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Abstract. We establish the existence of optimal scheduling strategies
for time-bounded reachability in continuous-time Markov decision pro-
cesses, and of co-optimal strategies for continuous-time Markov games.
Furthermore, we show that optimal control does not only exist, but has
a surprisingly simple structure: the optimal schedulers from our proofs
are deterministic and timed positional, and the bounded time can be di-
vided into a finite number of intervals, in which the optimal strategies are
positional. That is, we demonstrate the existence of finite optimal con-
trol. Finally, we show that these pleasant properties of Markov decision
processes extend to the more general class of continuous-time Markov
games, and that both early and late schedulers show this behaviour.

1 Introduction

Continuous-time Markov decision processes (CTMDPs) are a widely used frame-
work for dependability analysis and for modelling the control of manufacturing
processes [8, 17, 24], because they combine real-time aspects with probabilis-
tic behaviour and non-deterministic choices. CTMDPs can also be viewed as
a framework that unifies different stochastic model types [5, 12, 13, 17, 22].

While CTMDPs allow for analysing worst-case and best-case scenarios, they
fall short of the demands that arise in many real control problems, as they
disregard the different nature that non-determinism can have depending on its
source: some sources of non-determinism are supportive, while others are hostile,
and in a realistic control scenario, we face both types of non-determinism at the
same time: supportive non-determinism can be used to model the influence of
a controller on the evolution of a system, while hostile non-determinism can
capture abstraction or unknown environments. We therefore consider a natural
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Fig. 1. A CTMDP and the reachability probabilities for all positional schedulers
with time bound tmax = 1. Time t′ = tmax−

1
2 log(2) is the optimal time to switch

to action b.

extension of CTMDPs: continuous-time Markov games (CTMGs) that have two
players with opposing objectives [5, 6, 9–11, 26].

The analysis of CTMDPs and CTMGs requires us to resolve the non-
deterministic choices by means of a scheduler (which consists of a pair of strate-
gies in the case of CTMGs), and typically tries to optimise a given objective
function.

Contributions. In this article, we study the time-bounded reachability problem,
which recently enjoyed much attention [3, 6, 15, 16, 27, 28] due to its relevance
for quantitative model checking. Time-bounded reachability in CTMDPs is the
standard control problem to construct a scheduler that controls the Markov
decision process such that the probability of reaching a goal region within a
given time bound is maximised (or minimised), and to determine the value. For
CTMGs, time-bounded reachability reduces to finding a Nash equilibrium, that
is, a pair of strategies for the players, such that each strategy is optimal for the
chosen strategy of her opponent.

This article has three main contributions:

– First, we extend the common model of CTMDPs by adding discrete loca-
tions, which are passed in 0 time. This generalisation of the model is mainly
motivated by avoiding the discussion about the appropriate scheduler class.

– The second contribution of this article is the answer to an intriguing research
question: we show that optimal control of CTMDPs exists for time-bounded
reachability and safety objectives. Moreover, we show that optimal control
can always be finite.

– Our third contribution is to lift these results to continuous-time Markov
games.

Related Work. Optimal control in CTMDPs clearly depends on the obser-
vational power we allow our schedulers to have when observing a run. In the
literature, various classes of schedulers with different restrictions on what they
can observe [6, 15, 20, 25] are considered. We focus on the most general class of
schedulers, schedulers that can fully observe the system state and may change
their decisions at any point in time (late schedulers, cf. [5, 14, 26]). To be able
to transfer our results to the class of schedulers that fix their decisions when
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entering a location (early schedulers [25]), we introduce discrete locations that
allow for a translation from early to late schedulers (see Section 5.1).

Due to their practical importance, time-bounded reachability for continuous-
time Markov models has been studied intensively (for example [2–6, 15, 16, 27,
28]). However, most previous research focussed on approximating optimal con-
trol. The existence of optimal control has only been known for the artificial class
of time-abstract schedulers [6, 20], which assume that the scheduler has no ac-
cess whatsoever to a clock. In a work independent of the reports [18, 19] this
article is based on, Neuhäußer and Zhang showed the existence of optimal timed
positional schedulers for the restricted class of locally uniform CTMDPs [16].

While efficient approximation [21, 7, 16] is of interest for a practitioner, being
unable to determine whether or not optimal control exists—or if the optimal
quality which was described more than half a century ago by Bellman [5] may
be a limit that cannot be reached—is very dissatisfying from a theoretical point
of view.

Technique in a Nutshell. Pursuing a different research question, we ex-
ploit proof techniques that differ from those frequently used in the analysis
of CTMDPs. Our proofs build mainly on topological arguments: the proof that
demonstrates the existence of measurable optimal schedulers, for example, shows
that we can fix the decisions of an optimal scheduler successively on closures of
open sets (yielding only measurable sets), and the lift to finiteness uses local op-
timality of positional schedulers in open left and right environments of arbitrary
points of times and the compactness of the considered time interval.

For our proofs it turned out to be much more convenient to use a Lebesgue
measure rather than the more widespread Borel measure. While this is but a
minor technical decision from a practical point of view, it also shows that the
particular choice of measure should be driven by convenience only. Indeed, our
proof of the existence of finite optimal control shows that there are optimal solu-
tions in the weakest class of cylindrical schedulers, which form but the starting
point for the definition of a measure, be it a Borel or a Lebesgue measure.

Structure of the Article. We follow a slightly unorthodox order of proofs for
a mathematical article: we start with a special case in Section 3 and generalise the
results later. Besides keeping the proofs simple, this approach is chosen because
the simplest case, CTMDPs, is the classical case, and we assume that a wider
audience is interested in results for these structures. In Section 4, we strengthen
this result by demonstrating that optimal control does not only exist, but can
be found among schedulers with finitely many switching points and positional
strategies between them. In Section 5, we lift this result to single player games
(CTMDPs with discrete locations, that is). In the final section, we generalise
the existence theorem for finite optimal control to finite co-optimal strategies
for continuous-time Markov games.
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2 Preliminaries

A continuous-time Markov game is a tuple (L,Ld, Lc, Lr, Ls,Act ,R,P, ν), con-
sisting of

– a finite set L of locations, which is partitioned
• into a set Ld of discrete locations and a set Lc of continuous locations,
and

• into sets Lr and Ls of locations owned by a reachability and a safety
player, respectively,

– a finite set Act of actions,
– a rate matrix R : (Lc ×Act × L) → Q>0,
– a discrete transition matrix P : (L×Act × L) → Q>0 ∩ [0, 1], and
– an initial distribution ν ∈ Dist(L),

that satisfies the following side-conditions: for all continuous locations l ∈ Lc,
there must be an action a ∈ Act such that R(l, a, L) :=

∑

l′∈LR(l, a, l′) > 0; we
call such actions enabled. For actions enabled in continuous locations, we require

P(l, a, l′) = R(l,a,l′)
R(l,a,L) , and we require P(l, a, l′) = 0 for the remaining actions.

For discrete locations, we require that either P(l, a, l′) = 0 holds for all l′ ∈ L,
or that

∑

l′∈LP(l, a, l′) = 1 holds. Like in the case of continuous locations, we
call the latter actions enabled and require the existence of at least one enabled
action for each discrete location l ∈ Ld.

The idea behind discrete-time locations is that they execute immediately. We
therefore do not permit cycles of only discrete-time locations (counting every
positive rate of any action as a transition). This restriction is stronger than it
needs to be, but it simplifies our proofs, and the simpler model is sufficient for
our means.

Intuitively, it is the objective of the reachability player to maximise the prob-
ability to reach a goal region in a predefined time t0, while it is the objective of
the safety player to minimise this probability. (Hence, it is a zero-sum game.)

We are particularly interested in (traditional) CTMDPs. They are single
player CTMGs, where either all positions belong to the reachability player (L =
Lr), or to the safety player (L = Ls), without discrete locations (Ld = ∅ and
Lc = L).

2.1 Paths

A timed path π in a CTMGM is a finite sequence in L×(Act×R>0×L)∗ = Paths .
We write

l0
a0,t0
−−−→ l1

a1,t1
−−−→ · · ·

an−1,tn−1

−−−−−−−→ ln

for a sequence π, and we require 0 ≤ ti−1 ≤ ti ≤ T for all i < n, where n is
the length of the path and T is an arbitrary time bound for the system. (For
technical reasons, we define the system’s behaviour only in an interval [0, T ]).
The ti denote the system’s time when the action ai is selected and a discrete
transition from li to li+1 takes place. Concatenation of paths π, π′ will be written
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as π◦π′ if the last location of π is the first location of π′ and the transition times
are ordered correctly. We call a timed path a complete timed path when we want
to stress that this path describes a complete system run, not to be extended by
further transitions.

Further, we use Pathsn to denote the set of all timed paths of length n.

2.2 Schedulers and Strategies

The nondeterminism in the system needs to be resolved by a scheduler, which
maps paths to decisions. The power of schedulers is determined by their ability
to observe and distinguish paths, and thus by their domain. In this article, we
consider the following common scheduler classes:

– Timed history-dependent (TH) schedulers, Paths(M)× R>0 → Dist(Act),
that map timed paths and the remaining time to distributions over actions.

– Timed positional (TP) schedulers, L× R>0 → Dist(Act),
that map locations and the remaining time to distributions over actions.

– Positional (P) or memoryless schedulers, L → Dist(Act),
that map locations to distributions over actions.

We call a scheduler deterministic, if it selects one action with probability 1 and
all other actions with probability 0. For convenience, we will sometimes con-
sider the set of actions (instead of the set of distributions over actions) as the
codomain of deterministic schedulers (e.g. L → Act for positional deterministic
schedulers). Where it is necessary to distinguish between randomised and de-
terministic classes we indicate this via the postfixes R and D, respectively; for
example THR and THD.

Strategies. In case of CTMGs, a scheduler consists of the two participat-
ing players’ strategies, which can be seen as functions Pathsp(M) × R>0 →
Dist(Act), where Pathsp(M) denotes, for p ∈ {r, s}, the paths ending on the
position of the reachability or safety player, respectively. As for general sched-
ulers, we can introduce restrictions on what players are able to observe.

Late and early scheduling. The main motivation to introduce discrete loca-
tions was to avoid the discussion whether a scheduler has to fix its decision as
to which action it chooses, upon entering a location (early), or whether such a
decision can be revoked while staying in the location (late). For example, the
general measurable schedulers discussed in [25] have only indirect access to the
remaining time (through the timed path), and therefore have to decide upon
entrance of a location which action they want to perform. Our definition builds
on fully-timed schedulers (cf. [5]) that were recently rediscovered and formalised
by Neuhäußer et al. [15], which may revoke their decision after they enter a
location. (As a side result, we lift Neuhäußer’s restriction of local uniformity.)
The discrete locations now allow us to encode schedulers that make their deci-
sion upon entering a continuous location l by mapping the decision to a discrete
location that is ‘guarding the entry’ to a family of continuous locations, one for
each action enabled in l. (See Section 5.1 for details.)
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2.3 A Primitive Probability Measure

While it is common to refer to TH schedulers as a class, the truth is that there is
no straightforward way to define a time-bounded reachability probability for the
complete class (cf. [25]). We therefore start with a natural subset, the cylindrical
schedulers, which will be used in the following subsections to build a powerful
yet measurable sub-class of TH schedulers.

Let J be a finite partition of the interval [0, T ] into intervals I0 = [0, t0] and
Ii = (ti−1, ti] for i = 1, . . . , n with t0 ≥ 0 and ti > ti−1 for i = 1, . . . , n. Then we
denote with [t]J the interval Ii ∈ J that contains t, called the J -cylindrification

of t, and we denote with [π]J = l0
a0,[t

′
0]J−−−−−→ l1

a1,[t
′
1]J−−−−−→ · · ·

an−1,[t
′
n−1]J

−−−−−−−−→ ln the

J -cylindrification of the timed path π = l0
a0,t

′
0−−−→ l1

a1,t
′
1−−−→ · · ·

an−1,t
′
n−1

−−−−−−−→ ln.
For a given finite partition J of the interval [0, T ], we call a set X of paths

J -cylindrical if it can be defined by X = {π′ ∈ Paths | [π]J = [π′]J } for
some concrete path π (that is if it is the set of timed paths with the same J -
cylindrification as π), and we call a finite partition J ′ of [0, T ] a refinement of
J if every interval in J is the union of intervals in J ′.

We call a TH scheduler J -cylindrical if its decisions depend only on the
cylindrification [π]J and [t]J of π and t, respectively, and cylindrical if it is
J -cylindrical for some finite partition J of the interval [0, T ].

Cylindrical Sets and Primitive Probability Space. For an J ′-cylindrical
scheduler S, an J ′′-cylindrical set of finite timed paths [π]J ′′ , with π being just

a representative π = l0
a0,t0
−−−→ . . .

an−1,tn−1

−−−−−−−→ ln, and a finite partition J that
is a refinement of J ′ and J ′′, the likelihood that a complete path is from this
cylindrical set is easy to define: within each interval of J , the likelihood that a
CTMG M with scheduler S behaves in accordance with the J -cylindrical set
can—assuming compliance in all previous intervals—be checked using the same
techniques as the ones used for finite Markov chains.

The likelihood that a system run (a complete timed path) is in the J -
cylindrical set of timed paths for S is the product ν(l0)

∏

I∈J pI , where PI is the
the probability to comply with the individual segments of J . The probability
pIi to comply with the i-th segment Ii of the partition J is the product of three
multiplicands (pIi = pIi1 · pIi2 · pIi3 ):

1. the probability pIi1 that the actions are chosen in accordance with the J -
cylindrical scheduler (which is either 0 or 1 for deterministic schedulers),

2. the probability pIi2 that the transitions are taken in accordance with the
J -cylindrical set of timed paths, provided the respective actions are chosen,
which is simply the product over the individual probabilities P(lj , aj , lj+1)
of the transitions that happen in Ii, and

3. the probability pIi3 that the right number of steps is made in this subsequence
of the J -cylindrical set of timed paths.
That is, pIi3 is 0 if the last location is a discrete location, as the system
would leave this location at the same point in time in which it was entered.
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Otherwise, for a continuous location it is the difference pIi3 = q≥n − q≥n+1

between the likelihood that at least n ≥ 0 transitions are made (q≥n), and
the likelihood that at least n+1 transitions are made (q≥n+1) in the relevant
subsequence of the timed path (we count only those transitions starting in
continuous locations, and n is the correct number of transitions for Ii).
The likelihood to get a path of length ≥ n is

q≥n =

∫

(τ0,...,τn−1)∈Φn,i

n−1
∏

k=0

λke
−λkτkdτk

for Φn,i = {(τ0, . . . , τn−1) ∈ [0, T ]n |
∑n−1

j=0 τj ≤ ti − ti−1} for n > 0, and 1
for n = 0. Here, ti and ti−1 are the upper and lower endpoints of the interval
Ii and the rates λk are defined as follows.
Let l0, l1, . . . , ln be the n continuous locations in the required order of ap-
pearance (note that n might be 0, and that the same location can occur
multiple times), then for deterministic schedulers the transition rates are
λi = R(li,S(li, Ii), L). For a randomised scheduler S, the transition rates
are the expected transition rate λi =

∑

a∈Act(li)
S(li, Ii)(a) ·R(li, a, L). The

definition for paths of length n+ 1 runs accordingly.

Based on this, we define a straight forward primitive probability measure that
covers the complement and finite unions of cylindrical sets of paths. Note that
this does not define a probability space as countable unions are not covered yet.

2.4 Probability Space for Cylindrical Schedulers

Probability spaces of CTMDPs are sometimes defined in the tradition of the
work of Wolovick and Johr [25], where the probability space is constructed in
the following two steps: first, one defines a simple Borel measure on paths (com-
parable to a Borel-extension on our primitive measure from above), and second,
one defines the probability space for an arbitrary (but fixed) Borel-measurable
scheduler by defining the probability of a step and then using the Ionescu-Tulcea
Theorem [1, Theorem 2.7.2] to obtain the unique extension to a probability space
on infinite paths.

In this article, we take a step back and do the leg-work of defining a probabil-
ity space directly through the simpler and more primitive completion underlying
this closure: we complete the given primitive probability space using the stan-
dard completion through Cauchy sequences as known from the completion of
Riemann integrable to Lebesgue integrable functions.

We do this in the following way: building on the primitive probability space
defined in Section 2.3, we complete the space of cylindrical set of finite timed
paths in this subsection for a given cylindrical scheduler, extending the primitive
probability measure over complements and finite unions of cylindrical sets of
paths to a probability space (covering also countable unions). Based on this
definition, we define the time-bounded reachability probability for this simple
class of schedulers in Section 2.5. Finally, we apply a second layer of completion
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on the class of schedulers, for which we need to define a difference measure (or
metric) on schedulers in Section 2.6.

Probability space for a given cylindrical scheduler. To obtain a suitable
probability space for a given cylindrical scheduler, we complete the space of finite
unions of cylindrical sets of timed paths to Cauchy sequences of finite unions of
cylindrical sets of timed paths. In order to use Cauchy sequences, we need the
notion of a difference measure (or metric). We define this difference measure
between two sets of timed paths (each a finite disjoint union of cylindrical sets)
as the probability of the symmetrical difference of the two sets. The symmetrical
difference can obviously be represented as a finite disjoint union of cylindrical
sets of timed paths, and thus we can use the primitive probability space we
defined in Section 2.3.

Based on this definition, we define the usual equivalence class on the re-
sulting Cauchy sequences: two Cauchy sequences s = P1, P2, P3, . . . and s′ =
P ′
1, P

′
2, P

′
3, . . . are equivalent if, and only if, limn→∞ |Pn − P ′

n| = 0. This defines
an equivalence class on Cauchy sequences, which we use to complete the space
of cylindrical sets of timed paths to a space of equivalence classes of Cauchy
sequences in the usual way. Thus, the we can use the quotient class of s instead
of s. In particular, it trivially holds that the limit limn→∞ |Pn| is independent
from the chosen representative.

In the following we will use PrS( ·) to denote the probability measure of
the resulting probability space on measurable sets of timed paths. Where nec-
essary to distinguish, we will refer to the corresponding CTMG M by using an
additional parameter, PrMS ( ·).

2.5 Time-Bounded Reachability Probability

In this subsection, we consider the time-bounded reachability probability problem
first for the primitive cylindrical schedulers: given a CTMG M, a goal region
G ⊆ L, and a time bound 0 ≤ tmax ≤ T ,4 we are interested in the set of paths
reachM(G, tmax) that reach a location in the goal region within time tmax:

reachM(G, tmax)=
{

π∈Paths | π = l0
a0,t0
−−−→ l1 . . . ln, ∃i < n. li ∈ G∧ti−1 ≤ tmax

}

.

We are particularly interested in optimising this probability and in finding the
corresponding pair of strategies: supSA∈TH infSD∈TH PrSA+D

(reachM(G, tmax)),
which is commonly referred to as the maximum time-bounded reachability prob-
ability problem in the case of CTMDPs with a reachability player only.

Given a scheduler S, we define PrGS (π, t) to be the probability under this
scheduler of visiting the goal region G within time tmax, assuming we start
with path π and that tmax − t time units have passed already (or, likewise,

4 The upper time bound of the probability space T and of the reachability prop-
erty tmax could be different. Nevertheless this is not a restriction, since we can
choose T freely.

8



that t time units are left). That is, PrGS (π, t) is the conditional probability
PrS (reachM(G, tmax) | π is prefix). Similarly, for a location l ∈ L, we define

PrGS (l, t) = PrS
(

reachM(G, tmax) | {π ∈ Paths | last(π) = l, tlen(π)−1 < t}
)

.

As usual, the supremum of the time-bounded reachability probability over a
particular scheduler class is also called the time-bounded reachability of M for
this scheduler class, and we use ‘max’ instead of ‘sup’ to indicate that this value
is taken for some optimal scheduler S of this class.

2.6 Completing the space of schedulers

While we have established a probability space for a given cylindrical scheduler,
the class of cylindrical schedulers is not particularly strong, and, like in the re-
cent literature on CTMDPs, we would like to prove our results for a wider class
of schedulers. In order to exploit the technique of completion (as used above),
we have to create a suitable metric space on cylindrical schedulers. For conve-
nience we base the required difference measure on the time-bounded reachability
probability.

A metric space on cylindrical schedulers. For deterministic schedulers
D and E for a CTMG M, we define a difference scheduler δ{D,E} that uses
the actions of D and E on every history, on which they coincide, and a fresh
action a∗ if D chose some action aD and E chose an action aE 6= aD upon this
history. The new action a∗ leads to a fresh continuous location g with rate λ,
where λ = maxl∈L,a∈Act(l) R(l, a, L) denotes the maximal transition rate of M.
We use M′ to denote the adjusted CTMG used for the difference measure.

For all continuous locations l, we fix

– R(l, a∗, g) = λ and
– R(l, a∗, l′) = 0 for all locations l′ 6= g

for the new action, and maintain the entries to the rate matrix for the old
actions. Location g has only one enabled action, say a∗, with R(g, a∗, g) = λ
and 0 for all other locations. For discrete locations, we would fix P(l, a∗, g) = 1
(and P(l, a∗, l′) = 0 for l′ 6= g) for the new action, and maintain the entries for
the old actions in P.

The distance d between two schedulers is then defined as the probability of
reachM′({g}, T ), where T is the same as for M, using the cylindrical scheduler
δ{D,E}.

This distance function defines a pseudometric on the cylindrical sched-
ulers; symmetry and non-negativity obviously hold. For the triangle inequation
d(D,F ) ≤ d(D,E) + d(E,F ) consider the scheduler δ{D,E,F} that, similarly to
the construction above, picks the action a∗ unless all three schedulers agree.
Clearly, it holds d(D,F ) ≤ Prδ{D,E,F}

(reachM′({g}, T )) and we can see that
Prδ{D,E,F}

(reachM′({g}, T )) ≤ d(D,E) + d(E,F ) as, whenever D deviates from
F , scheduler E has to deviate from at least one of them.
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Again, we have to resort to a carrier set of quotient classes of schedulers with
distance 0 in order to satisfy d(x, y) = 0 ⇔ x = y and thus to obtain a metric.
(One can think of different actions on unreachable paths.)

Randomised schedulers. If the schedulers D and E from above are ran-
domised, then we would define the distribution chosen by δ{D,E} in line with the
definition from above.

For every path ending in some location l where D chooses an action a
with probability paD and E chooses a with probability paE then δ{D,E} chooses
a with probability min{paD, p

a
E}. (δ{D,E,F} would choose a with probability

min{paD, paE , p
a
F }.) Similarly to the deterministic case, we assign the remaining

probability mass to the fresh action a∗ leading to the newly created location g.
For continuous locations l, we set the rate to be R(l, a∗, g) = λ (and to 0 other-
wise). The new difference between two randomised schedulers is the probability
to reach g within the time interval [0, T ] when using δ{D,E}.

Having constructed a difference measure (pseudometric), all arguments from
above extend to the case of randomised schedulers.

Completion. We have defined a probability space for every cylindrical sched-
uler and a metric on the class of cylindrical schedulers. This allows us to complete
the class of schedulers by defining a probability space for every scheduler that
is a limit point of a Cauchy sequence of cylindrical schedulers.

It is easy to see that, for a CTMG M and schedulers D,E for M, a set of
paths Π ⊆ Paths that is measurable for these schedulers must satisfy

∣

∣

∣
PrD(Π)− PrE(Π)

∣

∣

∣
≤ d(D,E) .

Consequently, the limit probability of Π for a Cauchy sequence of cylindrical
schedulers is well defined and independent of the representative.

We refer to the schedulers in this space as measurable schedulers. They con-
tain the equally named class defined in [25, 15], but apply also for non-uniform
CTMGs. We will use PrS(·) to denote the measure of the probability space
associated with a scheduler S from this much larger class.

Time-bounded reachability probabilities. Note that the definition of the
metric implies that we can use the limit of the time-bounded reachability proba-
bilities of a representative (that is, a Cauchy sequence of cylindrical schedulers)
to define the time-bounded reachability probability of its quotient.

2.7 Why not via Borel σ-algebras?

As it is more common in the community to construct the probability space via
Borel σ-algebras on paths, we want to give our motivation to switch to the
definition introduced above.

In our opinion, the probability space should be the servant of the applica-
tion, and not the other way round. (Although this may well be different in a
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purely mathematical paper.) Thus, our starting point are the ‘implementable’
schedulers. But what does make a scheduler implementable?

We believe that cylindrical schedulers are a safe upper bound for what can be
implemented. It is likely that we will face discrete-time systems in practice—as
time cannot be measured with infinite precision—for which the continuous-time
systems are abstractions, and an implementable scheduler has to take this into
account5.

If we consider a reasonable metric space of schedulers, such schedulers should
be dense in it for the simple reason that every measure that would suggest the
existence of a better scheduler would use a scheduler that cannot even be ap-
proximated by schedulers of this simple class, and hence cannot be approximated
by implementable schedulers. In our view, such a measure should be considered
with suspicion, because it has lost its relation to the real world and would there-
fore no longer be a suitable model. From this point of view, it is the most natural
choice to work with a completion of the room of cylindrical schedulers.

The question of whether differential equations and derivations are justified for
the resulting schedulers is, of course, of paramount importance. Note, however,
that we only use these concepts for timed positional schedulers, which are fully
described by the functions that map locations and points of time to actions
or distributions over actions. But if these functions are Lebesgue measurable,
then we can use the normal Lebesgue integral and use the standard theory of
integration and derivation.

Finally, the main result of this article is that the class of cylindrical
schedulers—the building blocks of our probability spaces—is sufficient for opti-
mising time-bounded reachability probabilities, and thus the precise way how to
complete the class of schedulers is not of importance.

3 Optimal Scheduling in CTMDPs

In this section we demonstrate the existence of optimal schedulers in CTMDPs.
For this, we first develop upper and lower bounds (fmax, fmin ∈ L×R≥0 → [0, 1])
for the time-bounded reachability of any THR scheduler (Lemma 1) and then
show that these bounds are actually taken by some TPD schedulers (Theo-
rems 1 & 2). First, however, let us develop an intuition how the reachability
probabilities in a CTMG evolve over time.

In the case of a fixed deterministic positional scheduler S for a given CTMG,
we know that the reachability probabilities PrGS (·, ·) comply with the Kol-
mogorov backward equation for CTMCs [23]:

Ṗ r
G

S (·, t) = Q · PrGS (·, t) ,

5 This view is in the tradition of the elegant and intuitive approach used by Bellman [5],
who views continuous-time Markov games with bounded safety or reachability ob-
jectives as limits of sequences of discrete-time Markov games.
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where PrGS (·, t) is the vector of probabilities PrGS (l, t) for all locations l ∈ L,
and matrix Q is defined by Q[l, l′] = R(l,S(l), l′) if l 6= l′ and Q[l, l] =
−R(l,S(l), L) +R(l,S(l), l).

We can interpret this equation location-wise. Thus, for deterministic posi-
tional schedulers S, this immediately gives us the following system of equations
for every location l ∈ L:

−ṖrGS (l, t) =
∑

l′∈L

R
(

l,S(l), l′
)

·
(

PrGS (l
′, t)− PrGS (l, t)

)

.

This naturally extends to cylindrical TPD schedulers, as we can define the
functions for the intervals recursively by interpreting each interval as an inde-
pendent CTMC. Thus, the equation extends to TPD schedulers:

−ṖrGS (l, t) =
∑

l′∈L

R
(

l,S(l, t), l′
)

·
(

PrGS (l
′, t)− PrGS (l, t)

)

,

and even to TPR schedulers with small modifications:

−ṖrGS (l, t) =
∑

a∈Act(l)

S(l, t)(a)
∑

l′∈L

R
(

l, a, l′
)

·
(

PrGS (l
′, t)− PrGS (l, t)

)

.

Additionally, we know that, if time runs out, at time tmax, or when we reach
the goal region it obviously holds:

– PrGS (l, t) = 1 for all goal locations l ∈ G and all t ≤ tmax,
– PrGS (l, t) = 0 for all other locations l /∈ G at time t = tmax, and
– PrGS (l, t) = 0 for all locations l ∈ L and for all t > tmax.

As discussed in the literature, this enables us already to effectively approx-
imate the time-bounded reachability for CMTCs (and also for CTMGs un-
der (late) TPD schedulers). As we are interested in the optimal time-bounded
reachability, we have to maximise/minimise over the available choices. It is not
surprising—especially considering the way we define our schedulers—that point-
wise optimisation leads to global optimality:

−ḟopt(l, t) = opt
a ∈ Act(l)

∑

l′∈L

R(l, a, l′) · (fopt(l
′, t)− fopt(l, t)) for t ∈ [0, tmax] ,

where opt ∈ {min,max}. This intuitive result is not hard to prove6. In fact, fopt
dominates (is dominated by, respectively) not only TPD schedulers, but the full
class of THR schedulers. The full proof is moved to Appendix A.2.

6 The systems of non-linear ordinary differential equations used in this article are all
quite obvious, and the challenge is to prove that they can be taken and not merely
approximated. An approximative argument for these ODE’s goes back to Bellman
[5], but he uses a less powerful set of schedulers, and only proves that fmax and fmin

can be approximated from below and above, respectively, claiming that the other
direction is obvious.
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Lemma 1. For a CTMG M with only continuous locations the time-bounded
reachability probability of any measurable THR scheduler is dominated by the
function fmax and dominates the function fmin.

Proof Idea: To prove this claim for fmax, assume that there is a scheduler
that provides a strictly better time-bounded reachability probability PrMS (l, t) >
fmax(l, t) for some location l ∈ L and time t ∈ [0, tmax] (in particular for t = 0),
and hence improves over fmax(l, t) at this position by at least 3ε for some ε > 0.

S is a Cauchy sequence of cylindrical schedulers. Therefore we can sacrifice
one ε and get an ε-close cylindrical scheduler from this sequence, which is still
at least 2ε better than fmax at position (l, t).

As the measure for this cylindrical scheduler is a Cauchy sequence of measures
for sequences with a bounded number of discrete transitions, we can sacrifice an-
other ε to sharpen the requirement for the scheduler to reach the goal region in
time and with at most nε steps for an appropriate bound nε ∈ N, still maintain-
ing an ε advantage over fmax. Hence, we can compare with a finite structure,
and use an inductive argument to show for paths π of shrinking length that end
in any location l′ ∈ L that fmax(l

′, t) ≤ PrMS (π, t) holds. ⊓⊔
It is not very surprising that the optimal strategy is to always/point wise

choose the optimising actions. The challenge is to prove that a measurable point
wise optimal scheduler exists.

Theorem 1. For every CTMDP there is a measurable TPD scheduler S that
maximises the time-bounded reachability probability in the class of measurable
THR schedulers.

Proof. We construct a measurable scheduler S that chooses, for all t ∈ [0, tmax],
an action a that maximises

∑

l′∈LR
(

l,S(l, t), l′
)

·
(

PrMS (l′, t)− PrMS (l, t)
)

. By
Lemma 1, this guarantees that

∑

l∈L ν(l)PrMS (l, 0) =
∑

l∈L ν(l)fmax(l, 0) =
sup

S∈THR

PrMS (tmax) holds.

For positions outside of [0, tmax], the behaviour of the scheduler does not
matter. S(l, t) can therefore be fixed to any constant decision for all t /∈ [0, tmax].

In order to fix optimal decisions for the interval [0, tmax] in a location l, which
we fix for the rest of the proof, we start with fixing an arbitrary order ≻ on the
actions in Act(l) and introduce, for each point in time t ∈ [0, tmax], an additional
order 3t on the actions determined by the value of

∑

l′∈LR(l, a, l′)·
(

fmax(l
′, t)−

fmax(l, t)
)

, using ≻ as a tie-breaker.
We now define the following sets for every action a:

– Ma = {t ∈ [0, tmax] | a is maximal w.r.t. 3t} is the set of points t in the
time interval [0, tmax], for which a is maximal with respect to the order 3t.

– Ca = {t ∈ [0, tmax] | ∀δ > 0∃t′ ∈ Ma. |t− t′| < δ} is the closure of Ma, and
– Da = Ca r

⋃

b≻a

Cb as the set of points in the time interval [0, tmax], action

a is 3t-better than all other actions and there is no ≻-better action with
equal quality.
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To complete the proof, we have to show that the scheduler S, which
chooses a for all t ∈ Da, makes only decisions that maximise the gain, that
is
∑

l′∈L R(l, a, l′)·
(

fmax(l
′, t)− fmax(l, t)

)

(and hence that fmax = PrMS holds),
and we have to show that the resulting scheduler is measurable. We start by
showing that a is an optimal decision at all points in time contained in Da.

First, the decision a is optimal, that is, it maximises
∑

l′∈LR(l, a, l′) ·
(

fmax(l
′, t)− fmax(l, t)

)

, in Ma by definition.
The fact that a is also optimal in the larger set Ca is then a trivial consequence

of the continuity of fmax. Da ⊆ Ca then implies that a is an optimal decision in
all points in time contained in Da.

The next relevant (and trivial) fact is that the Ma’s partition [0, tmax] by
their definition. Consequently, the Ca’s cover [0, tmax] (Ca ⊇ Da), and the Da’s
again partition [0, tmax].

Finally, we show that the Da’s are (Lebesgue) measurable: they inherit this
property from the Ca’s, which are measurable because they are closed subsets
of [0, tmax]. As each Da is constructed by a finite number of negations and in-
tersections from these Ca’s, the Da’s are measurable as well.

Our construction therefore provides us with a measurable scheduler, which
is optimal, deterministic, and timed positional. ⊓⊔

By simply replacing maximisation by minimisation, sup by inf, and max by
min, we can rewrite the proof to yield a similar theorem for the minimisation of
time-bounded reachability, or, likewise, for the maximisation of time-bounded
safety.

Theorem 2. For a CTMDP, there is a measurable TPD scheduler S optimal for
minimum time-bounded reachability in the class of measurable THR scheduler.

4 Finite Optimal Control

In this section we show that, once the existence of an optimal scheduler is es-
tablished, we can refine this result to the existence of a cylindrical optimal TPD
scheduler, that is, a scheduler that switches finitely many times between different
positional strategies. This is as close as we can hope to get to implementability
as optimal points for policy switching are—like in the example from Figure 1—
almost inevitably irrational. From now on we call these points switching points.

Our proof of Theorem 1 makes a purely topological existence claim, and
therefore does not imply that a finite number of switching points suffices. In
principle, this could mean that the required switching points have one or more
limit points, and an unbounded number of switches is required to optimise time-
bounded reachability. Figure 2 shows the derivations of the reachability proba-
bilities for a positional scheduler (black) and a potential other scheduler. The
intersections of the two curves have a limit point.

To exclude such limit points, and hence to prove the existence of an optimal
scheduler with a finite number of switching points, we re-visit the differential
equations that define the reachability probability, but this time to answer a
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Fig. 2. Theorem 1 would not exclude that the intersection points of derivatives (the
‘loss’) of two positional schedulers have a limit point.

different question: can we, for every point in time t, find positional schedulers
that are locally optimal on an ε-environment of t? If yes, then we could exploit the
compactness of [0, tmax] to get a cover of finitely many of these open intervals and
we could potentially construct a (globally) optimal scheduler using the locally
optimal scheduler associated to these intervals. However, while this is possible
for most points, this is not necessarily the case at our switching points.

In the remainder of this section, we therefore show a slightly weaker property:
for every point t ∈ [0, tmax] in time, there is a positional scheduler that is locally
optimal in a left ε-environment of t (that is, in a set (t − ε, t] ∩ [0, tmax]), and
one that is locally optimal in a right ε-environment of t. Hence, we get an open
cover of [0, tmax] by intervals with locally optimal schedulers that have at most
one switching point. Thus, we obtain a globally optimal scheduler with a finite
number of switching points.

Lemma 2. For every CTMDP and every point in time t there is a constant
scheduler Sl ∈ L → Act (Sr, respectively) such that it adheres to the same system
of differential equations as fmax (fmin, respectively) on a left (right, respectively)
ε-environment of t, when using fmax(t) (fmin(t), respectively) as support point.

Proof. We have seen that the true optimal reachability probability (fmax) is
defined by a system of differential equations. In this proof we consider the effect
of starting with the ‘optimal’ values for a time t ∈ [0, tmax] and fix a positional
scheduler. We then prove that there is a left-optimal scheduler among them that
satisfies the same system of differential equations in a left ε-environment and a
right-optimal scheduler that satisfies the same system of differential equations
in a right ε-environment. Thus, there is a scheduler with at most one switching
point that is locally optimal with respect to the full class of schedulers.

Given a CTMDP M, we consider the differential equations that describe
the development near the support point fmax(l, t) for each location l under a
positional strategy D:

−ṖrDl (τ) =
∑

l′∈L

R(l, al, l
′) ·

(

PrDl′ (τ) − PrDl (τ)
)

,
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Fig. 3. The gain functions of the competing stationary strategies of Figure 1. To the

left: developed gains Ṗr
Sa/Sb

A (t) from t = tmax = 1 in order to find the only switching

point t′ = tmax −

1

2
log(2). To the right: Developed values Pr

Sa/Sb
A (t) (not gains) from

t′ in both directions, to show that action a is better for all t < t′ whereas b is better for
all t > t′. This construction is also used to determine the existence of ǫ-environments
with a stable strategy around every point t.

where al is the action chosen at l by D (see Figure 3 for an example).

Different to the development of the true probability, the development of these
linear differential equations provides us with smooth functions. This provides us
with more powerful techniques when comparing two locally positional strategies:
each deterministic scheduler defines a system ẏ = Ay of ordinary homogeneous
linear differential equations with constant coefficients.

As a result, the solutions PrDl (τ) of these differential equations—and

hence their differences PrD
′

l (τ) − PrDl (τ)—can be written as finite sums
∑n

i=1 Pi(τ)e
λiτ , where Pi is a polynomial and the λi may be complex. Con-

sequently, these functions are holomorphic.

Using the identity theorem for holomorphic functions, t can only be a limit

point of the set of 0 points of PrD
′

l (τ) − PrDl (τ) if PrD
′

l (τ) and PrDl (τ) are
identical on an ε-environment of t. The same applies to their derivations:
ṖrD

′

l (τ) − ṖrDl (τ) either has no limit point in t, or ṖrD
′

l (τ) and ṖrDl (τ) are
identical on an ε-environment of t.

For the remainder of the proof, we fix, for a given time t, a sufficiently small
ε > 0 such that, for each pair of positional schedulers D and D′ and every
location l ∈ L, ṖrD

′

l (τ) − ṖrDl (τ) is either < 0, = 0, or > 0 on the complete
interval Lt

ε = (t − ε, t) ∩ [0, tmax] ∋ τ , and, possibly with different sign, for the
complete interval Rt

ε = (t, t+ ε) ∩ [0, tmax] ∋ τ .

We argue the case for the left ε-environment Lt
ε. In the ‘>’ case for a location

l, we say that D is l-better than D′. We call D preferable over D′ if D′ is not
l-better than D for any location l, and better than D′ if D is preferable over D′

and l-better for some l ∈ L.
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If D′ is l-better than D in exactly a non-empty set Lb ⊂ L of locations, then
we can obviously use D′ to construct a strategy D′′ that is better than D by
switching to the strategies of D′ in exactly the locations Lb.

Since we choose our strategies from a finite domain—the deterministic po-
sitional schedulers—this can happen only finitely many times. Hence we can
stepwise strictly improve a strategy, until we have constructed a strategy Dmax

preferable over all others.

By the definition of being preferable over all other strategies, Dmax satisfies

−ṖrDmax

l (τ) = max
a∈Act(l)

∑

l′∈L

R(l, a, l′) ·
(

PrDmax

l′ (τ) − PrDmax

l (τ)
)

for all τ ∈ Lt
ε and all l ∈ L —it fulfils the same system of equations as fmax.

We can use the same method for the right ε-environment Rt
ε and for the

minimising strategies. ⊓⊔

Theorem 3. For every CTMDP there is a cylindrical TPD scheduler S op-
timal for maximum time-bounded reachability in the class of measurable THR
schedulers.

Proof. We can use Lemma 2 to determine a scheduler with at most one switching
point that fulfils the optimal differential equations in an ε-environment (t−ε, t+
ε) ∩ [0, tmax] of t, using fmax(t) as support point.

As this is possible for all points in [0, tmax], the sets Itε = Lt
ε ∪ Rt

ε define
a cover of open sets of the interval [0, tmax]. Using compactness of [0, tmax], we
infer a finite sub-cover of intervals with associated schedulers that have at most
one switching point each and that each locally fulfil the differential equations of
fmax on [0, tmax]. As these open intervals have to overlap to form a cover, this
establishes the existence of an optimal strategy with a finite number of switching
points. ⊓⊔

The proof for the minimisation of the time-bounded reachability probability
runs accordingly.

Theorem 4. For every CTMDP there is a cylindrical TPD scheduler S optimal
for minimal time-bounded reachability in the class of measurable THR scheduler.

5 Discrete Locations

In this section, we treat the mildly more general case of single player CTMGs,
which are traditional CTMDPs plus discrete locations. We reduce the problem
of finding optimal measurable schedulers for CTMGs first to simple CTMGs,
CTMGs whose discrete locations have no incoming transitions from continuous
locations. (They hence can only occur initially at time 0.) The extension from
CTMDPs to simple CTMGs is trivial.
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Lemma 3. For a simple single player CTMG with only a reachability (or only
a safety) player, there is an optimal deterministic scheduler with finitely many
switching points.

Proof. By the definition of simple single player games, the likelihood of reaching
the goal location from any continuous location and any point in time is indepen-
dent of the discrete locations and their transitions. For continuous locations, we
can therefore simply reuse the results from the Theorems 3 and 4.

We can only be in discrete locations at time 0, and for every continuous
location l there is a fixed time-bounded reachability probability described by
fopt(l, 0). We can show that there is a timed positional (even a positional) de-
terministic optimal choice for the discrete locations at time t = 0 by induction
over the maximal distance to continuous locations: if all successors have been
evaluated, we can fix an optimal timed positional choice. We can therefore use
discrete positions with maximal distance 1 as induction basis, and then apply
an induction step from positions with distance ≤ n to positions with distance
n+ 1. ⊓⊔

Rebuilding a single player CTMG M to a simple single player CTMG Ms

can be done in a straight forward manner; it suffices to pool all transitions
taken between two continuous locations. (Here we use that there cannot be
loops in discrete states.) To construct the resulting simple CTMG Ms, we add
new continuous locations for each possible time abstract path from continuous
locations of the CTMG M, and we add the respective actions: for continuous

locations lc, l
′
c ∈ Lc and discrete locations ld1 , . . . , l

d
n ∈ Ld a timed path lc

a0,t
−−→

ld1
a1,t
−−→ ld2 · · · l

d
n

an,t
−−→ l′c translates to lc

a,t
−−→

a0−→ ld1
a1−→ ld2 · · · ldn

an−−→ l′c, where the
underlined part is a new continuous location. (For simplicity, we also translate

a timed path lc
a,t
−−→ l′c to lc

a,t
−−→

a
−→ l′c.)

The new actions of the resulting simple single player CTMG encode the
sequences of actions of M that a scheduler could make in the current location
plus in all possible sequences of discrete locations, until the next continuous
location is reached. (Note that this set is finite, and that the scheduler makes all
of these transitions at the same point of time.) If a encodes choices that depend
only on the position (but not on this local history), a is called positional. For
continuous locations, all old actions are deleted, and all new continuous locations
that end in a location lc ∈ Lc get the same outgoing transitions as lc. The rate
matrix is chosen accordingly.

Adding the information about the path to locations allows us to reconstruct
the timed history in the single player CTMG from a history in the constructed
simple CTMG.

Theorem 5. For a single player CTMG M with only a reachability (or only
a safety) player, there is an optimal deterministic scheduler with finitely many
switching points.
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Proof. First, every scheduler S for M can be naturally translated into a sched-
uler of Ss of Ms, because every timed-path in Ms defines a timed-path in M;
the resulting time-bounded reachability probability coincides.

Let us consider a cylindrical optimal deterministic scheduler Sopt for the
simple Markov game, and the function fopt defined by it. For the actions a Sopt

chooses, we can, for each interval in which Sopt, is positional, use an inductive
argument similar to the one from the proof of Lemma 3 to show that we can
choose a positional action a′ instead. The resulting cylindrical deterministic
scheduler S ′

opt defines the same fopt (same differential equations).

Clearly, fopt(lc, t) = fopt(. . .
a
−→ lc, t) holds. We use this observation to change

S ′
opt to S

′′
opt by choosing the action that S ′

opt chooses for lc for all locations . . .
a
−→ lc

and at each point of time. The resulting scheduler S ′′
opt is still cylindrical and

deterministic, and defines the same fopt (same differential equations).

S ′′
opt is also the mapping of a cylindrical optimal deterministic scheduler

for M. ⊓⊔

5.1 From Late to Early Scheduling

Our main motivation for introducing discrete transitions is that it provides
framework that covers both, early schedulers (which have to fix an action when
entering a location) and the late schedulers used in this article.

Late schedulers are naturally subsumed in our model, as the schedulers we
assume are the more powerful late schedulers. To embed early schedulers as well,
it suffices to use a simple translation: we ‘split’ every continuous location lc into
a fresh discrete location ldc , and one fresh continuous location lac for each action
a ∈ Act(lc) enabled in lc.

Every incoming transition to lc is re-routed to ldc , l
d
c has an outgoing transition

a that surely leads to lac (P(ldc , a, l
a
c ) = 1) for each action a ∈ Act(lc) enabled

in lc, and no other outgoing transition. In lac , we have Act(lac ) = {a}, and the
entries in R(lac , a, l) are the entries taken from R(lc, a, l) for discrete locations
l, and re-routed to the respective ld for continuous locations. Probability mass
assigned to lc is moved to ldc by the translation, and if lc is a goal state, so are
ldc and the lac ’s.

In the initial distribution we replace every continuous location lc by the newly
created discrete distribution ldc .

Intuitively, every occurrence of
∗,t
−−→ lc

a,t′

−−→ is replaced by
∗,t
−−→ ldc

a,t
−−→ lac

a,t′

−−→;

lc is the beginning of the path, lc
a,t′

−−→ is replaced by ldc
a,t
−−→ lac

a,t′

−−→.

Obviously, there is a simple relation between optimal early schedulers of a
CTMDP (or, indeed, CTMG), and optimal late schedulers in the translated
CTMDP: recall that history-dependent scheduler classes do not improve reacha-
bility over timed positional schedulers. As a consequence, the existence of finite
deterministic optimal control extends to early scheduling.
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Fig. 4. An informal example, depicting the idea of the encoding of an early scheduling
CTMG (left) in a late scheduling CTMG (right).

6 Continuous-Time Markov Games

In this section, we lift our results from single player to general continuous-time
Markov games. In general continuous-time Markov games, we are faced with two
players who have opposing objectives: a reachability player trying to maximise
the time-bounded reachability probability, and a safety player trying to minimise
it—we consider a 0-sum game.

Thus, all we need to do for lifting our results to games is to show that the
quest for optimal strategies for single player games discussed in the previous
section can be generalised to a quest for co-optimal strategies—that is, for Nash
equilibria—in general games. To demonstrate this, it essentially suffices to show
that it is not important whether we first fix the strategy for the reachability
player and then the one for the safety player in a strategy refinement loop, or
vice versa.

Let us first assume CTMGs without discrete locations.

Lemma 4. Using the ε-environments Itε from the proof of Theorem 3, we can
construct a Nash equilibrium that provides co-optimal deterministic strategies
for both players, such that the co-optimal strategies contain at most one strategy
switch on Itε.

Proof. We describe the technique to find a constant co-optimal strategy on the
right ε-environment Rt

ε = (t, t+ ε) ∩ [0, tmax] of t.

We write a constant strategy as D = S + R that is composed of the actions
chosen by the safety player on Ls, and the actions chosen by the reachability
player on Lr. For this simple structure, we introduce a strategy improvement
technique on the finite domain of deterministic choices for the respective player.

For a fixed strategy S of the safety player, we can define an optimal counter
strategy R(S) of the reachability player by applying the technique described in
Theorem 3. (For equivalent strategies, we make an arbitrary but fixed choice.)

We call the resulting vector (−ṖrM
S+R(S)(l, t+

1
2ε) | l ∈ L) the quality vector

of S. Now, we choose an arbitrary S for which this vector is minimal. (Note that
there could, potentially, be multiple incomparable minimal elements.)
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We now show that the following holds for S and all τ ∈ Rt
ε:

−ṖrM
S+R(S)

(l, τ) = max
a∈Act(l)

∑

l′∈L

R(l, a, l′) ·
(

PrM
S+R(S)

(l′, τ)− PrM
S+R(S)

(l, τ)
)

for all l ∈ Lr, and

−ṖrM
S+R(S)

(l, τ) = min
a∈Act(l)

∑

l′∈L

R(l, a, l′) ·
(

PrM
S+R(S)

(l′, τ)− PrM
S+R(S)

(l, τ)
)

for all l ∈ Ls. (Note that the order between the derivation is maintained on the
complete right ε-environment Rt

ε.)
The first of these claims is a trivial consequence from the proof of Theorem 3.

(The result is, for example, the same if we had a single player CTMDP that,
in the locations Ls of the safety player, has only one possible action: the one
chosen by S.)

Let us assume that the second claim does not hold. Then we choose a par-
ticular l ∈ Ls where it is violated. Let us consider a slightly changed setting,
in which the choices in l are restricted to two actions, the action a1 chosen by
S, and the minimising action a2. Among these two, one maximises, and one
minimises

−ṖrM
S+R(S)

(l, τ) = min
a∈{a1,a2}

∑

l′∈L

R(l, a, l′) ·
(

PrM
S+R(S)

(l′, τ) − PrS+R(S)(l, τ)
)

.

Let us fix all other choices of S, and allow the reachability player to choose
among a1 and a2 (we ‘pass control’ to the other player). As shown in Theorem 3,
she will select an action that produces the well defined set of max equations for
the resulting single player game. Hence, choosing a1 and keeping all other choices
from R(S) is the optimal choice for the reachability player in this setting (as the
max equations are satisfied, while they are dissatisfied for a2).

Consequently, the quality vector for S is strictly greater than the one for
the adjusted strategy. Assuming that choosing an arbitrary maximal element
does not lead to a satisfaction of the min and max equations thus leads to a
contradiction.

We can argue symmetrically for the left ε-environment. Note that the sat-
isfaction of the min and max equations implies that it does not matter if we
change the role of the safety and reachability player in our argumentation. ⊓⊔

This lemma can easily be extended to construct simple co-optimal strategies:

Theorem 6. For CTMGs without discrete locations, there are cylindrical deter-
ministic timed positional co-optimal strategies for the reachability and the safety
player.

Proof. First, Lemma 4 provides us with an open coverage of co-optimal strategies
that switch at most once, and we can build a strategy that switches at most
finitely many times from a finite sub-cover of the open space [0, tmax]. This
strategy is everywhere locally co-optimal, and forms a Nash equilibrium:
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It is straight forward to cut the interval [0, tmax] into a finite set of sub-
intervals [0, t0], (t0, t1], . . . , (tn−1, tn] with tn = tmax, such that the strategy for
the safety player is constant in all of these intervals. We can use the construc-
tion from Theorem 3 (note that the proof of Theorem 3 does not use that the
differential equations are initialised to 0 or 1 at tmax) to construct an optimal
strategy for the reachability player: we can first solve the problem for the inter-
val [tn−1, tn], then for the interval [tn−2, tn−1] using fopt(l, tn−1) as initialisation,
and so forth. A similar argument can be made for the other player.

This provides us with the same differential equations, namely:

−ḟopt(l, t) = max
a∈Act(l)

∑

l′∈L

R(l, a, l′) · (fopt(l
′, t)− fopt(l, t))

for t ∈ [0, tmax] and l ∈ Lr, and

−ḟopt(l, t) = min
a∈Act(l)

∑

l′∈L

R(l, a, l′) · (fopt(l
′, t)− fopt(l, t))

for t ∈ [0, tmax] and l ∈ Ls.
Note that all Nash equilibria need to satisfy these equations (with the ex-

ception of 0 sets, of course), because otherwise one of the players could improve
her strategy. ⊓⊔

The extension of these results to the full class of CTMGs is straight forward:
we would first reprove Theorem 5 in the style of the proof of Theorem 3 (which
requires to establish the Theorem in the first place). The only extension is that
we additionally get an equation PrDl (τ) =

∑

l′∈LP(l, al, l
′) · PrDl′ (τ) for every

discrete location l. The details are moved to Appendix B.

Theorem 7. For continuous-time Markov Games, there are cylindrical deter-
ministic timed positional co-optimal strategies for the reachability and the safety
player.

As a small side result, these differential equations show us that we can, for
each continuous location lc ∈ Lc and every action a ∈ Act(lc), add arbitrary
values to R(lc, a, lc) without changing the bounded reachability probability for
every pair of schedulers. (Only if we change R(lc, a, lc) to 0 will we have to make
sure that a is not removed from Act(lc).) In particular, this implies that we can
locally and globally uniformise a continuous-time Markov game if this eases its
computational analysis. (Cf. [15] for the simpler case of CTMDPs.)

7 Variations

In this section, we discuss the impact of small changes in the setting, namely
the impact of infinitely many states or actions, and the impact of introducing a
non-absorbing goal region.

22



A B

λ1
a1

λ2
a2

...

Fig. 5. An example CTMDP with infinitely many actions.

Infinitely Many States. If we allow for infinitely many states, optimal solutions
may require infinitely many switching points. To see this, it suffices to use one
copy of the CTMDP from Figure 1, but with rates i and 2i for the i-th copy,
and assign an initial probability distribution that assigns a weight of 2−i to the
initial state Ai of the i-th copy. (If one prefers to consider only systems with
bounded rates, one can choose rates 1+ 1

i
and 2+ 2

i
.) The switching points are

then different for every copy, and an optimal strategy has to select the correct
switching point for every copy.

Infinitely Many Actions. If we allow for infinitely many actions, there is not even
an optimal strategy if we restrict our focus to CTMDPs with two locations, an
initial location and an absorbing goal location. For the CTMDP of Figure 5 with
the natural numbers N as actions and rate λi = 2− 1

i
for the action i ∈ N if we

have a reachability player and λi =
1
i
if we have a safety player, every strategy

S can be improved over by a strategy S ′ that always chooses the successor i+1
when of the action i chosen by S.

Reachability at tmax. If we drop the assumption that the goal region is absorbing,
one might be interested in the marginally more general problem to be in the goal
region at time tmax for the reachability player (safety player, respectively). For
this generalisation, no substantial changes need to be made: it suffices to replace

fopt(l, t) = PrMS (l, t) = 1 for all goal locations l ∈ G and all t ≤ tmax

by
fopt(l, tmax) = PrMS (l, tmax) = 1 for all goal locations l ∈ G.

(In order to be flexible with respect to this condition, the −ḟopt(l, t) are de-
fined for goal locations as well. Note that, when all goal locations are absorbing,
the value of −ḟopt(l, t) is 0 and fopt(l, t) is 1 for all goal locations l ∈ G and all
t ∈ [0, tmax].)
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15. Martin R. Neuhäußer, Mariëlle Stoelinga, and Joost-Pieter Katoen. Delayed Non-

determinism in Continuous-Time Markov Decision Processes. In Proceedings of

FOSSACS ’09, pages 364–379, 2009.
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Appendix

A Optimal reachability probability

A.1 Differential Equations

The differential equations defining fopt are simply the differential equations in
place when a strategy is locally constant. This holds almost everywhere (every-
where but in a 0-set of positions) in case of the cylindrical schedulers that are
the basic building blocks in the incomplete space that we have completed by
considering Cauchy sequences of cylindrical schedulers.

Hence, for every cylindrical scheduler we can partition the interval [0, tmax]
into a finite set of intervals I0, I1, I2, . . ., In as described in the preliminaries.

Within such an interval,

− ˙PrS(π, t) =
∑

l′∈L

R(l, a, l′) ·
(

PrS(π
a,t
−−→ l′, t)− PrS(π, t)

)

for t ∈ Ii

holds for deterministic schedulers, where π is a timed path that ends in l, a is

the deterministic choice the scheduler makes in Ii on this history, and π
a,t
−−→ l′

is its extension. For randomised schedulers it holds for t ∈ Ii,

− ˙PrS(π, t) =
∑

a∈Act

S(π, t)(a)
∑

l′∈L

R(l, a, l′) ·
(

PrS(π
a,t
−−→ l′, t)− PrS(π, t)

)

,

where π is a timed path that ends in l, S(π, t)(a) is the likelihood that the

cylindrical scheduler makes the decision a in Ii on this history, and π
a,t
−−→ l′ is

its extension.
To initialise the potentially infinite set of differential equations, we have the

following initialisations:

◦ PrS(π, t) = 1 holds for all timed histories π that contain (and hence end up
in) locations l ∈ G in the goal region and all t ≤ tmax,

◦ PrS(π, tmax) = 0 holds for all timed histories π that contain only non-goal
locations l /∈ G, and

◦ PrS(π, t) = 0 holds for all locations l ∈ L and all t > tmax.

Additionally, we have to consider what happens at the intersection ti of the
fringes of Ii and Ii+1 for 0 ≤ i < n. But obviously, we can simply first solve the
differential equations for In, then use the values of f(π, tn−1) as initialisations
for the interval In−1, and so forth.

Remark: For timed positional deterministic schedulers we get

− ˙PrS(l, t) =
∑

l′∈L

R(l, a, l′) · (PrS(l
′, t)− PrS(l, t)) for t ∈ Ii, and

− ˙PrS(l, t) =
∑

a∈Act

S(l, t)(a)
∑

l′∈L

R(l, a, l′) · (PrS(l
′, t)− f(l, t)) for t ∈ Ii

for timed positional randomised schedulers. In both cases, the initialisation reads

26



◦ PrS(l, t) = 1 holds for all goal locations l ∈ G and all t ≤ tmax,
◦ PrS(l, tmax) = 0 holds for all non-goal locations l /∈ G, and
◦ PrS(l, t) = 0 holds for all locations l ∈ L and all t > tmax.

Obviously, these differential equations can also be used in the limit.

A.2 Timed positional schedulers suffice for optimal time-bounded

reachability

In this section we give the full proof for Lemma 1.

Lemma 1. For a CTMG M with only continuous locations, the inequations
fmin(l, t) ≤ PrMS (l, t) ≤ fmax(l, t) hold for every scheduler S, every location l,
and every t ∈ [0, tmax].

In the proof, we assume a scheduler that provides a 3ε better result, and
then sacrifice one ε to transfer to cylindrical schedulers (going back to the sim-
pler incomplete space of cylindrical schedulers, but with completed reachability
measure), and then sacrificing a second ε to discard long histories from consid-
eration (going back to the simple space of finite sums over cylindrical sets).

As a result, we can do the comparison in a simple finite structure.

Proof. We start with the comparison of PrMS (l, t) and fmax(l, t).
Let us assume that the claim is incorrect. Then, there is a CTMG M (with

only continuous locations) with location l0 and a scheduler S3ε for M such that
the time-bounded reachability probability is at least 3ε higher for some ε > 0
and t0 ∈ [0, tmax]. That is, Pr

M
S3ε

(l0, t0)− fmax(l0, t0) > 3ε
Let us fix appropriate M, l0, and S3ε. (Note that S3ε does not have to be

timed positional or deterministic.)
Recall that S3ε is the limit point of a Cauchy sequence of cylindrical

schedulers. Hence, almost all of these cylindrical schedulers have distance < ε
to S3ε.

Let us fix such a cylindrical scheduler S2ε with distance < ε to S3ε. The
time-bounded reachability probability of S2ε is still at least 2ε higher compared
to fmax. That is, Pr

M
S2ε

(l0, t0)− fmax(l0, t0) > 2ε holds.
For S2ε, we now consider a tightened form of time-bounded reachability,

where we additionally require that the goal region is to be reached within nε

steps. We choose nε big enough that the likelihood of seeing more than nε discrete
events is less than ε. We call this time-bounded nε reachability.
Remark: We can estimate nε by taking the maximal transition rate
λmax = max{R(l, a, L) | l ∈ Lc, a ∈ Act}, and choose nε big enough that
the likelihood of having more than nε transitions was smaller than ε even if
all transitions had transition rate λmax. As the number of steps is Poisson
distributed in this case, a suitable nε is easy to find.
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The adjustment to time-bounded nε reachability leads to a small change in
the initialisation of the differential equations: for timed histories π of length > nε

that do not contain a location l ∈ G in the goal region within the first nε steps,
we use f(π, t) = 0 (even if it contains a goal region after more than nε steps)
for all t ∈ [0, tmax]. As the probability measure of all timed histories π of length
> nε is < ε, time-bounded nε reachability for S2ε is still at least ε higher than
the value for fmax.

Let us use f(π, t) to express the time-bounded nε reachability for S2ε on a
path π at time t. Then this claim can be phrased as f(l0, t0)− fmax(l0, t0) > ε.

We have now reached a finite structure, and can easily show that this leads
to a contradiction: we provide an inductive argument which demonstrates that
fmax(l, t) ≥ f(π, t) holds for all π that end in l and all t ∈ [0, tmax].

As a basis for our induction, this obviously holds for all timed histories
longer than nε: in this case, fmax(l, t) = 1 or f(π, t) = 0 holds (where the or is
not exclusive).

For our induction step, let us assume we have demonstrated the claim for all
histories of length > n. Let us, for a timed history π of length n that ends in l
and some point t ∈ [0, tmax] assume that fmax(l, t) ≤ f(π, t).

For l ∈ G the initialisation conditions immediately lead to the contradiction
1 < f(π, t). For l /∈ G, we can stepwise infer

−ḟmax(l, t) = maxa∈Act(l)

∑

l′∈LR(l, a, l′) · (fmax(l
′, t)− fmax(l, t))

≥
∑

a∈Act
S(π, t)(a)

∑

l′∈L R(l, a, l′) · (fmax(l
′, t)− fmax(l, t))

≥
∑

a∈Act
S(π, t)(a)

∑

l′∈L R(l, a, l′) · (fmax(l
′, t)− f(π, t))

(with fmax(l, t) ≤ f(π, t))

≥
∑

a∈Act
S(π, t)(a)

∑

l′∈L R(l, a, l′) ·
(

f(π
a,t
−−→ l′, t)− f(π, t)

)

(with I.H.)
= −ḟ(π, t).

Taking into account that fmax(l, tmax) and f(π, tmax) are both initialised to 0
for l /∈ G, we can, using the just demonstrated fmax(l, t) ≤ f(π, t) ⇒ ḟmax(l, t) ≤
ḟ(π, t), infer fmax(l, t) ≥ f(π, t) for all t ∈ [0, tmax]: this inequation holds on the
right fringe of the interval (initialisation), and when we follow the curves of f(l, t)
and fmax(l, t) to the left along [0, tmax], then every time f would catch up with
fmax, f cannot fall steeper than fmax (where ‘fall’ takes the usual left-to-right
view, in the right-to-left direction we consider one should maybe say ‘cannot
have a steeper ascent’) at such a position, and hence cannot not get above fmax.

In particular, f(l0, t0) ≤ fmax(l0, t0), which contradicts the initial assump-
tion. The min-case can be proven accordingly. ⊓⊔

B Reproof of Theorem 5

To lift Theorem 6 to the full class of CTMGs, we reprove Theorem 5 in the style
of the proof of Theorem 3. Recall that Theorem 3 establishes the existence of
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an optimal cylindrical scheduler using the existence of an optimal measurable
scheduler, and the form of the (differential) equations defining the time-bounded
reachability probability for it. The proof given in this appendix can therefore not
been used to supersede the proof in the article.

First we observe from the proof of Theorem 5 that, for discrete locations
l ∈ Ld, the equations

fopt(l, t) = opt
a ∈ Act(l)

∑

l′∈L

P(l, al, l
′) · fopt(l

′, t) for t ∈ [0, tmax] ,

hold for opt ∈ {min,max}, and that they together with the differential equations
for the continuous locations (the differential equations remain unchanged), define
fopt.

The difference in the proof of Theorem 8 compared to the proof of Theorem 3
are marginal, but for the sake to readability we give the complete proof here.

Theorem 8. For a single player continuous-time Markov game with only a
reachability player, there is an optimal deterministic scheduler with finitely many
switching points.

Proof. We have seen that the true optimal reachability probability is defined by
a system of equations and differential equations. In this proof we consider the
effect of starting with the ‘correct’ values for a time t ∈ [0, tmax], but locally
fix a positional strategy for a small left or right ε-environment of t. That is,
we consider only schedulers that keep their decision constant for a (sufficiently)
small time ε before or after t.

Given a CTMG M, we consider the equations and differential equations that
describe the development of the reachability probability for each location l under
a positional deterministic strategy D:

−ṖrDl (τ) =
∑

l′∈L

R(l, al, l
′) ·

(

PrDl′ (τ) − PrDl (τ)
)

for l ∈ Lc,

PrDl (τ) =
∑

l′∈L

P(l, al, l
′) · PrDl′ (τ) for l ∈ Ld,

where al is the action chosen at l by D, starting at the support point fmax(l, t).
Different to the development of the true probability, the development of these

linear differential equations provides us with smooth functions. This provides us
with more powerful techniques when comparing two locally positional strategies:
each deterministic scheduler defines a system ẏ = Ay of ordinary homogeneous
linear differential equations with constant coefficients.

As a result, the solutions PrDl (τ) of these differential equations—and

hence their differences PrD
′

l (τ) − PrDl (τ)—can be written as finite sums
∑n

i=1 Pi(τ)e
λiτ , where Pi is a polynomial and the λi may be complex. Con-

sequently, these functions are holomorphic.
Using the identity theorem for holomorphic functions, t can only be a limit

point of the set of 0 points of PrD
′

l (τ) − PrDl (τ) if PrD
′

l (τ) and PrDl (τ) are
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identical on an ε-environment of t. The same applies to their derivations:
ṖrD

′

l (τ) − ṖrDl (τ) either has no limit point in t, or ṖrD
′

l (τ) and ṖrDl (τ) are
identical on an ε-environment of t.

For the remainder of the proof, we fix, for a given time t, a sufficiently small
ε > 0 such that, for each pair of schedulers D and D′ the following holds: for
every location l ∈ Lc, Ṗr

D′

l (τ) − ṖrDl (τ) is either < 0, = 0, or > 0 on the
complete interval Lt

ε = (t− ε, t)∩ [0, tmax] ∋ τ , and, possibly with different sign,
for the complete interval Rt

ε = (t, t + ε) ∩ [0, tmax] ∋ τ ; and for every location
l ∈ Ld, Pr

D
l (τ) − PrD

′

l (τ) is either < 0, = 0, or > 0 on the complete interval
Lt
ε = (t− ε, t) ∩ [0, tmax] ∋ τ , and, possibly with different sign, for the complete

interval Rt
ε = (t, t+ ε) ∩ [0, tmax] ∋ τ .

We argue the case for the left ε-environment Lt
ε. In the ‘>’ case for a location

l, we say that D is l-better than D′. We call D preferable over D′ if D′ is not
l-better than D for any location l, and better than D′ if D is preferable over D′

and l-better for some l ∈ L.
If D′ is l-better than D in exactly a non-empty set Lb ⊂ L of locations, then

we can obviously use D′ to construct a strategy D′′ that is better than D by
switching to the strategies of D′ in exactly the locations Lb.

Since we choose our strategies from a finite domain—the deterministic po-
sitional schedulers—this can happen only finitely many times. Hence we can
stepwise strictly improve a strategy, until we have constructed a strategy Dmax

that is preferable over all others.
By the definition of being preferable over all other strategies, Dmax satisfies

for all τ ∈ Lt
ε

−ṖrDmax

l (τ) = max
a∈Act(l)

∑

l′∈L

R(l, a, l′) ·
(

PrDmax

l′ (τ) − PrDmax

l (τ)
)

l ∈ Lc ,

PrDmax

l (τ) = max
a∈Act(l)

∑

l′∈L

P(l, a, l′) · PrDmax

l′ (τ) l ∈ Ld .

We can use the same method for the right ε-environment Rt
ε, and pick the

decision for t arbitrarily; we use the decision from the respective left ε environ-
ment.

Now we have fixed, for an ε-environment of an arbitrary t ∈ [0, tmax], an
optimal scheduler with at most one switching point. As this is possible for all
points in [0, tmax], the sets Itε = Lt

ε ∪Rt
ε define an open cover of [0, tmax]. Using

the compactness of [0, tmax], we infer a finite sub-cover, which establishes the
existence of a strategy with a finite number of switching points. ⊓⊔

Again, the proof for single player safety games runs accordingly.

Theorem 9. For a single player continuous-time Markov game with only a
safety player, there is an optimal deterministic scheduler with finitely many
switching points.
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