the FFNN to 1024, yields our best-

performing model. Even while keeping the embedding size at 128 this Transformer

achieves an overall accuracy of 95.97%, with most of the gains being the result of the

improvement of the syntactic accuracy.

Further experimenting with bigger Transformers in terms of the number of layers,

heads, or size of embedding, FFNN brought no advantage. We, therefore, stick with

the former more efficient Transformer for all of the forthcoming experiments.

5.2 Solving Pattern MITL Formulas

To better assess how the Transformer architecture would perform on specifications

presented in practice, we trained a model of the same size as in the last section on the

MITLPattern82 data set.

Since formulas in this data set are considerably bigger than the ones we experimented

with up to this point, we expanded the maximum encode and decode sizes for this

Transformer to 175, and 350 respectively.

After training the model for 139 epochs, we performed two experiments. Firstly,

we tested the trained model on the held-out segment of the MITLPattern82 data set

containing 10K examples. Secondly, we tested the samemodel on a set of 4 160 formulas

from the same distribution, but for which the classical algorithm failed to construct a

solution within the determined timeout limit of two seconds. Figure 5.2 terms the

results of these experiments.

The results of the first experiment appeared slightly less accurate than the results

of the previous models we tested thus far. This is, however, foreseen as a result of

the increase in the size of the formulas. Regardless, results were satisfactory with

the model predicting 93.66% of solutions precisely. The percentages of syntactic and

semantic accuracywere similar to those of the previous experiments, 73.80% and 19.86%

respectively. Only rarely did the model predict invalid traces (0.12%).

In the second experiment, the more structurally involved formulas; for which the

construction of a satisfying timed trace timed out, evinced more challenging for the

trained model. Out of the 4 160 formulas, the model predicted correct solutions for

3 068 formulas leading to an accuracy of 73.75%. The model was also more likely to

predict syntactically invalid traces (2.60%). The superior speed of the Transformer is

alsoworth noting. Compared to the classical algorithm that timed out after two seconds,

the Transformer took around 10 milliseconds to predict a solution for each formula.

31

5. Experiments & Results

Figure 5.2: Performance of a model (only trained on MITLPattern82) that was tested on

a held-out test set (on the top) and on a set of formulas for which our trace

construction method timed out (on the bottom).

32

5.3. Solving Randomly Generated MITL formulas

Figure 5.3: Results of testing our best performing model on the MITLRandom35Simple

data set. The syntactic accuracy is illuminated in green and the semantic

accuracy in light green.

5.3 Solving Randomly Generated MITL formulas

In order to achieve even finer results, we attempt to simplify the underlying problem by

training and testing the model on formulas containing only the non-derived operators

∧,¬ andU. This is especially significant since any logical formula can be easily converted

into an equisatisfiable equivalent enclosing only non-derived operators.

For this experiment, we used the same hyperparameter settings proven to be the best

in Section 5.1 and trained a model on the MITLRandom35Simple data set for a total of

87 epochs. We then tested this model on 10K samples from the held-out test set of the

same data set.

The elimination of the derived operators, did indeed, simplify the problem for the

Transformer. This time, The model was capable of predicting correct solutions for 9853

formulas out of the total 10K test samples, resulting in an overall accuracy of 98.53%.

74.81% of these accurately predicted solutions were syntactically identical to the target

solutions found in the data set, whereas, 23.72% were semantically correct. Still, the

model predicted false solutions for only 147 out of the total 10K tested samples, with

solely nine of these false predictions being syntactically invalid. A demonstration of the

test results can be seen in Figure 5.3.

5.4 Generalization Properties

Presented in Figure 5.3, our model provided accurate solutions for 23.72% of the formu-

las in spite of these solutions being dissimilar from the ones generated by the classical

33

5. Experiments & Results

algorithm. This percentage proposes that the model is learning the semantics of the

underlying problem, rather than only attempting to match the outcome of the classi-

cal algorithm. In this section, we desire to further investigate the competence of our

model when faced with out-of-distribution formulas. Thereby, this will help reveal the

generalization potentials of the model when coming across such unfamiliar input.

5.4.1 Generalizing to the Semantics of MITL

To begin with, we want to evaluate the model from Section 5.2, which is only trained on

MITLPattern82, on the MITLRandom82Simple data set. Though both of these data sets

comprise formulas of the same size, the randomnature of the latter leads the formulas to

bemore concentrated in the number of temporal andpropositional operators. Especially

in the number of the U operator, since it is the only temporal operator allowed in this

data set. This concentration in its turn leads tomore nesting of operators in the formulas

of the MITLRandom82Smiple data set.

Predictably, the syntactic accuracy; after running this experiment on 10K test sam-

ples, was very low (2.24%). We attribute this to the aforementioned differences between

the two data sets. Similarly, The model presented a slightly higher tendency toward

predicting invalid traces. These invalid predictions comprise 6.15% of the total predic-

tions. Notwithstanding the two aforementionedmishaps, themodel was able to achieve

adequate total accuracy of 58.46% by predicting semantically accurate solutions.

Hither, we demonstrate three selected test samples with the corresponding predicted

timed traces to manifest the possible semantic understanding gains of the model:

input : !a U[8,17] b & TRUE U[23,29] !b & !(d U[15,23] !a U[9,28] c)

output: !a & !b [0,8); !a & !b [8,9); !a & b [9,10); !a [10,23); !a & !b [23,24);

!a & b [24,∞)
target: !a & !d [0,1); !a [1,8); !a & b [8,9); !a [9,18); a [18,23); !b [23,∞)
input : !b U[3,21] d

output: !b [0,3); !b & !d [3,4); !b & d [4,∞)
target: !b [0,3); !b & !d [3,13); !b & d [13,∞)
input : b & e & TRUE U[26,27] a & e U[23,24] b & !((c & e) U[17,18] d)

output: b & !c & e [0,1); e [1,23); !b & e [23,24); b & e [24,25); e [25,26); !a

& e [26,27); a & e [27,28); e [28,45); !b & e [45,46); b & e [46,∞)
target: b & c & e [0,1); c & e [1,17); c & !d & e [17,18); !d & e | !c & e

[18,19); e [19,23); b & e [23,24); e [24,25); b [25,26); a [26,∞)
5.4.2 Generalizing To Bigger MITL Formulas

Following the results from the previous section, we desire to further evaluate ourmodel

on another type of unseen formulas, i.e. on formulas of bigger sizes. We ,therefore, will

test our model from Section 5.3, that is only trained on MITLRandom35Simple, on the

MITLRandom82Simple data set.

34

5.4. Generalization Properties

◻

⋀

a b

[0,0,0,0]

[1,0,0,0]

[1,0,0,1][1,0,1,0]

Figure 5.4: Tree positional encoding of the formula (�[1,4](a ∧ b)). All the tokens of the

interval [1, 4] share the corresponding encoding vector as the operator they

belong to.

The MITLRandom82Simple data set contains formulas that are more than double the

size of what the model has encountered during training. Still, the model in this exper-

iment was able to predict correct solutions to 93.12% of the formulas, with 28.31% of

the correct predictions diverging from the target solutions. Conversely, 6.88% of the

solutions suggested by the model were false with only 0.17% thereof being invalid.

As an attempt to improve the previous result, we retrained an identical model on the

same MITLRandom35Simple data set, this time using tree-positional encoding in place of

the standard positional encoding we established in 3.2.2.

The authors in [45] introduced tree-positional encoding as a more apt technique for

models optimized for tree-based problems. The basic idea is that the position of a token

in the input sequence is determined by its node placement in the corresponding syntax

tree. For example, the atomic proposition b in the simple MITL formula ([1,4](a ∧ b))

is encoded with the vector [1, 0, 0, 1], where 1, 0 represents traversing one step to the left

and 0, 1 one step to the right in the syntax tree. Figure 5.4 presents the full encoding of

the formula.

As a result of utilizing tree-positional encoding, the already good performing model

witnessed little improvement. Specifically, the overall accuracy increased only by 0.49%

reaching 93.61%. Upon deeper inspection, however, we observed that tree-positional

encoding indeed improved the ability of the model to generalize to longer formulas

rather remarkably. For instance, when restricting our test data set for this experiment to

only formulas that are bigger than the ones seen during training (>35), the superiority of

the tree-positional encoding becomesmore evident. As it were, ourmodel predicted the

accurate solutions for 91.32%of the formulas, whereas amodel trainedwith the standard

positional encoding had an accuracy of 86.89%. However, this boost in accuracy was

thwarted by the decrease in performance in relation to formulas of familiar sizes upon

utilizing tree-positional encoding. We elucidate this actuality in Figure 5.5.

35

5. Experiments & Results

35

Figure 5.5: Performance of a model utilizing tree-positional encoding against a model

solely relying on standard positional encoding. We observe finer generaliza-

tion ability to formula sizes that the model was not trained on (> 35).

5.5 Solving Scaled MITL Formulas

In this experiment, we desire to work out the impact that the size of the time intervals

has on the performance of the Transformer. We want to dismiss any suspicions that

the results of the previous experiments are uniquely valid when the time intervals are

small. Therefore, we apply the scaling approach introduced in Section 4.4.3 to generate

multiple scaled versions of the MITLRandom82Simple and MITLPattern82 data sets. We,

after, retrain and test our best performing model on these scaled versions of the two

data sets.

Since the scaled data sets are identical to their original equivalent up to the time

intervals, wewill study the effects that the number of unique integers; and consequently

the number of unique intervals; have on the model’s ability to predict precise solutions.

We will additionally compare the number of epochs the model trained for, and the

changes in relation to the semantic and syntactic accuracy. All results are listed in

Tables 5.6 and 5.7.

As a matter of course, we notice an increase in the number of unique intervals

proportional to the increase in the size limit of the intervals. The observed increase

in the number of intervals is followed by an increase in the number of trained epochs

for each model before the early stopping condition was met. We attribute the latter

increase to the building up of information to learn caused by the new intervals.

As for the results, in the case of the MITLRandom35Simple data set, increasing the

interval sizewas responsible for a reduction in both the syntactic and semantic accuracy.

The accuracy result of the original data set with intervals of size 120, has dropped from

98.53% to a minimum of 85.74% for the scaled version with intervals up to 100K in size.

36

5.5. Solving Scaled MITL Formulas

interval size #integers #intervals #epochs accuracy syn. acc. sem. acc.

120 (orig.) 121 10 011 87 98.53% 74.81% 23.72%

5K 5 665 295 890 121 93.20% 70.87% 22.33%

10K 10 657 473 741 132 90.33% 70.30% 20.03%

25K 24 317 836 122 136 86.95% 69.81% 17.14%

100K 82 152 1 645 391 168 85.74% 69.02% 16.72%

Table 5.6: Performance results ofmultiplemodels that are trained and tested ondifferent

scaled versions of the MITLRandom35Simple data set.

interval size #integers #intervals #epochs accuracy sen. acc. sem. acc.

100 (orig.) 101 9 566 139 93.66% 73.80% 19.86%

100K 84 814 1 636 788 168 73.71% 53.42% 20.29%

Table 5.7: Performance of two models, the first model is trained on the original

MITLPattern82 data set, while the second one is trained on a scaled version.

In the case of the MITLPattern82 data set, only the syntactic accuracy has declined,

yet the semantic accuracy has rather improved. The overall accuracy dropped 19.95%

in the original data set with intervals of size 100 to reach 73.71% when stretching the

intervals up to 1K times.

To emphasize the differences in size between the original data sets and their biggest

scaledversions,we indicate the encoding anddecoding sizes for eachof the experiments:

The encoding and decoding maximum length for the original MITLRandom35Simple

data set was set to 90, 200 respectively. These had to be gradually increased for each

scaled version, reaching up to 140, 320 for the 100K scaled version. Likewise, the 175,

350 encoding/decoding length limitations used for the MITLPattern82 data set, were

raised up to 240, 380 for the scaled version.

It is also important to state that the decline in the semantic accuracy noted in Table

5.6 could have been exaggerated by the need to filter some of the test samples. This is

caused by setting a timeout limit for validating the predicted traces that contain huge

intervals. For instance, the validation process of 1 273 out of the 10K test samples of the

biggest scaled version of the MITLRandom35Simple data set has timed out, even when

selecting a timeout limit of 30 seconds. Those predictions were deemed as incorrect,

possibly negatively influencing the semantic accuracy results of the model, but not the

syntactic accuracy, since syntactic accurate predictions do not need to be validated. The

same applies to the scaled version of the MITLPattern82 data set. In which case, 1 840 of

37

5. Experiments & Results

the test samples were deemed as incorrect due to the timeout limit, possibly preventing

the semantic accuracy from improving even more.

All things considered, we believe that the increase in interval size was not overly chal-

lenging for the Transformer. The dwindling in the syntactic precision of the predictions,

for example, could be illustrated by the expansion in the size of the problem, while the

reduction in the semantic accuracy could be, to a certain extent, linked to the inability

to evaluate all the predicted solutions as explained above.

Ultimately, we assess and examine three selected test samples along with their se-

mantically correct predicted traces:

input : (F[7959,30699]a -> !a U[1137,35247] (!a & c & F[0,1137](!a U[26151,31836]

b))) & (f | b U[27288,46617] f)

output: a & f [0,1137); a [1137,7959); !a [7959,∞)
target: a & b & !f [0,1137); b [1137,7959); !a & b [7959,27288); !a & b & !f

[27288,28425); !a & b & f [28425,29562); !a [29562,∞)
input : (b & TRUE U[23430,32802] !(a & !c)) U[1562,35926] !(!c U[21868,54670] b)

output: b [0,1562); b & c [1562,3124); b [3124,23430); !a | c [23430,∞)
target: b [0,1562); b & c [1562,3124); b [3124,6248); b [6248,23430); !a | c

[23430,∞)
input : !d U[12208,45780] b U[39676,54936] e & !(!c U[0,18312] (c & (a & b)

U[3052,51884] !e) & !(e U[15260,54936] d U[0,30520] a))

output: !d [0,12208); b & !d [12208,27468); b [27468,51884); b & e [51884,54936); b

[54936,∞)
target: !d [0,12208); b & !d [12208,21364); b [21364,51884); b & e [51884,54936); b

[54936,∞)
In the first sample, the output of the model comprises a less complicated solution,

than the one constructed by the data generator. Precisely in the second conjunct of the

formula, the model chose to satisfy the first disjunct (f) instead of the more involved

sub term (bU[27288,46617] f).

In the preceding two samples, we notice the Transformer predicting similar steps to

the target solutions while predicting different corresponding time intervals. Even more

interestingly in the second sample, the Transformer discarded an unnecessary stutter

step in the trace, while precisely merging the two intervals.

38

Chapter 6
Conclusion

In this project, we contributed to the continuously growingfield ofmachine learning that

supports logical reasoning. Motivated by the favorable results of works such as [4] and

[5] we explored the competence of neural networks in the realm of the more expressive

real-time logic. With respect to the neural network architecture, we appointed the most

prominent sequence to sequence neural network architecture, the Transformer. We

consequently chose MITL as the elemental logic for our project. The end goal was to

fulfill the inquiry, can the Transformer neural network predict accurate solutions in the

form of timed traces to a given MITL formula?

Attempting to answer this question, we started by introducing the methodology we

used to adequately generate and construct satisfying timed traces for MITL formulas.

We, as well, defined how we can validate whether the predicted timed traces satisfy

their corresponding formulas. Applying these methods, we then proceeded to generate

the necessary data sets to train and evaluate our neural network. Meanwhile, we aimed

to generate numerous data sets, with different formula sizes, and different fundamental

structural patterns. The prime objective was attempting to disclose the volume of

comprehension that the Transformer has for the semantics of the problem. Moreover,

allowing us to reveal the generalization potentials of the Transformer while adding the

value of strengthening the confidence in our implemented Transformer model, shall it

be faced with real-world problems.

Commencing with training the Transformer on a data set comprising formulas that

follow patterns found in literature, our best performing model correctly solved 93.66%

of the test samples. Furthermore, it managed to correctly predict solutions for 73.75%

of a subset of formulas that our data generator failed to solve under the given timeout

limit. In like manner, the Transformer accomplished even better success once trained

and tested on smaller sized and randomly generated formulas. It achieved a total

accuracy of 98.53%. In both experiments, around 20% of the predicted solutions were

semantically accurate.

39

6. Conclusion

To assert the generalization properties of the Transformer, we conducted two cross-

data sets experiments. In these experiments, the model’s performance was tested on a

different data set than the set it was trained on. Thus, a model only trained on formulas

following strict patterns, still performed well when predicting solutions for formulas

that are randomly generated. The variations between the two data sets resulted in the

model failing to make syntactically accurate predictions (only 2.24%). However, The

model still managed to predict correct solutions for 58.46% of the formulas as a virtue

of its ability to make semantically correct predictions.

Not only did the Transformer generalize to the semantics of the logic, but also to

bigger-sized formulas. A very useful feature in practice, taking into consideration that

bigger formulas present a greater challenge for classical algorithms. As an example, a

model trained on formulas of size 35, accomplished significant results on formulasmore

than double that size (82). It prevailed in solving 93.61% of the formulas correctly. We

followed this experimentwith a comparison between the traditional positional encoding

of the input and output sequences and the more natural tree-positional encoding. This

comparison confirmed the tree-positional encoding being more convenient when work-

ingwithMITL formulas, leading to enhanced results, principally when the Transformer

had to deal with formulas bigger than those it is familiar with.

Finally, wewanted to evaluate the Transformerwhen it was trained and tested on data

sets that comprise more variety of intervals both in quantity and size. An evaluation we

could not conduct in the previous experiments due to the infeasibility of constructing

satisfying traces for formulas containing big intervals in a reasonable time. We, there-

fore, introduced a technique where we scale an existing formula and satisfying trace

pair into a valid pair that contains bigger time intervals. This technique made it feasible

to obtain data sets that include formulas with much bigger time intervals, skipping the

trouble of having to construct new satisfying traces for these formulas. Rerunning the

training and evaluation routine of our best-performing model on scaled versions of our

original data sets exhibited only a small decrease in the overall accuracy. Strictly when

increasing the size limit of the time intervals 1K times, did the accuracy decrease by

over 19%.

Taking account of all results; deep learning proves auspicious in the field of logical

reasoning for real-time systems. The results suggest that deep learning might advocate

evolving hybrid tools, particularly, classical algorithms augmented with deep learning

that relies onmore expressive real-time logic such as in this caseMITL.Nevertheless, we

cannot ignore the fact that the efficiency of the classical approaches is still fundamental

as neural networks are prone to making false predictions. In such a case, the slower yet

complete classical algorithms have to step in. Yet most of the time, the Aforementioned

hybrid tools would benefit from superior performance speeds owing to the velocity at

which the Transformer can predict solutions, combined with the fact that it frequently

predicts correct solutions. The sole action still needed is to validate the accuracy of the

predictions, a procedure that is especially vital in the case of critical systems, in which

40

5.5. Solving Scaled MITL Formulas

mistakes cannot be tolerated. This, however, is generally more simple than having to

construct the solution afresh.

41

Bibliography

[1] Wenying Zhou, Y. Yang, Cheng Yu, Juxian Liu, X. Duan, Z. Weng, Dan Chen,

Q. Liang, Qin Fang, Jiaojiao Zhou, H. Ju, Z. Luo, Weihao Guo, Xiaoyan Ma,

Xiao-yan Xie, Ruixuan Wang, and Luyao Zhou. 2021. Ensembled deep learning

model outperforms human experts in diagnosing biliary atresia from sonographic

gallbladder images. Nature Communications, 12.

[2] Antoine Buetti-Dinh, Vanni Galli, Sören Bellenberg, Olga Ilie, Malte Herold,

Stephan Christel, Mariia Boretska, Igor V. Pivkin, Paul Wilmes, Wolfgang Sand,

MarioVera, andMarkDopson. 2019.Deepneural networks outperformhumanex-

pert’s capacity in characterizingbioleachingbacterial biofilmcomposition.Biotech-
nology Reports, 22, e00321. issn: 2215-017X. doi: https://doi.org/10.1016/j.

btre.2019.e00321. https://www.sciencedirect.com/science/article/pii/

S2215017X18301954.

[3] The AlphaStar team. 2019. Alphastar: mastering the real-time strategy game star-

craft ii. Retrieved 09/11/2021 from https://deepmind.com/blog/article/

alphastar-mastering-real-time-strategy-game-starcraft-ii.

[4] Daniel Selsam,MatthewLamm, Benedikt Bünz, Percy Liang, Leonardo deMoura,

and David L. Dill. 2019. Learning a SAT solver from single-bit supervision. In 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net. https://openreview.net/forum?id=

HJMC%5C_iA5tm.

[5] Christopher Hahn, Frederik Schmitt, Jens U. Kreber, Markus Norman Rabe, and

Bernd Finkbeiner. 2021. Teaching temporal logics to neural networks. In 9th In-
ternational Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net. https://openreview.net/forum?id=dOcQK-

f4byz.

[6] Amir Pnueli. 1977. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31 October - 1

43

https://doi.org/https://doi.org/10.1016/j.btre.2019.e00321
https://doi.org/https://doi.org/10.1016/j.btre.2019.e00321
https://www.sciencedirect.com/science/article/pii/S2215017X18301954
https://www.sciencedirect.com/science/article/pii/S2215017X18301954
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://openreview.net/forum?id=HJMC%5C_iA5tm
https://openreview.net/forum?id=HJMC%5C_iA5tm
https://openreview.net/forum?id=dOcQK-f4byz
https://openreview.net/forum?id=dOcQK-f4byz

Bibliography

November 1977. IEEE Computer Society, 46–57. doi: 10.1109/SFCS.1977.32.

https://doi.org/10.1109/SFCS.1977.32.

[7] Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. 1996. The benefits of re-

laxing punctuality. J. ACM, 43, 1, 116–146. doi: 10.1145/227595.227602. https:

//doi.org/10.1145/227595.227602.

[8] Dejan Nickovic, Olivier Lebeltel, Oded Maler, Thomas Ferrère, and Dogan Ulus.

2020. AMT 2.0: qualitative and quantitative trace analysis with extended signal

temporal logic. Int. J. Softw. Tools Technol. Transf., 22, 6, 741–758. doi: 10.1007/

s10009-020-00582-z. https://doi.org/10.1007/s10009-020-00582-z.

[9] Doron Drusinsky. 2000. The temporal rover and the ATG rover. In SPIN Model
Checking and Software Verification, 7th International SPIN Workshop, Stanford, CA,
USA, August 30 - September 1, 2000, Proceedings (Lecture Notes in Computer Sci-

ence). Klaus Havelund, John Penix, and Willem Visser, editors. Volume 1885.

Springer, 323–330. doi: 10.1007/10722468_19. https://doi.org/10.1007/

10722468_19.

[10] Oded Maler and Dejan Nickovic. 2004. Monitoring temporal properties of con-

tinuous signals. In Formal Techniques, Modelling and Analysis of Timed and Fault-
Tolerant Systems, Joint International Conferences on Formal Modelling and Analysis
of Timed Systems, FORMATS 2004 and Formal Techniques in Real-Time and Fault-
Tolerant Systems, FTRTFT 2004, Grenoble, France, September 22-24, 2004, Proceedings
(Lecture Notes in Computer Science). Yassine Lakhnech and Sergio Yovine, ed-

itors. Volume 3253. Springer, 152–166. doi: 10.1007/978-3-540-30206-3_12.

https://doi.org/10.1007/978-3-540-30206-3_12.

[11] Thomas Brihaye, Gilles Geeraerts, Hsi-Ming Ho, and Benjamin Monmege. 2017.

Mightyl: A compositional translation from MITL to timed automata. In Computer
Aided Verification - 29th International Conference, CAV 2017, Heidelberg, Germany,
July 24-28, 2017, Proceedings, Part I (Lecture Notes in Computer Science). Rupak

Majumdar and Viktor Kuncak, editors. Volume 10426. Springer, 421–440. doi:

10.1007/978-3-319-63387-9_21. https://doi.org/10.1007/978-3-319-

63387-9_21.

[12] Oded Maler, Dejan Nickovic, and Amir Pnueli. 2006. From MITL to timed au-

tomata. In Formal Modeling and Analysis of Timed Systems, 4th International Con-
ference, FORMATS 2006, Paris, France, September 25-27, 2006, Proceedings (Lecture
Notes in Computer Science). Eugene Asarin and Patricia Bouyer, editors. Vol-

ume 4202. Springer, 274–289. doi: 10.1007/11867340_20. https://doi.org/10.

1007/11867340_20.

[13] ClaudioMenghi,MarcelloM.Bersani,MatteoRossi, andPierluigi SanPietro. 2020.

Model checkingMITL formulaeon timedautomata:A logic-basedapproach.ACM

44

https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1145/227595.227602
https://doi.org/10.1145/227595.227602
https://doi.org/10.1145/227595.227602
https://doi.org/10.1007/s10009-020-00582-z
https://doi.org/10.1007/s10009-020-00582-z
https://doi.org/10.1007/s10009-020-00582-z
https://doi.org/10.1007/10722468_19
https://doi.org/10.1007/10722468_19
https://doi.org/10.1007/10722468_19
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-319-63387-9_21
https://doi.org/10.1007/978-3-319-63387-9_21
https://doi.org/10.1007/978-3-319-63387-9_21
https://doi.org/10.1007/11867340_20
https://doi.org/10.1007/11867340_20
https://doi.org/10.1007/11867340_20

Bibliography

Trans. Comput. Log., 21, 3, 26:1–26:44. doi: 10.1145/3383687. https://doi.org/

10.1145/3383687.

[14] Ashish Vaswani, Noam Shazeer, Niki Parmar, JakobUszkoreit, Llion Jones, Aidan

N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need.

CoRR, abs/1706.03762. arXiv: 1706.03762. http://arxiv.org/abs/1706.03762.

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:

pre-training of deep bidirectional transformers for language understanding.

CoRR, abs/1810.04805. arXiv: 1810.04805. http://arxiv.org/abs/1810.04805.

[16] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, TomHenighan,

Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,

Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Ben-

jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,

Ilya Sutskever, and Dario Amodei. 2020. Language models are few-shot learn-

ers. CoRR, abs/2005.14165. arXiv: 2005.14165. https://arxiv.org/abs/2005.
14165.

[17] Frederik Schmitt, Christopher Hahn, Markus N. Rabe, and Bernd Finkbeiner.

2021. Neural circuit synthesis from specification patterns. CoRR, abs/2107.11864.
arXiv: 2107.11864. https://arxiv.org/abs/2107.11864.

[18] Wenda Li, Lei Yu, Yuhuai Wu, and Lawrence C. Paulson. 2021. Isarstep: a bench-

mark for high-level mathematical reasoning. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenRe-

view.net. https://openreview.net/forum?id=Pzj6fzU6wkj.

[19] FrancoScarselli,MarcoGori,AhChungTsoi,MarkusHagenbuchner, andGabriele

Monfardini. 2009. The graph neural network model. IEEE Trans. Neural Networks,
20, 1, 61–80. doi: 10.1109/TNN.2008.2005605. https://doi.org/10.1109/TNN.

2008.2005605.

[20] Wenliang Liu, Noushin Mehdipour, and Calin Belta. 2020. Recurrent neural net-

work controllers for signal temporal logic specifications subject to safety con-

straints. CoRR, abs/2009.11468. arXiv: 2009.11468. https://arxiv.org/abs/
2009.11468.

[21] Mislav Balunovic, Pavol Bielik, and Martin T. Vechev. 2018. Learning to solve

SMT formulas. In Advances in Neural Information Processing Systems 31: An-
nual Conference on Neural Information Processing Systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada. Samy Bengio, Hanna M. Wallach, Hugo

Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, edi-

tors, 10338–10349. https://proceedings.neurips.cc/paper/2018/hash/

68331ff0427b551b68e911eebe35233b-Abstract.html.

45

https://doi.org/10.1145/3383687
https://doi.org/10.1145/3383687
https://doi.org/10.1145/3383687
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2107.11864
https://arxiv.org/abs/2107.11864
https://openreview.net/forum?id=Pzj6fzU6wkj
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://arxiv.org/abs/2009.11468
https://arxiv.org/abs/2009.11468
https://arxiv.org/abs/2009.11468
https://proceedings.neurips.cc/paper/2018/hash/68331ff0427b551b68e911eebe35233b-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/68331ff0427b551b68e911eebe35233b-Abstract.html

Bibliography

[22] Daniel Selsam and Nikolaj Bjørner. 2019. Guiding high-performance SAT solvers

with unsat-core predictions. In Theory and Applications of Satisfiability Testing - SAT
2019 - 22nd International Conference, SAT 2019, Lisbon, Portugal, July 9-12, 2019,
Proceedings (Lecture Notes in Computer Science). Mikolás Janota and Inês Lynce,

editors. Volume 11628. Springer, 336–353. doi: 10.1007/978- 3- 030- 24258-

9_24. https://doi.org/10.1007/978-3-030-24258-9%5C_24.

[23] Aditya Paliwal, Sarah M. Loos, Markus N. Rabe, Kshitĳ Bansal, and Christian

Szegedy. 2020. Graph representations for higher-order logic and theoremproving.

InTheThirty-FourthAAAIConference onArtificial Intelligence, AAAI 2020, The Thirty-
Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The
Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7-12, 2020. AAAI Press, 2967–2974. https://aaai.

org/ojs/index.php/AAAI/article/view/5689.

[24] Vincent J.Hellendoorn,Charles Sutton,RishabhSingh, PetrosManiatis, andDavid

Bieber. 2020.Global relationalmodels of source code. In 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net. https://openreview.net/forum?id=B1lnbRNtwr.

[25] Guillaume Lample and François Charton. 2019. Deep learning for symbolic math-

ematics. CoRR, abs/1912.01412. arXiv: 1912.01412. http://arxiv.org/abs/
1912.01412.

[26] Sebastian Ruder. 2016. An overview of gradient descent optimization algorithms.

CoRR, abs/1609.04747. arXiv: 1609.04747. http://arxiv.org/abs/1609.04747.

[27] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine

translation by jointly learning to align and translate. In 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Confer-
ence Track Proceedings. Yoshua Bengio and Yann LeCun, editors. http://arxiv.

org/abs/1409.0473.

[28] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient esti-

mation of word representations in vector space. In 1st International Conference on
Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Work-
shop Track Proceedings. Yoshua Bengio and Yann LeCun, editors. http://arxiv.

org/abs/1301.3781.

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep residual

learning for image recognition. CoRR, abs/1512.03385. arXiv: 1512.03385. http:
//arxiv.org/abs/1512.03385.

[30] Ron Koymans. 1990. Specifying real-time properties with metric temporal logic.

Real Time Syst., 2, 4, 255–299. doi: 10.1007/BF01995674. https://doi.org/10.

1007/BF01995674.

46

https://doi.org/10.1007/978-3-030-24258-9_24
https://doi.org/10.1007/978-3-030-24258-9_24
https://doi.org/10.1007/978-3-030-24258-9%5C_24
https://aaai.org/ojs/index.php/AAAI/article/view/5689
https://aaai.org/ojs/index.php/AAAI/article/view/5689
https://openreview.net/forum?id=B1lnbRNtwr
https://arxiv.org/abs/1912.01412
http://arxiv.org/abs/1912.01412
http://arxiv.org/abs/1912.01412
https://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://doi.org/10.1007/BF01995674
https://doi.org/10.1007/BF01995674
https://doi.org/10.1007/BF01995674

Bibliography

[31] Joël Ouaknine and James Worrell. 2006. On metric temporal logic and faulty tur-

ing machines. In Foundations of Software Science and Computation Structures, 9th
International Conference, FOSSACS 2006, Held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS 2006, Vienna, Austria, March 25-31,
2006, Proceedings (Lecture Notes in Computer Science). Luca Aceto and Anna In-

gólfsdóttir, editors. Volume 3921. Springer, 217–230. doi: 10.1007/11690634_15.

https://doi.org/10.1007/11690634%5C_15.

[32] Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud

Michaud, Etienne Renault, and Laurent Xu. 2016. Spot 2.0 - A framework for

LTL and \omega -automata manipulation. In Automated Technology for Verification
and Analysis - 14th International Symposium, ATVA 2016, Chiba, Japan, October 17-20,
2016, Proceedings (Lecture Notes in Computer Science). Cyrille Artho, Axel Legay,

and Doron Peled, editors. Volume 9938, 122–129. doi: 10.1007/978- 3- 319-

46520-3_8. https://doi.org/10.1007/978-3-319-46520-3_8.

[33] [n. d.] Randltl. Retrieved 09/27/2021 from https://spot.lrde.epita.fr/

randltl.html.

[34] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. 1997. UPPAAL in a

nutshell. Int. J. Softw. Tools Technol. Transf., 1, 1-2, 134–152. doi: 10 . 1007 /

s100090050010. https://doi.org/10.1007/s100090050010.

[35] Marcello M. Bersani, Matteo Rossi, and Pierluigi San Pietro. 2016. A tool for de-

ciding the satisfiability of continuous-timemetric temporal logic.Acta Informatica,
53, 2, 171–206. doi: 10.1007/s00236-015-0229-y. https://doi.org/10.1007/

s00236-015-0229-y.

[36] Marcell Vazquez-Chanlatte. 2019. Mvcisback/py-metric-temporal-logic: v0.1.1.

(January 2019). doi: 10.5281/zenodo.2548862. https://doi.org/10.5281/

zenodo.2548862.

[37] MatthewB. Dwyer, George S. Avrunin, and James C. Corbett. 1998. Property spec-

ification patterns for finite-state verification. In Proceedings of the Second Workshop
on Formal Methods in Software Practice, March 4-5, 1998, Clearwater Beach, Florida,
USA. Mark A. Ardis and Joanne M. Atlee, editors. ACM, 7–15. doi: 10.1145/

298595.298598. https://doi.org/10.1145/298595.298598.

[38] Kousha Etessami and Gerard J. Holzmann. 2000. Optimizing büchi automata. In

CONCUR 2000 - Concurrency Theory, 11th International Conference, University Park,
PA, USA, August 22-25, 2000, Proceedings (Lecture Notes in Computer Science).

Catuscia Palamidessi, editor. Volume 1877. Springer, 153–167. doi: 10.1007/3-

540-44618-4_13. https://doi.org/10.1007/3-540-44618-4_13.

47

https://doi.org/10.1007/11690634_15
https://doi.org/10.1007/11690634%5C_15
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/978-3-319-46520-3_8
https://spot.lrde.epita.fr/randltl.html
https://spot.lrde.epita.fr/randltl.html
https://doi.org/10.1007/s100090050010
https://doi.org/10.1007/s100090050010
https://doi.org/10.1007/s100090050010
https://doi.org/10.1007/s00236-015-0229-y
https://doi.org/10.1007/s00236-015-0229-y
https://doi.org/10.1007/s00236-015-0229-y
https://doi.org/10.5281/zenodo.2548862
https://doi.org/10.5281/zenodo.2548862
https://doi.org/10.5281/zenodo.2548862
https://doi.org/10.1145/298595.298598
https://doi.org/10.1145/298595.298598
https://doi.org/10.1145/298595.298598
https://doi.org/10.1007/3-540-44618-4_13
https://doi.org/10.1007/3-540-44618-4_13
https://doi.org/10.1007/3-540-44618-4_13

Bibliography

[39] Radek Pelánek. 2007. BEEM: benchmarks for explicit model checkers. In Model
Checking Software, 14th International SPINWorkshop, Berlin, Germany, July 1-3, 2007,
Proceedings (Lecture Notes in Computer Science). Dragan Bosnacki and Stefan

Edelkamp, editors. Volume 4595. Springer, 263–267. doi: 10.1007/978-3-540-

73370-6_17. https://doi.org/10.1007/978-3-540-73370-6_17.

[40] Fabio Somenzi and Roderick Bloem. 2000. Efficient büchi automata from LTL

formulae. In Computer Aided Verification, 12th International Conference, CAV 2000,
Chicago, IL, USA, July 15-19, 2000, Proceedings (LectureNotes inComputer Science).

E. Allen Emerson and A. Prasad Sistla, editors. Volume 1855. Springer, 248–263.

doi: 10.1007/10722167_21. https://doi.org/10.1007/10722167_21.

[41] Jan Holeček, Tomas Kratochvila, Vojtech Rehák, David Safránek, and Pavel Sime-

cek. 2004. Verification results in liberouter project. In.

[42] Christopher Hahn, Frederik Schmitt, Jens U Kreber, Markus N Rabe, and Bernd

Finkbeiner. Deepltl 2020. https://github.com/reactive-systems/deepltl.

[43] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff

Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan

Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George

Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex

Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean.

2016. Google’s neural machine translation system: bridging the gap between

human and machine translation. CoRR, abs/1609.08144. arXiv: 1609 . 08144.

http://arxiv.org/abs/1609.08144.

[44] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-

mization. In 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. Yoshua Bengio

and Yann LeCun, editors. http://arxiv.org/abs/1412.6980.

[45] Vighnesh Leonardo Shiv andChris Quirk. 2019. Novel positional encodings to en-

able tree-based transformers. In Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada. Hanna M. Wallach, Hugo Larochelle,

Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, ed-

itors, 12058–12068. https://proceedings.neurips.cc/paper/2019/hash/

6e0917469214d8fbd8c517dcdc6b8dcf-Abstract.html.

48

https://doi.org/10.1007/978-3-540-73370-6_17
https://doi.org/10.1007/978-3-540-73370-6_17
https://doi.org/10.1007/978-3-540-73370-6_17
https://doi.org/10.1007/10722167_21
https://doi.org/10.1007/10722167_21
https://github.com/reactive-systems/deepltl
https://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/2019/hash/6e0917469214d8fbd8c517dcdc6b8dcf-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/6e0917469214d8fbd8c517dcdc6b8dcf-Abstract.html

	Introduction
	Related Work
	Background
	Artificial Neural Networks
	Transformer Neural Network

	Data Generation
	Metric Interval Temporal Logic
	Generating MITL Formulas
	Constructing & Evaluating Solutions
	Data Sets

	Experiments & Results
	Hyperparameter Analysis
	Solving Pattern MITL Formulas
	Solving Randomly Generated MITL formulas
	Generalization Properties
	Solving Scaled MITL Formulas

	Conclusion

