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We study time-bounded reachability in continuous-time Markov decision processes for time-abstract
scheduler classes. Such reachability problems play a paramount rôle in dependability analysis and
the modelling of manufacturing and queueing systems. Consequently, their analysis has been studied
intensively, and techniques for the approximation of optimal control are well understood. From a
mathematical point of view, however, the question of approximation is secondary compared to the
fundamental question whether or not optimal control exists.

We demonstrate the existence of optimal schedulers for the time-abstract scheduler classes for all
CTMDPs. Our proof is constructive: We show how to compute optimal time-abstract strategies with
finite memory. It turns out that these optimal schedulers have an amazingly simple structure—they
converge to an easy-to-compute memoryless scheduling policy after a finite number of steps.

Finally, we show that our argument can easily be lifted to Markov games: We show that both
players have a likewise simple optimal strategy in these more general structures.

1 Introduction

Markov decision processes (MDPs) are a framework that incorporates both nondeterministic and proba-
bilistic choices. They are used in a variety of applicationssuch as the control of manufacturing processes
[12, 5] or queueing systems [16]. We study a real time versionof MDPs, continuous-time Markov
decision processes (CTMDPs), which are a natural formalismfor modelling in scheduling [4, 12] and
stochastic control theory [5]. CTMDPs can also be seen as a unified framework for different stochastic
model types used in dependability analysis [15, 12, 9, 7, 10].

The analysis of CTMDPs usually concerns the different possibilities to resolve the nondeterminism
by means of a scheduler (also called strategy). Typical questions cover qualitative as well as quantitative
properties, such as: “Can the nondeterminism be resolved bya scheduler such that a predefined property
holds?” or respectively “Which scheduler optimises a givenobjective function?”.

As a slight restriction, nondeterminism is either always hostile or always supportive in CTMDPs.
Markov games [6] provide a generalisation of CTMDPs by disintegrating the control locations into
locations where the nondeterminism is resolved angelically (supportive nondeterminism) and control
locations where the nondeterminism is resolved demonically (hostile nondeterminism).

In this paper, we study themaximal time-bounded reachability problem[12, 2, 18, 10, 11, 3] in
CTMDPs and Markov games. Time-bounded reachability is the standard control problem to construct
a scheduler that controls the Markov decision process such that the likelihood of reaching a goal region
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within a given time bound is maximised, and to determine the probability. For games, both the angelic
and the demonic nondeterminism needs to be resolved at the same time.

The obtainable quality of the resulting scheduling policy naturally depends on the power a sched-
uler has to observe the run of the system and on its ability to store and process this information. The
commonly considered schedulers classes and their basic connections have been discussed in the litera-
ture [10, 17]. Thereof, we consider those schedulers that have no direct access to time, the time-abstract
schedulers. The time-abstract scheduler classes that can observe the history, its length, or nothing at all,
are marked H (for history-dependent), C (for hop-counting), and P (for positional), respectively.

These classes form a simple inclusion hierarchy (H⊃ C ⊃ P) and in general they yield different
maximum reachability probabilities. However, it is known that for uniform CTMDPs the maximum
reachability probabilities of classes H and C coincide [2].Uniform CTMDPs have a uniform transition
rateλ for all their actions.

Optimal schedulers. Given its practical importance, the bounded reachability problem for Markov
decision processes (and their deterministic counterpart the Markov chains) has been intensively stud-
ied [1, 2, 10, 3].

While previous research focused onapproximatingoptimal scheduling policies [2], the existence of
optimal schedulers for all scheduler classes has been demonstrated in Rabe’s master thesis [13, 14], on
which this paper is partly based. Meanwhile, Brazdil et al. [3] have independently provided a similar
result foruniformMarkov games, that is, for games that use the same transitionrate for all actions.

Contribution. We start with a report on our work on counting (C) and history dependent (H) schedulers
in uniform CTMDPs. Although the case of the counting schedulers could by now be inferred as a
corollary from the existence of optimal counting strategies in Markov games [3], we decided to present
it for 2.5 reasons: Firstly, it requires only marginal extraeffort. Secondly, CTMDPs have been an
important object of study for decades whereas Markov games are comparably new, and we think that
our proof can provide insights in particular to readers thatare not familiar with games. Finally, it was
developed independently and at the same time.

We then show how our result on uniform CTMDPs can be lifted to general CTMDPs, and that
randomisation cannot improve the quality of optimal scheduling. In Section 4, we show that our lifting
argument naturally extends to Markov games: We show that there are optimal time-abstract counting and
history dependent schedulers with finite memory for generalMarkov games and that—as for CTMDPs—
randomisation cannot improve optimal scheduling for either player.

Our solution builds on the observation that, if time has almost run out, we can use a greedy strategy
that optimises our chances to reach our goal in fewer steps rather than in more steps. We show that a
memoryless greedy scheduler exists, and is indeed optimal after a certain step bound. The existence of
an optimal scheduler is then implied by the finite number of remaining candidates—it suffices to search
among those schedulers that deviate from the greedy strategy only in a finite preamble.

The extension to non-uniform CTMDPs (and Markov games) builds upon a simple uniformisation
technique and draws from a class of schedulers that are (partially) blind to the additional information
introduced by the uniformisation. With the help of this scheduler class, we successively demonstrate that
it is optimal (in the game case for both players) to turn to a fixed memoryless greedy strategy after a
finite number of steps that is easy to compute. Hence, we can focus on scheduling policies that deviate
from this scheduling policy only on a finite preamble. It thensuffices to exclude that randomisation can
improve the result (for either player) to reduce the candidate strategies to a finite set, and hence to infer
the existence of simple optimal strategies for the non-uniform case as well.
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2 Continuous-Time Markov Decision Processes

A continuous-time Markov decision processM is a tuple(L,Act,R,ν,B) with a finite set of locations
L, a finite set of actionsAct, a rate matrixR : (L×Act×L)→ Q>0, an initial distributionν ∈ Dist(L),
and a goal regionB ⊆ L. We define the total exit rate for a locationl and an actiona asR(l ,a,L) =
∑l ′∈L R(l ,a, l ′). For a CTMDP we require that, for all locationsl ∈ L, there must be an actiona∈ Act
such thatR(l ,a,L) > 0, and we call such actionsenabled. We defineAct(l) to be the set of enabled
actions in locationl . If there is only one enabled action per location, a CTMDPM is a continuous-time
Markov chain [8]. If multiple actions are available, we needto resolve the nondeterminism by means
of a scheduler (also called strategy or scheduling policy).As usual, we assume the goal region to be
absorbing, and we useP(l ,a, l ′) = R(l ,a,l ′)

R(l ,a,L) to denote the time-abstract transition probability.

Uniform CTMDPs. We call a CTMDP uniform with rateλ if, for every locationl and actiona ∈
Act(l), the total exit rateR(l ,a,L) is λ. In this case the probabilitypλt(n) that there are exactlyn discrete
events (transitions) in timet is Poisson distributed:pλt(n) = e−λt · (λt)n

n! .
We define theuniformisationU of a CTMDPM as the uniform CTMDP obtained by the following

transformation steps. We create a copylU for everyl ∈ L and obtainLU =
⋃

l∈L {l , lU }. We call the new
copies unobservable, and all locationsl ∈ L observable. Letλ be the maximal total exit rate inM . The
new rate matrixRU extendsR by first adding the rateRU (l ,a, lU ) = λ−R(l ,a,L) for every locationl ∈ L
and actiona∈ Act of M , and by then copying the outgoing transitions from every observable locationl
to its unobservable counterpartlU , while the other components remain untouched. The intuition behind
this uniformisation technique is that it enables us to distinguish whether a step would have occurred in
the original automaton or not.

Paths. A timed pathin CTMDPM is a finite sequence in(L×Act×R>0)
∗×L =Paths(M ). We write

l0
a0,t0
−−→ l1

a1,t1
−−→ ·· ·

an−1,tn−1
−−−−−→ ln

for a sequenceπ, and we requireti−1 < ti for all i < n. Theti denote the system’s time when the events
happen. The correspondingtime-abstract pathis defined asl0

a0−→ l1
a1−→ ·· ·

an−1
−−→ ln. We usePathsabs(M )

to denote the set of all such projections and| · | to count the number of actions in a path. Concatenation
of pathsπ,π′ will be written asπ◦π′ if the last location ofπ is the first location ofπ′.

Schedulers. The system’s behaviour is not fully determined by the CTMDP,we additionally need a
scheduler that resolves the nondeterminism that occurs in locations where multiple actions are enabled.
When analysing properties of a CTMDP, such as the reachability probability, we usually quantify over a
class of schedulers. In this paper, we consider the following common scheduler classes, which differ in
their power to observe and distinguish events:

◦ Time-abstract history-dependent(H) schedulers Pathsabs(M )→ D
that map time-abstract paths to decisions.

◦ Time-abstract hop-counting(C) schedulers L×N→ D
that map locations and the length of the path to decisions.

◦ Positional(P) or memoryless schedulers L → D
that map locations to decisions.
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DecisionsD are either randomised (R), in which caseD = Dist(Act) is the set of distributions over en-
abled actions, or are restricted to deterministic (D) choices, that isD = Act. Where it is necessary to
distinguish randomised and deterministic versions we willadd a postfix to the scheduler class, for exam-
ple HD and HR. We restrict all scheduler classes to those schedulers creating a measurable probability
space (cf. [17]).

Induced Probability Space. We build our probability space in the natural way: we first define the
probability measure for cylindric sets of paths that start with

l0
a0,t0
−−→ l1

a1,t1
−−→ ·· ·

an−1,tn−1
−−−−−→ ln,

with t j ∈ I j for all j < n, and for non-overlapping open intervalsI0, I1, . . . , In−1, to be the usual
probability that a path starts with these actions for a givenrandomised schedulerS , and such that

S (l0
a0,t0
−−→ . . .

ai−1,ti−1
−−−−→ l i) is equivalent for all(t0, . . . , ti−1) ∈ I0× . . .× Ii−1:

∫
t0∈I0,t1∈I1,...,tn−1∈In−1

n−1

∏
i=0
S (l0

a0,t0
−−→ . . .

ai−1,ti−1
−−−−→ l i)(ai) ·R(l i ,ai , l i+1) ·e

−R(li ,ai ,L)(ti−ti−1),

assumingt−1 = 0.
From this basic building block, we build our probability measure for measurable sets of paths and

measurable schedulers in the usual way (cf. [17]).

Time-Bounded Reachability Probability. For a given CTMDPM = (L,Act,R,ν,B) and a given
measurable schedulerS that resolves the nondeterminism, we use the following notations for the proba-
bilities:

◦ PrMS (l , t) is the probability of reaching the goal regionB in time t when starting in locationl ,

◦ PrMS (t) = ∑l∈L ν(l)PrMS (l , t) denotes the probability of reaching the goal regionB in time t,

◦ PrMS (t;k) denotes the probability of reaching the goal regionB in time t and in at mostk discrete
steps, and

◦ PRMS (π, t) is the probability to traverse the time-abstract pathπ within time t.

As usual, the supremum of the time-bounded reachability probability over a particular scheduler
class is called the time-bounded reachability ofM for this scheduler class, and we use ‘max’ instead of
‘sup’ to indicate that this value is taken for someoptimal schedulerS of this class.

Step Probability Vector. Given a schedulerS and a locationl for a CTMDPM , we define thestep
probability vector dl ,S of infinite dimension. An entrydl ,S [i] for i ≥ 0 denotes the probability to reach
goal regionB in up to i steps from locationl (not considering any time constraints).

3 Optimal Time-Abstract Schedulers

In this section, we show thatoptimalschedulers exist for all natural time-abstract classes, that is, for CD,
CR, HD, and HR. Moreover, we show that there are optimal schedulers that become positional after a
small number of steps, which we compute with a simple algorithm. We also show that randomisation
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does not yield any advantage: deterministic schedulers areas good as randomised ones. Our proofs
are constructive, and thus allow for the construction of optimal schedulers. This also provides the first
procedure to precisely determine the time-bounded reachability probability, because we can now reduce
this problem to solving the time-bounded reachability problem of continuous-time Markov chains [1].

Our proof consists of two parts. We first consider the class ofuniform CTMDPs, which are much
simpler to treat in the time-abstract case, because we can use Poisson distributions to describe the number
of steps taken within a given time bound. For uniform CTMDPs it is already known that the supremum
over the bounded reachability collapses for all time-abstract scheduler classes from CD to HR [2]. It
therefore suffices to show that there is a CD scheduler which takes this value.

We then show that a similar claim holds for CD and HD schedulerin the general class of not neces-
sarily uniform CTMDPs. In this case, it also holds that thereare simple optimal schedulers that converge
against a positional scheduler after a finite number of steps, and that randomisation does not improve the
time-bounded reachability probability. However, in the non-uniform case the time-abstract path contains
more information about the remaining time than its length only, and bounded reachability of history-
dependent and counting schedulers usually deviate (see [2]for a simple example).

We start this section with the introduction ofgreedy schedulers, HD schedulers that favour reachabil-
ity in a small number of steps over reachability with a largernumber of steps; the positional schedulers
against which the CD and HD schedulers converge are such greedy schedulers.

3.1 Greedy Schedulers

The objective we consider is to maximise time-bounded reachability PrMS (l , t) for every locationl with
respect to a particular scheduler class such as HD. Unfortunately, this optimisation problem is rather
difficult to solve. Therefore, we start with analysing the special case of having little time left (that is, the
remaining timet is close to 0).

Time-abstract schedulers have no direct access to the time,but they can infer the distribution over
the remaining time from the time-abstract history (or its length). When examining the resulting Poisson
distribution one can easily see that for large step numbers the probability to take more than one further
step declines faster than the probability to take exactly one further step. Thus, any increase of the
likelihood of reaching the goal region sooner dominates thepotential impact of reaching it in further
steps (after sufficiently many steps).

This motivates the introduction of greedy schedulers. Schedulers are called greedy, if they (greedily)
look for short-term gain, and favour it over any long-term effect. Greedy schedulers that optimise the
reachability within the firstk steps have been exploited in the efficient analysis of CTMDPs[2]. To
understand the principles of optimal control, however, a simpler form of greediness proves to be more
appropriate: We call an HD schedulergreedyif it maximises the step probability vector of every location
l with respect to the lexicographic order (for example(0,0.2,0.3, . . . )>lex (0,0.1,0.4, . . . )). To prove the
existence of greedy schedulers, we draw from the fact that the supremumdl = supS∈HD dl ,S obviously
exists, where the supremum is to be read as a supremum with respect to the lexicographic order. An
actiona∈ Act(l) is calledgreedyfor a locationl /∈ B if it satisfiesshift(dl ) = ∑l ′∈L P(l ,a, l ′)dl ′ , where
shift(dl ) shifts the vector by one position (that is,shift(dl )[i] = dl [i +1] ∀i ∈ N). For locationsl in the
goal regionB, all enabled actionsa∈ Act(l) are greedy.

Lemma 3.1 Greedy schedulers exist, and they can be described as the class of schedulers that choose a
greedy action upon every reachable time-abstract path.

Proof It is plain that, for every non-goal locationl /∈ B, shift(dl ) ≥ ∑l ′∈L P(l ,a, l ′)dl ′ holds for every
actiona, and that equality must hold for some.
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For a schedulerS that always chooses greedy actions, a simple inductive argument shows thatdl [i] =
dl ,S [i] holds for alli ∈N, while it is easy to show thatdl > dl ,S holds if S deviates from greedy decisions
upon a path that is possible under its own scheduling policy and does not contain a goal location. �

This allows in particular to fix a positionalstandard greedy schedulerby fixing an arbitrary greedy
action for every location.

To determine the set of greedy actions, let us consider a deterministic schedulerS that starts in a
location l with a non-greedy actiona. Thenshift(dl ,S ) ≤ ∑l ′∈L P(l ,a, l ′)dl ′ holds true, where the sum
∑l ′∈L P(l ,a, l ′)dl ′ corresponds to the scheduler choosing the non-greedy action a at locationl and act-
ing greedy in all further steps. Letdl ,a = ∑l ′∈L P(l ,a, l ′)dl ′ denote the step probability vector of such
schedulers.

We know thatdl ,S ≤ dl ,a < dl . Hence, there is not only a difference betweendl ,S anddl , this difference
will not occur at a higher index than the first difference between the newly defineddl ,a and dl . The
finite number of locations and actions thus implies the existence of a boundk on the occurrence of this
first difference betweendl ,a anddl as well asdl ,S anddl . While the existence of such ak suffices to
demonstrate the existence of optimal schedulers, we show inSubsection 3.4 that this constantk< |L| is
smaller than the CTMDP itself.

Having established such a boundk, it suffices to compare schedulers up to this bound. This provides
us with the greedy actions, and also with the initial sequence dl ,a[0],dl ,a[1], . . . ,dl ,a[k] for all locations
l and actionsa. Consequently, we can determine a positive lower boundµ > 0 for the first non-zero
entry of the vectorsdl −dl ,S (considering all non-greedy schedulersS ). We call this lower boundµ the
discriminator of the CTMDP. Intuitively, the discriminatorµ represents the minimal advantage of the
greedy strategy over non-greedy strategies.

3.2 Uniform CTMDPs

In this subsection, we show that every CD or HD scheduler for auniform CTMDP can be transformed
into a scheduler that converges to this standard greedy scheduler.

In the quest for an optimal scheduler, it is useful to consider the fact that the maximal reachability
probability can be computed using the step probability vector, because the likelihood that a particular
number of steps happen in timet is independent of the scheduler:

PrMS (t) = ∑
l∈L

ν(l)
∞

∑
i=0

dl ,S [i] · pλt(i). (1)

Moreover, the Poisson distributionpλt has the useful property that the probability of takingk steps is
falling very fast. We define thegreed bound nM to be a natural number, for which

µ pλt(n)≥
∞

∑
i=1

pλt(n+ i) ∀n≥ nM (2)

holds true. It suffices to choosenM ≥ 2λt
µ since it impliesµpλt(n)≥ 2pλt(n+1), ∀n> nM (which yields

(2) by simple induction). Such a greed bound implies that thedecrease in likelihood of reaching the goal
region in few steps caused by making a non-greedy decision after the greed bound dwarfs any potential
later gain. We use this observation to improve any given CD orHD schedulerS that makes a non-greedy
decision after≥nM steps by replacing the behaviour after this history by a greedy scheduler. Finally, we
use the interchangeability of greedy schedulers to introduce a schedulerS that makes the same decisions
asS on short histories and follows the standard greedy scheduling policy once the length of the history
reaches the greed bound. For this scheduler, we show thatPrM

S
(t)≥PrMS (t) holds true.
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Theorem 3.2 For uniform CTMDPs, there is an optimal scheduler for the classes CD and HD that
converges to the standard greedy scheduler after nM steps.

Proof Let us consider any HD schedulerS that makes a non-greedy decision after a time-abstract path
π of length|π| ≥ nM with last locationl . If the path ends in, or has previously passed, the goal region, or
if the probability of the historyπ is 0, that is, if it cannot occur with the scheduling policy ofS , then we
can change the decision ofS on every path starting withπ arbitrarily—and in particular to the standard
greedy scheduler—without altering the reachability probability.

If PRMS (π, t) > 0, then we change the decisions of the schedulerS for paths with prefixπ such that
they comply with the standard greedy scheduler. We call the resulting HD schedulerS ′ and analyse the
change in reachability probability using Equation (1):

PrMS ′ (t)−PrMS (t) = PRMS (π, t) ·
∞

∑
i=0

(dl [i]−dl ,Sπ [i]) · pλt(|π|+ i),

whereSπ : π′ 7→ S (π◦π′) is the HD scheduler which prefixes its input with the pathπ and then calls the
schedulerS . The greedy criterion impliesdl > dl ,Sπ with respect to the lexicographic order, and after
rewriting the upper equation:

PrMS ′ (t)−PrMS (t) = PRMS (π, t) ·

(

µpλt(|π|+ j)+
∞

∑
i> j

(dl [i]−dl ,Sπ [i]) · pλt(|π|+ i)

)

(for some j > 0)

we can apply Equation 2 to deduce that the differencePrM
S ′
(t)−PrMS (t) is non-negative.

Likewise, we can concurrently change the scheduling policyto the standard greedy scheduler for all
paths of length≥ nM for which the schedulerS makes non-greedy decisions. In this way, we obtain a
schedulerS ′′ that makes non-greedy decisions only in the firstnM steps, and yields a (not necessarily
strictly) better time-bounded reachability probability thanS .

Since all greedy schedulers are interchangeable without changing the time-bounded reachability
probability (and even without altering the step probability vector), we can modifyS ′′ such that it fol-
lows the standard greedy scheduling policy after≥ nM steps, resulting in a schedulerS that comes with
the same time-bounded reachability probability asS ′′. Note thatS is counting ifS is counting.

Hence, the supremum over the time-bounded reachability of all CD/HD schedulers is equivalent to
the supremum over the bounded reachability of CD/HD schedulers that deviate from the standard greedy
scheduler only in the firstnM steps. This class is finite, and the supremum over the boundedreachability
is therefore the maximal bounded reachability obtained by one of its representatives. �

Hence, we have shown the existence of a—simple—optimal time-bounded CD scheduler. Using the
fact that the suprema over the time-bounded reachability probability coincide for CD, CR, HD, and HR
schedulers [2], we can infer that such a scheduler is optimalfor all of these classes.

Corollary 3.3 max
S∈CD

PrMS (t) = max
S∈HR

PrMS (t) holds for all uniform CTMDPsM . �

3.3 Non-uniform CTMDPs

Reasoning over non-uniform CTMDPs is harder than reasoningover uniform CTMDPs, because the like-
lihood of seeing exactlyk steps does not adhere to the simple Poisson distribution, but depends on the
precise history. Even if two paths have the same length, theymay imply different probability distributions
over the time passed so far. Knowing the time-abstract history therefore provides a scheduler with more
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information about the system’s state than merely its length. As a result, it is simple to construct exam-
ple CTMDPs, for which history-dependent and counting schedulers can obtain different time-bounded
reachability probabilities [2].

In this subsection, we extend the results from the previous subsection to general CTMDPs. We show
that simple optimal CD/HD scheduler exist, and that randomisation does not yield an advantage:

max
S∈CD

PrMS (t) = max
S∈CR

PrMS (t) and max
S∈HD

PrMS (t) = max
S∈HR

PrMS (t).

To obtain this result, we work on the uniformisationU of M instead of working onM itself. We
argue that the behaviour of a general CTMDPM can be viewed as the observable behaviour of its
uniformisationU , using a scheduler that does notseethe new transitions and locations. Schedulers from
this class can then be replaced by (or viewed as) schedulers that do notusethe additional information.
And finally, we can approximate schedulers that do not use theadditional information by schedulers that
do not use it initially, where initially means until the number of visible steps—and hence in particular
the number of steps—exceeds the greed boundnU of the uniformisationU of M . Comparable to the
argument from the proof of Theorem 3.2, we show that we can restrict our attention to the standard
greedy scheduler after this initial phase, which leads again to a situation where considering a finite class
of schedulers suffices to obtain the optimum.

Lemma 3.4 The greedy decisions and the step probability vector coincide for the observable and unob-
servable copy of each location in the uniformisationU of any CTMDPM .

Proof The observable and unobservable copy of each location reachthe same successors under the same
actions with the same transition rate. �

We can therefore choose a positional standard greedy scheduler whose decisions coincide for the
observable and unobservable copy of each location.

For theuniformisationU of a CTMDPM , we define the functionvis : Pathsabs(U )→ Pathsabs(M )
that maps a pathπ of U to the corresponding path inM , thevisible path, by deleting all unobservable
locations and their directly preceding transitions fromπ. (Note that all paths inU start in an observable
location.) We call a schedulern-visible if its decisions only depend on the visible path and coincidefor
the observable and unobservable copy of every location for all paths containing up ton visible steps. We
call a schedulervisible if it is n-visible for all n∈ N.

We call a HD/HR scheduler an (n-)visible HD/HR scheduler if it is (n-)visible, and we call an
(n-)visible HD/HR scheduler a visible CD/CR scheduler if its decisions depend only on the length of
the visible path, and ann-visible CD/CR scheduler if its decisions depend only on thelength of the visi-
ble path for all paths containing up ton visible steps. The respective classes are denoted with according
prefixes, for example,n-vCD. Note that (n-)visible counting schedulers are not counting.

It is a simple observation that we can study visible CD, CR, HD, and HR schedulers on the uniformi-
sationU of a CTMDPM instead of studying CD, CR, HD, and HR schedulers onM .

Lemma 3.5 S 7→ S ◦vis is a bijection from visible CD, CR, HD, or HR schedulers for the uniformisation
U of a CTMDPM onto CD, CR, HD, or HR schedulers, respectively, ofM that preserves the time-
bounded reachability probability: PrUS (t) = PrMS ◦vis(t). �

At the same time, copying the argument from the proof of Theorem 3.2, annU -visible CD or HD
schedulerS can be adjusted to thenU -visible CD or HD schedulerS that deviates fromS only in that it
complies with the standard greedy scheduler forU afternU visible steps, without decreasing the time-
bounded reachability probability. These schedulers are visible schedulers from a finite sub-class, and
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hence some representative of this class takes the optimal value. We can, therefore, construct optimal CD
and HD schedulers for every CTMDPM .

Lemma 3.6 The following equations hold for the uniformisationU of a CTMDPM :

max
S∈nU−vCD

PrUS (t) = max
S∈vCD

PrUS (t) and max
S∈nU−vHD

PrUS (t) = max
S∈vHD

PrUS (t).

Proof We have shown in Theorem 3.2 that turning to the standard greedy scheduling policy afternU or
more steps can only increase the time-bounded reachabilityprobability. This implies that we can turn to
the standard greedy scheduler afternU visiblesteps.

The scheduler resulting from this adjustment does not only remainnU -visible, it becomes a visible
CD and HD scheduler, respectively. Moreover, it is a scheduler from the finite subset of CD or HD
schedulers, respectively, whose behaviour may only deviate from the standard scheduler within the first
nU visible steps. �

To prove that optimal CD and HD schedulers are also optimal CRand HR schedulers, respectively,
we first prove the simpler lemma that this holds fork-bounded reachability.

Lemma 3.7 k-optimal CD or HD schedulers are also k-optimal CR or HR schedulers, respectively.

Proof For a CTMDPM we can turn an arbitrary CR or HR schedulerS into a CD or HD scheduler
S ′ with a time andk-bounded reachability probability that is at least as good as the one ofS by first
determinising the scheduler decisions from the(k+1)st step onwards—this has obviously no impact on
k-bounded reachability—and then determinising the remaining randomised choices.

Replacing a single randomised decision on a pathπ (for history-dependent schedulers) or on a set
of pathsΠ (for counting schedulers) that end(s) in a locationl is safe, because the time andk-bounded
reachability probability of a scheduler is an affine combination—the affine combination defined byS (π)
andS (|π|, l), respectively—of the|Act(l)| schedulers resulting from determinising this single decision.
Hence, we can pick one of them whose time andk-bounded reachability probability is at least as high as
the one ofS .

As the number of these randomised decisions is finite (≤ k|L| for CR, and≤ k|L| for HR schedulers),
this results in a deterministic scheduler after a finite number of improvement steps. �

Theorem 3.8 Optimal CD schedulers are also optimal CR schedulers.

Proof First, for n → ∞ the probability to reach the goal regionB in exactly n or more thann steps
converges to 0, independent of the scheduler. Together withLemma 3.7, this implies

sup
S∈CR

PrMS (t) = lim
n→∞

sup
S∈CR

PrMS (t;n) = lim
n→∞

sup
S∈CD

PrMS (t;n) ≤ max
S∈CD

PrMS (t),

where equality is implied byCD⊆CR. �

Analogously, we can prove the similar theorem for history-dependent schedulers:

Theorem 3.9 Optimal HD schedulers are also optimal HR schedulers. �

3.4 Constructing Optimal Schedulers

The proof of the existence of an optimal scheduler is not constructive in two aspects. First, the compu-
tation of a positional greedy scheduler requires a bound fork, which indicated the maximal depth until
which we have to compare the step probability vectors beforewe can ascertain equality. Second, we
need an exact method to compare the quality of two (arbitrary) schedulers.
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A bound for k The first property is captured in the following lemma. Without this lemma, we could
only provide an algorithm that is guaranteed to converge to an optimal scheduler, but would be unable
to determine whether an optimal solution has already been reached, as we never know when to stop
when comparing step probability vectors. In this lemma, however, we show that it suffices to check for
equivalence of two step probability vectors only up to position |L|−2. As discussed in Subsection 3.1,
this enables us to identify greedy actions and thus tocomputethe discriminatorµ and consequently the
greed boundnM .

Lemma 3.10 Given a uniform CTMDPM , the smallest k that satisfies∀l ∈ L, a∈ Act(l). dl 6= dl ,a ⇒
∃k′ ≤ k. dl [k′]> dl ,a[k′] is bounded by|L|−2.

Proof The techniques we exploit in this proof draw from linear algebra, and are, while simple, a bit
unusual in this context. We first turn to the simpler notion ofMarkov chains by resolving the nonde-
terminism in accordance with the positional standard greedy schedulerS whose existence was shown in
Subsection 3.1.

We first lift the step probability vector from locations to distributions, wheredν = ∑l∈L ν(l)dl is,
for a distributionν : L → [0,1], the affine combination of the step probability vectors of the individual
locations. In this proof, we define two distributionsν,ν′ : L → [0,1] to be equivalent, if their step proba-
bility vectorsdν = dν′ are equal. Further, we call themi-step equivalent if they are equal up to positioni
(∀ j ≤ i. dν[ j] = dν′ [ j]).

In order to argue with vector spaces, we extend these definitions to arbitrary vectorsν : L → R

(instead ofν : L → [0,1]).
LetDi be the vector space spanned byi-step equivalent distributionsν,ν′ overL. Naturally,Di ⊇Di+1

always holds, asi + 1 step equivalence impliesi-step equivalence. In addition we show thatD0 has
|L|−2 dimensions, and thatDi = Di+i implies that a fixed point is reached, which together impliesthat
D|L|−2 = D j for all j ≥ |L|−2.

• D0 has |L| − 2 dimensions:D0 is the vector space that contains the multitudes of differences
δ = λ(ν− ν′) of distributionsν,ν′ : L → [0,1] that are equally likely in the goal region (due to
0-step equivalency;dν[0] = dν′ [0]).

The fact thatν and ν′ are distributions implies∑l∈L ν(l) = 1 and ∑l∈L ν′(l) = 1, and hence
∑l∈L δ(l) = 0. Further, the fact thatν and ν′ are equally likely in the goal region implies
∑l∈B ν(l) = ∑l∈B ν′(l), and hence∑l∈B δ(l) = 0. Thus,D0 has|L| − 2 dimensions. (Assuming
B 6= L,B 6= /0, but otherwise every scheduler has equal quality.)

• Once we have constructedDi, we can construct the vector spaceOi that contains a vectorδ if it is
a multitudeδ = λ(ν− ν′) of differencesν− ν′ of distributions, such thatshift(dν) andshift(dν′)
arei-step equivalent, that is,shift(dν)−shift(dν′) ∈ Di .

The transition from step probability vectors to theshift of them is a simple linear operation, which
transforms the distributions according to the transition matrix of the embedded DTMC. Hence, we
can obtainOi from Di by a simple linear transformation of the vector space.

• Two step probability vectors arei+1-step equivalent if (1) they arei-step equivalent, and (2) their
shift arei-step equivalent. ThereforeDi+1 = Di ∩Oi can be obtained by an intersection of the two
vector spacesDi andOi.

Naturally, this implies that the vector spaces are shrinking, that is,D0 ⊇ D1 ⊇ . . .⊇ D|L|−2 ⊇ . . ., and
thatDi = Di+1 implies that a fixed point is reached. (It impliesOi = Oi+1 and henceDi = D j (∀ j ≥ i) by
a simple inductive argument.)
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As D0 is an |L| − 2 dimensional vector space, and inequality (Di 6= Di+1) implies the loss of at
least one dimension, a fixed point is reached after at most|L| − 2 steps. That is, two distributions are
equivalent, if, and only if, they are(|L|−2)-step equivalent.

Having established this, we apply it on the distributionνl ,a obtained in one step from a position
l /∈ B when choosing the actiona, as compared to the distributionνl obtained when choosing the action
according to the positional greedy scheduler.

Now,dl > dl ,a holds if, and only ifshift(dl ) = dνl > dνl ,a = shift(dl ,a), which impliesdνl [k
′]> dνl ,a[k

′]
for somek′ ≤ |L|−2, and hencedl [k]> dl ,a[k] for somek< |L|. �

Comparing schedulers So far, we have narrowed down the set of candidates for the optimal scheduler
to a finite number of schedulers. To determine the optimal scheduler, it now suffices to have a comparison
method for their reachability probabilities.

The combination of each of these schedulers with the respective CTMDP can be viewed as afinite
continuous-time Markovchain (CTMC) since they behave like a positional scheduler afternM steps.
Aziz et al. [1] have shown that the time-bounded reachability probability of CTMCs are computable
(and comparable) finite sums∑i∈I ηieδi , where the individualηi andδi are algebraic numbers.

We conclude with a constructive extension of our results:

Corollary 3.11 We can effectively construct optimal CD, CR, HD, and HR schedulers. �

Corollary 3.12 We can compute the time-bounded reachability probability of optimal schedulers as fi-
nite sums∑i∈I ηieδi , where theηi andδi are algebraic numbers. �

Complexity

These corollaries rely on the precise CTMC model checking approach of Aziz et al. [1], which only
demonstrates the effective decidability of this problem. We deem it unlikely that a complexity for finding
optimal strategies can be provided prior to determining therespective CTMC model checking complexity.

3.5 Example

To exemplify our proposed construction, let us consider theexample CTMDPM depicted in Figure 1.
AsM is not uniform, we start with constructing the uniformisationU of M (cf. Figure 1).
U has the uniform transition rateλ= 6. Independent of the initial distribution ofM , the unobservable

copies ofl1 andl2 are not reachable inU , because the initial distribution of a uniformisation assigns all
probability weight to observable locations, and the transition rate of all enabled actions inl1 and l2
in M is alreadyλ. (Unobservable copies of a locationl are only reachable from the observable and
unobservable copy ofl upon enabled actionsa with non-maximal exit rateR(l ,a,L) 6= λ.)

Disregarding the unreachable part ofU , there are only 8 positional schedulers forU , and only 4 of
them are visible (that is, coincide onl0 andlU ,0). They can be characterised byS1 = {l0 7→ a, l1 7→ a},
S2 = {l0 7→ a, l1 7→ b}, S3 = {l0 7→ b, l1 7→ a}, and S4 = {l0 7→ b, l1 7→ b}. In order to determine a
greedy scheduler, we first determine step probability vectors:

For l0: dl0,S1 = dl0,S2 = (1
3,

5
9,

19
27, . . . ), dl0,S3 = (1

2,
7
12,

43
72, . . . ), dl0,S4 = (1

2,
1
2,

3
4, . . . ).

For l1: dl1,S1 = dl1,S3 = (1
6,

7
36,

71
216, . . . ), dl1,S2 = (0, 1

3,
5
9, . . . ), dl1,S4 = (0, 1

2,
1
2, . . . ).

Note that, in the given example, it suffices to compute the step probability vector for a single step to
determine thatS3 is optimal (w.r.t. the greedy optimality criterion); in general, it suffices to consider as
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Figure 1: The example CTMDPM (left) and the reachable part of its uniformisationU (right).

many steps as the CTMDP has locations. Since deviating fromS3 decreases the chance to reach the goal
locationl2 in a single step by16 both froml0 andl1, the discriminatorµ= 1

6 is easy to compute.
Our coarse estimation provides a greed bound ofnU = ⌈72· t⌉, wheret is the time bound, butnU =

⌈42· t⌉ suffices to satisfy Equation (2).
When seeking optimal schedulers from any of the discussed classes, we can focus on the finite set

of those schedulers that comply withS3 afternU (visible) steps. In the previous subsection, we describe
how the precise model checking technique of Aziz et al. [1] can be exploited to turn the existence proof
into an effective technique for the construction of optimalschedulers.

4 Extension to Continuous-Time Markov Games

Markov decision processes can easily be extended to continuous-time Markov games (CTGs)G =
(LA,LD,Act,R,ν,B) by disintegrating the set of locations into game positions of a maximiser (LA, angelic
game positions) and a minimiser (LD, demonic game positions). These two players have antagonistic ob-
jectives to maximise and minimise the time-bounded reachability probability. These games are closely
related to the CTMDP framework, and we define, for a given Markov gameG , theunderlyingCTMDP
M = (LA∪̇LD,Act,R,ν,B). CTGs are calleduniform if their underlying CTMDP is uniform.

The players can choose an action upon the entrance to one of their locations, and, as with sched-
ulers for CTMDPs, they may have limited access to the timed history of the system. We only consider
time-abstract strategiesSX : PathsXabs(G )→ Dist(Act) for both players, where paths are defined over the
underlying CTMDP, andPathsXabs(G ) (for X ∈ {A,D}) is the set of paths that end with a location inLX.

Obviously, there is a one-to-one mapping betweencombined strategies

SA+D(π) =
{

SA(π) if π ∈ PathsAabs(G )

SD(π) if π ∈ PathsDabs(G )

of a CTG and schedulers of the underlying CTMDP.
For a given CTG and a pair of strategiesSA, SD we define the according probability space equivalent

to the probability space of the underlying CTMDP with the combined strategySA+D. Then, the time-
bounded reachability probability can be formulated for CTGs as follows:

sup
SA

inf
SD

PrG
SA+D

(t) = inf
SD

sup
SA

PrG
SA+D

(t) (3)

where equality is guaranteed by [3, Theorem 3.1].
For uniform CTGs, a theorem similar to Theorem 3.2 has recently been shown:
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Theorem 4.1 [3] For uniform CTGsG with counting strategies, we can compute a bound nG (compara-
ble to our greed bound) and a memoryless deterministic greedy strategyS : L → Act, such that following
S is optimal for both players after nG steps.

That is, optimal (counting) strategies for uniform Markov games have a similarly simple structure as
those for CTMDPs. Now, we extend these results to history-dependent (HD and HR) schedulers:

Theorem 4.2 The optimal CD strategies from Theorem 4.1 (that is, for uniform CTGs) are also optimal
HR strategies.

Proof Let us assume the minimiser plays in accordance with her optimal CD strategy. Let us further
assume that the maximiser has an HR strategy that yields a better result than his CD strategy. Then it
must improve over his optimal CD strategy by a margin of someε.

Let us definep(k, l) as the maximum of the probabilities to still reach the goal region in the future
that the maximiser can reach under the paths of lengthk which end in locationl with thebetterhistory
dependent strategy. Further, lethl (k) be a path where this optimal value is taken. (Note that our goal
region is absorbing.) The decision this HR scheduler takes is an affine combination of deterministic
decisions, and the quality (the probability of reaching thegoal region in the future) is the respective
affine combination of the outcome of these pure decisions. Hence, there is at least one pure decision that
(not necessarily strictly) improves over the randomised decision.

As our CTG is uniform, we can improve this history dependent scheduler by changing all decisions
it makes on a pathπ = π′

l ◦π′ that start with a pathπ′
l of length 2 ending in a locationl , to the decisions

it made upon the pathhl (2)◦π′. (The improvement is not necessarily strict.) We then improve it further
(again not necessarily strictly) by turning to the improvedpure decision. The resulting strategy is initially
counting—it depends only on the length of the history and thecurrent location—and deterministic for
paths up to length 2.

Having constructed a history dependent scheduler that is initially counting and deterministic for paths
up to lengthk, we repeat this step for pathsπ = π′

l ◦π′ that start with a historyπ′
l of lengthk+1, where

we replace the decision made by our initiallyk counting and deterministic scheduler by the decision
made onhl (k+ 1) ◦ π′, and then further to its deterministic improvement. This again leads to a—not
necessarily strict—improvement.

Once the probability of making at leastk steps falls belowε, any deterministic counting scheduler
that agrees on the firstk steps with a history dependent scheduler from this sequence(which is initially
counting and deterministic for at leastk steps) improves over the counting scheduler we started withfor
the maximiser, which contradicts its optimality.

A similar argument can be made for the minimiser. �

Our argument that infers the existence of optimal strategies for general CTMDPs from the existence
of optimal strategies for uniform CTMDPs does not depend on the fact that we have only one player with
a particular objective. In fact, it can be lifted easily to Markov games.

Theorem 4.3 For a Markov gameG , we can effectively construct optimal CD and HD schedulers,which
are also optimal CR and HR schedulers, respectively, and we can compute the time-bounded reachability
probability of optimal schedulers as finite sums∑i∈I ηieδi , where theηi andδi are algebraic numbers.

Proof sketch We start again with the uniformisationU of the Markov gameG . By Theorem 4.1, there
is a deterministic memoryless greedy strategy for both players inU that is optimal afternU steps. Hence,
we can argue along the same lines as for CTMDPs:
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• We study thevisible strategies on the uniformisationU of G . Like in the constructions from
Section 3.3, we use a bijectionvis from the visible strategies onU onto the strategies ofG , which
preserves the time-bounded reachability.

• We definenU -visible strategies analogously to thenU -visible schedulers to be those strategies,
which can use the additional information provided byU afternU visible steps have passed.

After nU visible steps, the class ofnU -visible strategies clearly contains the deterministic
greedy strategies described in the previous theorems of this section, as they can use all infor-
mation after stepnU . Using Theorem 4.1 we can deduce that, for both players, it suffices to seek
an optimalnU -visible strategy in the subset of those strategies that turn to thestandard greedy
strategyafternU visiblesteps.

• Locationsl and their counterpartslU have exactly the same exit rates for all actions, and therefore
a greedy-optimal memoryless strategy will pick the same action for both locations (up to equal
quality of actions). This directly implies that the standard greedy scheduler is a visible strategy,
and with it allnU -visible strategies that turn to the standard greedy strategy afternU visible steps
are visible strategies. Hence, an optimal strategy for the class ofnU -visible strategies that turn to
the standard greedy strategy afternU visible steps is also optimal for the class of visible strategies
(time-abstract strategies inG , respectively).

• For deterministic strategies, this class is finite, which immediately implies the existence of an
optimum in this class (using Equation 3).

Randomised strategies again cannot provide an advantage over deterministic ones, because their
outcome is just an affine combination of the outcome of the respective pure strategies, and the extreme
points are taken at the fringe. (Technically, we can start with any randomised strategy and replace one
randomised decision after another by a pure counterpart, improving the quality of the outcome—not
necessarily strictly—for the respective player.)

Consequently, we are left with a finite set of history dependent or counting candidate strategies,
respectively, and the result can—at least in principle—be found by applying a brute force approach: For
each of these deterministic strategies, we can compute the reachability probability using the algorithm
of Aziz et al. [1], which allows for identifying the deterministic strategies that mark an optimal Nash
equilibrium. �
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