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Abstract. The success of probabilistic model checking for discrete-time
Markov decision processes and continuous-time Markov chains has led to
rich academic and industrial applications. The analysis of their combina-
tion in continuous-time Markov decisions processes, however, is currently
restricted to toy examples. This is due to the fact that current analysis
techniques for time-bounded reachability require a running time linear
in the reciprocal m~! of the required precision 7. For the high precision
usually sought (for example, six to ten digits), this simply renders these
techniques infeasible. We discuss a surprising combination of discreti-
sation and partial unravelling, which leads to memoryful near optimal
schedulers that can be computed in time linear only in the square or
cube root of 77!, The proposed techniques also reduce the dependency
on the expected number of discrete transitions within the given time
bound significantly. Our techniques naturally extend to the analysis of
continuous-time Markov games.

1 Introduction

Probabilistic models have been used extensively in the formal analysis of complex
systems, including networked, distributed, and most recently, biological systems.
While some systems can be described by probabilistic models with discrete time,
for instance the random experiment of throwing a die, other system aspects, like
failure behaviour, are modelled more natural with continuous-time models.
Over the past 15 years, probabilistic model checking for discrete-time Markov
decision processes (MDPs) and continuous-time Markov chains (CTMCs)
has been successfully applied to rich academic and industrial applications
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Fig. 1. This figure shows a part of a simple CTMDP. In this example, the complete
probability mass is initially concentrated in location [, indicated by the incoming arrow.
The goal region consists only of location G, indicated by the colour and the double line.
In I, the CTMDP offers the choice between two control actions, a and b. Action a has
a smaller transition rate of 5 than b, which has a higher transition rate of 1 +8 = 9. If
the control action b is chosen, the next discrete transition will lead with a probability
of é to L, and with a probability of % to G. Intuitively, action a leads less quickly but
with higher probability (once the transition fires) to the goal location G. When time
is short, a is the preferable action, while b is preferable when much time is left. We
discuss efficient techniques for finding near optimal control policies for a given time
bound for such CTMDPs and their extension to games.

[GMLS07,CHLS09,HMW09,BCR " 09]. However, the analysis of their combina-
tion in continuous-time Markov decisions processes (CTMDPs) is currently re-
stricted to toy examples. As for MDPs and CTMCs, the efficient approximation
of the mazimum time bounded reachability probability is of paramount signifi-
cance for model checking techniques. The time-bounded reachability problem is
to determine or to approximate, for a given set of goal locations G and time
bound 7', the maximal probability of reaching G before the deadline 7. Of simi-
lar importance are the natural variations of the question, such as minimising the
probability (time-bounded safety) or aiming at being in G precisely at time T
(transient time-bounded reachability or safety [Mil68b]). Currently, the efficient
analysis of CTMDPs, is limited to artificially restricted problem classes, such as
schedulers without any access to time and systems with uniform transition rates
[BHKHO5].

For a given CTMDP with uniform transition rate A and a time bound T,

current techniques need O(@) time, where 7 is the required precision. In
practice, the required precision is usually high—a < 10~%—which imposes severe
restrictions to the applicability of the known techniques. In this paper we propose
an approach whose time complexity is merely the square, cube, or forth root
of 77!, and reduced dependence on the expected number of steps, resulting in

O(/\T v/ /\TT), where k = 1 essentially resembles the current techniques and k = 2

leads only to a marginal increase in the factor suppressed by the O notation.
(For k = 3 and k = 4, there is an increasing price to pay, at least in theory.)

Our approach is based on the two existing natural ways to approximately
determine optimal control and its quality for CTMDPs: Partial unravelling
[BFKT09] and discretisation [NZ10].



Partial unravelling [BFKT09] would make the number of discrete transitions
an explicit part of the state-space. The advantage of this technique is the fast
conversion — it suffices to unravel up to a depth sub-logarithmic o(log %) in
the required precision. (For uniform CTMDPs, for example, the number of dis-
crete events is Poisson distributed.) Unfortunately, this advantage is outweighed
by the disadvantage of the intractably high costs of representing the interme-
diate functions with sufficient precision. Folklore therefore bans this approach
as infeasible. Applying partial unravelling, the complexity for determining the
optimal quality therefore has never been approached for the common scheduler
classes that take time into account. But even for time abstract schedulers it is
exponential in the time bound 7" and transition rate A, and linear in %

Discretisation [Mil68b] seems to be a far more practicable approach. Here,
the continuous-time domain is cut into small chunks of some length e—which
one might refer to throwing an e-net over the time—and we assume that at most
one discrete transition is taken within each mesh of the e-net. The drawback of
this technique is that the precision obtained is linear in e, while the cost is linear
to its reciprocal. While currently the technique of choice [NZ10], the precision
obtainable in feasible time is therefore limited.

We show that these techniques can be combined: In an interesting twist
of common beliefs, we argue that, while unlimited unravelling is beyond price,
unravelling once is almost free, unravelling twice is cheap, and unravelling thrice
still tractable. For further unravellings, the restricting factor is that our method
requires us to determine (or approximate) roots of polynomials of degree of
the unravelling depth. The number of the polynomials under consideration may
grow significantly while unravelling, but the only principle reason to restrict our
attention to unravelling at most thrice is the infeasible cost of determining roots
of polynomial of fourth or higher degree.

Unravelling once, twice, and thrice result in an error that is quadratic, cubic,
and in the fourth power of e, respectively. (In principle, this argument even
extends to every finite number of unravellings, but with the drawbacks mentioned
above.)

Our techniques naturally extend to the analysis of continuous-time Markov
games and the construction of a near-optimal control strategy.

1.1 Related work

CTMDPs have been extensively studied in the control community.
The analysis there has been focused on optimising expected re-
ward  [ML67,Mil68b,Mil68a,GHLPR06,BS11,Put94].  Various techniques,
including discretisation as well as value and strategy iteration, have been
exploited for the analysis.

Baier et al. [BHKHO5] have first studied the model checking problem for
CTMDPs, in which they provide an algorithm that computes time-bounded
reachability probabilities in globally uniform CTMDPs. Their approach refers
only to the subclass time-abstract schedulers, which are strictly less powerful
than time-dependent ones [BHKHO05,NSK09]. Recently, maximal reachability



probabilities in CTMDPs under time abstract schedulers have been studied in
stochastic timed games [BF09,BFK*09]. In [NSK09], different time-abstract and
time dependent schedulers are classified, together with their expressive power. It
is shown that the timed schedulers depending also on the current sojourn time
are the most powerful class, which agree with the one considered in this paper.

The discretisation idea has been exploited in [NZ10], and later in [CHKM10],
for maximum reachability for CTMDPs and interactive Markov chains. The
number of steps needed is, however, O(%), and polynomial in AT. Therefore,
these methods have limitations in their applicability to cases when high precision
is required.

1.2 Organisation of the Paper

Section 2 Preliminaries introduces Markov games and basic notation. Section 3
Fishing with e-Nets presents algorithms on normed Markov games (games with
uniform transition rate 1), using different granularities of the presented tech-
niques. We discuss how to extend our techniques to general games in Section 4
Extensions, Generalisations, and Minor Improvements, and describe the tech-
niques on an example in Section 5 Example. Section 6 Conclusion concludes the

paper.

2 Preliminaries

Definition 1. A continuous-time Markov game (or simply Markov game) is
defined to be a tuple (L, L,, Ls, X, R, P,v), consisting of

e a finite set L of locations, which is partitioned into sets of locations L.,
controlled by a reachability player, and Lg controlled by a safety player,

a finite set X of actions,

a rate matric R : (L x ¥ x L) — Qxo,

a discrete transition matrix P : (L x X x L) - QnNJ0,1], and

an initial distribution v € Dist(L).

We require that the following side-conditions hold: For all locations [ € L, there
must be an action a € X' such that R(l,a,L) := >, ., R(l,a,l") > 0, which we
call enabled. We denote the set of enabled actions in [ by X(I). For a location

I and actions a € X(I), we require for all locations I’ that P(l,a,l’) = gggl]g,

and we require P(l,a,!’) = 0 for non-enabled actions. We define the size |M| of
a Markov game as the number of non-null rates in the rate matrix R.

A Markov game is called uniform with uniformisation rate A, if R(l,a, L) = A
holds for all locations I and enabled actions a € X'(I). We further call a Markov
game normed, if its uniformisation rate is 1. Note that for normed Markov games
it holds R =P.

We are particularly interested in Markov games with a single player, which
are continuous-time Markov decision processes (CTMDPs). In CTMDPs all posi-
tions belong to the reachability player (L = L,.), or to the safety player (L = L),



depending on whether we analyse the mazimum or minimum reachability prob-
ability problem.

2.1 Paths

A timed path o in a Markov game M is a finite sequence in L x (X' x Ryo x L)*:

ZO ao,to ll ay,ty . An—1,tn—1 ln

satisfying: 0 < ¢;,_1 < t; for all i < n. The t; denote the system’s time when a
discrete transition from I; to [;;1 takes place while the action a; is selected. The
set of all timed paths is denoted by Paths(M), or Paths if M is clear from the
context.

2.2 Schedulers and Strategies

The non-determinism in the system needs to be resolved by a pair of strate-
gies for the two players which together form a scheduler for the whole system.
The power of strategies is determined by their ability to observe and distinguish
paths, and thus by their domain. In this paper, we assume the most general
class of strategies, the class of late timed history-dependent (or simply memo-
ryful) strategies (TH) which may observe the timed path and the current time
(Paths(M) x R»¢ — X). For notational convenience, we use S, and S for the
strategies controlling the reachability players’ and the safety players’ locations,
respectively.

When analysing reachability objectives, we can also restrict to the even sim-
pler class of timed positional strategies (TP) [RS10], which may observe only
the current location and the total time of the system (L x Rx¢ — X).

2.3 Probability space for Markov games

We define the probability space for a Markov game M as the completion of the
simple probability space spanned by cylindrical schedulers and we restrict the
evolution of time to a sufficiently large interval [0, tmax], tmax € R>0. A cylindri-
cal scheduler assumes a partition of this interval into finitely many intervals in
which it has constant decisions. A second completion on the class of cylindrical
strategies then yields the full class of (measurable) TH strategies. For a pair
of (S,,Ss) of strategies, we use Prg, . to denote the corresponding probability
measure on paths of M.

Note that the resulting probability space is defined on finite paths that have
no continuation in the time interval [0, t;ax], unlike the more common construc-
tion via the Borel o-algebra [WJ06]. Thus, for the definition of the reachability
probability (see below), it is important to consider the probability that for a fi-
nite path (or set thereof) there is no further transition after their last transition
until tmax. See [RS10] for details.

r+s



2.4 Time-bounded reachability probability

The problem we are considering is the time-bounded reachability probability prob-
lem. That is, given a Markov game M, a goal region G C L, and a time bound
T € R>q, we are interested in the set of paths that reach a location in the goal
region in time:

reachaq (G, T):{UEPaths Lo =1lo 221% 1, .. 1, with Iy € GAtny <T
ordi<n.l;e GAt;_q §T§ti}.

Note that we only assume t.,,x > T for the sufficiently large time interval
[0, tmax] referred to in the previous subsection. The definition becomes simpler
when we choose tnax = T (in this case we simply require [,, € G), but this would
imply that the probability spaces for different time-bounds are formally different.
(The time-bounded reachability itself would, of course, not be affected.)

We are particularly interested in optimising this probability and in finding
the corresponding pair of strategies: supg crp infs,crp Prs, ., (reachpm (G, T)),
which is commonly referred to as the mazimum time-bounded reachability prob-
ability problem in the case of CTMDPs with a reachability player only.

Remark: In traditional time-bounded reachability, one would just require one
of the locations on the way that is reached not later than T to be in the goal
region. Technically this can be done by making the goal region absorbing. In
recent literature, the term ‘maximum time-bounded reachability probability’ was
used in in this slightly more restrictive way. We discuss this traditional notion
in Section 4.1.

We define f : LxR>¢ — [0, 1], to be the optimal probability to reach the goal
region within the time limit, assuming that we start in location [ and that ¢ time
units have passed already. That is, the value f(l,t) is the optimal probability
(sups, erp infs,eTp Prs, ., (+)) of reachp (G, T) restricted to those paths that
are in location [ at time ¢t. By definition, it holds then that f(I,T)=1ifl € G
and f(I,t) =0if ¢t > T and | ¢ G. Optimising the vector of values f(-,0) then
yields the optimal strategy and its value.

2.5 Characterisation of f

The optimal function f can be characterised as the following set of differential
equations [RS10]. For each | € L:

1. Initial value: f(I,T) equals 1 if [ € G, and 0 if [ ¢ G. (We do not need to
define f for t > T.)
2. Otherwise, that is, for ¢ < T, it holds:

—f.ty=opt > R(al)-(f(I',t) = f(1,1)), (1)

a € X(1) el

where opt € {max, min} is max for reachability player locations and min for
safety player locations. We will use the opt-notation throughout this paper.



Equation (1) can be rewritten to:

—f,ty=opt | R(,a, 1) f',t) =Y R(l,a,l')- fUt)|. (2

a€ X() VAl V2l

This also provides an intuition for the fact that uniformisation does not
alter the reachability probability under any strategy: the rate R(l, a,l) does not
appear in the above reformulation.

To simplify notation, we define a matrix Q such that Q(l,q,!’) = R(l,a,l)
if I” #£1 and Q(l,a,l) = — Zl,# R(l,a,l"). The characterisation above for the
function f that reflects the optimal reachability probability for two rational
players can then be rewritten to:

—f(1,t) = opt Z Ql,a,l') - f(I,1), (3)

a€ X(l) e

with the same side-constraint as for Equation (1). For uniform Markov games,
we simply have Q(l,a,l) = R(l,a,l) — A, with A = 1 for normed Markov games.

It is interesting to note, the above reformulation (Eqn. (3)) can be considered
as a simplification of the one used in [Mil68b].

3 Fishing with e-Nets for Normed Markov games

The standard approach to approximate optimal control can be summarised as
throwing an e-net over the time and approximating optimal control within each
mesh of the net. Cost and precision depend on the number of meshes we have.
More precisely, we fix the interval [0, T] and mesh length ¢, which then gives rise
to (%] meshes. The global precision is then provided as the sum over the errors
we allow for when moving from one mesh to the next.

To ease notation and intuition, we discuss the influence of these decisions
for the case of on the example of normed Markov games. Thus, throughout the
whole section, we fix a normed Markov game M = (L,L,,Ls, ¥, R, P,v) and
generalise the techniques to the full class of Markov games in section 4.3.

One gateway to Markov games and decision processes is to view them as
the limit of their deterministic-time brethren [Bel57], and it is natural to invert
this limit operation by considering small time intervals ¢ and such that the
probability that more than one transition within these intervals of length ¢ is
small enough.

e Our most basic approximation scheme is to assume that there is at most one
transition within a mesh. We call it simple e-nets, which shall be discussed
in Subsection 3.1.

e Subsection 3.2 discusses double e-nets in which there is at most two transi-
tions within a mesh.

e Subsection 3.3 discusses triple e-nets and everything beyond.



The intuition for e-nets of level k 4+ 1 is that we jump to a net of level k
once the first transition has occurred, but with the precise remaining time in
the mesh. Based on these assumptions, we build estimators p; for the time-
bounded reachability described by f, and, of course, strategies for both players.
These strategies chose the near-optimising action proposed by the estimator of
the previous level in all points of time within a mesh. Thus, they to take into
account in which level they currently are and are therefore memoryful (and not
timed positional).

For these estimators and strategies, we discuss their precision with respect
to three measures:

E(k,7) is an estimator for the difference of p and f after 7 time units (to the
left),

Es(k,7) is an estimator for the difference between the time-bounded reachability
for the inferred strategy and f after 7 time units, and

Ep(k, ) is an estimator for the difference between the time-bounded reachability
for the inferred strategy and p after 7 time units.

As the names suggest, we consider the first to be slightly more important,
but this is a matter of taste, and all of them have their place. We show that
the step errors £(k, ), Es(k,€), and E,(k, ) are all in O(eFT1), with very small
constants. (See Subsection 4.2 for an overview.)

We exemplify a single step in Section 5.

3.1 Single e-Nets

In single e-nets, we assume that at most one transition fires within each mesh.
This is closely related to assuming the schedulers to be constant within this time,
resulting in a linear estimation function inside a mesh. Under this assumption,
optimisation becomes incredibly simple:

e For the case that there is no transition, the scheduler decision does not
matter.

e For the case that there is one transition, the best scheduler decision is the
scheduler that optimises the expected quality after the transition is taken.

For every mesh of length ¢ this provides a straight-forward upper bound of
the error of €2. But before we give this known result [NZ10,ZN10] as a warm-
up, we show that for mesh-based approaches, the overall error can always be
estimated by sum over the local errors.

For this, we define f as the vector valued function f : t > @, f(/,t) that
maps each point of time to the vector of likelihoods to reach the goal region in
time ¢ for each location. On such vectors f(t),e(t) (which we allow to be real
valued for each location), we define the maximum norm, that is || f(¢) — e(t)|| =
max{|f(l,t) —e(l,t)| | l € L}. We also refer to e(t) as the estimator.

For a fixed mesh [t — ¢, ], the next notation we introduce is the vector valued
function fL : 7 — @, fL(I,7) obtained when we use the differential equa-
tion (3), using the vector = € [0,1]/% at point ¢ as initial values. That is, f% is
defined by:



1. Initial value: fi(7) equals x for 7 = t.
2. Otherwise, that is, for t —e <7 <t and [ € L, it holds:

—fal,7) = oPtuczqy D Qe ) f (' 7) (4)
VeL
Starting with an estimate e(t) at the beginning of the mesh [t — ¢, ], the
following lemma discusses the spread of error bounds, which consist of: (i) the
starting error at the beginning of the mesh ||f(¢) — e(t)]|, and (ii) the additional
imprecision ||f;(t)(t —¢) —e(t — €)||, which we refer to as the e-step error.

Lemma 1. For a given Markov game, let the vector e be an estimator of f
that satisfies || f(t) — e(t)|| < p and ||fet(t)(t —e) —e(t—e)|| < v for some point
t €[0,T]. Then ||f(t —e) —e(t —e)|| < u+ v holds true.

Proof: First, ||f(t —¢) — et(t)(t —¢)|| < p can be shown by exploiting two
obvious properties of the functions defined by Equation (3):

(i) When all initial values (which we assume to refer to the same time ¢) are
in-/decreased by the same constant ¢ then this has no effect on the deriva-
tions described in Equation (3). Hence, the resulting functions, f%c, are sim-
ply in-/decreased by ¢ for all locations and at every point of time. Note that
this also changes the values in the goal region.

(ii) The values of fé(t)(t — ¢) are monotonous in e(t).

As ||f(t) — e(t)|| < p holds true, property (ii) yields
1t =) = feyt =)l < IIf(t =) = f1.(t =),

which implies the first claim.

[f(t—e)—elt =) <p+v
is then implied by the triangle inequation. a

Estimator p; for single e-nets Below, we shall use p;(t) to denote our linear
estimator vector for single e-nets. We start constructing p; by, setting p; (I, T) =
lifl e Gand p1(I,T) =0if | ¢ G. After having constructed p; for the interval
[t,T], we expand it to the interval [t — ¢, T] as follows.

We first determine the optimising enabled actions for each location for f;l( 0

at time ¢. That is, we choose, for all | € L and all a € X(I), an action

aj € arg opt Z Ql,al, ') -pi(U, ). (5)

a€ X(l) Vel

We then fix

=" Qal.l) pt)=opt > QUal) - pi(l',1)

I'elL a€X(l) ey,



as the descent (that is, —c} as the ascent) of pi(l,-) in the interval [t — &, ],
which implies

—p1(l,t—7)=c; and pi(l,t—7)=pi(l,t)+7 ¢ (6)

for all 7 € [0,¢] and all [ € L.
The following lemma establishes a few properties for normed Markov games
that will be used for proving our main result for single nets.

Lemma 2. Given a normed Markov game, let ¢ < 1. Then, for all 7 € [0,¢]
and l € L, it holds:

1. pl(.lat - T) € [Oa 1]

2. —f Ut —7)e[-1,1].

Proof: Let ¢ = 1. By (6), the value pi(I,¢ — 1) would simply be py(l,t) +
Yover QU af, 1) - pr(l',t). Using the rate matrix R, we have:

pi(lt—1) =pi(,t) + S R al, V) - (i) — pr (1))
LAl

= 1=-> R(a,l') | -pr(l.t)+>_R(Laf,l') pi(l', 1)

AU AU

For normed Markov game, we have R(l,a}, L) = 1, implying that p;(I,t — 1) €
[0,1] by a simple inductive argument (starting with py(I,T) € {0,1} for all
l e L). For 7 € [0,1], we simply have a linear interpolation between p;(l,t — 1)
and p1(l,1).

Now we prove the second clause. For 7 € [0, ¢], from the first part we have seen
that the co-domain of p; is in [0,1]%, and thus the same holds for f;l(t)(t) =
pi(t). For 7 € [0,¢], as long as f] (1) is in [0, 1]%, it holds —f(T) <
Yrer Qal') fl ) 1= fl y(I,7) for all l € L and a € X(1). These
inequations hold in particular for the optimising action. As f;l( 0 adheres to the
differential equations (4), it consequently cannot leave [0,1]¥ left of ¢, that is,
for a 7 < t. Thus, the following the simple estimation holds, for all a € X'(I):

SR (fh W t=7) = il t=7) <) |R(a, V)] =1.

reL reL
implying that the descent —f;l(t)(l,t — 7) is in the region [—1,1]. O
Theorem 1. For a normed Markov game and given € < 1, the e-step error for

a single e-net is bounded by £(1,¢) < 2.

10



Proof: Lemma 2 immediately implies for all locations ! € L, enabled actions
a € X(l),and T € [0,¢]

7> Ral) 7
> Sen R a ) - Ut =) = pi(l )]
> [Sper RUa ) (£ @t =7) = pil'1)) ] .

This holds in particular for a} (see Equation (5)) and the optimis-
ing action aﬁfT for [ at time ¢t — 7 with respect to f;l(t): a7 €
argopt, . (1) Yover Qla,l’) - f;l(t)(l’,t — 7). As the order of quality be-

tween a! and affT is reversed when moving from ¢ to t — ¢, this immedi-

ately implies f;
cation | € L, of the reachability player. We get >, ., R(l,a;,l")p1(I',t) —

T < YrerRapl) ;l(t)(ll7t —7) < Yye Rl 7 0) ,t,l(t)(llvt -7) <

Sver RUGa 7 U)pi (V) +7 < e R(Laf, U)pa (U 1) + 7.
We can therefore estimate the difference of f;l(t) (t—7) and p1(I,t —7):

1(t)(t —7)+c}| < 7. To see this, consider, for example, a lo-

d(l,t—71):=

;l(t)(t —7)—p1(l,t — T)‘
by observing d(I,t) = 0 and
—d(l,t—7) < ‘f;l(t)(t—T) —pl(z,t—T)‘ <

which implies that the accumulated error £(1,7) up to a distance 7 from ¢ is
bounded by %72. In particular, £(1,¢) < %52 holds true. ad

This argument can easily be extended to show similar bounds for the quality
of a particular strategy. Let us partition L into two sets L, of optimising and
Ly of fixed-decision locations, in which we the action a} is fixed for a given ¢.
Let us now consider a function g

=90, (1,t) =30, Ql,af,1") - gr,(I',t) for all [ € Ly, and

—gr,(l,t) =opt >, Ql,a,l")-gr,(I',t) for all I € L. (7)
a € X(l)

Equation (7) reflects a system where players adhere to an initially optimal
action af at fixed-decision locations Ly and play optimal (under this side con-
straint) in optimising locations L,. Note that the case where the set of fixed-
decision locations equals the locations of the safety (Ly = Ls) or reachability
(Ly = L,) player are special cases that are equivalent to the problem of opti-
mising the reachability probability for a CTMDP. These special cases describe
a strategy for the respective player, namely the strategy to follow the initially
optimal decision a} throughout the complete e-mesh [t — ¢, ¢].

11



From a technical perspective, these equations equal the equations that we get
when changing the Markov game itself by fixing the decisions of all players in
L. For this adjusted normed Markov game, we have the same estimator p; on
the interval [t — ¢, t] when starting with the same initial values p(t). We therefore
obtain similar bounds by a simple corollary from Theorem 1:

Corollary 1. For e <1, the e-step error for a normed Markov game in a sin-
gle e-net with any subset of initially fized-decision locations Ly is bounded by
Ep(lye) < ie2

Obviously, the absolute value of the difference between g(t —7) and f;l( t)(t -
7) can be estimated by |g(t — 7) — p1(t — 7)| + |f;1(t)(t —7) = p1(t — 7)|, which
immediately provides us with a &s(1,¢) < £(1,¢) 4+ &,(1,¢) < &2 bound for this
difference.

Corollary 2. For a normed Markov game and any pair of fixed-decision lo-
cations L1, Ly C L, the e-step error ||gL,(t —€) — gr,(t — €)|| is bounded by
Es(1,e) < €2,

In particular, the above corollary implies Hf;l(t) (t—e)—gr, (t— s)H < g2

and Hfztn(t) (t—e)—gr.(t— E)H < €2, and hence provides the sought bound for

the error of the approximate strategies of the safety and reachability player,
respectively.

Corollary 3. When using single e-nets, the overall error for normed Markov
games with time bound T is bounded by €T, both for the estimation of f and for
the approximation of the value for a computed strategy.

As expected, this technique based on simple e-nets provides us with costs and
guarantees comparable to those established by Neuhdufer and Zhang [NZ10]:

Theorem 2. For a normed Markov game M of size |M|, we can compute a
m-optimal strategy and determine the quality of M up to precision w in time

O(M|-T- ).

Proof: To guarantee an overall precision 7, we can choose e = [ %], resulting in

T
% ~ T; many steps. The cost of each step is dominated by the cost for computing
and comparing for each location the chances of winning when a particular action
is taken. This cost* can be estimated by |M|. O

4 Tt is always a matter of taste if one wants to be precise and consider the contribution
of numerical precision. A suitable precision can be obtained by using numbers of size
O(log %)7 which leads to O(log %) cost for the multiplications. We have dropped this
cost to be consistent with most other work.
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Fig.2. This figure illustrates (linear) quality estimates z(a) := .., R(l,a,l') -
(p1(l';7) —p1(l, 7)) for three control actions ai,as, and as. Assuming we are con-
sidering a location of the reachability player, the function —p2(l,7) agrees with the
quality of a; for the interval [t — ¢,¢"), followed by a2 for the interval [t*,t). We refer
to Section 5 for a detailed example of computation for both p2 and ps.

3.2 Double e-Nets

Single e-nets provide an easy gateway to recent results for CTMDPs, and their
simple extensions to games. In this subsection we show the surprising result that
we can improve the precision significantly for very low costs by increasing the
number of discrete events we allow for within each mesh. The increased precision
allows us to enlarge the width of a mesh. We can, therefore, traverse the time
axis considerably faster.

The idea of double e-nets is to use two different layers of behaviour to de-
scribe the near optimal scheduler. The first layer is used until the first transition
happens, while the second is used for any further behaviour. Thus, the sched-
uler we would obtain is memoryful: it distinguishes the situations where the first
discrete transition has and has not occurred. For the first layer of behaviour we
simply use single e-nets; we fix an action for the complete e-interval. For the
behaviour after the first jump (i.e., the second layer) we additionally consider
the possibility that for time points t — 7 € (¢ — &,¢] the near optimal action
(according to the estimator p;) changes.

This idea leads to the following estimator py for double e-Nets. For the mesh
[t — &,t], p2, initialised at time ¢, is defined as:

—pa(l,7) =opt > R(l,a,l')- (p(l',7) = pu(l,7)). (8)
a€ X(l) Vel

From the previous subsection, we have seen that the optimal strategy
for an e-interval can be approximated with precision €2 by a constant strat-
egy, for example a! for location [ under consideration. For each a € X(I),
Yover R(La ") - (pr(l',7) — pi(l,7)) is simply a linear function. Two lines in-
tersect at most once. Thus, —ps(l, 7) is piecewise linear, which is the fringe of a
segment of a planar polyhedron. For the small interval we look at, the optimising
decision will often be constant and scarcely change more than once. In Figure 2
we illustrate the case when the near optimal action changes during an interval.

Since po(l, T) is piecewise linear, ps(l, 7) is therefore piecewise quadratic. We
show below that the resulting piecewise quadratic estimation improves the error
bound of a e-mesh to %53.

13



Lemma 3. For a normed Markov game and € < 1, the e-step error under double
e-nets is £(2,¢) < 1€

Proof: The proof runs similar to the proof of Theorem 1; all we need to do
is to adjust the differential equations in the proof of Theorem 1, replacing the
coarse approximation with respect to the constant by a more precise estimator.

Using p1, the results from Theorem 1 provide ||p;(7) — f;l(t)(T)H <it-r1)?
for all 7 € [t — e, ¢].

Now we switch to the estimator po defined by Equation 8. For each action
a € Y(I), the following holds: >, ., R(l,a,l') - (p1(I',7) —p1(l,7)) is always
in within a (¢t — 7)? margin from >, ; R(l,a,l’) - ( o) = I (l,T))
for normed Markov games. Using triangle inequations, we can again lift this to
1p1.(7) = 3,0y (DI < (t = 7)?, and infer [[p2(7) = f ) (DI < 3(t —7)°. o

Like for single e-nets, we can extend this to a constructive version, paying
only with a slightly higher constant factor.

Lemma 4. For € < 1, we can provide a memoryful strategy whose e-step error
for a normed Markov game is &(2,¢) < 3e3.

Proof: To estimate the error incurred in a single step, we consider the point in
time where the first discrete transition occurs in the ¢ interval under considera-
tion. (Note that the distribution of this time is independent from the strategy.)

Provided that no discrete transition occurs in the interval, the quality of the
outcome does not depend on the chosen strategy—we simply stay in the current
location. If a transition occurs with 7 time units left, we jump to the next lower
level of e-nets, but with 7 (not &) time units left. That is, we enter a simple
7-net. The error occurring provided the first discrete transition 7 € [0,¢] time
units prior to the end of the interval is therefore £(1,7), simply because this is
the bound for the error (and in particular for the expected error in randomised
transitions) at the target location.

We therefore get an immediate estimation for the error that occurs in every
step for double e-nets:

Es(2,e) < /E e (&L, ) + E(1, 7)) dr
0

1> 1

< / (E(1,7) + &(1,7))dr z/ 117'2d7' = 153.

0 o 2 2

O

As a simple corollary of the previous lemmata, the precision with which ps

predicts the value of the respective strategy is bounded by the sum of these
deviations.

Corollary 4. For ¢ < 1, the e-step error in a normed Markov game, un-
der double e-net, for the prediction of the quality of the inferred strategy is
< &p(2,e) < 2€5.

14



The evaluation of the estimator ps is not expensive: py is linear, po piecewise

linear, and p, therefore piecewise quadratic.

This raises our estimation of step cost slightly: we can only estimate the (av-

erage) number of changes for each location to be linear. This estimated number
of switching points leads to an estimated time for the sorting in the algorithm
described above each step and each location of |¥|log|X|. (Note that one of
these X’s later is included in |M].)

In the following, we give an algorithm that computes these linear functions

describing the quality.

Algorithm:

We do the following steps for every position I, for mesh [t — ¢, t].

1.

Compute the quality of the decisions when no time is left, and when & time
units are left, storing the respective optimal decisions af (for ¢) and af (for
t — ¢) on the way. (0-Quality® & e-Quality. Cost: O(|X(1)|).)

. If af = af then we chose this decision for the complete interval.

Otherwise, disregard all decisions for which the 0-quality is inferior to the
0-quality of aj or for which the 0-quality is inferior to the 0O-quality of af.
(Preprocessing. Cost: O(|X(1)]).)
Order the quality of the decisions when no time is left. (0-Order. Cost:
|2 log(| 1))
We start with the top element of the 0-order, and choose it initially for the
complete interval. We store the decision, its quality, and the left and right
borders in a stack.
We then successively consider the next action a of the 0-order, and compare
its e-quality with the e-quality of the element at the top of the stack.
If the e-quality of a does not improve over e-quality of the top of the stack,
we go to the next action in the 0-order (Step 5). Otherwise,
(a) Check where it intersects with the current top element.
If they intersect on or right of the of the right border of the current top
element then we pop this element and go back to Step 5a.
If they intersect left of the right border of the current top element then
we set the left border of the current top element to the intersection, and
push the current element with —e as left border, and this intersection
point as right border. We then proceed with the next element in the
0-Order (Step 5).

This algorithm’s complexity is |M]-log(|X]) for a normed Markov game. For

each e-step, the cost to compute an update consists of two parts:

e Computing the (linear) quality functions for all actions in all locations.
e Constructing the piecewise linear function for each location of these near

optimal solutions, as described in the algorithm above.

5 The 0-Quality and a} have already been computed for the underlying single e-net.
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The first step is essentially what we do in case of single nets as well, and it
has the same cost known from ordinary discretisation: O(|M]). For the second
step, we need to sort the | X| many functions (for every location) and then sweep
through the obtained order. As the sorting only depends on the quality functions
computed previously, we can sort with a complexity of O(|L| - |X|log(]X])). As
L-|X] is dominated by | M|, the complexity of the algorithm is O(]M|-log(|X])).

Remark 1. While we consider the log |X| part of the sorting algorithm, we argue
that it will not occur in practice. If the number of successors is small, this factor
is irrelevant. But even if the factor is high, we believe that our preprocessing
step will usually reduce the actions under consideration significantly.

Note that the log |X| factor already vanishes if only the m part of the
successors have this property on average. It is our believe that the likelihood of
this is very low.

Lemma 5. For a normed Markov game M the cost of an approximative evalu-
ation of an € mesh (step-costs) of a double e-net is in O(|M|+ |L|-|X|-log | X]).

To derive a precision 7 with a double e-net by Lemma 1, we choose € ~ \/? ,
. . 1.5
resulting in % ~ % steps.
Corollary 5. For a normed Markov game M we can approximate the time-
bounded reachability, construct m optimal memoryful strategies for both players,
and determine the quality of these strategies with precision 7 in time O(|M] -

T T T /-5 0g |5).

There are, in our view, good reasons to disregard the extra log | Y| complex-
ity: The number of relevant actions in the sense that they have effect within a
specific e-mesh (that is, the number of points where OPT ‘switches’ is decision,

like ¢* in Figure 2), is bound to be tiny in practice. As long as the number of
[~
log [ 2]
additional cost log|X| vanishes completely, even if | M| has only deterministic
actions. Moreover, in a Markov game with many randomised decisions (such
as the control action b in Figure 1) with a high (> log|X|) expected potential

successors per control action, the logarithmic factor is always masked.

relevant actions (or: switching points) does not exceed in the average, the

3.3 Triple e-Nets and Beyond

Taking the huge advantage we could yield by going from one to two discrete
steps into account, the question whether we could (and should) go further begs
to be asked. And this is indeed the case: If we revisit the proof of Lemma 3 and
its extension to Lemma 4, then it is quite apparent that the guarantees do not
depend on the fact that the estimator p; is piecewise linear, it merely depends
on its precision.

Let us inductively define estimators py for epsilon nets of level k£ following
the same pattern as for double € nets:
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7pk(lv7—) = opt Z R(la aal/) : (pk—l(llvT) 7pk—1(la7_)) (9)
a€ X() el

with initial values py(t) = px—1(t). Then we can repeat the arguments from the
previous subsection on each level and obtain:

Theorem 3. E(k,e) < 25E(k—1,¢), E(k,e) < 755 (E(k—1,6)+ & (k—1,¢)),

Ep(k,e) < E(k,e) + Ey(k,e).

Proof: The argument is simply the inductive version of the arguments from

Lemmata 3 and 4 and Corollary 4, where single or double nets and their esti-

mators and strategies are replaced by nets of level k — 1 or k, respectively, and

their estimators and strategies. a
The resulting precisions for nets of level k are:

1 |2 | 3 | 4
E(k,e) %52 %53 %54 %55
E(k,e) z€° ze ze? e
Ep(kye) g2 2e3 et 26E°

Note that the constant factors in front of the e*+! are clearly decreasing
quickly (super-exponentially in k). It is also apparent that we can infer the
required numbers of steps in an equally simple fashion as for single an double
e-nets:

Lemma 6. To derive a precision 7 with an e-net of level k, we choose ¢ = {“/? ,
1

ltine in Loa THF cpore
resulting in < ~ Ve steps.

Proof: For such an ¢, the step error is by Theorem 3 is approximately (%)1%
and the claimed number of steps is apparent. (Note that the = hides a factor
bigger than one.) With Lemma 1, it follows that the overall error is bounded by
. O
While the estimation so for suggested good news, the flaw of the method is
the price tag attached to the individual steps. To continue with the good news
for a moment, we first constitute that the individual estimators p; are simple:

Lemma 7. p; is piecewise polynomial with degree < k.

Proof: The definition of p; invites a simple inductive argument: We have
already demonstrated the claim for p; (which is linear) and po. If we have
established that & — 1 is piecewise polynomial of degree < k — 1, then so
are leeL Q(la a, Zl)pkfl(llv ')7 OptaeE(l) Zl/eL Q(lv a, l/)pkfl(llv ')’ and hence py.
Consequently, py is piecewise polynomial with degree < k. a

A practical problem with the argument is that the property of being piecewise
polynomial is preserved, but not the number of pieces. The number of pieces is
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resistant to a realistic estimation: It is our belief that the number of pieces is
usually small, because in a small interval the optimal decisions do not tend to
change very often.

The worst case occurs if every location can be reached from every location
through every action in a single step. (Which is also not a very realistic assump-
tion.) For a rough estimation, we start in every level with the number of pieces
from the previous level. For the comparison under the OPT function this means,
for every location [ € L, up to O(|X(1)|?) times as many pieces compared to the
previous level, and hence up to O(|L| - |X|?) pieces overall.

For single nets, we started with one piece, and for double nets we had an
argument that restricted the growth to |X'(1)| pieces for each location. For nets
of higher order, however, we can only offer only the course estimation that the
number of changes is in O(|L|-|X|3), O(|L|*-|X|?), ... for triple nets, quadruple
nets, and so forth. While we do not believe that this number is anywhere close to
realistic, we have to acknowledge that both the search depth and the length € of
a mesh grow with the level of the nets. The likelihood of getting many (though
probably not in the order of the worst case estimation) pieces is bound to grow,
too.

Lemma 8. If we can estimate the number of polynomial pieces in py_; in an
e-mesh by ¢, then the number of polynomial pieces for py is in this e-mesh is
l-c-kz-|L|-|E|2
3 .

Proof: If we consider all actions compared by OPT for a particular location
1 € L, we may have | X(1)| functions consisting of ¢ pieces (with similar borders).
For each piece, we have £|X()[(|X(l)| — 1) comparisons between different let-
ters, where we compare two polynomials of degree < k. To estimate the changing
points, we simply estimate the number of roots of the the difference of these poly-
nomials (disregarding equal polynomials) for each pair of letters. The numbers
of roots for each pair is bounded by k, which allows for estimating the number
of pieces for the location [ by 1|X(1)|2.

This immediately provides the claimed bound on the pieces for all locations
in the complete e-mesh. a

There are several obvious improvements for this bound. In particular, one
gets much better bounds for given Markov games: For goal location there is
always only one piece, no matter on which level. For all other locations [, one
can start with the estimation pieces(2,1) < |X(1)| for double nets.

Based on this, one can get the number of swapping points swaps(k,l) of a
location on level k (where swaps(k,l) = pieces(k,l) — 1) by

swaps(k+1,1) < k- Z 1+ Z swaps(k,1'),
abeX(D)aFb oy b

where I % denotes the locations reachable in a single discrete transition with
action a from [. For our example net, for example this reduces the number of
pieces per location to
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level || 1 | 2 [ 3| 4 |
s 1 [ 24712
Ir 1216 |27
! 11 ]1]1
I 11 [1]1
G I 1]1]1

which we believe is still a coarse estimation.

However, there is a very practical problem as well: To find (or approximate
with sufficient precision) py, we have to determine (or approximate with sufficient
precision) the roots of polynomials of degree up to k — 1. We also have to store
and sort the potential switching points, in particular the roots of differences of
polynomials within the interval borders, and sort them.

While storing and sorting is simple, we can only cheaply determine the roots
of quadratic functions, and approximate the roots of cubic functions®. This ef-
fectively restricts the applicability of the proposed technique to quadruple nets,
because the for e-nets of higher order we would have to approximate polynomials
of higher degree, which is computationally expensive.

For triple and quadruple e-nets, the sorting of the potential switching points
is the dominating cost factor in the estimation of the running time of our algo-
rithm, just as it was for double e-nets.

Corollary 6. For a a normed Markov game with |L| locations, a goal region G
and a time bound T we can construct m optimal memoryful strategies for both
players and determine the quality of these strategies with precision 7 in time

O(|LJ?- \3/% T -|X|?log |¥|) when using quadruple e-nets.
For a a normed Markov game with |L| locations, a goal region G and a time
bound T" we can construct 7 optimal memoryful strategies for both players and

determine the quality of these strategies with precision 7 in time O(|L[* - {/L .

T - |X|%log|X]) when using quadruple e-nets.

It is open if the extensions to triple and quadruple e-nets will only be of
theoretical interest, or if they make it into practice. One should note that the
extra cost can be avoided when we know that the decision in a location will
remain stable during the complete e-mesh of a triple or quadruple e-net. This
invites the development of combined techniques, where we use quadruple and
triple e-nets most of the time, but switch to double e-nets with finer meshes in
the rare event where really many switches occur.

4 Extensions, Generalisations, and Minor Improvements

In this section, we describe the trivial extension of our techniques to traditional
reachability (or combinations of transient and traditional time-bounded reacha-

5 For cubic functions, one root can be approximated efficiently. Knowing an approxi-
mate root one can perform polynomial division and discard of the sufficiently small
remainder.The resulting quadratic functions can again be treated easily.
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bility), minor improvements that can be gained for the ,, and the generalisation
to general games.

4.1 Traditional Bounded-Reachability

In traditional time-bounded reachability, we can exploit that for [ € G this
implies f%(I,t) = x(1) and — f£(l,7) = 0, since these locations are absorbing. For
the occurring estimators, always get fL(I,7) = 1.

This can be used to improve the bound of £(1,¢) to %52, because it implies
that the values of f and (for ¢ < 1) p; are location-wise monotonously decreasing.

Theorem 4. For a normed Markov game and any pair of fixed-decision lo-
cations L1, Ly C L, the e-step error ||gp,(t —€) — gr,(t — €)|| is bounded by
Es(le) < €2

Proof: In order to prove this, we first acknowledge that turning more loca-
tions of the reachability (safety) player into fixed-decision locations decreases
(increases) the value of g (not necessarily strictly) on every point left of ¢. It
thus suffices to estimate gr, (t — 7) — g (t — 7) for all 7 € [0, ¢].

The second observation is that the values of g/ (l,-) is falling monotonously
left of ¢, and that the value of —gr/(I,t — 7) is in [0,1] for all L’ C L 5[ and all
7> 0. Let

af_T = arg max R(l, a, l')gLT (l/’t - 7')-

acX(l) el

Then we have

Srer R ap, gr, (Uit —7) < 3 Rl ap, U)gr, (Ut —7)
< Zl’eL R(!, af_T, Nar, (Ut —71)
< Zl’eL R(lv a;’iTa l/)gL'r‘ (llv t) +7
< Yver R(ap,)gr, (U, t) + 7
=>ver R, U)gr, (U t) +7
<Yver R a), U)gr, ('t — 7)) + 7,

and in particular

D> Ray " Dgr, (Ut —7) = Y R, af, 1)gr,(I',t —7) €[0,7]

el l’'eL

Using this, we can estimate for locations [ € L,.:
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|gLr(l’t - T) - gLs (lvt - 7—)‘
= ‘(maxaeﬂ(l) Yrer R(La, g, (It —7) —gr, (1,1 — 7))
~(Cver R0 V)gr, (11 =7) — g1, (1.t = 7))|
= ‘(maxaeﬂ(l) ZZ/EL R(lv a, l/)gL'r (l/a t— T) - leeL R(lv afa l/)gLs (l/a t— T))
(g0, (Lt =) = gu. (Lt = 7))
< max { maXae (1) Zl’eL R(lv a, l/)qu- (l/a [ T) - Zl'eL R(lv afa l/)gLs (l/a [ 7'),
g2, (it =7) = gr. (1.t = 7)}
<T.
Similarly, let

t—T1 : / !
- R(l,a,l U t—1).
a arg min, (la,1")gr.( 7)

Sver R g, (Uit —7) < e Ry 7 U)gr, (Ut —7)
<YverR(La;,)gr, ('t — 1)
< >ver R(ap,)gr, (I t) + 7
= ZZ’EL R(l7 afa l,)gLs( /7 t) +7
< Zl’eL R(, O'ZFT’ l/) Ly (l/v t)+7
< Zl’EL R(lv af—'r’ ll)gLs (l/a t— T)) + 7,

which again provides us with
> R(lay " gr, (Ut =7) = > R(Laj, )gr, (It =) €[0,7],
VeL reL

allowing for the same approximation.
Hence, [|gr, (t —7) — g1, (t — 7)|| < 7, which implies

1
loe. (¢ = 7) = gu.(t = 7] < 37

by integration. O
As these better bounds would enter into all estimations of &,(k,e) and
Ep(k,€), these values are improved as well, resulting in the following estima-

tions:

f a2 |3 | 1
o [ [ ]
Es(k,e) %52 %83 i54 %55
ACORE SIS SR
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4.2 Added Precision for Free

The precisions discussed so far are easy to improve &,(k, €): The error for &(k, ¢)
for the strategies for the safety and reachability player are single sided. Using
this single sidedness provides for an improvement of &(k, 5):

Theorem 5. For the estimator p(t — 7) = pp(t — 7) — 3 1 Es(k, ) for the
strategy of the safety and p(t —7) = pr(t —7) — 5 1 E(k, T) for the strategy of
the reachability player, respectively, the adjusted estimated of the step error for
estimating the quality of the prediction for the time-bounded reachability of the
resulting strategy improves to €,(k,e) < E(k,e) + $Es(k,€).

Proof: The quality of obtained by following any fixed strategy for the safety
(reachability) player naturally yields a lower (higher) time-bounded reachability
probability compared to this player playing optimal. (Where lower / higher does
not necessarily refer to strictly lower / higher.)

Hence, we know that the difference between the time-bounded reachability
for the co-optimal strategies and an estimated start value z, f£, and for the
fixed strategy at time ¢ — 7 are bounded by & (k, 7), and we know that the value
for the fixed strategy is lower in every point when fixing the strategy of the
safety player. Consequently, we know that the difference between the co-optimal
strategy and the value for a fixed strategy of the safety player (with optimal
response) is within a 1&,(k, ) around fi — 1 1 &(k, 7).

fi— 31 E&(k,7), in turn, is within an £(k,7) margin of py(t — 7) = pi(t —
7) — 4 1 &(k,7) by Theorems 1 and 3. Using triangle inequations we obtain the
claimed result for the strategy of the safety player.

The proof for the reachability player runs accordingly. a

The reason that we did not introduce this improvement in the respective
subsection is that using this once destroys the single sidedness of the error, and
the result is best if we do it only in the final step. It also increases the degree
of the polynomials involved. However, this never poses a problem when used on
the top level because it suffices to adjust the value at the fringes of the interval,
Not leading to any extra cost to speak of. (O(|L]| - log k) arithmetic operation in
every step.)

Note that it would not impose a principle problem to use this in an earlier
step instead, as long as we use this adjustment for all locations (including goal
locations), disregarding the fact that this might cause them to leave the [0, 1]
boundary. If we do make corrections there, the differences can reach a higher
degree, which could, in principle, lead to problems similar to the ones we only
face in the nets of the next level.

The following table shows the minor improvement this estimator for the
quality of the resulting strategy yields for transient time-bounded reachability:

E 1 2 |3 | 4|
1_2 1_3 1 _4 1T 5
ko) | ge 1 e 1 ge | e
e STl I Cl Nl
Gke) | & | g L 3o | 3
Ep(k,e) g€ 15€ 3€ 55€
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The following table shows the minor improvement this estimator for the
quality of the resulting strategy yields for traditional time-bounded reachability:

L I S T O T

1_2 1_3 1_4 1 5
Elhe) || ge | ge | go | 3
Lalbe) | ge L go 1 2o | usC
=
Ep(k,e) 5€ 5€ 1€ =€

4.3 From Normed to General Markov Games

The use of normed Markov games in the previous section is for convenience only.
The use of general games would force to use the transition rate as a factor at
different points, which needlessly impeded readability. We start with illustrating
how to generalise our techniques for Markov chains, and then show that it can
be carried over to Markov games.

Markov Chains A continuous-time Markov chain (CTMC) is a Markov game
with a singleton set of actions {a}, thus it is connected to a unique stochastic
process. Let 7(¢) denote the transient probability vector at time ¢. The transient
probability is given by [Ste94]: 7(t) = ve®*. The analytical solution can be
reformulated as:

7(t) = veQt = veQ ()

with Q" = @+ and A = max;e;, —Q(l,1). That is, we can rescale a (uniform)
CTMC with rate A to a transition rate of 1, by stretching time accordingly. The
same holds for time-bounded reachability, as it can be expressed via the transient
probability [BKH99]. Below we discuss that the same idea can be exploited to
carry over our method on normed Markov games to the full class Markov games.

Markov Games For a Markov game M = (L, L., Ly, ¥, R, P, v) with uniform
transition rate A > 0, we denote by MI'l = (L,L,,Ls, X,P,P,v) the Markov
game that differs from M only in the rate matrix. (Note that R = AP.)

It is easy to define a bijection b : SMII'l] — S[M] between schedulers of
M and M by mapping a scheduler s € S[MI'l|T] to the scheduler s’ €
SIM,AT] with §'(€) = s(AE) for all extended paths & € Paths(M) x Rxy,
where A€ multiplies all occurring times in £ by A.

The time-bounded reachability probability for time bound AT for M under
s’ = b(s) is then obviously equivalent to the time-bounded reachability probabil-
ity for time bound 7" for MI'l' under s. (Colloquially speaking, we stretch time
by a simple substitution: We merely change the length of a time unit. Extending
the length of a time unit reduces the transition rate—and the time bound.)

Besides lifting the results to general games (uniformisation does not alter the
reachability probability), this bijection also provides the recipe for translating
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the resulting strategy from the normed game back to the un-normed case: To
we simply re-adjust the time unit to its original length.

In the normed games, T is the expected number of discrete transitions. For
general games, \T is this expected number, and we can replace all occurrences
of T in our Theorems, Lemmata, and Corollaries by AT. The translation of the
strategy is equally simple: On a timed history, we take the action that suggested
by the history of the normed game for the case that all times (that is, the times
where discrete transitions occurred and the current time) were multiplied by A.

Early schedulers At times [WJ06], schedulers are considered where the action
is chosen when a location is entered. It is fairly simple to translate this schedul-
ing problem to one where the scheduler can change its decision over time. The
translation essentially encodes the next decision in every location, which is a
simple but effective way to encode the making the decision on entry. (See, for
example, [RS10] for details.) It is, however, not hard to see that a specialised ap-
proach would avoid this minor blow-up. We do not discuss this in detail because
we consider the restriction to chose the action on entry as rather artificial.

5 Example

0.14 4
0.12 4
0.10 4

0.08

0.06

0.04

0.02

Fig. 3. Left: a normed Markov game, Right: reachability within [0, 4] for iz and Is.

We consider the simple normed Markov game in Figure 3, which we use as
our running example in the following subsections to exemplify how the e-nets of
the different levels work.

The self-loops of the normed Markov game are not depicted, but as the game
is normed, the transition rates for all locations and all enabled control actions
are 1; the missing part is assigned to the respective self-loop. [z is owned by
the reachability player, while lg is owned by the safety player. G and | are
absorbing, and there is only a single enabled action for [. It therefore does not
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matter to which player [, G, and L belong. (We have depicted them as vertices of
the safety player.) One can assume that the absorbing states have a non-depicted
outgoing edge (say, with control action a) to themselves with transition rate 1.
In our example, we assume T = 4.

The example is constructed such that the analytical solutions can be ob-
tained, which are depicted on the right part in Figure 3 for player [ and lg
respectively. The graph roughly reflects the development of the time-bounded
reachability for the individual locations and points in time for the time bound
T = 4. Close to T' = 4, the optimal strategy of the reachability player is to use
control action a in lp and the optimal strategy of the safety player is to use
control action a in lg. There are only two interesting points: at roughly time
t; ~ 1.123 the optimal control action of the reachability player changes from
a to b (this happens when the time-bounded reachability at location ! reaches
0.25), and around the time 0.609 the optimal control action of the safety player
changes to b as well (when the time-bounded reachability at location [z reaches
0.125).

For our examples, we use ¢ = 0.1, and focus on the mesh [1.1,1.2] with initial
values pk(G'7 1.2) = 1, pk.(l, 12) = 0.2447 pk(lR, 1.2) = 0.107, pk(ls, 1.2) = 0075,
pr(L,1.2) =0, where py is the estimator for nets of level k. The values are not
the ‘true’ values for these points, but close enough. we chose them because being
more precise with the starting values does not help, as more digits would only
obscure the result. We chose the € mesh in order to make sure that something
does happen within the mesh. (Note, however, that the optimal strategies are
simply constant in most meshes.)

For our examples, pi(G,-) = 1 and pi(L,-) = 0 are constant functions, and
we do not mention them on any level.

5.1 Single e-Net

In single e-nets, we greedily look at the maximal gain at time ¢ = 1.2, and chose
the descent to the functions accordingly. The maximising action afR is a:

>ver Rr,a,)pi(lt) = 55 + 5 - 0.107 > 3oy cp R(lg, b, U)pu (I 8) = 5 -
0.244 + % - 0.107.
The minimising action af_ is also a: Y, R(ls,a,!)gr, (I';t) = 0.107 <

>ver Rls, b,0)gr, (I,1) = §.
As a result, we obtain the following estimators:

e p1(l,t—7) =0.07567 + 0.244,
e pi(lg,t —7) =0.02867 4 0.107, and
e pi(lg,t —7)=0.0327 4+ 0.075.

5.2 Double e-Net

The simplest case is again location I: There is no choice to make, and we obtain:

o —po(l,t—7) =0.1-(1—(0.07567 + 0.244)) = 0.0756 — 0.007567 and
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e po(l,t) = 0.244, and hence
o po(l,t —7) = —0.0037872 + 0.07567 + 0.244.

This is the next step of the Taylor expansion of the precise function. For
k > 2, the estimation pg can be easily obtained by: px(l,t — 7) = 0.244 +
E (—0.07567)°
2o w
Our running example is chosen to ensure that something does happen, namely
that the optimal control decision for the reachability player changes. In I, we

have the situation that

1 4
> Rl o, (st = 7) = o5 + =pilln t = 7)
l'eL

and ) A
> R(g, b U)p (It —7) = =1Lt =7) + pilp,t = 7)
el

intersect at p; (I, t—7) = 0.25, which happens at 7 = % = % =20 <e=0.1

within the e-mesh. Consequently, we get

o —pollp,t —7) = 0.05 — 0.2(0.02867 + 0.107) = —0.005727 + 0.0286 for 0 <
7 < 75 (achieved with optimising action a),

o —pa(lg,t—7) = 0.2((0.07567+0.244) — (0.02867+0.107)) = 0.00947 +0.0274
for zo < 7 < 0.1 (achieved with optimising action b),

o p2(lr,t) = 0.107, and hence

o po(lp,t —7) = —0.0028672 + 0.02867 + 0.107 for 7 < 29 and

o pa(lp, t — 7) = 0.004772 + 0.02747 + 0.107047619 for T > zo.

For lg, the minimising action remains stable, and we obtain ps(ls,t — 7) =
—0.001772 + 0.0327 + 0.075.

5.3 Triple e-Net

In [, the switching points satisfy, similar to the double e-Net, the equation
p2(l,t —7) = 0.25, which happens at z5 ~ 0.07968254476 and z4§ ~ 19.92031746:
only z3 is within the e-mesh. Note z3 > 25 &~ 0.07936507937. Consequently, we
get

o —p3(lg,t — 7) = 0.0005727% — 0.005727 + 0.0286 for 0 < 7 < 25 (achieved
with optimising action a),

o —ps(lp,t —7) = 0.0009472 — 0.005487 + 0.02859047619 for zo < T < 23
(achieved with optimising action a),

o —p3(lr,t —7) = —0.00169672 + 0.00947 + 0.0274 for 23 < 7 < 0.1 (achieved
with optimising action b),

e p3(lg,t) =0.107, and hence

e p3(lp,t—7) = 0.000190666666773 —0.0028672+0.02867+0.107 for 0 < 7 < 2z
(achieved with optimising action a),
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Fig. 4. We consider mesh [T — 1,T] with T' = 4. The initial value for G is one and 0
otherwise. The left part corresponds to the reachability player Iz, and we compare the
analytical curve with the estimation obtained by single and double-nets. The estimation
under double-nets is already very close. On the right part we have the single, double,
triple and quadruple nets estimations for the safety player ls: while the linear function
is constant 0, the estimation under quadruple nets already provides very promising
estimations.

e p3(lr,t — 1) = —0.000313333333373 — 0.002747% + 0.02867 + 0.107 for 29 <
7 < t3 (achieved with optimising action a),

e p3(lg,ta —7) = —0.000565372 +0.0048272 4 0.027390476197 + 0.1070477458
for z3 < 7 < 0.1 (achieved with optimising action b).

For location lg, the minimising action remains still stable: but we obtain a
piecewise cubic function p3(ls,t — 7) with the switching point z5 inherited from
double nets, as for the reachability player.

5.4 Mesh [T —1,T]

For the mesh [1.1,1.2] discussed in the previous subsections, the estimator ps for
the triple net is very close to the analytical curve (< 0.5107%). To illustrate how
estimations p1, p2, p3, p4 converge to the analytical curve, for T = 4, we consider
the complete interval [3,4] as a single mesh of maximal length £ = 1.

Note that our techniques are not designed for this. The error margins we
guarantee are, for a step of length ¢ = 1, £(1,1) = 3, £(2,1) = %, £(3,1) = %,
and £(4,1) = % It is, however, necessary to use such big steps to see the
difference in precision on a graph.

In Figure 4 shows the resulting estimators for the locations [r and lg on the
large mesh [3, 4] for nets of different levels.

6 Conclusion

We conclude our paper by comparing the quality of the estimator for single
e-meshes with the state-of-the-art [NZ10] for CTMDPs.
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We compare the step length and number of steps for looking for a six, eight,
and ten digit precision (7 = 5-1077,5-107,5 - 107!, respectively) and the
inferred mesh length and number of steps for bounded safety or reachability
problem with an expected value of ten transitions.

Calculating the required length of a mesh for these precisions, we get

precision | 5-1007 | 5-100° | 5-107"
state-of-the-art [NZ10] 5-1078 5-10-10 51012
single nets 1077 107° 10-1
double nets 3.87-1077 3.87-107° 3.87-10°°
triple nets 6.69-1073 1.44-1073 3.11-107%
quadruple nets 2.94-1072 9.31-1073 2.94-1073

Calculating the resulting numbers of iterations, we get

precision H 5-1077 5-107° 5-10711
state-of-the-art 200.000.000 20.000.000.000 2.000.000.000.000
single nets 100.000.000 10.000.000.000 1.000.000.000.000
double nets 25.820 258.199 2.581.989
triple nets 1.493 6.934 32.183
quadruple nets 340 1.075 3.399

In each case, the advantage of single nets over the state-of-the-art [NZ10] is
negligible, and most likely just a sign that our estimation is marginally better.
This is as expected, as the lowest level of our nets was supposed to be the
bridge to traditional approaches. The advantage of double nets is enormous, in
particular when taking the marginal raise in step-costs (as compared to single
nets or state-of-the-art [NZ10] techniques) into account: Compared to single nets

the number of steps is reduced by a factor of \/1% . %

The advantage of triple nets over double nets is equally impressive on first
glance. Yet, we do have to take into account that the individual steps might
become more expensive. Depending on the parameters of the Markov game in
question, this may lead to a worse bound on the cost. The estimations for this
are, however, extremely coarse, and we do think that the extra cost per step

would not outweigh the savings: a factor of y/ 1% . %, in our example a factor
between 17.3 and 80.2.

At the very least, it will be worthwhile to consider local values for the number
of changes, and use triple nets if the overhead will not be large. The overhead
for this is marginal: we only have to evaluate double nets up to the value length
of a mesh in triple nets to know how costly it will be to evaluate triple nets.
(This does not alter the worst-case cost of the evaluation of this step for the
underlying single and double nets, and has little influence on the actual cost. All
that can happen is that we have to consider a few more changes in the partially
linear function, and could exclude less values values up-front in the improvement
described in Subsection 3.2.) In the rare cases where this is too expensive, we
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can move forward to evaluating double nets on the respective shorter horizon
instead, thus getting the benefits of triple nets without having to take any risk
to speak of.

A similar argument can be made for the move from triple to quadruple
nets. One should, however, note that the advantage is much smaller: a factor

of 1\2/5% . %, 4.4 to 9.5 in our example. This method may still have its place
on the evaluation of parts of the time, namely on those parts where very little
happens, but only if the required precision is very high.

An implementation of these techniques is still outstanding, but we expect
the practical reduction to be in the region of the reduction of triple nets, as we
expect the times where we would rather turn to double nets to be rare. For the
expected step costs, we doubt that they will be a full order of magnitude over
the step costs for single nets.

References
[BCRT09] Marco Bozzano, Alessandro Cimatti, Marco Roveri, Joost-Pieter Katoen,

Viet Yen Nguyen, and Thomas Noll. Verification and performance evalu-
ation of AADL models. In ESEC/SIGSOFT FSE, pages 285-286, 2009.

[Bel57] Richard Bellman. Dynamic Programming. Princeton University Press,
1957.
[BF09] P. Bouyer and V. Forejt. Reachability in stochastic timed games. In

86th International Colloquium on Automata, Languages and Programming
(ICALP), Part II, volume 5556 of Lecture Notes in Computer Science,
pages 103-114. Springer, 2009.

[BFKT09] Tomés Brézdil, Vojtech Forejt, Jan Krcil, Jan Kretinsky, and Antonin
Kucera. Continuous-time stochastic games with time-bounded reachabil-
ity. In FSTTCS, pages 61-72, 2009.

[BHKHO05] Christel Baier, Holger Hermanns, Joost-Pieter Katoen, and Boudewijn R.
Haverkort. Efficient Computation of Time-bounded Reachability Probabil-
ities in Uniform Continuous-time Markov Decision Processes. Theoretical
Computer Science, 345(1):2-26, 2005.

[BKH99] C. Baier, J.-P. Katoen, and H. Hermanns. Approximate Symbolic Model
Checking of Continuous-Time Markov Chains. In Proceedings of CON-
CUR’99, volume 1664 of Lecture Notes in Computer Science, pages 146—
161, 1999.

[BS11] P. Buchholz and I. Schulz. Numerical analysis of continuous time markov
decision processes over finite horizons. Computers and Operations Re-
search, 2011.

[CHKM10] Taolue Chen, Tingting Han, Joost-Pieter Katoen, and Alexandru
Mereacre. Computing maximum reachability probabilities in Markovian
timed automata. Technical report, RWTH Aachen, 2010.

[CHLS09] Nicolas Coste, Holger Hermanns, Etienne Lantreibecq, and Wendelin
Serwe. Towards performance prediction of compositional models in in-
dustrial gals designs. In CAV, pages 204-218, 2009.

[GHLPRO6] X. P. Guo, O. Herndndez-Lerma, and T. Prieto-Rumeau. A survey of
recent results on continuous-time Markov decision processes. TOP, 14:177—
261, 2006.

29



[GMLS07]

[HMWO09]

[Mil68a)

[Mil68b]

[ML67]

[NSKO09)]

[NZ10]

[Put94]

[RS10]

[Ste94]

[WJ06]

[ZN10]

Hubert Garavel, Radu Mateescu, Frédéric Lang, and Wendelin Serwe.
CADP 2006: A toolbox for the construction and analysis of distributed
processes. In CAV, pages 158-163, 2007.

Thomas A. Henzinger, Maria Mateescu, and Verena Wolf. Sliding window
abstraction for infinite markov chains. In CAV, pages 337-352, 2009.

B. L. Miller. Finite state continuous time Markov decision processes with
an infinite planning horizon. Journal of Mathematical Analysis and Appli-
cations, 22:552-569, 1968.

Bruce L. Miller. Finite State Continuous Time Markov Decision Processes
with a Finite Planning Horizon. SIAM Journal on Conitrol, 6(2):266-280,
1968.

Anders Martin-Lofs. Optimal control of a continuous-time markov chain
with periodic transition probabilities. Operations Research, 15:872-881,
1967.

Martin R. Neuhdufler, Mariélle Stoelinga, and Joost-Pieter Katoen. De-
layed Nondeterminism in Continuous-Time Markov Decision Processes. In
Proceedings of FOSSACS 09, pages 364-379, 2009.

Martin R. Neuh&ufler and Lijun Zhang. Time-Bounded Reachability Prob-
abilities in Continuous-Time Markov Decision Processes. In Proceedings
of QEST, 2010.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. Wiley-Interscience, April 1994.

Markus Rabe and Sven Schewe. Finite Optimal Control for Time-Bounded
Reachability in CTMDPs and Continuous-Time Markov Games. CoRR,
abs/1004.4005, 2010.

William J. Stewart. Introduction to the Numerical Solution of Markov
Chains. Princeton Univ. Pr., 1994.

Nicolds Wolovick and Sven Johr. A Characterization of Meaningful Sched-
ulers for Continuous-Time Markov Decision Processes. In Proceedings of
FORMATS 06, pages 352-367, 2006.

Lijun Zhang and Martin R. Neuh&duBler. Model Checking Interactive
Markov Chains. In Proceedings of TACAS, pages 53—-68, 2010.

30



