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Abstract

The transformation of a Linear-time Temporal Logic (LTL) formula to a Büchi automaton is
a widely used reduction and builds a crucial path in the verification against or the synthesis of
a given specification. To deal with the exponential blowup in the state-space of the resulting
automata, recent research already focused on reducing the number of states by creating and
applying different constructions. Although some of them focus on a previous pushing in or
pushing out of LTL operators, most of them lack in execution and argumentation of the
effectiveness of such a simplification.
In this thesis, we consider the constructions from an LTL formula to a Büchi Automaton
by Gastin and Oddoux and by Gerth et al., also called Tableau Construction. Subsequent
we will examine both constructions in terms of the most familar equivalences over LTL and
prove the discovered simplifications in the field of the resulting state space with the help of
decent prove systems.
At the end we present for each mentioned construction a set of provable theorems over their
LTL input, guaranteeing a state space minimization by applying them on the given formula
before using the related construction.

III



Contents

1 Introduction 2

2 Preliminaries 5
2.1 Linear-time Temporal Logic (LTL) . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Negation Normal Form (NNF) . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Automata over Infinite Words . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Büchi Automata (BA) and coBüchi Automata (cBA) . . . . . . . . . 9
2.2.2 Generalized Büchi Automata (GBA) . . . . . . . . . . . . . . . . . . 11
2.2.3 Alternating Automata (AA) . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Very Weak Alternating Automata (VWAA) . . . . . . . . . . . . . . 12
2.2.5 GBA to BA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Tableau Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 LTL to Tableau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Tableau to GBA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 GO Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1 LTL to VWAA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.2 VWAA to GBA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Evaluation 24
3.1 Tableau Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Extended Representation of Tableau Construction . . . . . . . . . . . 24
3.1.2 Commutativity of Eventually and Next . . . . . . . . . . . . . . . . . 25

IV



Contents

3.1.3 Commutativity of Always and Next . . . . . . . . . . . . . . . . . . . 31
3.1.4 Distributivity of Disjunction and Next . . . . . . . . . . . . . . . . . 31
3.1.5 Distributivity of Conjunction and Next . . . . . . . . . . . . . . . . . 32
3.1.6 Distributivity of Until and Next . . . . . . . . . . . . . . . . . . . . . 34
3.1.7 Distributivity of Eventually and Disjunction . . . . . . . . . . . . . . 37
3.1.8 Distributivity of Always and Conjunction . . . . . . . . . . . . . . . . 39
3.1.9 Conclusions on Tableau Construction . . . . . . . . . . . . . . . . . . 40

3.2 GO Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.1 Extended Representation of GO Construction . . . . . . . . . . . . . 41
3.2.2 Commutativity of Eventually and Next . . . . . . . . . . . . . . . . . 43
3.2.3 Commutativity of Always and Next . . . . . . . . . . . . . . . . . . . 45
3.2.4 Distributivity of Disjunction and Next . . . . . . . . . . . . . . . . . 47
3.2.5 Distributivity of Conjunction and Next . . . . . . . . . . . . . . . . . 48
3.2.6 Distributivity of Until and Next . . . . . . . . . . . . . . . . . . . . . 48
3.2.7 Distributivity of Eventually and Disjunction . . . . . . . . . . . . . . 51
3.2.8 Distributivity of Always and Conjunction . . . . . . . . . . . . . . . . 52
3.2.9 Conclusions on GO Construction . . . . . . . . . . . . . . . . . . . . 52

4 Conclusions 54

List of Figures 55

List of Tables 56

Bibliography 57

1



1 Introduction

Linear-time Temporal Logic (LTL) was introduced in 1977 by Amir Pnueli [3] and became
very popular by its intuitive operators for reasoning about program properties and behaviours.
In [2] Sistla and Clark showed that the problem of LTL for model checking is PSPACE-
complete, as well as its satisfiability and validity problem. Furthermore, as proved in [14, 11],
the LTL realizability problem is 2-EXP-complete. Therefore, the expressiveness of LTL
leads to many practical benefits, like the AMBA AHB case study [4], where LTL is used to
specify its architecture. Moreover, this logic is part of a lot of discussions about hardware
specifications in the Hardware Model Checking Competition (HWMCC). In synthesis, LTL
provides advantages, for example, in the Reactive Synthesis Competition (SYNTCOMP) that
focuses on research of reactive synthesis tools.

An important application for LTL is its transformation into a Büchi Automaton, for example,
in LTL model checking. Besides the LTL model checker SPIN [8] and SPOT [1], whose
implementations are based on a Tableau Construction by Gerth et al. [13], a lot of tools deal
with the improvement of results based on the input of an LTL property. For an extended
algorithm of the mentioned Tableau Construction, Etessami and Holzmann discussed in [10] a
few techniques for preprocessing LTL formulas for their translation tool EQLTL by applying
theoretic reductions and proved the correctness of their results via structural induction.
Using equivalences over LTL, Somenzi and Bloem analyzed in [7] several rewriting rules for
a given input property to reduce the size of its resulting automaton for any construction
in general, implemented in their translation tool Wring. Another popular translation tool
is LTL2BA, introduced by Gastin and Oddoux [12]. Instead of using a tableau, LTL2BA
first creates a very weak Alternating Automaton, transforming it into a Generalized Büchi
Automaton and finally achieving a Büchi Automaton. Some improvements of their algorithm
are presented by Babiak et al. [15] providing their tool LTL3BA. In their work, they men-
tion a few equivalences that can be applied on the input formula before starting the algorithm.
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Figure 1.1: BA for (a U b) on the left, BA for (a) U (b) on the right

As in [7, 10, 15], we analyze the improvement in the number of states of a Büchi Automaton
resulting from an LTL formula. Considering two mentioned constructions from LTL to Büchi
Automata, a Tableau Construction by Gerth et al. [13] and a construction over very weak
Alternating Automata by Gastin and Oddoux [12], stated in this paper as GO Construction,
we discuss a much broader field of equivalences over LTL as in [7, 15], that should be applied
to the LTL input before processing the construction. Furthermore, we verify the effectivness
of our simplifications by giving an idea of proving the resulting state reductions via structural
induction, as it was not proceeded in [7, 15], yet.

Concretely, given some LTL property (a U b), meaning that from the next state onwards, a
has to be satisfied, until b is satisfied, and its equivalent representation (a) U (b), applying
the mentioned Tableau Construction results in the Büchi Automata in Figure 1.1. We notice
that pushing in the -operator causes two additional states in the resulting Büchi automaton.
We can make such observations for a huge variant of equivalences, as we show as part of this

3



1 Introduction

thesis.

In the next section we first present the knowledge base for Linear-time Temporal Logic as
well as automata over infinite words, before presenting the considered constructions from
LTL to BA, the Tableau Construction and the GO Construction. Afterwards in section 3 we
present our observations for both constructions combined with the equivalences over LTL.
Additionally we give an idea for proving each result. Finally, in section 4 we summarize our
results.
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2 Preliminaries

In this thesis, we consider automata over words defined by an alphabet Σ with its so called
letters, denoted by a, b, c and so forth. By Σ∗ we define the set of all finite words over an
alphabet, such as the word abc with length three. However, this work refers to automata over
infinite words, defining so called ω-languages, where the ω-symbol denotes the infinite set
{1, 2, 3, ...}. The set Σω defines the set of all infinite words over the alphabet Σ. We denote
an infinite word by w = w0w1w2... with ∀i. wi ∈ Σ.
In this chapter we talk about LTL formulas at first. We denote arbitrary LTL formulas by
ϕ, ψ, also with added indices, like ϕ1, ϕ2 and so forth. Afterwards we introduce some kind of
infinite word automata before defining two different constructions from LTL to BA that we
use in further sections.

2.1 Linear-time Temporal Logic (LTL)

Building a crucial part in this thesis as input for our mentioned constructions, the linear-time
temporal logic (LTL) was introduced to specify the specification of a system. We mostly
stick to its notation presented in [12] and in [6].

2.1.1 Syntax

Given a set of atomic propositions AP, the syntax of LTL consists of the elements of AP,
the components of propositional logic true and false and its standard boolean connectives
negation and conjunction, including its derivatives, and the temporal operators  and U .
For U , the derived temporal operators  and  are more commonly used. Futhermore, the
derived temporal operator R ensures the negation of U .
Note that because of the NNF precondition presented in Section 2.1.4, we do not have to
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2 Preliminaries

consider the derived boolean operators for implication and equivalence and therefore we do
not mention them later on. From now on we assume that ϕ, ψ and their subformulas are
arbitrary LTL formulas.

• Propositional operators: p ∈ AP ∪ {true, false}, ¬ϕ, ϕ ∧ ψ

• Temporal operators: ϕ, ϕ U ψ

• Derived operators

– Disjunction: ϕ ∨ ψ ≡ ¬ϕ ∧ ¬ψ

– Implication: ϕ→ ψ ≡ ¬ϕ ∨ ψ

– Equivalence: ϕ↔ ψ ≡ (ϕ→ ψ) ∧ (ψ → ϕ)

– Release: ϕ R ψ ≡ ¬(¬ϕ U ¬ψ)

– Eventually: ϕ ≡ true U ϕ

– Always: ϕ ≡ ¬¬ϕ ≡ ¬(true U ¬ϕ) ≡ false R ϕ

2.1.2 Semantics

Let α = α0α1... ∈ Σω with Σ = 2AP and ϕ be some arbitrary LTL formula. We define the
relation α |= ϕ as follows:

• α |= p if p ∈ α0

• α |= ¬ϕ if α 6|= ϕ

• α |= ϕ1 ∧ ϕ2 if α |= ϕ1 and α |= ϕ2

• α |= ϕ if α1α2... |= ϕ

• α |= ϕ1 U ϕ2 if ∃j ≥ 0, αjαj+1... |= ϕ2 and ∀0 ≤ i < j, αiαi+1... |= ϕ1

6



2 Preliminaries

2.1.3 Equivalences

There are several equivalences over LTL concerning commutativity and distributivity laws
that we use in this thesis for validating our constructions. Additionally, there are some other
equivalences, the so called expansion laws of Until and Release, that build an important part
for the understanding of our later algorithms.

• Commutativity Laws

ϕ ≡ ϕ

ϕ ≡ ϕ

• Distributivity Laws

(ϕ ∨ ψ) ≡ (ϕ) ∨ (ψ)
(ϕ ∧ ψ) ≡ (ϕ) ∧ (ψ)
(ϕ U ψ) ≡ (ϕ) U (ψ)

(ϕ ∨ ψ) ≡ (ϕ) ∨ (ψ)
(ϕ ∧ ψ) ≡ (ϕ) ∧ (ψ)

• Expansion Laws
ψ1 U ψ2 = ψ2 ∨ (ψ1 ∧(ψ1 U ψ2)). (2.1)

ψ1 R ψ2 = (ψ1 ∧ ψ2) ∨ (ψ2 ∧(ψ1 R ψ2)) (2.2)

2.1.4 Negation Normal Form (NNF)

As a precondition, all considered constructions only accept LTL formulas that fulfill the
Negation Normal Form. This property is satisfied if the given formula only consists of
literals, conjunctions, disjunctions, -, U - and R-formulas. By applying multiple steps,
each formula can be transformed into its NNF. We give an example for the formula ϕ =
¬(¬a↔ ¬b).

1. Eleminate all ↔ - Operators by applying
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2 Preliminaries

• ϕ↔ ψ ≡ (ϕ→ ψ) ∧ (ψ → ϕ)

2. Eleminate all → - Operators by applying

• ϕ→ ψ ≡ ¬ϕ ∨ ψ

3. Eleminate all  - Operators by applying

• ϕ ≡ true U ϕ

4. Eleminate all  - Operators by applying

• ϕ ≡ false R ϕ

5. Push in all Negation - Operators by applying

• ¬true ≡ false,¬false ≡ true,¬p with p ∈ AP

• ¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ

• ¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ

• ¬ϕ ≡ ¬ϕ

• ¬(ϕ U ψ) ≡ ¬ϕ R ¬ψ

• ¬(ϕ R ψ) ≡ ¬ϕ U ¬ψ

Example 1. We give an example for the formula ϕ = ¬(¬a↔ ¬b).

ϕ ≡ ¬(¬a↔ ¬b)
1≡ ¬((¬a→ ¬b) ∧ (¬b→ ¬a))
2≡ ¬((¬¬a ∨ ¬b) ∧ (¬¬b ∨ ¬a))
3≡ ¬((¬¬(true U a) ∨ ¬b) ∧ (¬¬b ∨ ¬(true U a)))
4≡ ¬((¬¬(true U a) ∨ ¬(false R b)) ∧ (¬¬(false R b) ∨ ¬(true U a)))
5≡ ¬((true U a) ∨ ¬(false R b)) ∨ ¬((false R b) ∨ ¬(true U a))
5≡ (¬(true U a) ∧ (false R b)) ∨ (¬(false R b) ∧ (true U a))
5≡ ((false R ¬a) ∧ (false R b)) ∨ ((true U ¬b) ∧ (true U a))
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2 Preliminaries

2.2 Automata over Infinite Words

To describe languages over infinite words, automata over infinite words have to be introduced.
Their components are very similar to those of automata over finite words, however, their
acceptance is defined on infinite words. Note also that we consider non-deterministic automata.
An Automaton over infinite words gets defined by the tupleA = (Q,Σ, I,∆, Acc) with

• Q is a finite set of states

• Σ is a finite alphabet

• I ⊆ Q describes the initial states

• ∆ ⊆ Q× Σ×Q is the transition function

• Acc ⊆ Qω describes the set of accepted words (accepting condition)

A run r on an automaton A over an infinite word α is an infinite sequence of states r0r1...

such that r0 ∈ I and ∀i ∈ N, (ri, αi, ri+1) ∈ ∆. We say that such a run r is accepting if
r ∈ Acc. By the set Inf(r) = {q ∈ Q | ∀m ∈ N. ∃n ∈ N. n ≥ m and qm = qn} for some
run r ∈ Qω, we define all states that occur infinitely often in r. Similar to this, define
Inf(α) = {σ ∈ Σ | ∀m ∈ N. ∃n ∈ N. n ≥ m and α(n) = σ} as the set of all letters of Σ,
that occur infinitely often in a word α. The language of the automaton A is defined as
L(A) = {α ∈ Σω | A accepts α}.

In this thesis such automata over infinite words build our intermediate results as well as our
final results. For each of the mentioned constructions, we transform a given LTL formula input
into various automata over infinite words, finally leading into a Büchi automaton (BA), that
was introduced in 1962 by Julius Richard Büchi [9]. Besides BA, we also describe the conditions
of coBüchi (cBA) and Generalized Büchi automata (GBA). We also consider so called Alter-
nating Automata (AA) and their very weak variant VWAA.

2.2.1 Büchi Automata (BA) and coBüchi Automata (cBA)

A Büchi automaton is an automaton over infinite words described by the tuple A =
(Q,Σ, I,∆,BÜCHI(F )) with F ⊆ Q and its acceptance condition

9



2 Preliminaries

BÜCHI(F ) = {α ∈ Qω | Inf(α) ∩ F 6= ∅}.

Based on the Büchi acceptance condition, a run r on a Büchi automaton is accepting if the
set F is visited infinitely often, i.e. the intersection of the set of all infinitely visited states in
r and the final set F should not be empty.

Example 2. In Figure 1.1 one can see the representations of the LTL specifications (a U b)
and (a) U (b) as Büchi automata. By defining F = {N0, N6, N7} for the left and F =
{N1, N2, N8, N9, N10} for the right automaton, we achieve Büchi automata that guarantee our
specifications.

A coBüchi automaton is defined by the tuple A = (Q,Σ, I,∆, coBÜCHI(F )) with F ⊆ Q

and the acceptance condition

coBÜCHI(F ) = {α ∈ Qω | Inf(α) ∩ F = ∅}.

As the dual of the Büchi acceptance condition, a run r on a coBüchi automaton is accepting
if the set F is only visited finitely often, that means, the intersection of all infinitely visited
states in r and the final set F are empty.

Since coBüchi is the dual of the Büchi condition, we are able to transform a BA into
a cBA and vice versa. Therefore it suffices to build the counterset Q \ F to get the accep-
tance set for the dual automaton. So we conclude that BÜCHI(F ) = coBÜCHI(Q \ F ) and
correspondingly coBÜCHI(F ) = BÜCHI(Q \ F ).

Example 3. As mentioned in Example 2, we created Büchi automata with the acceptance
sets {N0, N6, N7} and {N1, N2, N8, N9, N10}. However we can create their cBA by sim-
ply building the countersets Q1 \ {N0, N6, N7} = {N2} and Q2 \ {N1, N2, N8, N9, N10} =
{N4}. Therefore, we can conclude that the left automaton in Figure 1.1 with acceptance
condition BÜCHI({N0, N6, N7}) accepts the same language as with acceptance condition
coBÜCHI({N7}).

10



2 Preliminaries

2.2.2 Generalized Büchi Automata (GBA)

A generalized Büchi automaton (GBA) is a Büchi automaton with a more general acceptance
condition. It is identified by the tuple A = (Q,Σ, I,∆,GENBÜCHI(F )) with F ⊆ 2Q and
the acceptance condition

GENBÜCHI(F ) = {α ∈ Qω | ∀ F ′ ∈ F. Inf(α) ∩ F ′ 6= ∅}.

Based on this acceptance condition, a run r on an automaton is accepting if on each set F ′

of F at least one member is visited infinitely often, that means, each intersection with all
infinitely visited states and a set F ′ ⊆ F is non-empty.

Example 4. Recapturing Example 2, we could switch the Büchi conditions simply to Gen-
eralized Büchi conditions by BÜCHI({N0, N6, N7}) = GENBÜCHI({{N0, N6, N7}}) and
BÜCHI({N1, N2, N8, N9, N10}) = GENBÜCHI({{N1, N2, N8, N9, N10}}).

2.2.3 Alternating Automata (AA)

An alternating automaton (AA) is an automaton over infinite words with a different transition
function. Instead of targeting a single state, a transition can target multiple states by
building a boolean combination of its destinations. Therefore, an alternating automaton
A = (Q,Σ, I,∆, Acc) is defined as follows:

• Q is a finite set of states

• Σ is a finite alphabet

• I ⊆ Q describes the initial states

• ∆ ⊆ Q× Σ→ B+(Q) is the transition function

• Acc ⊆ Qω describes the accepting condition

Note that all accepting conditions that we have talked about before are applicable to an
alternating automaton as well.

Example 5. In Figure 2.1 one can see a representation of the LTL specification (a ∧ b) as
an AA. The conjunction of our formula gets represented by an alternating transition.

11
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(a ∧ b)

a b

true

true

a b
true

Figure 2.1: Example for VWAA of (a ∧ b)

2.2.4 Very Weak Alternating Automata (VWAA)

Very weak alternating automata (VWAA) are AA with an additional partial ordering � on
their set of states Q, such that, ∀q, q′ ∈ Q, if q′ ∈ ∆(q) then q � q′, that means, q′ got a
lower or equal value than q. Analogously, we could represent such an automaton as a directed
acyclic graph with selfloops.

Example 6. The automaton in Figure 2.1 fullfills our very weak condition, since none of its
states goes back to a previous one. Therefore, the state labeled by true got the lowest value
according to the partial ordering.

2.2.5 GBA to BA

It is possible to transform a GBA A = (Q,Σ, I,∆, F ) with F = {F0, F1, ..., Fn−1} into
a BA A′ = (Q′,Σ, I ′,∆′, F ′) with the so called "round-robin Construction" or "counting
construction" in [5]. Its idea is to add a counter i to each state, representing the current
acceptance subset Fi that has to be visited and increasing the counter whenever such a state
is reached. So if and only if some counter occurs infinitely often, we can conclude that a
word is accepted.

12



2 Preliminaries

• Q′ = Q× {0, 1, ..., n− 1}

• I ′ = I × {0}

• ∆′((q, i), a) =

{(q
′, i) | q′ ∈ ∆(q, a)} if q /∈ Fi,

{(q′, i+ 1 mod n) | q′ ∈ ∆(q, a)} otherwise.

• F ′ = F0 × {0}

Example 7. As an example consider the automaton on Figure 2.2 with the final set F =
{{N0}, {N1}}. This automaton ensures that transitions with a and b are taken infinitely
often. After applying the Round-Robin Construction we achieve the automaton stated in
Figure 2.3. Notice that our state space doubled in size since we got two sets in the set of final
states.

N0 N1 N2
true true

a b

true

Figure 2.2: Example Input GBA for Round-Robin Construction

(N0, 0) (N1, 0) (N2, 0)

(N0, 1) (N1, 1) (N2, 1)

true

a b

true

true

true

a b

true

true

Figure 2.3: Example Output BA for Round-Robin Construction
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2 Preliminaries

2.3 Tableau Construction

The Tableau Construction, that was introduced by Gerth, Peled, Vardi and Wolper [13], is a
tableau-based construction from LTL to BA. Its idea is to first creat a tableau out of the given
LTL formula input based on a depth-first-search strategy. Afterwards a GBA can be created
based on the created tableau. Finally, we can achieve a BA by applying the Round-Robin
Construction on our GBA, as presented in Section 2.2.5.

2.3.1 LTL to Tableau

Given an LTL formula in NNF, we obtain a tableau containing six different columns, giving a
sufficient description of a GBA. The first five columns describe the name of a possible node,
its incoming edges, non-fullfilled requirements, already fullfilled requirements, representing
also its outgoing labels, and requirements for its immediate successors, respectively. The sixth
column gives information about its adding to the final GBA.

Data Structure

We will use the data structure below for the constructed tableau. The terms in brackets
denote their abbreviation in the tableau.

• Name (Name) describes the unique name of a node.

• Incoming (Inc) describes a set of node names representing incoming edges. The special
name Init marks an initial node.

• New (New) describes a set of temporal properties (formulas) that must hold.

• Old (Old) describes a set of temporal properties that already hold.

• Next (Next) describes a set of temporal properties that must hold in immediate
successors.

14



2 Preliminaries

Name Inc New Old Next Added
N0 Init {ϕ} ∅ ∅

Table 2.1: Representation of the initial node in TC

• Added (Added) describes the added state of the node. We got the following states:
ADDED - node is part of the resulting GBA; SPLIT - node triggered a split during
the algorithm; IGNORED - the expansion of the node terminated without adding it to
the resulting GBA.

We call a certain field of a node by its abbreviation and its name in brackets, like Name(N0).
We will represent our set of nodes in a table, for example, Table 2.1, that shows the
representation of a single node. In the whole tableau construction we write all nodes created
by the algorithm among each other.

Algorithm

We start our algorithm with the inital node N0 that gets marked as inital. Although we add
the starting formula ϕ in NNF to its New field and keep the other ones empty. One can see
its representation in Table 2.1.

We start the expansion algorithm with the expansion of our initial node. Therefore, as
long as its New field is not empty, we extract one of its formulas and proceed by a case
analysis over the formula structure of LTL. For the following cases we assume some arbitrary
node Nx with the Incoming field Inc, the New field {ϕ0, ϕ1, ..., ϕn}, the Old field Old, the
Next field Next and the empty Added field. In the following we distinguish the upcoming
cases for extraxting the formula ϕ0 out of New(Nx) without loss of generality since each
formula of New will be considered during the expansion and, therefore, the order does not
matter.

• ϕ0 = ψ1 ∧ ψ2

Given the conjunction ϕ0, node Nx has to guarantee that ψ1 and ψ2 are fullfilled.
Therefore, we can assume that the whole conjunction is satisfied by switching it to Old
and adding both of its inner components to New.
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Name Inc New Old Next Added
Nx Inc {ϕ1, ..., ϕn} Old Next SPLIT
Nx+1 Inc {ϕ1, ..., ϕn} ∪ (New1\Old) Old ∪ ϕ0 Next ∪ Next1
Nx+2 Inc {ϕ1, ..., ϕn} ∪ (New2\Old) Old ∪ ϕ0 Next

Table 2.2: Representation of a split in TC

• ϕ0 = ψ
A -formula is satisfied on a node if its inner formula is fullfilled on the immediate
successor. Therefore, we have to add ψ to Next and switch ϕ0 to Old.

• ϕ0 = ψ1 U ψ2 or ϕ0 = ψ1 R ψ2 or ϕ0 = ψ1 ∨ ψ2

Our algorithm calls this case a split, that means, we terminate the expansion of the
current node Nx by setting its Added field to SPLIT and start the expansion of two fresh
nodes Nx+1, Nx+2, one after the other starting with Nx+1. Their general representation
is stated in Table 2.2.

The easiest case for a split is a disjunction, since we just add its left side to Nx+1 as
New1 and its right side to Nx+2 as New2. We keep Next1 empty, since a disjunction
does not have any temporal requirement.
For an U -formula we exploit its equivalent representation of the expansion law 2.1 to
define an appropriate splitting rule. Therefore, we use the left side of the equivalent
disjunction to define Nx+2 by setting {ψ2} as New2. Its right side builds a conjunction
which can be directly expanded with our given rules. Therefore, we can set {ψ1} as
New1 and {ψ1 U ψ2} as Next1.
Similar to U , we can exploit the equivalent representation of a R formula in its
expansion law 2.2 to define an appropriate splitting rule. As before, the left side of the
equivalent disjunction represents Nx+2 by setting {ψ1, ψ2} as New2 and the right side
builds the components of Nx+1 by setting {ψ2} as New1 and {ψ1 R ψ2} as Next1.

• p ∈ AP, ϕ0 = p or ϕ0 = ¬p or ϕ0 = true or ϕ0 = false

Given a literal, that means an atomic proposition p or its negation ¬p, whenever its
negation is element of Old, we would have a contradiction and, therefore, we can discard
the current node, setting its Added field to IGNORED. Otherwise we add the literal to
Old to ensure the satisfaction of the formula on our current node.
Instead, if we got true as formula, we can directly switch it to Old. If our formula
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is equal to false we can again discard the current node and set its Added field to
IGNORED.

If the New field of a node is empty we have ensured that all of its specifications are fulfilled
(the node is fully expanded) and, therefore, we can terminate its expansion. To avoid adding
equivalent nodes, that means nodes with the same Old and Next fields, we have to search
for such elements. If a fully expanded node N is equivalent to a node N’ with Added(N’) =
ADDED, we set Added(N) to IGNORED and add its incoming field Inc(N) to the incoming
field of the equivalent node Inc(N’). Therefore, we can easily reduce the number of states by
just updating an equivalent node. Afterwards, we can continue the expansion of the next
node in the tableau with an undefined Added field. Otherwise, if there is no equivalent node
we set the state of N as ADDED and create a fresh node with a fresh name N’ by setting {N}
as its incoming fields, Next(N) as its New field and keeping its Old and Next fields empty.
After that, we start the expansion of N’.
If there are no more undefined Added fields, the algorithm terminates and our GBA can be
expressed by translating the nodes set of our tableau, that means the set of all nodes with an
ADDED state.

Example 8. In Table 2.3 you can observe the applying of the Tableau Construction to our
frequently used LTL property (a U b). Note that we underline a formula in a New field
whenever it gets expanded.

Name Inc New Old Next Added
N0 {Init} {(a U b)} {(a U b)} {a U b} ADDED
N1 {N0} {a U b} ∅ ∅ SPLIT
N2 {N0,N2} {a} {a U b,a} {a U b} ADDED
N4 {N2} {a U b} ∅ ∅ SPLIT
N5 {N2} {a} {a U b,a} {a U b} IGNORED
N6 {N0,N2} {b} {a U b,b} ∅ ADDED
N7 {N6,N7} ∅ ∅ ∅ ADDED
N8 {N7} ∅ ∅ ∅ IGNORED
N3 {N0} {b} {a U b,b} ∅ IGNORED

Table 2.3: Computation Tableau of (a U b)
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Name Inc New Old Next Added
Nx Incx {a U b, c ∧ (a U b)} Oldx Nextx SPLIT
Nx+1 Incx {c} Oldx ∪ {a U b} Nextx ∪ {a U b}
Nx+2 Incx {c, a U b} Oldx Nextx

Table 2.4: Example for additional requirements of TCI

2.3.2 Optimizations

In their algorithm, Gerth, Peled, Vardi and Wolper mentioned multiple improvements for
efficiency. In this thesis, we just consider those improvements that reduce the number of
states of our nodes set. This can be achieved by not necessarily switching all formulas to the
Old fields during the expansion to increase the number of equivalent nodes and, therefore,
reducing the total size of the nodes set. The improved version of our tableau construction
does not add the original conjunction, disjunction, U - or R-formula to the Old fields during
the expansion as long as it does not build the right hand side of an U formula of our initial
formula ϕ.
Note however, that we have to introduce the special requirement for the improved version
that conjunctions in a New field always have to get preferred for an expansion. This is the
case since otherwise a formula gets expanded that is a subformula of a conjunction as well
and, therefore, it may happen that its expansion is done twice.

Example 9. To make this requirement more clear, consider the tableau fragment on Table
2.4. Here we assume that on some node Nx there is an U -formula, that is not a righthand
side of another U -formula, and a conjunction containing the same formula in a New field.
The expansion of the U -formula triggers a split where we will not include the U -formula to
the Old field of the second node Nx+2 by the optimization rule and our assumption. However,
because of this, the conjunction adds the same U -formula to the New field of Nx+2 and yields
another split. By expanding conjunctions at first, we would have prevented such a blowup.

In the following sections we explicitly differentiate between the normal (TCO) and improved
version (TCI) of the tableau construction and compare their results.
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2.3.3 Tableau to GBA

The translation of a nodes set to a GBA A = (Q,Σ, I,∆, F ) maps the given information
to our automaton. Our states set Q is represented by the unique names of our nodes set
and all nodes with Init as incoming state are inital. Our alphabet is brought together by
all literals in the Old field of the nodes set. The transitions can be taken from the Inc
fields and the conjunctions of literals of incoming nodes, alternatively true if no literals exist,
as labels. Finally, for each U -subformula of our initial formula, we build an own set for
the generalized Büchi condition, where each set is filled by node names of our nodes set
that do not have the respected U -formula in their Old field or that have the right side of
the U -formula in their Old field. A more theoretical view of this transformation is stated
below.

• Q = {Name(N) | N ∈ nodes set}

• Σ = {ψ | ∃ N s.t. N ∈ nodes set ∧ ψ ∈ Old(N) ∧ ϕ is a literal} ∪ {true}
We call the labeling Label(N) of a node N the conjunction of all literals of Old(N). If
Old(N) doesn’t have any literals we determine Label(N) = true.

• I = {Name(N) | N ∈ nodes set ∧ Init ∈ Inc(N)}

• ∆ := ∀ N ∈ nodes set, ∀ N’ ∈ Inc(N), ∆(N’,Label(N’)) = N

• F = ∀ U subformulas ϕ′ of ϕ with ϕ′ = ψ1 U ψ2, ∃F ′ ⊆ 2Q ∈ F such that

F ′ := {Name(N) | N ∈ nodes set ∧ (ϕ′ /∈ Old(N) ∨ ψ2 ∈ Old(N))}

Finally, we can achieve a BA by applying the Round-Robin Construction as introduced in
Section 2.2.5.

Example 10. Continuing our tableau of Example 8, we achieve the following components of
a GBA:

• Q = {N0, N2, N6, N7}

• Σ = {a, b}

• I = {N0}
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• ∆(N0) = {(true,N2), (true,N6)},
∆(N2) = {(a,N2), (a,N6)},
∆(N6) = {(b,N7))},
∆(N7) = {(true,N7)}

• F = {{N0, N6, N7}}

The graphical representation of the resulting BA, using the mentioned Round-Robin construc-
tion is exactly the same as presented at the beginning of this thesis in Figure 1.1.

2.4 GO Construction

The construction by Gastin and Oddoux [12] does not succumb any algorithm and, therefore,
we do not need any data structure. Its concept creates a VWAA with a coBüchi condition out of
our LTL formula ϕ in NNF first, turning this automaton into a GBA and finally obtaining a BA
through a Round-Robin construction as already shown in 2.2.5.

2.4.1 LTL to VWAA

The transformation of an LTL formula ϕ to a VWAA is based on some computation com-
bined with two fresh operators ⊗ for handling conjunctions and ψ, giving us the disjunctive
normal form of a formula and, therefore, allowing us to only observe temporal subformulas
at our states. Given Σ as the set of all literals of ϕ, Q as the set of temporal subformu-
las of ϕ and two sets J1, J2 ∈ 2Σ × 2Q, our additional operators are defined as follows:

J1 ⊗ J2 = {(α1 ∧ α2, e1 ∧ e2) | (α1, e1) ∈ J1 and (α2, e2) ∈ J2} (2.3)

ψ :=


ψ1 ∧ ψ2 = {e1 ∧ e2 | e1 ∈ ψ1 and e2 ∈ ψ2}

ψ1 ∨ ψ2 = ψ1 ∪ ψ2

ψ = {ϕ} if ψ is a temporal formula

(2.4)

Regarding those definitions, we can define the components of our VWAA by defining Q and Σ
as above. Inital states can be computed by ϕ. Based on this set we compute the transitions
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through the function ∆ that is mentioned below, by computing the transitions of each
resulting subformula of ∆, as long as it is not already computed. Notice that conjunctions
as target states represent alternating transitions, producing two seperate states. Note also
that we use conjunctions as the transition labels. However, from now on we consider such
labels as both, conjunctions and sets of literals. F is then the set of all U formulas in ϕ,
defining a coBüchi rather than a Büchi acceptance set. A more compact view is stated
below.

• Q = {ψ | ψ is a subformula of ϕ}

• Σ = {ψ | ψ is a literal of ϕ} ∪ {true}

• I = ϕ

• ∆ is defined as follows

– δ :=



δ(true) = {(true, true)}

δ(p) = {(p, true)} where p is a literal

δ(¬p) = {(¬p, true)} where ¬p is a literal

δ(ψ) = {(true, e) | e ∈ ψ}

δ(ψ1 U ψ2) = ∆(ψ2) ∪ (∆(ψ1)⊗ {(Σ, ψ1 U ψ2)})

δ(ψ1 R ψ2) = ∆(ψ2)⊗ (∆(ψ1) ∪ {(Σ, ψ1 R ψ2)})

– ∆ :=


∆(ψ1 ∨ ψ2) = ∆(ψ1) ∪∆(ψ2)

∆(ψ1 ∧ ψ2) = ∆(ψ1)⊗∆(ψ2)

∆(ψ) = δ(ψ) if ψ is a temporal formula

• F = {ψ | ψ = ψ1 U ψ2 and ψ is a subformula of ϕ}

Example 11. Consider the formula (a∧ b). Applying those definitions produces the already
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presented VWAA on Figure 2.1. Its computation of its initial state looks like follows:

∆((a ∧ b)) = δ((a ∧ b))

= {(true, e) | e ∈ a ∧ b}

= {(true, e) | e ∈ {e1 ∧ e2 | e1 ∈ a and e2 ∈ b}}

= {(true, e) | e ∈ {e1 ∧ e2 | e1 ∈ {a} and e2 ∈ {b}}}

= {(true, e) | e ∈ {a ∧ b}}

= {(true, a ∧ b)

Therefore, the state (a ∧ b) got an alternating transition with label true leading into states
a and b.

2.4.2 VWAA to GBA

Given a VWAA A = (Q,Σ, I,∆, F ), we first have to get rid of the alternating characterization
of our automaton to obtain a GBA A′ = (Q′,Σ, I,∆′, F ′). Therefore, we consider conjunctions
of subformulas to represent the target states of alternating transitions. Thus, our new state
set Q′ is the powerset of Q identifying conjunctions of states. As a consequence, we have
to compute new transitions ∆′ starting in I. To compute the transitions of a conjunction
we combine the computed ∆’ of all elements through ⊗. Afterwards, we are able compute
the set of all �-minimal transitions, which intuitively is the set of all transitions that take
the highest amount of labels to go to the lowest number of states. Different from [12], where
acceptance conditions over transition sets were observed, we compute the classical final sets
for GBA over states by creating a set f for each formula of F and including all those states
into f that do not have the respected formula as a subformula. A more theoretical view is
stated below.

• Q′ = 2Q, i.e. conjunctions of states

• ∆′(q1∧ q2∧ ...∧ qn) =
n⊗
i=1

∆(qi), reduced by computing the �-minimal transitions where
t � t′ if t = (e, α, e′), t′ = (e, α′, e′′), α ⊆ α′, e′′ ⊆ e′

• F ′ := ∀ formula f of F create set f ′ ⊆ Q′ in F ′ s.t. ∀q ∈ f ′. f is not a subformula of q
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(a ∧ b)

a ∧ b

true

true

a ∧ b

true

Figure 2.4: Example GBA for (a ∧ b) via GOC

Finally, we achieve a BA by using the Round-Robin Construction, mentioned in Section
2.2.5.

Example 12. Continuing our computation of the VWAA for (a ∧ b), we observe the GBA
in Figure 2.4 by applying the construction above.
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A primary goal of this thesis is the detection of likely equivalences for LTL formulas to mini-
mize the state space of the resulting Büchi automata after applying one of our constructions.
Therefore, we consider each of the given equivalences in the presented Tableau Construction
[13], as well as in the presented GO Construction [12] to detect possible minimizations. To
keep it as general as possible and to get an approach for our later proofs, we have to observe
arbitrary LTL formulas in NNF as inner formulas of our equivalences. This leads us to proofs
via structural induction over the formula structure of LTL, where we have to include all
operators of LTL caused by the NNF requirement. Considering an arbitrary formula ϕ, we
have to observe seven different cases for its representation in our structural induction proofs:
a ∈ AP,¬a, ψ1 ∧ ψ2, ψ1 ∨ ψ2,ψ, ψ1 U ψ2, ψ1 R ψ2. Furthermore, given a formula with two
arbitray formulas would lead to 72 = 49 possibilites that all have to get observed.
However, a more complicated part will be the handling of arbitrary formulas in the al-
gorithms of both constructions itself. Hence, we have to create an appropriate solu-
tion for each construction by extending their current representation. After presenting
those extensions, we present our observations divided into the mentioned equivalences over
LTL.

3.1 Tableau Construction

3.1.1 Extended Representation of Tableau Construction

The main question for the Tableau Construction is how to handle an arbitrary formula in a
New field that has to be processed during the node expansion. We skip such a formula until
only undefined arbitrary formulas are elements of the New field. Then, we skip the node,
keeping its status empty, and begin to expand the next node. We consider such nodes as a
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black box where possibly more nodes are part of it. In later formulas we give each black box
with New field ϕ a variable xϕ ≥ 1 to denote its number of states. Note however, that such a
variable is an upper bound because of equivalent nodes between black boxes.
In automata we draw black box nodes with rectangles instead of circles. Also we will name
them in a special way, for example, TC(ψ)[Nx] means that we consider in this node the
resulting GBA of the Tableau Construction of the formula ψ where Nx denotes the name of
the node that caused the black box.
However, a big question is how to compare black box variables and normal constant numbers
for our later proofs. This is somehow difficult since the black box can be any arbitrary
number and in addtion, it is also possible that black boxes share several nodes. Therefore,
we assume that each blackbox variable describes at least one node, but we do not compare
them with normal constants.
Finally, we have to argue about the blowup of the number of states from a GBA to a BA via
the Round-Robin Construction. The blowup of the mentioned construction depends on the
number of final sets of its input GBA. In the Tableau Construction, this set only depends on
the number of U -formulas that is the same for each equivalence except for the Distributivity
between Eventually and Disjunction, which we consider seperately. Since the same number
of acceptance sets causes the multiplication of both state spaces of an equivalence with the
same factor, this construction will not change our results over GBA and, therefore, it is
enough to just observe Generalized Büchi Automata, except for the mentioned distributivity
law.

3.1.2 Commutativity of Eventually and Next

As previously mentioned, we consider proofs by structural induction and, therefore, have to
observe all operators of LTL which leads to a total of fourteen cases for an equivalence with
one variable. However, since there is no difference between most of the cases, we just observe
the inputs ψ1 U ψ2 and ψ1 R ψ2 for this subsection to give an idea for how such proofs work.
Note also that we only consider the whole computation for this case, since for larger formulas
we achieve tables with a oversized amount of nodes. For such computations we only observe
the resulting GBAs. Furthermore, as we already argued in section 3.1.1, we do not consider
the acceptance sets of our GBAs in here since they are negligible for our number of states
and build huge sets of nodes.
Table 3.1 shows the computation of the formula((ψ1 U ψ2)) in the Tableau Construction.

25



3 Evaluation

As mentioned in section 3.1.1 we are not able to completely expand some nodes because of
the arbitrary formulas. Such nodes are marked by an empty Added field. Its transformation
to a GBA can be observed in Figure 3.1. We compare it with Table 3.2 that builds the
computation of the equivalent formula ((ψ1 U ψ2)) and its GBA in Figure 3.2. The main
difference of both computations can be observed by comparing the nodes N6 of both tables.
While both got the same New and Next fields, the additional formula true U (ψ1 U ψ2) in
the Old field of the second node causes a difference between the nodes N7, N10 and N8, N14.
Therefore, we got two additional nodes for the computation of ((ψ1 U ψ2)). Their related
automata show the difference more clearly, where the node TC(ψ1)[N7] builds the combination
of the node pair N7, N10 and TC(ψ2)[N11] the combination of N8, N14.
Those computations yield the following upper bounds for the size of the state space in their
GBAs, where xy ≥ 0 describes the related black box with the New field y for y being any
formula:

|TC(((ψ1 U ψ2)))| ≤ |TC(((ψ1 U ψ2)))|
⇔ 2 + xψ1 + xψ2 ≤ 2 + 2 · xψ1 + 2 · xψ2

⇔ xψ1 + xψ2 ≤ 2 · xψ1 + 2 · xψ2

⇔ 0 ≤ xψ1 + xψ2

The computations of the second case ψ1 R ψ2 can be observed in Table 3.3 and 3.4. We
discard the related automata since this case is very similar to the previous one. Again, by
comparing the nodes N6 of both tables we can conclude that the additional nodes of the
second automaton are caused by the additional formula true U (ψ1 R ψ2) in its Old field.
Therefore we can directly compute the following upper bound for the state space size of their
related GBAs:

|TC(((ψ1 R ψ2)))| ≤ |TC(((ψ1 R ψ2)))|
⇔ 2 + xψ1 + xψ2 ≤ 2 + 2 · xψ1 + 2 · xψ2

⇔ xψ1 + xψ2 ≤ 2 · xψ1 + 2 · xψ2

⇔ 0 ≤ xψ1 + xψ2

Thus, we can conclude our first result for a state space minimization in the original Tableau
Construction. Its proof is stated below as well. Note however, that we just give the whole
proof idea once since it is a straight forward structural induction. In the following sections we
just consider the cases with the most interesting observations.
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Name Inc New Old Next Added
N0 {Init} {true U ((ψ1 U ψ2))} ∅ ∅ SPLIT
N1 {N1,Init} {true} {true U ((ψ1 U ψ2)),true} {true U ((ψ1 U ψ2))} ADDED
N3 {N1} {true U ((ψ1 U ψ2))} ∅ ∅ SPLIT
N4 {N1} {true} {true U ((ψ1 U ψ2)),true} {true U ((ψ1 U ψ2))} IGNORED
N5 {N1,Init} {(ψ1 U ψ2)} {true U ((ψ1 U ψ2)),(ψ1 U ψ2)} {ψ1 U ψ2} ADDED
N6 {N5} {ψ1 U ψ2} ∅ ∅ SPLIT
N7 {N5,N7} {ψ1} {ψ1 U ψ2} {ψ1 U ψ2}
N9 {N7} {ψ1 U ψ2} ∅ ∅ SPLIT
N10 {N7} {ψ1} {ψ1 U ψ2} {ψ1 U ψ2} IGNORED
N11 {N5,N7} {ψ2} {ψ1 U ψ2} ∅
N8 {N5} {ψ2} {ψ1 U ψ2} ∅ IGNORED
N2 {Init} {(ψ1 U ψ2)} {true U ((ψ1 U ψ2)),(ψ1 U ψ2)} {ψ1 U ψ2} IGNORED

Table 3.1: Computation Tableau of ((ψ1 U ψ2))

Name Inc New Old Next Added
N0 {Init} {(true U (ψ1 U ψ2))} {(true U (ψ1 U ψ2))} {true U (ψ1 U ψ2)} ADDED
N1 {N0} {true U (ψ1 U ψ2)} ∅ ∅ SPLIT
N2 {N0,N2} {true} {true U (ψ1 U ψ2),true} {true U (ψ1 U ψ2)} ADDED
N4 {N2} {true U (ψ1 U ψ2)} ∅ ∅ SPLIT
N5 {N2} {true} {true U (ψ1 U ψ2),true} {true U (ψ1 U ψ2)} IGNORED
N6 {N2} {ψ1 U ψ2} {true U (ψ1 U ψ2)} ∅ SPLIT
N7 {N0,N2} {ψ1} {true U (ψ1 U ψ2),ψ1 U ψ2} {ψ1 U ψ2}
N9 {N7} {ψ1 U ψ2} ∅ ∅ SPLIT
N10 {N10,N7} {ψ1} {ψ1 U ψ2} {ψ1 U ψ2}
N12 {N10} {ψ1 U ψ2} ∅ ∅ SPLIT
N13 {N10} {ψ1} {ψ1 U ψ2} {ψ1 U ψ2} IGNORED
N14 {N10,N7} {ψ2} {ψ1 U ψ2} ∅
N11 {N7} {ψ2} {ψ1 U ψ2} ∅ IGNORED
N8 {N0,N2} {ψ2} {true U (ψ1 U ψ2),ψ1 U ψ2} ∅
N3 {N0} {ψ1 U ψ2} {true U (ψ1 U ψ2)} ∅ SPLIT
N15 {N0} {ψ1} {true U (ψ1 U ψ2),ψ1 U ψ2} {ψ1 U ψ2} IGNORED
N16 {N0} {ψ2} {true U (ψ1 U ψ2),ψ1 U ψ2} ∅ IGNORED

Table 3.2: Computation Tableau of ((ψ1 U ψ2))
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N0

N5

TC(ψ1)[N7]

TC(ψ2)[N11]

true

true
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true
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ψ1

Figure 3.1: GBA of ((ψ1 U ψ2)) via TCO
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Figure 3.2: GBA of ((ψ1 U ψ2)) via TCO
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Name Inc New Old Next Added
N0 {Init} {true U ((ψ1 R ψ2))} ∅ ∅ SPLIT
N1 {N1,Init} {true} {true U ((ψ1 R ψ2)),true} {true U ((ψ1 R ψ2))} ADDED
N3 {N1} {true U ((ψ1 R ψ2))} ∅ ∅ SPLIT
N4 {N1} {true} {true U ((ψ1 R ψ2)),true} {true U ((ψ1 R ψ2))} IGNORED
N5 {N1,Init} {(ψ1 R ψ2)} {true U ((ψ1 R ψ2)),(ψ1 R ψ2)} {ψ1 R ψ2} ADDED
N6 {N5} {ψ1 R ψ2} ∅ ∅ SPLIT
N7 {N5,N7} {ψ2} {ψ1 R ψ2} {ψ1 R ψ2}
N9 {N7} {ψ1 R ψ2} ∅ ∅ SPLIT
N10 {N7} {ψ2} {ψ1 R ψ2} {ψ1 R ψ2} IGNORED
N11 {N5,N7} {ψ1,ψ2} {ψ1 R ψ2} ∅
N8 {N5} {ψ1,ψ2} {ψ1 R ψ2} ∅ IGNORED
N2 {Init} {(ψ1 R ψ2)} {true U ((ψ1 R ψ2)),(ψ1 R ψ2)} {ψ1 R ψ2} IGNORED

Table 3.3: Computation Tableau of ((ψ1 R ψ2))

Name Inc New Old Next Added
N0 {Init} {(true U (ψ1 R ψ2))} {(true U (ψ1 R ψ2))} {true U (ψ1 R ψ2)} ADDED
N1 {N0} {true U (ψ1 R ψ2)} ∅ ∅ SPLIT
N2 {N0,N2} {true} {true U (ψ1 R ψ2),true} {true U (ψ1 R ψ2)} ADDED
N4 {N2} {true U (ψ1 R ψ2)} ∅ ∅ SPLIT
N5 {N2} {true} {true U (ψ1 R ψ2),true} {true U (ψ1 R ψ2)} IGNORED
N6 {N2} {ψ1 R ψ2} {true U (ψ1 R ψ2)} ∅ SPLIT
N7 {N0,N2} {ψ2} {true U (ψ1 R ψ2),ψ1 R ψ2} {ψ1 R ψ2}
N9 {N7} {ψ1 R ψ2} ∅ ∅ SPLIT
N10 {N10,N7} {ψ2} {ψ1 R ψ2} {ψ1 R ψ2}
N12 {N10} {ψ1 R ψ2} ∅ ∅ SPLIT
N13 {N10} {ψ2} {ψ1 R ψ2} {ψ1 R ψ2} IGNORED
N14 {N10,N7} {ψ1,ψ2} {ψ1 R ψ2} ∅
N11 {N7} {ψ1,ψ2} {ψ1 R ψ2} ∅ IGNORED
N8 {N0,N2} {ψ1,ψ2} {true U (ψ1 R ψ2),ψ1 R ψ2} ∅
N3 {N0} {ψ1 R ψ2} {true U (ψ1 R ψ2)} ∅ SPLIT
N15 {N0} {ψ2} {true U (ψ1 R ψ2),ψ1 R ψ2} {ψ1 R ψ2} IGNORED
N16 {N0} {ψ1,ψ2} {true U (ψ1 R ψ2),ψ1 R ψ2} ∅ IGNORED

Table 3.4: Computation Tableau of ((ψ1 R ψ2))
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Theorem 1. Given an LTL formula ϕ = (ψ) for an arbitrary LTL formula ψ, one
can reduce the number of states of a BA created by the Tableau Construction without any
improvement from ϕ by transforming ϕ to its equivalent representation ϕ =(ψ).

Proof 1. By structural induction over ψ. We compare for each possible structure of ψ both
sides of the equivalence (ψ) ≡(ψ).

• (ψ = a) If we apply the Tableau Construction to the equivalent formulas (a) and
(a), we end up in the same number of states of four for their GBA and, therefore,
we conclude that they always have the same size. The same holds for ψ = ¬a.

• (ψ = ψ1 ∧ ψ2) Applying the Tableau Construction to both sides ends up in the same
upper bound computations of 2 + xψ1,ψ2. Therefore, both GBAs have the same size.

• (ψ = ψ1 ∨ ψ2) Both formulas result in the same number of states with 2 + xψ1 + xψ2.

• (ψ = ψ1) Both formulas have the upper bounds 3 + xψ1.

• (ψ = ψ1 U ψ2) As mentioned above, the formula (a) got less states on its upper
bound as its equivalent formula (a). Thus, one should always prefer the first
representation.

• (ψ = ψ1 R ψ2) Here we achieve the same observations as for ψ1 U ψ2.

Finally, since each case of our structural inductions either prefers none of its representations
or prefers the representation (ψ1), we can conclude our result.

�

However, by using the improved Tableau Construction, described in 2.3.1, one can get rid
of the additional formula in the Old field and, therefore, we do not observe any differences
between the formulas (ψ) and (ψ) for an arbitrary formula ψ. In Table 3.5, the
computation with the improved algorithm of the Tableau Construction for the formula
((ψ1 U ψ2)) is described. Thus, we can compute a new upper bound for the size of its
state set as |TC(((ψ1 U ψ2)))| = 2 + xψ1 + xψ2 . This refutes Theorem 1 for the improved
version of the Tableau Construction.
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Name Inc New Old Next Added
N0 {Init} {(true U (ψ1 U ψ2))} {(true U (ψ1 U ψ2))} {true U (ψ1 U ψ2)} ADDED
N1 {N0} {true U (ψ1 U ψ2)} ∅ ∅ SPLIT
N2 {N0,N2} {true} {true U (ψ1 U ψ2),true} {true U (ψ1 U ψ2)} ADDED
N4 {N2} {true U (ψ1 U ψ2)} ∅ ∅ SPLIT
N5 {N2} {true} {true U (ψ1 U ψ2),true} {true U (ψ1 U ψ2)} IGNORED
N6 {N2} {ψ1 U ψ2} ∅ ∅ SPLIT
N7 {N0,N2,N7} {ψ1} {ψ1 U ψ2} {ψ1 U ψ2}
N9 {N7} {ψ1 U ψ2} ∅ ∅ SPLIT
N10 {N7} {ψ1} {ψ1 U ψ2} {ψ1 U ψ2} IGNORED
N11 {N0,N2,N7} {ψ2} {ψ1 U ψ2} ∅
N8 {N2} {ψ2} {ψ1 U ψ2} ∅ IGNORED
N3 {N0} {ψ1 U ψ2} ∅ ∅ SPLIT
N12 {N0} {ψ1} {ψ1 U ψ2} {ψ1 U ψ2} IGNORED
N13 {N0} {ψ2} {ψ1 U ψ2} ∅ IGNORED

Table 3.5: Computation Tableau of ((ψ1 U ψ2)) (Improved)

3.1.3 Commutativity of Always and Next

For any arbitrary formula ϕ, the formulas (ϕ) and (ϕ) result in the same BA by our
Tableau Construction and its improved version. For both cases we can compute the following
upper bounds:

|TC((ϕ))| ≤ |TC((ψ))|
⇔ 1 + xψ1 + xψ2 ≤ 1 + xψ1 + xψ2

Therefore we do not prefer any of both cases.

3.1.4 Distributivity of Disjunction and Next

First of all the right side of the equivalence will always cause more fixed states than the left
side because of the disjunction as the outer operator. Such a disjunction always produces two
initial states. However, for our original Tableau Construction it is not the case that the left
side always outperforms the right one. For each equivalence of the form (ϕ ∨ (ψ1 U ψ2)) ≡
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(ϕ) ∨ ((ψ1 U ψ2) and (ϕ ∨ (ψ1 R ψ2)) ≡ (ϕ) ∨ ((ψ1 R ψ2) the right side should
always be preferred. This is caused by splitting the disjunction, which is directly followed
by another split with either the operator U or the operator R. As already explained in
3.1.2 such a nested split will create at least two more arbitrary nodes. Figure 3.3 and 3.4
show this property with the example ϕ = a and ψ = ψ1 U ψ2. As previously mentioned, the
nodes TC(ψ1)[N6], TC(ψ1)[N9] and TC(ψ2)[N7], TC(ψ2)[N13] of the automaton on Figure
3.3 correspond to the nodes TC(ψ1)[N7] and TC(ψ2)[N11] of Figure 3.4. For this example we
can compute the following upper bounds for xψ1 , xψ2 ≥ 1:

|TC((a ∨ (ψ1 U ψ2)))| ≥ |TC((a) ∨ ((ψ1 U ψ2)))|
⇔ 3 + 2 · xψ1 + 2 · xψ2 ≥ 4 + xψ1 + xψ2

⇔ xψ1 + xψ2 ≥ 1

So we can conclude another result for the Tableau Construction.

Theorem 2. Given an LTL formula ϕ1 = (ψ1 ∨ ψ2) and its equivalent representation
ϕ2 = (ψ1)∨ (ψ2) for arbitrary LTL formulas ψ1, ψ2. If at least one of the formulas ψ1, ψ2

is an U or R formula, one should always prefer the representation of ϕ2 to reduce the number
of states of the BA resulting from the original usage of the Tableau Construction. Otherwise
one should always prefer the representation of ϕ1.

However, the improved version of our Tableau Construction prevents the problem of such a
nested split. Therefore, the only distinction between the BA computations of the formulas
(ψ1 ∨ ψ2) and (ψ1) ∨ (ψ2) with the improved Tableau Construction is located in the
different number of inital states that get computed.

Theorem 3. Given an LTL formula ϕ = (ψ1) ∨ (ψ2) for arbitrary LTL formulas ψ1, ψ2,
one can reduce the number of states of a BA created by the improved Tableau Construction
from ϕ by transforming ϕ to its equivalent representation ϕ = (ψ1 ∨ ψ2).

3.1.5 Distributivity of Conjunction and Next

As long as ϕ or ψ are unequal to an U - or an R-formula, the outcome of both formulas
as input of the original Tableau Construction is exactly the same. However, if ϕ, ψ are
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Figure 3.3: GBA of (a ∨ (ψ1 U ψ2)) by TCO
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Figure 3.4: GBA of (a) ∨ ((ψ1 U ψ2)) by TCO
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both either an U or an R formula, the created GBA of the formula (ϕ) ∧ (ψ) will
outperform the formula (ϕ ∧ ψ) in the number of states. As an example, assume the
equivalence ((ψ1 U ψ2) ∧ (ψ3 U ψ4)) ≡ ((ψ1 U ψ2)) ∧ ((ψ3 U ψ4)). As first step of the
expansion the left formula will get rid of its -operator, whereas the right one will eleminate
its conjunction. However, the following conjunction of the left formula will cause twice as
much states with the New fields {{α, β} | α ∈ {ψ1, ψ2}, β ∈ {ψ3, ψ4}} as the formula on the
right side since there is one state with the additional conjunction in its Old field and one
without, making them different in the criterion of equivalent nodes. Therefore, we can make
the following computation for the upper bound of the state space size of both GBAs for
xψ1 , xψ2 , xψ3 , xψ4 , xψ2,ψ3 , xψ2,ψ4 , xψ1,ψ3 , xψ1,ψ3 ≥ 1 :

|TC(((ψ1 U ψ2) ∧ (ψ3 U ψ4)))| ≥ |TC(((ψ1 U ψ2)) ∧ ((ψ3 U ψ4)))|
⇔ 1 + xψ1 + xψ2 + xψ3 + xψ4 + 2 · xψ2,ψ3 + 2 · xψ2,ψ4 + 2 · xψ1,ψ3 + 2 · xψ1,ψ3

≥ 1 + xψ1 + xψ2 + xψ3 + xψ4 + xψ2,ψ3 + xψ2,ψ4 + xψ1,ψ3 + xψ1,ψ3

⇔ xψ2,ψ3 + xψ2,ψ4 + xψ1,ψ3 + xψ1,ψ3

≥ 0

With this knowledge we can create another result for the given equivalence in the context of
the original Tableau Construction:

Theorem 4. Given an LTL formula ϕ = (ψ1 ∧ ψ2) for arbitrary LTL formulas ψ1, ψ2. If
either ψ1 = ψ3 U ψ4 or ψ1 = ψ3 R ψ4 and also either ψ2 = ψ5 U ψ6 or ψ2 = ψ5 R ψ6 for
ψ3, ψ4, ψ5, ψ6 being arbitrary LTL formulas, one can reduce the number of states of a BA
created by the original Tableau Construction without any improvement from ϕ by transforming
ϕ to its equivalent representation ϕ = (ψ1) ∧ (ψ2).

However, the improved version of the Tableau Construction will not add the conjunction to
the Old field by its definition. As a consequence, for any arbitrary LTL formula ψ1, ψ2, the
formulas (ψ1 ∧ ψ2) and (ψ1) ∧ (ψ2) will produce exactly the same GBAs as output of
the improved Tableau Construction.

3.1.6 Distributivity of Until and Next

For our original Tableau Construction, the preferred side of the equivalence (ϕ U ψ) ≡
(ϕ) U (ψ) may differ for each input. Therefore, it would not make sense to define preferred
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rules for each different case of our structural induction itself. Instead we can obtain some
interesting results for our improved Tableau Construction, where the left side of our equiva-
lence always outperforms the right one, caused by multiple reasons. Therefore, we observe the
GBAs resulting from the improved Tableau Construction with the familar equivalent inputs
(a U b) and (a) U (b) in Figure 1.1. One may notice that the two initial states of the
right automaton could be reduced to one. Their existence is caused by the outer U -formula
that always creates two initial nodes because of the definition of a split. Also the pair of
nodes N4, N8 could be combined to just one node with incoming node N1, its selfloop N4 and
its outgoing transition to N9 with label a. The redundant blowup of two states is caused by
expansion of a node with New field {(a) U (b), a}. The resulting split of this node creates
two addtional added nodes with the previous New fields, {a,a}, {a,b}, representing N4,
N8 respectively. Instead, the automaton on its left just creates one node, N2.

We can make such an observation also for formulas with arbitrary inner formulas, for example,
the equivalence ((ψ1) U b) ≡ ((ψ1)) U (b) where the computation with the left
and right input is shown in Figure 3.5 and Figure 3.6. As mentioned before, the second
automaton got two inital states because of the outer U -formula. Also the black box states
TC(ψ1)[N7], TC(ψ1)[N11] build the additional blowup as in the previous equivalence and
could be reduced to one state as TC(ψ1)[N5] in the automaton of((ψ1) U b). Additionally,
we notice another redundant state N5 on the second automaton that is caused by the nested
-operator that can be avoided by the left side of the equivalence.
The computations of the upper bounds of our last equivalence confirm our assertions for
xψ1 , xψ1,b ≥ 1:

|TC(((ψ1) U b)| ≤ |TC(((ψ1)) U (b))|
⇔ 4 + xψ1 + xψ1,b ≤ 6 + 2 · xψ1 + xψ1,b

⇔ 0 ≤ 2 + xψ1 + xψ1,b

Theorem 5. Given an LTL formula ϕ = (ψ1) U (ψ2) for arbitrary LTL formulas ψ1, ψ2,
one can reduce the number of states of a BA created by the improved Tableau Construction
from ϕ by transforming ϕ to its equivalent representation ϕ = (ψ1 U ψ2).
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Figure 3.5: GBA of ((ψ1) U b) via TCI
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Figure 3.6: GBA of ((ψ1) U (b) via TCI
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Figure 3.7: GBA of (a ∨ b) via TCO

3.1.7 Distributivity of Eventually and Disjunction

Given the input equivalence (ϕ ∨ ψ) ≡ (ϕ) ∨ (ψ) we can observe a huge difference
between both sides in the number of states as input of the original Tableau Construction.
As an example consider the GBAs for the input formula (a ∨ b) in Figure 3.7 and 3.8 for
the input formula (a) ∨ (b) with the difference of five additional states in the second
automaton. All of them are caused by the disjunction as outer formula whose split during
the expansion causes the initial states N3 and N14, as well as N4 and N15. Respectively,
those pairs only differ by an additional disjunction in their Old field. Finally, the pairs
N3, N6 and N14, N17 only differ in the disjunction formula in Old as well and therefore, it
builds this blowup. We could map from the second automaton to the first one by mapping
N3, N6, N14, N17 to N1, and N4, N14 to N6 and N15, N21 to N7. Such a mapping is possible
for each possibility of our structural induction and therefore we can conclude another result
for this thesis.

Theorem 6. Given an LTL formula ϕ = (ψ1) ∨ (ψ2) for arbitrary LTL formulas ψ1, ψ2,
one can reduce the number of states of a GBA as well as of a BA created by the original Tableau
Construction from ϕ by transforming ϕ to its equivalent representation ϕ =(ψ1 ∨ ψ2).

Note that we do not have to observe the final sets of the GBAs since we always choose the
formula with the lower number of U -formulas.

However, we can make some interesting observations with the improved version of the Tableau
Construction that are very similar to the results of Result 3.1.4 concerning the original Tableau
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Figure 3.8: GBA of (a) ∨ (b) via TCO

Construction with input (a ∨ (ψ1 U ψ2)) ≡ (a) ∨ ((ψ1 U ψ2)). As in Figure 3.4 we
observe the same subformulas for input (ψ1) ∨ (ψ2) in Figure 3.9. The first observation
is that an U will be represented with two instead of three states in an U -subformula which
excludes three redundant states of the non-improved version and also outperforms the outcome
of (a ∨ (ψ1 U ψ2)) in the improved version. Another great advantage is the exclusion of
additional states for the inital states that directly got a transition with a or that directly
perform either ψ1 or ψ2 as in the non-improved version and in the result of the formula
(a ∨ (ψ1 U ψ2)). Thus, whenever an U or a R formula is a component in the given
equivalence, the right side always outperforms the left side.

With some computation we get the following upper bounds for our current example with
xψ1 , xψ2 ≥ 1:

|TC((a ∨ (ψ1 U ψ2)))| ≥ |TC((a) ∨ ((ψ1 U ψ2)))|
⇔ 3 + 2 · xψ1 + 2 · xψ2 ≥ 4 + xψ1 + xψ2

⇔ xψ1 + xψ2 ≥ 1

Theorem 7. Given an LTL formula ϕ1 = (ψ1 ∨ ψ2) and its equivalent representation
ϕ2 = (ψ1) ∨ (ψ2) for arbitrary LTL formulas ψ1, ψ2. If at least one of the formulas
ψ1, ψ2 is an U or R formula, one should always prefer the representation of ϕ2 to reduce the
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Figure 3.9: GBA of (a) ∨ ((ψ1 U ψ2)) via TCI

number of states of the GBA resulting from the improved Tableau Construction. Otherwise
one should always prefer the representation of ϕ1.

Note that we just consider the GBAs for this Theorem since the formula (ψ1)∨ (ψ2) will
always produce more states as its equivalent formula in the resulting BA from the Round-Robin
Construction because of its additional U formula.

3.1.8 Distributivity of Always and Conjunction

Because of the additional conjunction in the right formula (ϕ) ∧ (ψ) of our equivalence,
each of its automata resulting from the original Tableau Construction got one additional state,
one without and one with the conjunction in their Old fields. This is caused by expanding
a conjunction in combination with the directly followed splitting rules of the R operators.
However, if at least one of the components ϕ, ψ is an  formula, one may notice that both
formulas produce exactly the same output. This is the case since the second formula can
spare the additional  transition because of its nevertheless existing additional state, whereas
the first formula is not able to skip it. However, we can conclude that the left formula
outperforms the right one for this construction.

Theorem 8. Given an LTL formula ϕ = (ψ1) ∧ (ψ2) for arbitrary LTL formulas ψ1, ψ2,
one can reduce the number of states of a BA created by the improved Tableau Construction
from ϕ by transforming ϕ to its equivalent representation ϕ = (ψ1 ∧ ψ2).
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However, the improved version of the Tableau Construction will not add the conjunction
to the Old field by its definition. Thus, for any arbitrary LTL formula ψ1, ψ2, (ψ1 ∧ ψ2)
and (ψ1) ∧ (ψ2) produce exactly the same GBAs as input of the improved Tableau
Construction.

3.1.9 Conclusions on Tableau Construction

Summarizing, we observed many interesting results for the original Tableau Construction
as well as for its improved version. All of them are stated in Table 3.6 to get a com-
pact overview over all equivalences that are recommended to apply before starting the
construction of the Büchi Automaton. Note again that, different to the original algorithm,
some equivalences produce the same number of states in the improved version and there-
fore, it is not necessary to transfer those rules to the improved Tableau Construction as
well.

Equivalences TC (Original) TC (Improved)
Commutativity of

ϕ⇒ϕ —
Eventually and Next
Commutativity of

— —
Always and Next
Distributivity of (ϕ ∨ ψ)⇒1 (ϕ) ∨ (ψ)

(ϕ ∨ ψ)⇒ (ϕ) ∨ (ψ)
Disjunction and Next (ϕ) ∨ (ψ)⇒2 (ϕ ∨ ψ)

Distributivity of
(ϕ ∧ ψ)⇒1 (ϕ) ∧ (ψ) —

Conjunction and Next
Distributivity of

— (ϕ) U (ψ)⇒ (ϕ U ψ)
Until and Next
Distributivity of

(ϕ) ∨ (ψ)⇒(ϕ ∨ ψ)
(ϕ ∨ ψ)⇒1,4 (ϕ) ∨ (ψ)

Eventually and Disjunction (ϕ) ∨ (ψ)⇒2 (ϕ ∨ ψ)
Distributivity of

(ϕ) ∧ (ψ)⇒ (ϕ ∧ ψ) —
Always and Conjunction

Table 3.6: Table of Results for Tableau Construction - Original vs. Improved

Annotations for Table 3.6
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1 This implication does only hold if ϕ is an U / R - formula or ψ is an U / R - formula.

2 This implication does hold for all other except the restricted cases.

3 This implication does only hold if ϕ is an U / R - formula and ψ is an U / R - formula.

4 This implication does only hold for the construction of a GBA.

3.2 GO Construction

3.2.1 Extended Representation of GO Construction

For this construction we have to redefine some of our current definitions to handle arbitrary
formulas, starting with our additional operator ψ where ψ is some arbitrary undefined
formula.

ψ :=


...

ψ = {ϕ} if ψ is an arbitrary formula
...

As before we regard our arbitrary formulas as black boxes. So our definition of ψ as {ψ}
itself could also be a conjunction or a disjunction which would lead to a duplication of all
ingoing as well as outgoing transitions. However, the number of states can still be represented
by a single black box variable. The same holds for our modified transition functions for an
arbitrary formula ψ.

∆ :=


...

∆(ψ) = {(ψ, ∅)}
...

δ :=


...

δ(ψ) = {(ψ, ∅)}
...

Since we can not make assumtions over successor states of an arbitrary formula in our con-
struction, except for self loops, we define the symbol ∅ as an undefined state. It is represented
via an outgoing transition labeled with its given label that does not lead into any state.
However, with such a new state, we have to modify our ⊗-operator as well.
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For any given tuple J = (α1, e) we build its conjunction with the state (α2, ∅) by building the
conjunction of both label sets α1, α2 resulting in a pair with the states set e.

(α1, ∅)⊗ (α2, e) =


(α1 ∧ α2, e) if e 6= true and no literal

(α1 ∧ α2, e) if e is literal

(α1 ∧ α2, ∅) if e = true

In the graphical representation, all states e that were combined with our state ∅ are black
box states, denoted by an underline.

As before, we represent such blackbox states graphically with rectangles instead of circles.
Their labeling looks like e.g. GOC(ψ), meaning that we observe either the VWAA or the
GBA of the output of the GO Construction on the formula ψ. In later computations we also
denote the number of states of such black boxes via some variable xψ ≥ 1 where ψ denotes
the labeling of the respective state.

As before in the Tableau Construction, the comparison between constant variables and black
box variables is not possible, caused by shared states between black boxes as well as the
possibility of finding counterexamples. Therefore, we do not compare such variables against
each other.

As before for our Tableau Construction, we also have to argue about the final states of our
GBA in view of using our Round-Robin Construction to create a BA. After creating a VWAA,
we obtain a single state in our coBüchi acceptance condition for each U -formula. Afterwards
the acceptance set of our GBA cam be obtained by creating for each such formula in our
co-Büchi acceptance set an own set including all conjunction states that do not cover the
U -formula. Therefore, we conclude that the size of the GBA acceptance set depends on the
number of U -formulas in our NNF formula. Thus, again we only have to consider this case
for the distributivity of eventually and conjunction and can ignore the acceptance set of other
automata.
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3.2.2 Commutativity of Eventually and Next

Based on the extended representation given above, we consider at first the commutativity of
eventually and next for our GO Construction. However, for this commutativity law we can
only make observations that are sobering.
Starting with the positive results, we know that the formula(ψ1 U ψ2) always outperforms
its equivalent representation (ψ1 U ψ2) for arbitrary formulas ψ1, ψ2. To prove this, we
compute both sides over the VWAA to the GBA, starting with the transitions of the first
formula.

∆(true U (ψ1 U ψ2))

= δ(true U (ψ1 U ψ2))

= ∆((ψ1 U ψ2)) ∪ (∆(true)⊗ {(true, true U (ψ1 U ψ2))})

= δ((ψ1 U ψ2)) ∪ (δ(true)⊗ {(true, true U (ψ1 U ψ2))})

= {(true, e) | e ∈ ψ1 U ψ2)} ∪ ({(true, true)} ⊗ {(true, true U (ψ1 U ψ2))})

= {(true, ψ1 U ψ2)} ∪ {(true, true U (ψ1 U ψ2))}

= {(true, ψ1 U ψ2), (true, true U (ψ1 U ψ2))}

∆(ψ1 U ψ2)

= δ(ψ1 U ψ2)

= ∆(ψ2) ∪ (∆(ψ1)⊗ {(true, ψ1 U ψ2)})

= {(ψ2, ∅)} ∪ ({(ψ1, ∅)} ⊗ {(true, ψ1 U ψ2)})

= {(ψ2, ∅)} ∪ {(ψ1, ψ1 U ψ2)}

= {(ψ2, ∅), (ψ1, ψ1 U ψ2)}

Note that this VWAA only has two states whereas the second one has three as the following
computation shows.

∆((true U (ψ1 U ψ2)))

= δ((true U (ψ1 U ψ2)))

= {(true, e) | e ∈ true U (ψ1 U ψ2)}

= {(true, true U (ψ1 U ψ2))}
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true U ((ψ1 U ψ2))

ψ1 U ψ2

true

true

ψ1

ψ2

(true U (ψ1 U ψ2))

true U (ψ1 U ψ2)2

ψ1 U ψ2

true

true

ψ2ψ1

ψ1

ψ2

Figure 3.10: GBA for(ψ1 U ψ2) on the left, GBA for (ψ1 U ψ2) on the right

∆(true U (ψ1 U ψ2))

= δ(true U (ψ1 U ψ2))

= ∆(ψ1 U ψ2) ∪ (∆(true)⊗ {(true, true U (ψ1 U ψ2))})

= {(ψ2, ∅), (ψ1, ψ1 U ψ2)} ∪ (δ(true)⊗ {(true, true U (ψ1 U ψ2))})

= {(ψ2, ∅), (ψ1, ψ1 U ψ2)} ∪ ({(true, true)} ⊗ {(true, true U (ψ1 U ψ2))})

= {(ψ2, ∅), (ψ1, ψ1 U ψ2), (true, true U (ψ1 U ψ2))}

The graphical representations of both GBAs in Figure 3.10 are exactly the same as their
VWAA, except for the accepting conditions, since they do not have any alternating transitions.
However, while the automaton for (ψ1 U ψ2) directly got a transition from its inital
state to ψ1 U ψ2, the other automaton takes a detour to an additional state, caused by the
-operator at its beginning. Therefore, (ψ1 U ψ2) always outperforms its equivalent
formula (ψ1 U ψ2) in the number of states for our GO Construction.
A similar result can be observed for ψ = ψ1 R ψ2, where the left formula of the equivalence
should always be preferred. As mentioned before, the observation of this equivalence yields
some negative results as well, meaning that we are unable to determine a preferred side for
the inputs ψ = ψ1 ∧ ψ2 and ψ1 ∨ ψ2. We show this by giving two different inputs for ψ1, ψ2,
where each input prefers the respective other side. Therefore, given the input ψ1 = a U b
and ψ2 = c U d for the equivalence (ψ1 ∧ ψ2) ≡ (ψ1 ∧ ψ2), the resulting GBA of
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true U (((a U b) ∧ (c U d)))

(a U b) ∧ (c U d)

c U da U b

true

true

true

a ∧ c

a ∧ d b ∧ c

b ∧ d c

d

a

b

true

Figure 3.11: GBA of ((a U b) ∧ (c U d)) via GOC

the GO Construction on the left side 3.11 got less states (5) than the automaton on the
right side (6) 3.12. However, given the input ψ1 = a ∨ b and ψ1 = c ∨ d, the right side 3.14
outperforms the left one 3.13 in the number of states by 3 versus 6. Note that we can make
similar observations for ψ = ψ1 ∧ ψ2.

Therefore, we are unable to give a result covering all cases of our structural induction. Instead,
we can give partial results that can be proven by structural induction as well.

Theorem 9. Given an LTL formula ϕ1 = (ψ) and its equivalent representation ϕ2 =
(ψ) for an arbitrary LTL formula ψ. If ψ is an U or R formula, one should always
prefer the representation of ϕ2 to reduce the number of states of the BA resulting from the
GO construction.

3.2.3 Commutativity of Always and Next

This equivalence is very similar to the commutativity law before. While we produce useful
results for U and R formulas, we can not make any assumptions for conjunctions and
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(true U ((a U b) ∧ (c U d)))

true U ((a U b) ∧ (c U d))

c U d

(a U b) ∧ (c U d)

a U b

true

true

true

a ∧ b
a ∧ d

b ∧ c

b ∧ d
a ∧ d

a ∧ c

b ∧ c

b ∧ d
a

b

c

d

true

Figure 3.12: GBA of ((a U b) ∧ (c U d)) via GOC

true U (((a ∨ b) ∧ (c ∨ d)))

a ∧ d b ∧ ca ∧ c b ∧ d

true

true

true truetrue true

a ∧ d b ∧ ca ∧ c b ∧ d

true

Figure 3.13: GBA of ((a ∨ b) ∧ (c ∨ d)) via GOC
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(true U ((a ∨ b) ∧ (c ∨ d)))

true U ((a ∨ b) ∧ (c ∨ d))

true

true

true

a ∧ c
a ∧ d b ∧ c

b ∧ d

true

Figure 3.14: GBA of ((a ∨ b) ∧ (c ∨ d)) via GOC

disjunctions as input. A counter example would be ψ = ψ1 U ψ2 and ψ = ψ1 ∨ ψ2, each
preferring another side of our equivalence.
However, our partial results lead into another small observation that can be proven again via
structural induction.

Theorem 10. Given an LTL formula ϕ1 = (ψ) and its equivalent representation ϕ2 =
(ψ) for an arbitrary LTL formula ψ. If ψ is an U or R formula, one should always
prefer the representation of ϕ2 to reduce the number of states of the BA resulting from the
GO construction.

3.2.4 Distributivity of Disjunction and Next

The right side of the equivalence (ϕ ∨ ψ) ≡ (ϕ) ∨ (ψ) always leads to more states
than its equivalent side because of its outer conjunction. By computing the initial states
of our VWAA via the overline function, a cunjunction always leads to two initial states by
definition. Therefore, one should always prefer to push out the  operator in this situation.
Figure 3.15 represents this argumentation. While the GBA for (a ∨ b) on the left got
only one initial state, the GBA for (a) ∨ (b) got always two. This leads to another
result.
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(a ∨ b)

a b

true

true true

a btrue

true

a b

a b

true true

a b
true

Figure 3.15: GBA for (a ∨ b) on the left, GBA for (a) ∨ (b) on the right

Theorem 11. Given an LTL formula ϕ = (ψ1) ∨ (ψ2) for any arbitrary LTL formulas
ψ1, ψ2, one can reduce the number of states of a BA created by the GO Construction by
transforming ϕ to its equivalent representation ϕ = (ψ1 ∨ ψ2).

3.2.5 Distributivity of Conjunction and Next

For any arbitrary formulas ϕ, ψ, the formulas(ϕ∧ψ) and (ϕ)∧(ψ) result in the same BA
by our GO Construction. Therefore we do not prefer any of both cases.

3.2.6 Distributivity of Until and Next

For the distributivity of Until and Next we can produce a lot of partial results. However,
for some other cases we are unable to determine one as the preferred side of the equivalence
because of possible counter examples. Therefore, we only present the different partial results,
leaving other cases untouched.

First of all, we notice that whenever one arbitrary formulas of the equivalence (ϕ U ψ) ≡
(ϕ) U (ψ) is a literal, one should always prefer the left side, keeping the-operator outside.
Therefore, consider the inputs ϕ = a and ψ = ψ1 ∧ ψ2 with the graphical representation of
their GBA in Figure 3.16. Whereas on the left side we first get rid of the -operator, leading
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(a U (ψ1 ∧ ψ2))

a U (ψ1 ∧ ψ2)

true

a

ψ1 ∧ ψ2

(a) U ((ψ1 ∧ ψ2))

((a) U ((ψ1 ∧ ψ2))) ∧ a

ψ1 ∧ ψ2

true

true a

a

ψ1 ∧ ψ2

Figure 3.16: GBA for (a U (ψ1 ∧ψ2) on the left, GBA for (a) U ((ψ1 ∧ψ2)) on
the right

into a single U -formula state, on the right side the inner  operators of the U formula
triggers transitions to two different states where it either demands the satisfaction of ψ1 ∧ ψ2

or ensures the satisfaction of a until satisfying the conjunction. The difference is based on
the additional black box state of the right automaton the can be avoided by preventing
-operators within an U -formula. This observation leads us to our first result that can get
proved via structural induction.

Theorem 12. Given an LTL formula ϕ1 = (ψ1) U (ψ2) and its equivalent representation
ϕ2 = (ψ1 U ψ2) for arbitrary LTL formulas ψ1, ψ2. If at least one of the formulas ψ1, ψ2 is
a literal, one should always prefer the representation of ϕ2 to reduce the number of states of
the BA resulting from the GO Construction.

A similar result can be achieved by observing a formula ψ as at least one of the inputs
ψ1, ψ2. Therefore, consider the automata in Figure 3.17 and Figure 3.18 for the formulas
((ψ) U (ψ1 ∧ ψ2)) and (ψ) U (ψ1 ∧ ψ2) respectively. Again, the first automaton
outperforms the second one which is again the case because of the -formula within an
U -formula forcing our construction to create additional states instead of direct transitions.

Theorem 13. Given an LTL formula ϕ1 = (ψ1) U (ψ2) and its equivalent representation
ϕ2 = (ψ1 U ψ2) for arbitrary LTL formulas ψ1, ψ2. If at least one of the formulas ψ1, ψ2
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((ψ) U (ψ1 ∧ ψ2))

(ψ) U (ψ1 ∧ ψ2)

((ψ) U (ψ1 ∧ ψ2)) ∧ ψ

true

true ψ1 ∧ ψ2

ψ

ψ ∧ ψ1 ∧ ψ2

Figure 3.17: GBA of ((ψ) U (ψ1 ∧ ψ2)) via GOC

(ψ) U (ψ1 ∧ ψ2)

((ψ) U (ψ1 ∧ ψ2)) ∧ (ψ1) ψ1 ∧ ψ2

((ψ) U (ψ1 ∧ ψ2)) ∧ (ψ1) ∧ ψ1

ψ1 ∧ ψ1 ∧ ψ2

true true

true

trueψ

ψ

ψ ∧ ψ1 ∧ ψ2

ψ1 ∧ ψ2

Figure 3.18: GBA of (ψ) U (ψ1 ∧ ψ2) via GOC
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is a formula of the form ψ for some arbitrary LTL formula ψ, one should always prefer
the representation of ϕ2 to reduce the number of states of the BA resulting from the GO
Construction.

Finally we have already seen that an U -formula as direct subformula of another U -subformula
can be critical, for example, considering Theorem 3.2.2. Similar to this result, we can make
the observation for this equivalence that if both formulas ϕ, ψ are either an U or an R
formula, it is beneficial to push in the  operators, leading us to our final result for this
equivalence.

Theorem 14. Given an LTL formula ϕ2 = (ψ1 U ψ2) and its equivalent representation
ϕ2 = (ψ1) U (ψ2) for arbitrary LTL formulas ψ1, ψ2. If both formulas ψ1, ψ2 are either U
or R formulas, one should always prefer the representation of ϕ1 to reduce the number of
states of the BA resulting from the GO Construction.

3.2.7 Distributivity of Eventually and Disjunction

Similar to our observations over the distributivity of Disjunction and Next in 3.2.4, the
righthand side of the equivalence(ϕ∨ψ) ≡ (ϕ)∨ (ψ) always leads to more states than
the left-hand side because the outer disjunction always causes multiple initial states. Therefore,
we can directly conclude our result for this equivalence.

Theorem 15. Given an LTL formula ϕ = (ψ1) ∨ (ψ2) for any arbitrary LTL formulas
ψ1, ψ2, one can reduce the number of states of a BA created by the GO Construction by
transforming ϕ to its equivalent representation ϕ =(ψ1 ∨ ψ2).

Note that this observation also would be the case if we compare the number of U formulas of
both formulas. Since the right side of the equivalence got more such formulas than the left one,
we could automatically conclude that the BA resulting from the Round-Robin Construction
would produce a multiple of the states of its GBA.
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3.2.8 Distributivity of Always and Conjunction

Unfortunately, for each possible input ϕ, ψ of the equivalence (ϕ ∧ ψ) ≡ (ϕ) ∧ (ψ), the
automata always produce the same numer of states, however, always with different black box
states that can not be compared. Therefore, it is not possible to determine any side of our
equivalence that is more likely.

3.2.9 Conclusions on GO Construction

Summarizing, we observed only a few positive results for the GO construction, because we
were able to construct counter examples in many cases. However, again all results are stated
in Table 3.7 to get a compact overview over all equivalences that are recommended to apply
before starting the construction of the Büchi Automaton.

Equivalences GO Construction)
Commutativity of

(ϕ)⇒1 (ϕ)
Eventually and Next
Commutativity of

(ϕ)⇒1 (ϕ)
Always and Next
Distributivity of

(ϕ) ∨ (ψ)⇒ (ϕ ∨ ψ)
Disjunction and Next

Distributivity of
—

Conjunction and Next

Distributivity of
(ϕ) U (ψ)⇒2 (ϕ U ψ)

Until and Next
(ϕ) U (ψ)⇒3 (ϕ U ψ)
(ϕ U ψ)⇒4 (ϕ) U (ψ)

Distributivity of
(ϕ) ∨ (ψ)⇒(ϕ ∨ ψ)

Eventually and Disjunction
Distributivity of

—
Always and Conjunction

Table 3.7: Table of Results for GO Construction

Annotations for Table 3.7
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1 This implication does only hold if ϕ is an U / R - formula.

2 This implication does only hold if ϕ is a literal or ψ is a literal.

3 This implication does only hold if ϕ is a  - formula or ψ is an  - formula.

4 This implication does only hold if ϕ is an U / R - formula and ψ is an U / R - formula.
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4 Conclusions

In this thesis we displayed and analyzed two different constructions from LTL specifications to
their representing Büchi Automata. Using extended representations in the algorithms of our
considered constructions, we found preferable equivalences over LTL that should be applied
to the input formula to possibly reduce the number of states of its resulting automaton.
Moreover, we gave an idea on how to prove the efficiency of the obtained simplifications by
using structural induction.
Primarily, the resulting simplifications of this thesis are highly beneficial for translation tools
that are based on one of our considered constructions. Improving those tools by implementing
our results will provide automata with a minimized state space, as we proved. Also researches
can focus on similar constructions and analyze them in the same manner as presented in this
thesis. As well, inspired by the approach of our analyses, it may be possible to transfer them to
completely other constructions to find preferable equivalences.
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