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We study time-bounded reachability in continuous-time kéardecision processes for time-abstract
scheduler classes. Such reachability problems play a manainndle in dependability analysis and
the modelling of manufacturing and queueing systems. Gpres#ly, their analysis has been studied
intensively, and techniques for the approximation of opticontrol are well understood. From a
mathematical point of view, however, the question of appnation is secondary compared to the
fundamental question whether or not optimal control exists

We demonstrate the existence of optimal schedulers foirtteedbstract scheduler classes for all
CTMDPs. Our proof is constructive: We show how to computémalttime-abstract strategies with
finite memory. It turns out that these optimal schedulerglamvamazingly simple structure—they
converge to an easy-to-compute memoryless schedulingypetftier a finite number of steps.

Finally, we show that our argument can easily be lifted to Rdargames: We show that both
players have a likewise simple optimal strategy in thesesrgeneral structures.

1 Introduction

Markov decision processes (MDPs) are a framework that parates both nondeterministic and proba-
bilistic choices. They are used in a variety of applicatisash as the control of manufacturing processes
[12, (5] or queueing systems [[16]. We study a real time versibMDPs, continuous-time Markov
decision processes (CTMDPs), which are a natural formalsnmodelling in scheduling 4, 12] and
stochastic control theory [[5]. CTMDPs can also be seen adfizdiframework for different stochastic
model types used in dependability analysis [15/12] 9,17, 10]

The analysis of CTMDPs usually concerns the different fg#s to resolve the nondeterminism
by means of a scheduler (also called strategy). Typicaltoumsscover qualitative as well as quantitative
properties, such as: “Can the nondeterminism be resolvedsioheduler such that a predefined property
holds?” or respectively “Which scheduler optimises a gigbjective function?”.

As a slight restriction, nondeterminism is either alwaysthe or always supportive in CTMDPs.
Markov games[[6] provide a generalisation of CTMDPs by degnating the control locations into
locations where the nondeterminism is resolved angefidalipportive nondeterminism) and control
locations where the nondeterminism is resolved demogi¢hadistile nondeterminism).

In this paper, we study theaximal time-bounded reachability problgd®, (2,(18, 10/ 111 3] in
CTMDPs and Markov games. Time-bounded reachability is thedard control problem to construct
a scheduler that controls the Markov decision process swtlthe likelihood of reaching a goal region
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within a given time bound is maximised, and to determine ttobgbility. For games, both the angelic
and the demonic nondeterminism needs to be resolved atrietgae.

The obtainable quality of the resulting scheduling poliatunally depends on the power a sched-
uler has to observe the run of the system and on its abilitydiee sand process this information. The
commonly considered schedulers classes and their basiections have been discussed in the litera-
ture [10, 17]. Thereof, we consider those schedulers thet ha direct access to time, the time-abstract
schedulers. The time-abstract scheduler classes thabsanve the history, its length, or nothing at all,
are marked H (for history-dependent), C (for hop-countiagd P (for positional), respectively.

These classes form a simple inclusion hierarchyXl€ > P) and in general they yield different
maximum reachability probabilities. However, it is knowrat for uniform CTMDPs the maximum
reachability probabilities of classes H and C coincide [2hiform CTMDPs have a uniform transition
rateA for all their actions.

Optimal schedulers. Given its practical importance, the bounded reachabiliybfem for Markov
decision processes (and their deterministic counterpariMiarkov chainy has been intensively stud-
ied [1,/2,10[ 3].

While previous research focused approximatingoptimal scheduling policies [2], the existence of
optimal schedulers for all scheduler classes has been dtratad in Rabe’s master thesis|[13] 14], on
which this paper is partly based. Meanwhile, Brazdil et/3].Have independently provided a similar
result foruniform Markov games, that is, for games that use the same transdierior all actions.

Contribution. We start with a report on our work on counting (C) and histapehdent (H) schedulers
in uniform CTMDPs. Although the case of the counting schedulers cowylashdw be inferred as a
corollary from the existence of optimal counting strategie Markov gamed 3], we decided to present
it for 2.5 reasons: Firstly, it requires only marginal exathort. Secondly, CTMDPs have been an
important object of study for decades whereas Markov games@nparably new, and we think that
our proof can provide insights in particular to readers #iratnot familiar with games. Finally, it was
developed independently and at the same time.

We then show how our result on uniform CTMDPs can be lifted émegal CTMDPs, and that
randomisation cannot improve the quality of optimal scliedu In Sectior 4, we show that our lifting
argument naturally extends to Markov games: We show thas #re optimal time-abstract counting and
history dependent schedulers with finite memory for gendeakov games and that—as for CTMDPs—
randomisation cannot improve optimal scheduling for &iffiayer.

Our solution builds on the observation that, if time has atman out, we can use a greedy strategy
that optimises our chances to reach our goal in fewer stapsrréhan in more steps. We show that a
memoryless greedy scheduler exists, and is indeed optiteslaacertain step bound. The existence of
an optimal scheduler is then implied by the finite number ofaiming candidates—it suffices to search
among those schedulers that deviate from the greedy stratédgin a finite preamble.

The extension to non-uniform CTMDPs (and Markov games)dsuipon a simple uniformisation
technique and draws from a class of schedulers that ardéalphgrblind to the additional information
introduced by the uniformisation. With the help of this sthler class, we successively demonstrate that
it is optimal (in the game case for both players) to turn to adimemoryless greedy strategy after a
finite number of steps that is easy to compute. Hence, we @ars fon scheduling policies that deviate
from this scheduling policy only on a finite preamble. It trerifices to exclude that randomisation can
improve the result (for either player) to reduce the candid#rategies to a finite set, and hence to infer
the existence of simple optimal strategies for the noneunifcase as well.
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2 Continuous-Time Markov Decision Processes

A continuous-time Markov decision process is a tuple(L,Act R,v,B) with a finite set of locations
L, a finite set of action#\ct, a rate matrixR : (L x Actx L) — Qxo, an initial distributionv € Dist(L),
and a goal regiof8 C L. We define the total exit rate for a locatibrand an actiora asR(l,a,L) =
SreL R(I,a1"). For a CTMDP we require that, for all locatiohs L, there must be an acticme Act
such thatR(l,a,L) > 0, and we call such actiorenabled We defineAct(l) to be the set of enabled
actions in location. If there is only one enabled action per location, a CTM®BHs a continuous-time
Markov chain [8]. If multiple actions are available, we ndedesolve the nondeterminism by means
of a scheduler (also called strategy or scheduling poli&g.usual, we assume the goal region to be

absorbing, and we ugg(l,a,l’) = R(21) 1 denote the time-abstract transition probability.
R(l,a,L)

Uniform CTMDPs.  We call a CTMDP uniform with rate if, for every locationl and actiona €
Act(l), the total exit ratdR(l,a,L) isA. In this case the probabilitg, (n) that there are exactlydiscrete
events (transitions) in timeis Poisson distributedp, (n) = e *t. (An#n

We define thauniformisationu of a CTMDP 4 as the uniform CTMDP obtained by the following
transformation steps. We create a copyfor everyl € L and obtairL,, = U, {I,l+ }. We call the new
copies unobservable, and all locatidns L observable. Lek be the maximal total exit rate im . The
new rate matrbR, extendsR by first adding the ratR, (1,a,1,) =A—R(l,a,L) for every location € L
and actiora € Actof ar , and by then copying the outgoing transitions from everyeolzble location
to its unobservable counterpdyt, while the other components remain untouched. The intultiehind
this uniformisation technique is that it enables us to dggtish whether a step would have occurred in

the original automaton or not.

Paths. A timed pathn CTMDP 1 is a finite sequence ifL x Actx R>g)* x L = Pathgas ). We write

ap,to Il gty an-1,th-1 |
n

lo

for a sequencer, and we requird;_1 < t; for all i < n. Thet; denote the system’s time when the events
happen. The corresponditigne-abstract patlis defined a$y S, I LN N Inh. We usePathgps(M )

to denote the set of all such projections andto count the number of actions in a path. Concatenation
of pathsr, ¢ will be written asrto 11 if the last location ofitis the first location oft.

Schedulers. The system’s behaviour is not fully determined by the CTMRE,additionally need a
scheduler that resolves the nondeterminism that occuratibns where multiple actions are enabled.
When analysing properties of a CTMDP, such as the reachapiibbability, we usually quantify over a
class of schedulers. In this paper, we consider the follgwmmmon scheduler classes, which differ in
their power to observe and distinguish events:

o Time-abstract history-dependefti) schedulers Pathgps(¢ ) — D
that map time-abstract paths to decisions.

o Time-abstract hop-countin@C) schedulers LxN—D
that map locations and the length of the path to decisions.

o Positional(P) or memoryless schedulers L—D
that map locations to decisions.
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DecisionsD are either randomised (R), in which cd3e= Dist(Act) is the set of distributions over en-
abled actions, or are restricted to deterministic (D) cb®idhat isD = Act. Where it is necessary to
distinguish randomised and deterministic versions weadt a postfix to the scheduler class, for exam-
ple HD and HR. We restrict all scheduler classes to thosedsides creating a measurable probability
space (cf.[[1i7]).

Induced Probability Space.  We build our probability space in the natural way: we first wefihe
probability measure for cylindric sets of paths that stathw

aofo ap,ty an-1,tn-1
lo l1 In,
with t; € I; for all j < n, and for non-overlapping open intervalg,ls,...,In—1, to be the usual
probability that a path starts with these actions for a givemdomised scheduler, and such that

t TR .
S(lo 22 . 2L 1y is equivalent for allty, ... ti_1) € lo x ... x li_1:

n—1 -
/ [0 25 2L ) @) R(a ) e REALED),
to€lo,t1€ly,....th-1€ln-1 j—

assuming_; = 0.
From this basic building block, we build our probability nseae for measurable sets of paths and
measurable schedulers in the usual way (cf. [17]).

Time-Bounded Reachability Probability.  For a given CTMDPv = (L,ActR,v,B) and a given
measurable schedulgrthat resolves the nondeterminism, we use the followingtiuots for the proba-
bilities:

o Pr?4

M
o Prg

(1,t) is the probability of reaching the goal regiBrin timet when starting in locatioh,

(t) = S v(I)Pri (1,t) denotes the probability of reaching the goal regioin timet,

o Pr?l (t;k) denotes the probability of reaching the goal redim timet andin at mostk discrete
steps, and

o PRY (mt) is the probability to traverse the time-abstract pauthithin timet.

As usual, the supremum of the time-bounded reachabilitypadvidity over a particular scheduler
class is called the time-bounded reachabilitywoffor this scheduler class, and we use ‘max’ instead of
‘sup’ to indicate that this value is taken for somgtimal schedules of this class.

Step Probability Vector.  Given a schedules and a locatiort for a CTMDP 4/ , we define thestep
probability vector ¢ of infinite dimension. An entry ;[i] for i > 0 denotes the probability to reach
goal regionB in up toi steps from locatioh (not considering any time constraints).

3 Optimal Time-Abstract Schedulers

In this section, we show thaiptimalschedulers exist for all natural time-abstract classes,ishfor CD,
CR, HD, and HR. Moreover, we show that there are optimal adeesl that become positional after a
small number of steps, which we compute with a simple algorit We also show that randomisation
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does not yield any advantage: deterministic schedulerasamgood as randomised ones. Our proofs
are constructive, and thus allow for the construction ofroglt schedulers. This also provides the first
procedure to precisely determine the time-bounded reditigivobability, because we can now reduce

this problem to solving the time-bounded reachability peabof continuous-time Markov chains| [1].

Our proof consists of two parts. We first consider the classnifiorm CTMDPs, which are much
simpler to treat in the time-abstract case, because we edRaisson distributions to describe the number
of steps taken within a given time bound. For uniform CTMDiHs already known that the supremum
over the bounded reachability collapses for all time-austscheduler classes from CD to HR [2]. It
therefore suffices to show that there is a CD scheduler whidstthis value.

We then show that a similar claim holds for CD and HD scheduléne general class of not neces-
sarily uniform CTMDPs. In this case, it also holds that theme simple optimal schedulers that converge
against a positional scheduler after a finite number of sem$that randomisation does not improve the
time-bounded reachability probability. However, in thenxamiform case the time-abstract path contains
more information about the remaining time than its lengtly,oand bounded reachability of history-
dependent and counting schedulers usually deviate((séer[@]simple example).

We start this section with the introduction greedy scheduler$iD schedulers that favour reachabil-
ity in a small number of steps over reachability with a lamgember of steps; the positional schedulers
against which the CD and HD schedulers converge are suchygsebedulers.

3.1 Greedy Schedulers

The objective we consider is to maximise time-bounded raaitty Pr?l (1,t) for every locationl with
respect to a particular scheduler class such as HD. Unfateiyn this optimisation problem is rather
difficult to solve. Therefore, we start with analysing theal case of having little time left (that is, the
remaining time is close to 0).

Time-abstract schedulers have no direct access to the mehey can infer the distribution over
the remaining time from the time-abstract history (or itsg#h). When examining the resulting Poisson
distribution one can easily see that for large step humierpitobability to take more than one further
step declines faster than the probability to take exactly further step. Thus, any increase of the
likelihood of reaching the goal region sooner dominatespthiential impact of reaching it in further
steps (after sufficiently many steps).

This motivates the introduction of greedy schedulers. 8alees are called greedy, if they (greedily)
look for short-term gain, and favour it over any long-terrfeef. Greedy schedulers that optimise the
reachability within the firsk steps have been exploited in the efficient analysis of CTM[2PRs To
understand the principles of optimal control, however,napéer form of greediness proves to be more
appropriate: We call an HD schedulgreedyif it maximises the step probability vector of every locatio
| with respect to the lexicographic order (for exam{®€0.2,0.3,...) >ex (0,0.1,0.4,...)). To prove the
existence of greedy schedulers, we draw from the fact tleastipremunt, = sup;p di s obviously
exists, where the supremum is to be read as a supremum wjtbctet® the lexicographic order. An
actiona € Act(l) is calledgreedyfor a locationl ¢ B if it satisfiesshift(d)) = 5. P(l,a,1")d;, where
shift(d,) shifts the vector by one position (that &hift(d,)[i] = d|[i + 1] Vi € N). For locationd in the
goal regionB, all enabled actiona € Act(l) are greedy.

Lemma 3.1 Greedy schedulers exist, and they can be described as tb& adlachedulers that choose a
greedy action upon every reachable time-abstract path.

Proof It is plain that, for every non-goal locatidn¢ B, shift(d;) > 3. P(I,a,1")dy holds for every
actiona, and that equality must hold for some.
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For a schedules that always chooses greedy actions, a simple inductiveragtishows thad, [i] =
di s [i] holds for alli € N, while it is easy to show tha > d, ; holds if s deviates from greedy decisions
upon a path that is possible under its own scheduling policydoes not contain a goal location. [J

This allows in particular to fix a positionatandard greedy scheduléy fixing an arbitrary greedy
action for every location.

To determine the set of greedy actions, let us consider amdigtistic schedules that starts in a
location| with a non-greedy actioa. Thenshift(d ;) < ¥ P(l,a1")d/ holds true, where the sum
SreL P(I,a1")dy corresponds to the scheduler choosing the non-greedynagti locationl and act-
ing greedy in all further steps. Lek, = 5. P(l,a1")d: denote the step probability vector of such
schedulers.

We know that, ; <d, 5 <d,. Hence, there is not only a difference betwegnandd,, this difference
will not occur at a higher index than the first difference betw the newly defined 5 andd,. The
finite number of locations and actions thus implies the eris¢ of a bound on the occurrence of this
first difference between, 5 andd, as well asd, ; andd,. While the existence of suchlasuffices to
demonstrate the existence of optimal schedulers, we sh@ulsectiofn 314 that this constdnk [L| is
smaller than the CTMDP itself.

Having established such a boukydt suffices to compare schedulers up to this bound. Thisigesv
us with the greedy actions, and also with the initial seqaehg[0],d a[1],...,d a[K] for all locations
| and actionsa. Consequently, we can determine a positive lower baundO for the first non-zero
entry of the vectorsl — d, ; (considering all non-greedy schedulers We call this lower bounglt the
discriminator of the CTMDP. Intuitively, the discriminatou represents the minimal advantage of the
greedy strategy over non-greedy strategies.

3.2 Uniform CTMDPs

In this subsection, we show that every CD or HD scheduler fanitorm CTMDP can be transformed
into a scheduler that converges to this standard greedysligre

In the quest for an optimal scheduler, it is useful to constte fact that the maximal reachability
probability can be computed using the step probability mediecause the likelihood that a particular
number of steps happen in timés independent of the scheduler:

P =3 v<l>_id.,5 i i) ®

Moreover, the Poisson distributign,; has the useful property that the probability of takingteps is
falling very fast. We define thgreed bound ) to be a natural number, for which

Hpy(n) > _im(nm vn>n, @)

holds true. It suffices to choosg, > 2 since it impliesupy (n) > 2py¢(n+1), Vn> n,, (which yields
(2) by simple induction). Such a greed bound implies thatlnerease in likelihood of reaching the goal
region in few steps caused by making a non-greedy decistenthe greed bound dwarfs any potential
later gain. We use this observation to improve any given CBDischedules that makes a non-greedy
decision aftee>n,, steps by replacing the behaviour after this history by adyeseheduler. Finally, we
use the interchangeability of greedy schedulers to intreduschedules that makes the same decisions
ass on short histories and follows the standard greedy schaglplolicy once the length of the history
reaches the greed bound. For this scheduler, we showptifatt) >Pry (t) holds true.
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Theorem 3.2 For uniform CTMDPs, there is an optimal scheduler for thesskes CD and HD that
converges to the standard greedy scheduler afjersteps.

Proof Let us consider any HD schedulgrthat makes a non-greedy decision after a time-abstract path
mtof length |1 > n,, with last locationl. If the path ends in, or has previously passed, the goalmegio
if the probability of the historytis 0, that is, if it cannot occur with the scheduling policysfthen we
can change the decision gfon every path starting witit arbitrarily—and in particular to the standard
greedy scheduler—without altering the reachability plolits.

If PRY (T,t) > 0, then we change the decisions of the schedulfar paths with prefixtsuch that
they comply with the standard greedy scheduler. We callé¢balting HD schedules’ and analyse the
change in reachability probability using Equatidh (1):

00

Priy (t) — Prif (t) = PRY (e t) '_%(dl [i] = di s, [1]) - Pac (70 +1),
1=
wheresy: W — s (Tto 1) is the HD scheduler which prefixes its input with the patand then calls the
schedulers. The greedy criterion implied| > d ;, with respect to the lexicographic order, and after
rewriting the upper equation:

Prg7 (t) — Prg’ (t) = PRY (0t) (upm(!ﬂHJ')Jr (ch[i] —dh s, [i]) - pm(\TIHi)) (for somej > 0)

IM:s

we can apply Equatidd 2 to deduce that the differdﬁc”jé (t)— Pr?l (t) is non-negative.

Likewise, we can concurrently change the scheduling patidhe standard greedy scheduler for all
paths of length> n,, for which the schedules makes non-greedy decisions. In this way, we obtain a
schedulers” that makes non-greedy decisions only in the first steps, and yields a (not necessarily
strictly) better time-bounded reachability probabilihan.s.

Since all greedy schedulers are interchangeable withcangihg the time-bounded reachability
probability (and even without altering the step probapiliector), we can modifys” such that it fol-
lows the standard greedy scheduling policy aftem,, steps, resulting in a schedulerthat comes with
the same time-bounded reachability probabilitys4sNote thats is counting ifs is counting.

Hence, the supremum over the time-bounded reachabilityf &fHD schedulers is equivalent to
the supremum over the bounded reachability of CD/HD scleedihat deviate from the standard greedy
scheduler only in the first,, steps. This class is finite, and the supremum over the bowedetability
is therefore the maximal bounded reachability obtainedr®yaf its representatives. d

Hence, we have shown the existence of a—simple—optimattioumded CD scheduler. Using the
fact that the suprema over the time-bounded reachabildbpatility coincide for CD, CR, HD, and HR
schedulers [2], we can infer that such a scheduler is opfionalll of these classes.

Corollary 3.3 maxPr} (t) = maxPr? (t) holds for all uniform CTMDPs/ . O
s€CD SeHR

3.3 Non-uniform CTMDPs

Reasoning over non-uniform CTMDPs is harder than reasamieguniform CTMDPs, because the like-
lihood of seeing exactlk steps does not adhere to the simple Poisson distributidrgdpends on the
precise history. Even if two paths have the same length,ritiayimply different probability distributions
over the time passed so far. Knowing the time-abstract tyisheerefore provides a scheduler with more
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information about the system’s state than merely its lengtha result, it is simple to construct exam-
ple CTMDPs, for which history-dependent and counting salted can obtain different time-bounded
reachability probabilities [2].

In this subsection, we extend the results from the previabsexction to general CTMDPs. We show

that simple optimal CD/HD scheduler exist, and that randaion does not yield an advantage:
Srrg%Pr?l (t)= Sn;géPrff (t) and SrenHaD>d3r§” (t) = SrrggéPrg‘l (t).

To obtain this result, we work on the uniformisatien of 4 instead of working o/ itself. We
argue that the behaviour of a general CTMBP can be viewed as the observable behaviour of its
uniformisationu, using a scheduler that does setethe new transitions and locations. Schedulers from
this class can then be replaced by (or viewed as) schedtlrsld notusethe additional information.
And finally, we can approximate schedulers that do not usaddéional information by schedulers that
do not use it initially, where initially means until the nuertof visible steps—and hence in particular
the number of steps—exceeds the greed baypaf the uniformisationu of # . Comparable to the
argument from the proof of Theorelm B.2, we show that we catmicesur attention to the standard
greedy scheduler after this initial phase, which leadsraigaa situation where considering a finite class
of schedulers suffices to obtain the optimum.

Lemma 3.4 The greedy decisions and the step probability vector cda@ir the observable and unob-
servable copy of each location in the uniformisatimrof any CTMDPa/ .

Proof The observable and unobservable copy of each location tkadame successors under the same
actions with the same transition rate. d

We can therefore choose a positional standard greedy dehedinose decisions coincide for the
observable and unobservable copy of each location.

For theuniformisationu of a CTMDPa/ , we define the functiowis: Pathsps( 1) — Pathgps(a )
that maps a patit of ¢ to the corresponding path iwr , thevisible path by deleting all unobservable
locations and their directly preceding transitions frarm(Note that all paths im: start in an observable
location.) We call a schedulervisibleif its decisions only depend on the visible path and coinémte
the observable and unobservable copy of every locationlfpaths containing up ta visible steps. We
call a schedulevisibleif it is n-visible for alln € N.

We call a HD/HR scheduler am+{)visible HD/HR scheduler if it is rf-)visible, and we call an
(n-)visible HD/HR scheduler a visible CD/CR scheduler if iescisions depend only on the length of
the visible path, and amvisible CD/CR scheduler if its decisions depend only onlémgth of the visi-
ble path for all paths containing up tovisible steps. The respective classes are denoted withidingo
prefixes, for exampley-vCD. Note that §-)visible counting schedulers are not counting.

It is a simple observation that we can study visible CD, CR, Hild HR schedulers on the uniformi-
sationu of a CTMDP#/ instead of studying CD, CR, HD, and HR schedulersion

Lemma 3.5 s — s ovis is a bijection from visible CD, CR, HD, or HR schedulenstfe uniformisation
u of a CTMDPar onto CD, CR, HD, or HR schedulers, respectivelyaofthat preserves the time-
bounded reachability probability: P¥(t) = Pri% . (t). O

SoVIS
At the same time, copying the argument from the proof of TeedB.2, am,-visible CD or HD
schedulets can be adjusted to the, -visible CD or HD schedules that deviates frors only in that it
complies with the standard greedy schedulerdoaftern,, visible steps, without decreasing the time-
bounded reachability probability. These schedulers asible schedulers from a finite sub-class, and
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hence some representative of this class takes the optit@. WAle can, therefore, construct optimal CD
and HD schedulers for every CTMD#? .

Lemma 3.6 The following equations hold for the uniformisatienof a CTMDP/ :

seMBCoPTs () = MaxPrs(t) and max Pre) = maxPrs ©:
Proof We have shown in Theorelm 8.2 that turning to the standardigreeheduling policy aftem,, or
more steps can only increase the time-bounded reachgtibtyability. This implies that we can turn to
the standard greedy scheduler afigrvisible steps.

The scheduler resulting from this adjustment does not ayainn,, -visible, it becomes a visible
CD and HD scheduler, respectively. Moreover, it is a schexdfitbm the finite subset of CD or HD
schedulers, respectively, whose behaviour may only dewiam the standard scheduler within the first
ng visible steps. d

To prove that optimal CD and HD schedulers are also optimab@RHR schedulers, respectively,
we first prove the simpler lemma that this holds kebounded reachability.

Lemma 3.7 k-optimal CD or HD schedulers are also k-optimal CR or HR sttlers, respectively.

Proof For a CTMDP# we can turn an arbitrary CR or HR schedukeinto a CD or HD scheduler
s’ with a time andk-bounded reachability probability that is at least as goedha one ofs by first
determinising the scheduler decisions from tke- 1)st step onwards—this has obviously no impact on
k-bounded reachability—and then determinising the remgirandomised choices.

Replacing a single randomised decision on a paffor history-dependent schedulers) or on a set
of pathsI (for counting schedulers) that end(s) in a locatida safe, because the time akdbounded
reachability probability of a scheduler is an affine combora—the affine combination defined By)
ands (|m, 1), respectively—of theAct(l)| schedulers resulting from determinising this single denis
Hence, we can pick one of them whose time &rimbunded reachability probability is at least as high as
the one ofs.

As the number of these randomised decisions is firit&|(| for CR, and< KL for HR schedulers),
this results in a deterministic scheduler after a finite nends improvement steps. O

Theorem 3.8 Optimal CD schedulers are also optimal CR schedulers.

Proof First, forn — o the probability to reach the goal regidin exactly n or more thann steps
converges to 0, independent of the scheduler. Togetherhweitma 3.7, this implies

supPr? (t) = lim supPr? (t;n) = lim sup Pr¥ (t;n) < maxPr (t),
SEC% g ® n*msecg g tm ”_*°°56ch g ( )_SeCD s ®

where equality is implied bgD C CR O
Analogously, we can prove the similar theorem for histogpehdent schedulers:
Theorem 3.9 Optimal HD schedulers are also optimal HR schedulers. O

3.4 Constructing Optimal Schedulers

The proof of the existence of an optimal scheduler is not ttootve in two aspects. First, the compu-
tation of a positional greedy scheduler requires a bound,famich indicated the maximal depth until
which we have to compare the step probability vectors befarean ascertain equality. Second, we
need an exact method to compare the quality of two (arbitssigedulers.
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A bound for k The first property is captured in the following lemma. Withthis lemma, we could
only provide an algorithm that is guaranteed to convergentogimal scheduler, but would be unable
to determine whether an optimal solution has already beachesl, as we never know when to stop
when comparing step probability vectors. In this lemma, énmv, we show that it suffices to check for
equivalence of two step probability vectors only up to positL| — 2. As discussed in Subsectibn3.1,
this enables us to identify greedy actions and thusolmputethe discriminaton and consequently the
greed bounah,,

Lemma 3.10 Given a uniform CTMDBv , the smallest k that satisfie$ € L, ac Act(l). d) # dj 4 =
3K < k. di[K] > d 4[K] is bounded byL| —

Proof The techniques we exploit in this proof draw from linear &ige and are, while simple, a bit
unusual in this context. We first turn to the simpler notionvidrkov chains by resolving the nonde-
terminism in accordance with the positional standard greetiedulers whose existence was shown in
Subsection 3]1.

We first lift the step probability vector from locations tosttibutions, whered, = 3. v(l)d; is,
for a distributionv : L — [0,1], the affine combination of the step probability vectors & ihdividual
locations. In this proof, we define two distributions)’ : L — [0, 1] to be equivalent, if their step proba-
bility vectorsd, = d, are equal. Further, we call theirstep equivalent if they are equal up to position
(Vj <i. dy[j] = dy[j])-

In order to argue with vector spaces, we extend these defimitio arbitrary vectors : L — R
(instead ofv : L — [0, 1]).

LetD; be the vector space spannedisgep equivalent distributions v’ overL. Naturally,D; D Dj. 1
always holds, as+ 1 step equivalence impligsstep equivalence. In addition we show tiia has
IL| — 2 dimensions, and th&; = D;.; implies that a fixed point is reached, which together impties
D2 =Djforall j > |L|-2.

e Do has|L| — 2 dimensions:Dy is the vector space that contains the multitudes of diffegen

0 = A(v—V') of distributionsv,v’' : L — [0,1] that are equally likely in the goal region (due to
0-step equivalencyd, [0] = dy/[0]).
The fact thatv and V' are distributions impliesy . v(I) =1 and ¥, V(1) = 1, and hence
YL O() = 0. Further, the fact that and V' are equally likely in the goal region implies
S1eeV(l) = 31egV/(l), and hences g d(l) = 0. Thus,Dg has|L| — 2 dimensions. (Assuming
B # L,B # 0, but otherwise every scheduler has equal quality.)

e Once we have construct&, we can construct the vector spa@gthat contains a vecta@rif it is
a multituded = A(v — V') of differencesv — V' of distributions, such thathift(d,) and shift(d,)
arei-step equivalent, that ishift(d, ) — shift(d,/) € D;.
The transition from step probability vectors to staft of them is a simple linear operation, which
transforms the distributions according to the transitiatnr of the embedded DTMC. Hence, we
can obtainO; from D; by a simple linear transformation of the vector space.

e Two step probability vectors are- 1-step equivalent if (1) they arestep equivalent, and (2) their
shift arei-step equivalent. Therefoi®, ;1 = D; N O; can be obtained by an intersection of the two
vector spaceB; andO;.

Naturally, this implies that the vector spaces are shropkihat is,Dg > D12 ... D D|L‘ »2D...,and
thatD; = D;1 implies that a fixed point is reached. (It impli€= O;1 and henc®; = Dj (Vj > i) by
a simple inductive argument.)
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As Dg is an|L| — 2 dimensional vector space, and inequali®y ¢ D;,1) implies the loss of at
least one dimension, a fixed point is reached after at mgst 2 steps. That is, two distributions are
equivalent, if, and only if, they ar@L| — 2)-step equivalent.

Having established this, we apply it on the distributigry, obtained in one step from a position
| ¢ Bwhen choosing the actiom as compared to the distributian obtained when choosing the action
according to the positional greedy scheduler.

Now, d > d| 5 holds if, and only ifshift(d, ) = d, > dy, , = shift(d| 5), which impliesd,, [k'] > dy, ,[K]
for somek’ < |L| — 2, and hencel [k] > d; a[K| for somek < |L|. O

Comparing schedulers  So far, we have narrowed down the set of candidates for thealpscheduler
to a finite number of schedulers. To determine the optimatdaler, it now suffices to have a comparison
method for their reachability probabilities.

The combination of each of these schedulers with the reispeCTMDP can be viewed asfaite
continuous-time Markoxhain (CTMC) since they behave like a positional scheduler aftgrsteps.
Aziz et al. [1] have shown that the time-bounded reachgbjiobability of CTMCs are computable
(and comparable) finite sumg nie¥, where the individual); andd; are algebraic numbers.

We conclude with a constructive extension of our results:

Corollary 3.11 We can effectively construct optimal CD, CR, HD, and HR sclegsl O
Corollary 3.12 We can compute the time-bounded reachability probabilitgptimal schedulers as fi-
nite sumsy i, nie®, where thea); andd; are algebraic numbers. d
Complexity

These corollaries rely on the precise CTMC model checking@ach of Aziz et al.[[1], which only
demonstrates the effective decidability of this problene d#em it unlikely that a complexity for finding
optimal strategies can be provided prior to determiningéispective CTMC model checking complexity.

3.5 Example

To exemplify our proposed construction, let us consideretkeenple CTMDPM depicted in Figuré]l.
As a is not uniform, we start with constructing the uniformisatiz of ar (cf. Figure[1).

u has the uniform transition rale= 6. Independent of the initial distribution ef , the unobservable
copies ofl; andl, are not reachable it , because the initial distribution of a uniformisation gssi all
probability weight to observable locations, and the triamsirate of all enabled actions iR andl,
in o/ is alreadyA. (Unobservable copies of a locatidrare only reachable from the observable and
unobservable copy dfupon enabled actiorswith non-maximal exit rat&(l,a,L) # A.)

Disregarding the unreachable partwf there are only 8 positional schedulers for and only 4 of
them are visible (that is, coincide dmand!; o). They can be characterised by= {lo — a, 11 — a},
S2={lp—a l1—b}, s3={lop—b, I1—a}, andss = {lo— b, |1 — b}. In order to determine a
greedy scheduler, we first determine step probability vecto

. _ _ (15 19 _ (1 7 43 _ (113
FOI'IQ. dlo.Sl_d|o.52_(§7§72_77'-')1d|o.53_(271_277_27'-');d|o.54_(272727"')'
11

FOI’|1 d|1751 - d|1”53 - (%7 3167 27_]?.6" ..), d|1752 - (O, %7 87" .), d|1754 - (07 AR )
Note that, in the given example, it suffices to compute the gtebability vector for a single step to
determine thass is optimal (w.r.t. the greedy optimality criterion); in geal, it suffices to consider as
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Figure 1: The example CTMD#®r (left) and the reachable part of its uniformisatian(right).

many steps as the CTMDP has locations. Since deviating &odecreases the chance to reach the goal
locationl, in a single step b% both fromlg andl4, the discriminatog = % is easy to compute.

Our coarse estimation provides a greed bound,of= [72-t], wheret is the time bound, but,, =
[42-1] suffices to satisfy Equatiofil(2).

When seeking optimal schedulers from any of the discussestes, we can focus on the finite set
of those schedulers that comply with aftern,, (visible) steps. In the previous subsection, we describe
how the precise model checking technique of Aziz et al. [T lsa exploited to turn the existence proof
into an effective technique for the construction of optirsethedulers.

4 Extension to Continuous-Time M arkov Games

Markov decision processes can easily be extended to consaiime Markov games (CTGs) =
(La,Lp,Act R, v, B) by disintegrating the set of locations into game positidresraaximiser [, angelic
game positions) and a minimisery, demonic game positions). These two players have antdgools
jectives to maximise and minimise the time-bounded reatityaprobability. These games are closely
related to the CTMDP framework, and we define, for a given Mariameg , theunderlyingCTMDP
M = (LaULp,Act,R,v,B). CTGs are callediniformif their underlying CTMDP is uniform.

The players can choose an action upon the entrance to oneiofdbations, and, as with sched-
ulers for CTMDPs, they may have limited access to the timstbhy of the system. We only consider
time-abstract strategieS : Paths\,((g ) — Dist(Act) for both players, where paths are defined over the
underlying CTMDP, andPaths\,((G ) (for X € {A D}) is the set of paths that end with a locatiorLin

Obviously, there is a one-to-one mapping betweembined strategies

[ sa(m  if me Pathdyy(g)
Sa+n(T) = { 52(“) if Te Pathﬁzs(G)

of a CTG and schedulers of the underlying CTMDP.

For a given CTG and a pair of strategies sp we define the according probability space equivalent
to the probability space of the underlying CTMDP with the ¢toned strategysa.p. Then, the time-
bounded reachability probability can be formulated for GTdS follows:

supinfPré (t) =infsupPr? (t) (3)

SA+D SA+D
SA 5D SD SA

where equality is guaranteed by [3, Theorem 3.1].
For uniform CTGs, a theorem similar to Theoreml| 3.2 has récéeen shown:
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Theorem 4.1 [3] For uniform CTGsg with counting strategies, we can compute a boupdeompara-
ble to our greed bound) and a memoryless deterministic gregdtegys : L — Act, such that following
S is optimal for both players after nsteps.

That is, optimal (counting) strategies for uniform Markanges have a similarly simple structure as
those for CTMDPs. Now, we extend these results to histopeddent (HD and HR) schedulers:

Theorem 4.2 The optimal CD strategies from Theorem]4.1 (that is, foramif CTGs) are also optimal
HR strategies.

Proof Let us assume the minimiser plays in accordance with hemaptCD strategy. Let us further
assume that the maximiser has an HR strategy that yieldgexr besult than his CD strategy. Then it
must improve over his optimal CD strategy by a margin of seme

Let us definep(k,l) as the maximum of the probabilities to still reach the goglae in the future
that the maximiser can reach under the paths of lekgthich end in locatiorl with the betterhistory
dependent strategy. Further, lgtk) be a path where this optimal value is taken. (Note that oul goa
region is absorbing.) The decision this HR scheduler takemniaffine combination of deterministic
decisions, and the quality (the probability of reaching goal region in the future) is the respective
affine combination of the outcome of these pure decisionsicklghere is at least one pure decision that
(not necessarily strictly) improves over the randomisecisien.

As our CTG is uniform, we can improve this history dependehesduler by changing all decisions
it makes on a patht= 1q o 7 that start with a patim of length 2 ending in a locatioh to the decisions
it made upon the path (2) o 7. (The improvement is not necessarily strict.) We then inagrio further
(again not necessarily strictly) by turning to the improypele decision. The resulting strategy is initially
counting—it depends only on the length of the history anddimeent location—and deterministic for
paths up to length 2.

Having constructed a history dependent scheduler thatisliyncounting and deterministic for paths
up to lengthk, we repeat this step for patims= 17 o 7 that start with a historyy of lengthk+ 1, where
we replace the decision made by our initiakycounting and deterministic scheduler by the decision
made onh(k+ 1) o 77, and then further to its deterministic improvement. Thisiadeads to a—not
necessarily strict—improvement.

Once the probability of making at leaststeps falls belove, any deterministic counting scheduler
that agrees on the firktsteps with a history dependent scheduler from this sequ@viteh is initially
counting and deterministic for at ledssteps) improves over the counting scheduler we startedfaiith
the maximiser, which contradicts its optimality.

A similar argument can be made for the minimiser. O

Our argument that infers the existence of optimal strageffiegeneral CTMDPs from the existence
of optimal strategies for uniform CTMDPs does not depencherfact that we have only one player with
a particular objective. In fact, it can be lifted easily to fidav games.

Theorem 4.3 For a Markov game; , we can effectively construct optimal CD and HD schedulgtsch
are also optimal CR and HR schedulers, respectively, andaneompute the time-bounded reachability
probability of optimal schedulers as finite sufg, nie¥, where the; andd; are algebraic numbers.

Proof sketch We start again with the uniformisation of the Markov game; . By Theoreni 4.1, there
is a deterministic memoryless greedy strategy for bothgskain« that is optimal aften,, steps. Hence,
we can argue along the same lines as for CTMDPs:
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e We study thevisible strategies on the uniformisation of ¢. Like in the constructions from
Sectior 3.8, we use a bijectiais from the visible strategies oa onto the strategies af, which
preserves the time-bounded reachability.

e We defineny -visible strategies analogously to theg-visible schedulers to be those strategies,
which can use the additional information provideddaftern,, visible steps have passed.

After ny visible steps, the class afy -visible strategies clearly contains the deterministic
greedy strategies described in the previous theorems ®fstigtion, as they can use all infor-
mation after stem,,. Using Theoreri 4]1 we can deduce that, for both playersffites to seek
an optimaln,, -visible strategy in the subset of those strategies that tmrthe standard greedy
strategyaftern,, visible steps.

e Locationsl and their counterparis, have exactly the same exit rates for all actions, and thexefo
a greedy-optimal memoryless strategy will pick the sameador both locations (up to equal
guality of actions). This directly implies that the stardigreedy scheduler is a visible strategy,
and with it allng, -visible strategies that turn to the standard greedy sfyaatern,, visible steps
are visible strategies. Hence, an optimal strategy for h&safn,, -visible strategies that turn to
the standard greedy strategy after visible steps is also optimal for the class of visible sgis
(time-abstract strategies ip, respectively).

e For deterministic strategies, this class is finite, whichmiediately implies the existence of an
optimum in this class (using Equatibh 3).

Randomised strategies again cannot provide an advantagedeterministic ones, because their
outcome is just an affine combination of the outcome of thpaetive pure strategies, and the extreme
points are taken at the fringe. (Technically, we can statth &ny randomised strategy and replace one
randomised decision after another by a pure counterpapgrovming the quality of the outcome—not
necessarily strictly—for the respective player.)

Consequently, we are left with a finite set of history depehde counting candidate strategies,
respectively, and the result can—at least in principle—eas#l by applying a brute force approach: For
each of these deterministic strategies, we can computestahability probability using the algorithm
of Aziz et al. [1], which allows for identifying the deternigtic strategies that mark an optimal Nash
equilibrium. O
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