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Abstract

The exponential state-space blow-up that arises when analyzing reachability in net-
works of synchronizing processes is one of the main problems in model checking.
This thesis will introduce an approach in which communication sequences are ab-
stracted algebraically. The abstraction includes information about safety properties
in such a way that if the solution set of the abstraction is empty, the stated prop-
erties hold. All involved means have at most polynomial complexity. Since the
solution space is an overapproximation, the checking procedure is incomplete yet.
However, the ideas and methods that will be introduced form a nice basis for doing
further abstraction refinement such that valuable information about reachability
might be derived conveniently in the future.
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Chapter 1

Introduction

“A communication sequence is a series of actions and reactions be-
tween (...) two or more people. A sequence has a beginning event
(“Chuck cleared his throat”) and a reaction > reaction > reaction chain
until some local ending event (“Sharon left the room”). Three key types
of sequences are (a) need- assertions, (b) conflict resolutions (problem
solving), and (c) giving and receiving praise, like affirming, validating,
and approving. (...)” [oA]

This definition is from a divorce-prevention website. I am afraid, the results of this
thesis will not yield to better marriages. Nevertheless, if “people” are replaced by
“modules”, the definition is quite accurate to describe what we are dealing with.
Whenever a person and module, respectively, is dependent on another one in a
way that it needs some service or information, communication sequences are essen-
tial. They can be found in almost everything that computer science has put forth,
beginning with small hardware modules up to the Internet including all layers in-
between. Verification of communication sequences is therefore not only extremely
useful, it is essential when it comes to safety-critical systems. The thesis will focus
on reachability analysis as one important aspect.
Chapter 2 will introduce means to model communication sequences appropriately
and show how these models have to be modified in order to form a basis for an
albegraic abstraction. The reason for an overapproximation comes from the expo-
nential complexity of the reachability problem when analyzing the system’s state
space explicitly. After a short illustration of this drawback, the procedure on how
to build and modify the abstraction will be discussed in detail. At the very end, a
first attempt to refine the abstraction will be introduced.

7



Chapter 2

Communication Sequences

2.1 Reactive Systems

Reactive systems are a class of software and/or hardware systems which have on-
going behavior, i.e. they do not terminate [Hel05]. Examples of reactive systems
include:

• Traffic lights

• Elevators

• Operating systems

• Data Communication protocols (Internet, telephone switches)

• Mobile phones

These are just a few instances. Embedded systems are usually reactive, especially
controlling units in safety critical environments are. Already in 2003 more than
79% of all processors were used in embedded systems [Mar03]. Reactive systems
often have to guarantee strict safety properties on the one hand but are difficult to
test due to the non-terminating behavior on the other hand. Formal verification
provides methods for deriving significant and reliable properties. Reasoning about
reactive systems has to involve communication sequences to some extend which is
one aspect that shows how important they are.

2.2 Modelling Communication Sequences

Transition Systems [Kel76] or ω-Automata [GTWE02] represent a very nice way to
model systems in which communication sequences contribute. They are capable of
accepting infinite words (i.e. reactive systems can be modeled) and their expressive
power is adequate. To describe the ideas of this thesis, however, they are too
expressive - finite state systems will be analyzed only. Nondeterministic Finite State

Automata will do the job for modelling these systems conveniently with regard to
automatically guaranteeing safety properties.

2.2.1 Nondeterministic Finite Automata

A nondeterministic finite state automaton (NFA) is a quintuple A = (S, Σ, ∆, S0, F ),
where:

• S is a finite set of states,

8



2.2. MODELLING COMMUNICATION SEQUENCES 9

• Σ is a finite set of input symbols,

• ∆ is a transition function (∆ : S × Σ→ 2S),

• S0 ⊆ S is the set of initial states,

• F ⊆ S is the set of accepting states.

We consider a finite set of communicating processes, each modelled by one dedi-
cated automaton. All symbols in Σ (except ε) represent an atomic communication
instance. They can also be seen as synchronizations between processes. An empty

transition is labeled with symbol ε and can be taken without any synchronization.
Formally this means that if the system consists of automata A1, . . . , An, the inter-
section of the corresponding languages L(A1) ∩ · · · ∩ L(An) form all the system’s
communication sequences. One constraint is that processes are only allowed to
synchronize in pairs. Therefore the intersection of all languages is not an accurate
model if the system consists of more than two processes. Section 3.1.2 will present
simple means to correct the model concerning this matter.

2.2.2 A Simple Vending Machine

Here is an example of how a simple device can be modeled. Figure 2.1 shows a
control unit for a chewing gum vending machine. Figure 2.2 illustrates the dedicated
in- and output processes. The system accepts 5 and 10 cent coins. If a 10 cent coin is
inserted one chewing gum is delivered immediately. In case a 5 cent coin is inserted,
the user has the opportunity either to get the money back by pressing the return key
or to get the candy by throwing in a further 5 or 10 cent coin. In the latter case the
change is delivered in addition to the goods. The nodes in the diagram represent the

Figure 2.1: Control Process for a Vending Machine

Wait

RetPressed

got10

got5

in10c?

in5c? in5c?

return?

out5c!

return?

got15
in10c?

out5c!

ProvideGum
gum!ready?

states of the process, edges refer to possible transitions between them. Transitions
are enabled whenever they can be synchronized on the channel that is referenced
by the transition label, i.e. there must be another process that has synchronization
transitions on the same channel and both must be in a state where they can execute
the joint transition. In case a process has multiple enabled transitions, one of them
is chosen nondeterministically. The nodes labeled by “Wait” are the initial states,
marked by an additional arrow that has no source node.
The processes are not modelled by NFAs so far. On the one hand final states are
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Figure 2.2: In-/Output Processes for a Vending Machine

Waitreturn! in10c!

in5c!

Wait

provideGoods

provide5c

out5c?
gum?

ready!

Input process Output process

not specified, on the other hand suffixes ‘!’ and ‘?’ are appended to the transition
labels. Intuitively, the question mark corresponds to receiving, the exclamation
mark to sending. In order for two non-empty transitions in different processes to be
enabled, not only the related channel must be identical in both, but also the suffixes
of them have to be complementary. The presented graphical description language
is used analogously with extensions in several tools for automatic verification. The
model can be mapped to a network of NFAs without loosing any information about
reachable error states, as I will show later.

2.2.3 Textual Description Language

In order to make graphs readable for tools a textual description is quite useful. The
grammar shown in Figure 2.3 generates an appropriate language in this regard.
Moreover, the input language is a subset of the XTA-format [Beh], one of the
input languages for the modelling and analyzing tool Uppaal [UU]. Following the
example of the vending machine, Figure 2.4 shows an XTA representation of a
system containing only the output unit.

Ita → ChanList ProcList Globals

ChanList → ε | chan IdList ;
ProcList → Proc | Proc ProcList

Globals → system IdList ;
Proc → process Id { ProcBody }
IdList → Id | Id , IdList

ProcBody → StateDecls TransDecls

StateDecls → state IdList ; init Id ; | state IdList ; init Id ; final Id ;
TransDecls → trans TransList ;
TransList → Trans | Trans , TransList

Trans → Id − > Id { OpSync }
OpSync → ε | sync Id ! ; | sync Id ? ;
Id → Alpha | Id AlphaNum

Alpha → A | ... | Z | a | ... | z
Num → 0 | ... | 9
AlphaNum → Alpha | Num |

Figure 2.3: Grammar for the textual description language [BL96]
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Figure 2.4: Output Unit in XTA-Format

chan gum, out5c , ready ;
p roce s s OutputUnit{

s t a t e Wait , Provide5c , ProvideGoods ;
i n i t Wait ;
t rans Wait −> Provide5c{ sync out5c ? ; } ,
Wait −> ProvideGoods{ sync gum? ; } ,
ProvideGoods −> Wait{ sync ready ! ; } ,
Provide5c −> Wait {} ;

}
system OutputUnit ;

2.2.4 More Sophisticated Models

Because communication sequences are analyzed at a high level, the model described
so far is sufficient. However, for real-life applications one will eventually need more
instruments to build appropriate models. Global and local variables, constraints on
when to enter or exit states or assignments to variables when transitions are taken
are means to gain much more expressive models. Time can be another important
aspect of reactive systems or protocols. An airbag in a car for example must be
activated in time, otherwise it is completely useless. Such systems are called Real-

time Systems.

2.3 Model Checking

One technique for verifying reactive systems is model checking. It has the advantage
that it is more precise than simulation or testing. Furthermore, it can be done
automatically once the model and the specification are provided. This aspect clearly
characterizes an advantage over deductive reasoning. One basic model checking
approach is reachability analysis. Referring to the vending machine in Section 2.2.2,
the question may arise whether the system can reach a situation such that the
control process is in state got5 while the output process is in state provideGoods

at the very same time. This would definitely constitute a design flaw. Fortunately,
this can not be the case and indeed, the model checker Uppaal says so as well.
Deriving system properties of this kind is also referred to as performing reachability

analysis.

2.3.1 Reachability Analysis

The system’s concurrency, i.e. the nondeterminism in its interleavings can easily
lead to an exponential state space blow-up when reachability analysis is performed.
Building the product automaton for instance, a straightforward way to model all
execution paths and synchronizations explicitly, has exponential worst case com-
plexity. Let a system consist of automata A1 = (Σ, S1, S

0
1 , ∆1, F1) and A2 =

(Σ, S2, S
0
2 , ∆2, F2). The product automaton is then defined as A = (Σ, S, S0, ∆, F ),

where:

• S = S1 × S2,

• S0 = S0
1 × S0

2 ,

• for all s, s′ ∈ S1, t, t
′ ∈ S2, a ∈ Σ :

((s, t), a, (s′, t′)) ∈ ∆ iff (s, a, s′) ∈ ∆1 and (t, a, t′) ∈ ∆2,



12 CHAPTER 2. COMMUNICATION SEQUENCES

• F = F1 × F2.

A is also denoted as A1‖A2 and it holds that L(A1‖A2) = L(A1)∩L(A2). The def-
inition can simply be extended to systems that consist of more than two automata.
Due to the fact that we restrict synchronizations to be pairwise, some preprocessing
of the automata becomes necessary to keep the semantics (Section 3.1.2). Figure 2.5
shows an example of how to build a product automaton. Note, that the unreachable
product state (S1, T0) has been removed along with all incident edges. As said, the
state space of the product automaton grows exponentially with the number of pro-
cesses. Although there is a lot of room for optimizations when doing reachability
analysis, the worst case complexity remains the same. The state explosion problem
is actually one of the main sources of research in model checking.

Figure 2.5: Example of a Product Automaton

S0 S1

a, b

b

b T0

T1

T2

a

b

b a

b

b

A1 A2

(S0, T1) (S1, T1)

(S0, T2) (S1, T2)

(S0, T0)

a

b

b

b

b

b

b

a

b

b

b

b

A1‖A2



Chapter 3

Abstraction of

Communication Sequences

In this chapter I will describe a possible way to avoid the state space explosion
when doing reachability analysis. At first there will be some preprocessing to the
input automata. The flow and the synchronizations will then be abstracted subse-
quently by polynomial equations in Z[x]. Thus, the reachability problem is reduced
to checking if the system of equations has the zero polynomial as its only solution.
We will see that the solution space is an over-approximation. This requires fur-
ther abstraction refinement. All introduced means will have at most polynomial
complexity.

3.1 Model Transformation

Figure 3.1: Example System

s0

s1 s2

t0 : a?

t1 : b!

t3 : a!

t2 : b?

A0

s0

s1

t8 : b!t7 : a?

A2

s0

s1

A1

t6 : a!t5 : b!

t4 : ε

3.1.1 Goal Transitions

Until now, the underlying model is not yet based on NFAs since final states have
not been discussed. It is rather set up by a set of finite ω-Automata so far. The
capability of accepting infinite words constitutes the difference. The final states
that are to be introduced will indirectly specify an error state for the reachability

13
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Figure 3.2: Goal Transitions

s0

s1 s2

t0 : a?

t1 : b!

t2 : a!

t3 : b?

A0

s0

s1

t9 : b!t8 : a?

A2

s0

s1

A1

t6 : a!t7 : b!

t4 : ε

g0
t5 : g?

g0

t10 : g!

g0
t11 : g

g1
t12 : g

analysis. Furthermore, final states will restrict all the system’s communication
sequences to be of finite length. The mapping from ω-automata to NFAs therefore
has to preserve the reachability properties (also for infinite sequences).
The idea for the transformation is the following: Imagine we would like to test if
state (A0.s1, s, A2.s1) from Figure 3.1 is reachable for some s ∈ A1. At first, final
states A0.g0 and A2.g0 are introduced, visualized by round marks. Both A0.s1 and
A2.s1 will then be the source of a single, dedicated goal transition that yields to
A0.g0 or A2.g0 respectively, as illustrated in Figure 3.2 (transition labels ‘ti : c’ now
specify the name ti of the corresponding transition in addition to its synchronization
channel c). Goal transitions always synchronize on the system’s unique goal channel

g. Now, for a synchronization to be possible on g, the system has to reside in
(A0.s1, s, A2.s1) for some s. Algorithm 1 describes the transformation procedure
in detail. With respect to our example, it also introduces A1.g0 and A1.g1 along
with transitions t11 and t12. This is to establish a chance for the system to stop
immediately after an error state has been reached. How both t11 and t12 can join the
synchronization between t5 and t10 will be made clear in Section 3.1.2. Regarding
the transformed model, the following properties are now equivalent:

• There is a run in which the specified error state is active at some point.

• There is a finite run in which the specified error state is active at some point.

3.1.2 Channel Splitting and Artificial Self Loops

This section will substitute all empty transitions from the input automata on the
one hand and duplicate/relabel transitions corresponding to synchronization ac-
tions on the other hand. The latter plan will require splitting of channels/symbols
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as well as to introduce self loops. The procedure entails the demanded semantics
of exclusive pairwise synchronization actions and preserves reachability properties.
Furthermore, the channel suffixes ‘!’ and ‘?’ wont be needed anymore, their mean-
ing will also be expressed by the new channels. As a matter of fact, in order to
apply the later abstraction techniques, the system must be transformed in such a
way that the product automaton’s language represents all possible runs to the spec-
ified error state. Substitution of empty transitions becomes necessary to keep time
consistency throughout the system. This is necessary with regard to abstraction
techniques in Section 3.2.2.

Figure 3.3: Unique Synchronization Actions

s0

s1 s2

A0

g0

t1 : a1,0

t2 : b0,−1

t6 : a0,2t9 : g

t3 : a1,2

t4 : b2,0t5 : b1,0

t8 : ε0,0

t7 : a1,2

t0 : a1,2

A1

s0

s1

g0

t12 : b1,0

t13 : a1,0

t14 : a1,2

t10 : a0,2; b2,0; ε0,0
t11 : g

t15 : a0,2; b2,0; ε0,0
g1

t16 : g

A2

s0

s1

g0

t19 : a0,2

t18 : a1,2

t20 : b2,0

t22 : g

t17 : a1,0; b1,0; ε0,0

t21 : a1,0; b1,0; ε0,0

To make synchronization actions unique with respect to the sending and receiv-
ing process, channels are duplicated and renamed accordingly. Figure 3.3 shows the
transformed model of our familiar example. An indexed channel ci,j is now reserved
for a synchronization in which Ai sends and Aj receives respectively on channel c.
All other processes Ak 6=i,j get an artificial self loop (dashed in example) attached to
every non-final state, synchronized on ci,j as well. Remark that for all Ak , artificial
self loops are the only transitions that are allowed to synchronize on channel ci,j or
cj,i. As an example, t3 from Figure 3.2 has been split into new transitions t4 and
t5 since A1 can synchronize with A0 and A2. Consequently, A1 now holds artificial
self loops that are synchronized on b2,0 or A2 on b1,0 respectively. If for a particu-
lar transition (e.g. t2) no process can be found to synchronize, the corresponding
channel index gets a ‘−1’ entry. Transitions that will certainly never be taken in
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any possible run are referred to as dead transitions.
The described modifications to the model suffice for the system’s product automa-
ton to accept a language that accurately describes all runs leading to the error
state. However, the later time abstraction demands one little further model alter-
ation. Empty transitions form the problem. Recall that they can be taken without
any synchronization, i.e. independently of other processes. We definitely need a
system-wide dependency for any system action since we will abstract time globally
later on and the processes somehow have to adhere to it. The example shows how
empty transitions (i.e. t8) can easily be transformed. Each process Ai gets one
dedicated channel εi,i for empty transitions to synchronize on. All other processes
Aj 6=i will again introduce artificial self loops that are synchronized on εi,i for each
non-final state. Thus, the behavior of empty transitions is modelled properly and
the requirement of having only system-wide actions is met. The previously defined
goal transitions remain untouched. Goal channel g does not require indices since it
is unique and is independent of the synchronization’s kind with respect to ‘!’ and
‘?’. The channel suffix can therefore simply be deleted.

3.2 Model Abstraction

Finally, all preprocessing to the underlying model has been performed and we are
ready to build up a polynomial system of equations over Z[x] as an algebraic over-
abstraction of the NFA network. The system of equations will be formed in such
a way that if its solution space is empty or has the zero polynomial as its only
solution, the accepted language of the system’s product automaton is empty. This
constitutes a proof then for the error state not to be reachable for any run.
As mentioned, real-time properties will not be considered. Therefore it is sufficient
to abstract time in a very basic way. Time is global, discrete and whenever a syn-
chronization is processed it is increased by one. The natural numbers are therefore
sufficient to abstract time. At first, each transition ti in the system gets a dedi-
cated variable ei ∈ Z[x]. The idea is that for a concrete run, the value of each ei

determines the point(s) in time at which ti is taken.

δi(t) =
1 if ti is taken at time t

0 otherwise

ei(x) =
t

∑

k=0

δi(k) · xk

For example, if we consider a run of the system, in which tm is taken at time 4 and
11, em has the value x4 + x11. Time starts at t0 = 0. One can imagine that in each
process a virtual transition carrying the value x0 leads to the initial state of the
corresponding process.
Each single run can now simply be represented by an allocation vector e ∈ Z[x]n,
where n is the number of transitions in the system. Flow and synchronization
equations are the two kinds of constraints that will form our abstraction.

3.2.1 Flow

The basic idea for flow abstraction is that the sum of all incoming transitions of
a particular state times x must equal the sum of all outgoing transitions. Recall
that the exponent in each term of a polynomial is directly related to the time the
corresponding transition is taken. The multiplication of that polynomial by x has
the effect that each term’s exponent is increased by one. The resulting polynomial
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therefore describes a consecutive transition. The following equations form the flow
abstraction of our example (Figure 3.3):

A0 : x · (x0 + e0 + e2) = e0 + e1

x · (e6 + e7 + e8) = e7 + e8 + e9

x · (e1 + e3 + e4 + e5) = e2 + e3 + e4 + e5 + e6

A1 : x · (x0 + e10 + e12) = e10 + e11 + e13 + e14

x · (e13 + e14 + e15) = e12 + e15 + e16

A2 : x · (x0 + e17 + e18 + e19) = e17 + e20

x · (e20 + e21) = e18 + e19 + e21 + e22

This can be expressed equivalently by:

MFlow · (x
0, e0, . . . , e22)

T = 0

where MFlow has only entries in {0, 1,−x, 1−x} ⊆ Z[x]. Given a network of NFAs,
Algorithm 4 constructs MFlow correspondingly. Recall that the introduction of goal
transitions guarantees that only finite runs have to be considered for the reachability
analysis. Polynomials therefore suffice to represent all erroneous runs. Algorithm
4 might derive equations of the form x · (e1 + e2) = e2, describing the flow of the
following subgraph:

s
e1

e2

The only solution is e1 = e2 = 0, i.e. a run in which e2 is taken cannot be expressed.
However, since we assume that goal transitions have been introduced properly, we
are not interested in solutions in which e2 is taken. We know that the process in
which the subgraph occurs does have locations that specify an error-state, otherwise
there would be an outgoing goal transition from s. Thus, if e2 is ever taken, we
cannot reach an error state anymore and the respective run therefore does not need
to be considered.

3.2.2 Synchronization

In case the system consists of only two processes, the abstraction is quite easy since
there are no artificial self loops. Synchronization transitions have to be taken at the
same time in both processes. Hence, for this particular synchronization action, the
values of the corresponding variables both have to include a mutual term xt where
t is the time at which the transitions are taken. Furthermore, the system has been
modified in such a way that transitions can only be taken via synchronizations. We
therefore get one constraint for each channel c0,1 (assume the two processes are
named A0 and A1) that occurs in the system. Now, we simply equate the sum of all
transitions synchronized on c0,1 in A0 with the sum of all transitions synchronized
on c0,1 in A1, i.e.:

∑

k∈Ind(c0,1)(A0)

ek =
∑

k∈Ind(c0,1)(A2)

ek

Ind = λc.A.{ k | tk synchronized on c in A}
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Figure 3.4: Two Processes to Synchronize

A0

s0

s1 s2

g0

t0 : a1,0

t1 : b0,1

t2 : a0,1

t3 : g

t4 : a1,0

t5 : b0,1

A1

s0

s1 s2

g0

t6 : a1,0 t7 : a0,1

t8 : b0,1

t9 : g

Synchronizations on goal channel g are handled in the same manner:
∑

k∈GT (A0)

ek =
∑

k∈GT (A1)

ek

GT = λA.{ k | tk is goal transition in A }

In case dead transitions tm are located, i.e. i = −1 or j = −1 for their synchroniza-
tion channels ci,j , em can simply be set to zero since we know that it will never be
taken. As an example, the network of automata from Figure 3.4 yields the following
system of equations:

e0 + e4 = e6

e2 = e7

e1 + e5 = e8

e3 = e9

⇔









0 1 0 0 0 1 0 −1 0 0 0
0 0 0 1 0 0 0 0 −1 0 0
0 0 1 0 0 0 1 0 0 −1 0
0 0 0 0 1 0 0 0 0 0 −1









·











x0

e0

...
e9











= 0

However, the abstraction of synchronization events demands a bit more effort if the
system consists of more than two processes. The problem is the already stated time
consistency. Recall that time is regarded globally. The flow abstraction for each
process takes care that time proceeds stepwise for each transition that is taken. The
only thing left for the abstraction to include are constraints that force all processes
which are not directly involved in a synchronization action to take their proper
artificial self loops. To this end, a new variable is introduced for each channel. The
variables will be named by the channel they refer to, except that capital letters
will be used to distinguish them (Θ will be the variable dedicated to ε). The
synchronization constraints do now look slightly different:

∑

k∈Ind(ci,j)(i)

ek =
∑

k∈Ind(ci,j)(j)

ek = Ci,j (i, j 6= −1)
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... for each ci,j . Again, goal channel g is handled similarly. For all processes A

there is one constraint:

∑

k∈GT (A)

ek = G

The new variables can now help to constrain artificial self loops. For each process
A we get one further equation:

∑

k∈Self(A)

ek =
∑

C∈Cha(A)

C

Self = λA.{ k | tk is artificial self loop in A}

Cha = λA.{ Ci,j | A 6= Ai, Aj}

Consider the example from Figure 3.3 again. The following system of equations (see
Section A.4 for formal implementation) expresses its synchronization abstraction
according to the introduced definitions.

e1 = e13 = A1,0

e6 = e19 = A0,2

e14 = e18 = A1,2

e5 = e12 = B1,0

e4 = e20 = B2,0

e2 = 0

e8 = Θ0,0

e9 = e22 = G

e11 + e16 = G

e0 + e3 + e7 = A1,2

e10 + e15 = A0,2 + B2,0 + Θ0,0

e17 + e21 = A1,0 + B1,0 + Θ0,0

3.3 Syzygy Module

The abstraction can now be completely expressed by a matrix M , representing an
equation system of the following form:

M · u = 0

...where M has entries in {0, 1,−x, 1 − x} ⊆ Z[x] and u ∈ Z[x]n is the solution
vector:

u := (x0, e1, . . . , ei, C1, . . . , Cj , ei+1, . . . , el, el+1, . . . , en−j−2, G)T

It contains all introduced variables plus x0 in order to describe initial transitions.
It is structured as follows:
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x0 The value of initial transitions, i.e. we start at time 0
e1 . . . ei One variable for each transition from the input system
C1 . . . Cj All channels after splitting get dedicated variables
ei+1 . . . el Artificial self loop variables
el+1 . . . en−j−2 One variable for each goal transition
G Variable for the dedicated goal channel

Unfortunately, the abstraction so far is not quite handy. An obvious approach
now is to check the matrix for possible solutions. Note that the solution space is
an over-approximation since polynomials are now allowed to have coefficients in
Z. However, expressing the solution space by basis vectors can remove potential
redundancy.

The first thing to do is applying Gaussian elimination. This works fine since we
deal with univariate polynomials. Forward elimination is formalized by Algorithm
8. It utilizes the greatest common divisor for some calculations to keep Matrix en-
tries as small as possible. Therefore, polynomials have to be regarded as elements
in Q[x] from now on. Forward elimination results in a matrix that is in row echelon
form, except that leading coefficients might be different from 1 (note that not every
element in Q[x] has a multiplicative inverse). If the last non-zero row’s leading coef-
ficient p is situated at the very last position in its row, i.e. p·G = 0, we can stop since
G has to be zero. Otherwise backward elimination (Algorithm 9) is applied to get
a matrix which is then in reduced row echelon form (again, leading coefficients are
allowed to be different from 1). The current representation’s degree of redundancy
is now directly related to the number of zero rows that the elimination procedure
has put forth. Gaussian elimination has cubic straight-line complexity (O(n3) basic
arithmetic operations where n = MAX(numRows(M), numColumns(M))). How-
ever, greatest common divisor calculations are performed n2 times at most. Each
gcd application has polynomial straight-line complexity with respect to length and
degree of the input polynomials.

After backward elimination has been applied, column interchange and deletion of
zero rows can transform the matrix to have the following form:

v1 :
...

vk :







p1 . . . 0 q11 . . . q1m

...
. . .

...
...

. . .
...

0 . . . pk qk1 . . . qkm






=: V

The row vectors v1, . . . , vk ∈ Q[x]n=k+m are referred to as constraint vectors. The
next step is to find a matrix W that represents a basis of the syzygy module. We
want W to be of the following form:

w1 :
...

wm :







r11 . . . r1k s1 . . . 0
...

. . .
...

...
. . .

...
rm1 . . . rmk 0 . . . sm






=: W

Furthermore, all syzygies w1, . . . , wm ∈ Q[x]n have to be orthogonal to all constraint
vectors. Algorithm 10 constructs syzygies taking O(n2) basic arithmetic operations
plus O(n2) applications of gcd. It does not expect its input to be of V ’s form. It has
rather to be a square matrix (zero-rows allowed) such that all leading coefficients
are situated on the diagonal.
The syzygies now span up V ’s syzygy module, i.e. the solution space to our system
of equations:

S = { u |M · u = 0 } = {λ1w
T
1 + · · ·+ λmwT

m | λ1, . . . , λm ∈ Q[x]}
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3.4 Solution Space Reduction

So far, the solution space has not been reduced, only its representation has been
changed. Properties of polynomials with 1-0 coefficients can be used for trying to
deduce that variables in u must have the zero polynomial as their only solution.
From now on, polynomials that are either the zero polynomial or have at least one
coefficient that is smaller than zero will be referred to as dispensable polynomials.
The following facts can help to reduce the solution space:

Theorem. If a polynomial p ∈ Q[x] has a positive root x0 it is dispensable.

Proof. Let p(x0) = a0 + a1 · x0 + · · ·+ an · x
n
0 = 0, where n is the degree of p and

n > 1 (there is no polynomial with degree 0 that has a positive root). Let an > 0
⇒ ∃ai<n : ai < 0
⇒ p dispensable.

Theorem. If a linear combination p = µ1 · p1 + · · · + µm · pm is dispensable where
p1, . . . , pm ∈ Q[x], µ1, . . . , µm ∈ Q[x] and ∀µi≤n : µi not dispensable
then ∃pi≤n : p dispensable.

Proof. Obvious: If ∀pi≤n : pi not dispensable, then p is dispensable either.

Fortunately, the problem of finding dispensable linear combinations can be re-
duced: Let us assume we can find µ1, . . . µk ∈ R≥0 and an x ∈ R>0, such that:

µ1 · w
T
11(x) + · · ·+ µn · w

T
1n(x) = 0

...
µ1 · w

T
m1(x) + · · ·+ µn · w

T
mn(x) = 0

Taking these coefficients for linear combinations of the single solutions we get:

µ1 · u1(x) + · · ·+ µn · un(x)

= µ1 · (λ1(x) · wT
11(x) + · · ·+ λm(x) · wT

m1(x)) + · · ·+
µn · (λ1(x) · wT

1n(x) + · · ·+ λm(x) · wT
mn(x))

= λ1(x)(µ1 · w
T
11(x) + · · ·+ µn · w

T
1n(x)) + · · ·+

λm(x)(µ1 · w
T
m1(x) + · · ·+ µn · w

T
mn(x))

= 0

This yields to the following implication which holds for each 1 ≤ l ≤ n:

µl > 0 ⇒ ul(x) = 0
⇔ µl > 0 ⇒ ul dispensable

This allows us to set all ul to zero for which µl > 0 since all solutions that are
omitted thereby are dispensable.
Unfortunately, the reduced problem is still quite hard due to the fact that the
constraints on µ1, . . . µn and x are non-linear. However, they have a quite simple
structure. This forms a subject for further research.



Chapter 4

Conclusion

This thesis shows how a convenient model for communication sequences can be
transformed to a set of NFAs in order to abstract the system algebraically. The
modifications to the input model as well as the abstraction itself are designed with
the objective to derive safety properties without the usual exponential state-space
blow-up. As a result, having applied means of at most polynomial complexity, the
abstraction is expressed by a basis spanning up a module over Q[x]. This compact
representation provides a convenient foundation for further refinement techniques
that are needed since the abstraction is still an overapproximation. One approach
has been introduced where the refinement problem is reduced to solving non-linear
constraints and checking them for satisfiability, respectively. Although the problem
is not solved completely yet, the simple constraint structure leaves great hope to be
able to reduce the solution space considerable in polynomial complexity.
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Appendix A

Algorithms

A.1 Definitions and Helper Functions

∆ = ∆1 ∪ · · · ∪∆n All transitions of the system
Σ All channels of the system
C = Σ ∪ {ε} All channels plus the empty one
c index : C → P → P → int Specifies the index of a channel, related to a

synchronization between two processes
channel : ∆→ C Channel on which a transition is synchronized
curr var num : int Current number of variables, i.e. the length of

matrix vectors
DIR = {send, receive} Synchronization type
edges : C → P → DIR→ 2∆ Given a channel c, a process P and a syn-

chronization type d, edges(c)(P )(d) provides
all transitions in P that are synchronized on c

and have synchronization type d

F = F1 ∪ · · · ∪ Fn All goal states of the system
g index : S → int Specifies the index of a goal transition. Every

goal transition yields from a unique state.
gcd : Q[x] → Q[x] → Q[x] Greatest common divisor of two elements
getDir : ∆→ DIR Sync. type of a particular transition
getFreshChannel() Delivers a new channel that is not in C yet
getFreshState() Provides a new state that is not in S yet
getFreshZeroRow : () → Ma-
trixRow*

Instantiates a vector filled with zeros

goal channel : int ID of the unique, dedicated goal channel
in out trans : S → 2∆ All self loops of a state (not artificial)
in trans : S → 2∆ All incoming transitions of a state
lc index : int→ int Provides the position of the leading coefficient

in a particular row if there is one, 0 otherwise
MatrixRow Data type representing a vector over Q[x]
M:MatrixRow* Array Matrix representing the equation system
n Number of processes in the system
needsLoop : P → bool Not every process needs artificial self loops.

For instance if a process is involved in every
possible synchronization, it does not need any.

25
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num vars : int Number of abstraction variables
numColumns : Matrix→ int Number of columns
numRows : Matrix→ int Number of rows
out trans : S → 2∆ All outgoing transitions of a state
owner : ∆→ P Returns the process the transition be-

longs to
P = {P1, . . . , Pn} All processes of the system
P ′ = P ∪ {⊥} ⊥ describes the process that does not

exist.
RingElement Data type representing Q[x]
S = S1 ∪ · · · ∪ Sn All local states of the system
S0 = S0

1 ∪ · · · ∪ S0
n All initial states of the system

s index : S → int Specifies the index of a particular arti-
ficial self loop. Self loops are attached
to a unique state.

syncs : C → 2(P ′×P ′) All possible synchronizations on a spe-
cific channel

SYZ:MatrixRow* Array Matrix in which the row vectors form
the syzygy module

t index : ∆→ P ′ → int Specifies the index of a transition, syn-
chronized on a particular process

All means that will be introduced in the following sections have been actually im-
plemented in C++. CoCoALib[DdM] turned out to be a useful tool for representing
ring elements in Q[x] and basic functions on them. For parsing the textual descrip-
tion language (XTA-format), Flex and Bison have been used.

A.2 Goal Transitions

Algorithm 1 shows how to insert goal transitions. It is obsolete since the following
sections will deal with goal transitions in a different context as well. However, the
procedure illustrates how they are handled basically. Its complexity is O(|S|).

A.3 Preprocessing

The very first step to do for deriving equations is building an appropriate data
structure that describes all possible synchronizations in the system in a compact
way. A convenient instrument is function syncs : C → 2(P ′×P ′), set up by Algo-
rithm 2. For each channel it specifies a list of process pairs. Each pair describes
a possible synchronization on that specific channel. The first position of the pair
relates to the process that sends, the second one is the receiving process. The chan-
nel ε, describing an empty transition, is handled differently in such a way that it
is mapped to all processes that include empty transitions. Consequently, the first
and second position of the pair always hold the same process in that case. Another
exception are dead transitions. Here, the corresponding field of the pair will hold
the symbol ⊥. The complexity is O(|C| ·n2). Recall the system from Figure 3.1. A
corresponding image of syncs would look like this:
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a: {(P0, P2), (P1, P0), (P1, P2)}
b: {(P1, P0), (P2, P0), (P0,⊥)}
ε: {(P0, P0)}

After that, we can assign a unique identifier to each variable that will occur in the
resulting equation system. Each identifier directly corresponds to the index of the
particular variable in the final matrix. Algorithm 3 sets up these identifiers in
O(n2 · (|∆|+ |C|) + |S|) which is also the upper bound on num vars.

A.4 Building the System of Equations

There are basically four kinds of equations: Algorithm 4 abstracts the flow in O(|S|·
(n · |∆| · num vars)). Subsequently, all equations related to synchronization are
derived. There are equations on split channels including dead and empty transitions
(Algorithm 5, O(n2 · |C| · |∆| · num vars)), on artificial self loops (Algorithm 6,
O(n · num vars)) and finally on goal transitions (Algorithm 7, O(n · num vars)).
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Algorithm 1 Adding Goal Transitions

Require: S1 ∩ · · · ∩ Sn = ∅, ∆1 ∩ · · · ∩∆n = ∅

g ← getFreshChannel();
Σ← Σ ∪ {g};
s’ ← getFreshState();
S ← S ∪ {s’};
for all i=1 to n do

if Fi = ∅ then

for all s ∈ Si do

∆← ∆ ∪ (s,g,s’);
end for

else

for all s ∈ Fi do

∆← ∆ ∪ (s,g,s’);
end for

end if

end for
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Algorithm 2 Synchronization Abstraction

bool sending found;
bool receiving found;
bool watch for send;
bool watch for rec;
for all c ∈ C do

for all Pi ∈ P do

if c = ε and edges(ε)(Pi)(send) 6= ∅ then

syncs(ε)← syncs(ε) ∪ {(Pi, Pi)};
continue;

end if

watch for rec ← edges(c)(Pi)(send) 6= ∅;
receiving found ← false;
watch for send ← edges(c)(Pi)(receive) 6= ∅;
sending found ← false;
for all Pj ∈ P do

if i = j then

continue;
end if

if edges(c)(Pj)(send) 6= ∅ then

sending found ← true;
end if

if edges(c)(Pj)(receive) 6= ∅ then

receiving found ← true;
end if

if watch for rec and edges(c)(Pj)(receive) 6= ∅ then

syncs(c)← syncs(c) ∪ {(Pi, Pj)};
end if

end for

if watch for send and not sending found then

syncs(c)← syncs(c) ∪ {(⊥, Pi)};
end if

if watch for rec and not receiving found then

syncs(c)← syncs(c) ∪ {(Pi,⊥)};
end if

end for

end for
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Algorithm 3 Variable Indices

Require: ∆1∩· · ·∩∆n = ∅, S1∩· · ·∩Sn = ∅, P1∩· · ·∩Pn = ∅, F1∩· · ·∩Fn = ∅,
∀i : |Fi| < 2
curr var num← 1;
{Indices of transitions...}
for all t ∈ ∆ do

if channel(t) = ε then

t index(t)(owner(t)) ← curr var num++;
else

for all (p1, p2) ∈ syncs(channel(t)) do

if getDir(t) = send then

if p1 = owner(t) then

t index(t)(p2)← curr var num++;
end if

else

if p2 = owner(t) then

t index(t)(p1)← curr var num++;
end if

end if

end for

end if

end for

{Indices of channels...}
for all c ∈ C do

for all (p1, p2) ∈ syncs(c) do

if p1 6=⊥ and p2 6=⊥ then

c index(c)(p1)(p2)← curr var num++;
end if

end for

end for

{Indices of artificial self loops...}
for all i = 1 to n do

if needsLoop(Pi) then

for all s ∈ Si do

s index(s)← curr var num++;
end for

end if

end for

{Indices of goal transitions...}
for all i = 1 to n do

if Fi = ∅ then

for all s ∈ Si do

g index(s)← curr var num++;
end for

else

for all s ∈ Fi do

g index(s)← curr var num++;
end for

end if

end for

goal channel← curr var num++;
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Algorithm 4 Flow Equations

Require: ∀t ∈ ∆, p ∈ P : t index(t)(p) = 0 if not defined differently by Algorithm
3
Matrix M;
MatrixRow* row;
for all i = 1 to n do

for all s ∈ Si do

if (s ∈ S0 or in trans(s) 6= ∅) and
(out trans(s) 6= ∅ or s ∈ F ) then

row ← new MatrixRow;
if s ∈ S0 then

row[0]←−x;
end if

if s ∈ F or Fi = ∅ then

row[g index(s)]←1;
end if

if needsLoop(Pi) then

row[s index(s)]← 1− x;
end if

for all t ∈ in trans(s) do

for all p ∈ P ′ do

if t index(t)(p) 6= 0 then

row[t index(t)(p)]← −x;
end if

end for

end for

for all t ∈ out trans(s) do

for all p ∈ P ′ do

if t index(t)(p) 6= 0 then

row[t index(t)(p)]← 1;
end if

end for

end for

for all t ∈ in out trans(s) do

for all p ∈ P ′ do

if t index(t)(p) 6= 0 then

row[t index(t)(p)]← 1− x;
end if

end for

end for

M.addRow(row);
end if

end for

end for
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Algorithm 5 Equations on Synchronization Pairs, Empty and Dead Transitions

Require: ∀c ∈ C, (p, p′) ∈ syncs(c) : ¬(p = p′ =⊥)
Matrix M;
MatrixRow* row;
for all c ∈ C do

for all (p, p′) ∈ syncs(c) do

{locating some dead transitions}
if p =⊥ then

for all t ∈ edges(c)(p′)(receive) do

row ← new MatrixRow;
row[t index(t)(⊥)]← 1;
M.addRow(row);

end for

continue;
else if p′ =⊥ then

for all t ∈ edges(c)(p)(send) do

row ← new MatrixRow;
row[t index(t)(⊥)]← 1;
M.addRow(row);

end for

continue;
end if

{locating empty transitions}
if p = p′ then

row ← new MatrixRow;
row[c index(p)(p′)]← −1;
for all t ∈ edges(ε)(p)(send) do

row[t index(t)(p)]← 1;
end for

M.addRow(row);
continue;

end if

{two equations for each (p, p′) ∈ syncs(c) : p 6= p′ ∧ p 6=⊥ ∧p′ 6=⊥}
row ← new MatrixRow; {first equation}
row[c index(p)(p′)]← −1;
for all t ∈ edges(c)(p)(send) do

row[t index(t)(p′)]← 1;
end for

M.addRow(row);
row ← new MatrixRow; {second equation}
row[c index(p)(p′)]← −1;
for all t ∈ edges(c)(p′)(receive) do

row[t index(t)(p)]← 1;
end for

M.addRow(row);
end for

end for
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Algorithm 6 Equations on Self Loops

Matrix M;
MatrixRow* row;
for all i = 1 to n do

if not needsLoop(Pi) then

continue;
end if

row ← new MatrixRow;
for all s ∈ Si do

row[s index(s)]← 1;
end for

for all c ∈ C do

for all (p, p′) ∈ syncs(c) do

if p =⊥ or p′ =⊥ then

continue;
end if

if p 6= Pi and p′ 6= Pi then

row[c index(p)(p′)]← −1;
end if

end for

end for

M.addRow(row);
end for

Algorithm 7 Equations on Goal Transitions

Matrix M;
MatrixRow* row;
for all i = 1 to n do

row ← new MatrixRow;
row[goal channel]←−1;
if Fi 6= ∅ then

for all s ∈ Fi do

row[g index(s)]← 1;
end for

else

for all s ∈ Si do

row[g index(s)]← 1;
end for

end if

M.addRow(row);
end for
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Algorithm 8 Gaussian Forward Elimination

RingElement factor1;
RingElement factor2;
RingElement curr gcd;
MatrixRow* temp;
int row pos = 1;
int pivot pos;
for i=1 to numColumns(M) do

pivot pos ← -1;
for r = row pos to numRows(M) do

if M[r][i] 6= 0 then

pivot pos ← (pivot pos < 0)?r:pivot pos;
if M[r][i] = 1 then

temp ←M [pivot pos];
M[pivot pos] ← M[r];
M[r] ← temp;
break;

end if

end if

end for

if pivot pos < 0 then

continue;
end if

for j=pivot pos+1 to numRows(M) do

if M[j][i]==0 then

continue;
else

curr gcd ← gcd(M[j][i],M[pivot pos][i]);
factor1 ← M[j][i] / curr gcd;
factor2 ← M[pivot pos][i] / curr gcd;
for k=i to numColumns(M) do

M[j][k] ← M[j][k] * factor2;
M[j][k] ← M[j][k] - M[pivot pos][k] * factor1;

end for

end if

end for

temp ← M[row pos];
M[row pos] ← M[pivot pos];
M[pivot pos] ← temp;
row pos++;

end for
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Algorithm 9 Gaussian Backward Elimination

Require: numRows(M) > 1, Gaussian forward elimination has been applied
RingElement f1;
RingElement f2;
RingElement curr gcd;
for i=numRows(M) down to 2 do

if lc index(i) = 0 then

continue;
end if

for j=i-1 down to 1 do

if M[j][lc index(i)]=0 then

continue;
end if

curr gcd ← gcd(M[i][lc index(i)],M[j][lc index(i)]);
f1 ← M[i][lc index(i)] / curr gcd;
f2 ← M[j][lc index(i)] / curr gcd;
for k=numColumns(M) down to lc index(j) do

M[j][k] ← M[j][k] * f1 - M[i][k] * f2;
end for

end for

end for

Algorithm 10 Syzygy Module Extraction

Require: Gaussian forward and backward elimination has been applied,
numRows(M) = numColumns(M), leading coefficients on the diagonal
RingElement p;
RingElement q;
MatrixRow* new row;
for i=1 to numRows(M) do

if lc index(i)=0 then

new row ← getFreshZeroRow();
p ← 1;
for j=1 to numRows(M) do

if lc index(j) 6=0 then

q ← M[j][j] / gcd(M[j][j],M[j][i]);
p ← p * q / gcd(p,q);

end if

end for

new row[i] ← p;
for j=1 to numRows(M) do

if lc index(j) 6=0 then

new row[j] ← -p * M[j][i] / M[j][j];
end if

end for

SYZ.addRow(new row);
end if

end for


