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Abstract

Runtime monitoring nowadays is commonly used to verify program behavior
whenever static verification fails. This can happen either due to missing infor-
mation about input data or because of insufficient analysis precision. A monitor
supervises a program with respect to a specification and reports program be-
havior violating the specification. So far, there are no formal guarantees that
the monitor reflects the semantics of the underlying specification correctly. It
is important to verify the monitor’s behavior to ensure the soundness and com-
pleteness of all specification violation reports.
In this thesis, we introduce a translation algorithm to transform a Lola specifi-
cation into a Viper program. Lola is a specification language for formalizing the
correct behavior of a synchronous system. The language Viper provides a static
verification toolchain and is used to prove the functional correctness of programs.
The generated program models the runtime monitor and is annotated with ver-
ification conditions. With this, we prove the correctness of the monitor and
examine the behavior of a Lola monitor in a concurrent context. We determine
all computations within the specification that can be processed in parallel and
show the interleaving invariance and correctness of the monitors computations.
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1. Introduction

Correctness of a program can be shown by exhaustive execution for all program
paths and input values. This is infeasible for all non-trivial systems. The best
way to guarantee the correctness of a system is to formally prove that the be-
havior fulfills the system specification. Due to bad scalability and incomplete
information about the input data, this is not always achievable. When formal
correctness cannot be proven, testing is used to obtain confidence in the pro-
gram’s behavior. Testing is only applicable during production and is not able to
completely cover big systems. Consider big autonomous systems that are used
in safety-critical areas like self-driving cars and medical tools. These systems,
typically well tested, take place in modern daily life and often fulfill their duty
unnoticed. Historical incidents emphasize the devastation of unproven software.
Software failures in the Therac-251 radiation therapy machine killed multiple
patients due to radiation poisoning. Another example of critical software failure
was a lethal car crash in 2018 by the Tesla autopilot2, where a bug in the software
failed to recognize a white truck in front of the bright sky. Accidents like this
increase the demand for formally proven software. To ensure proper program
behavior after deployment, an additional method is required.
Runtime monitoring can be used when other forms of verification cannot prove
the correctness of a system. It checks that the current system trace satisfies a
formal specification during the execution. A runtime monitor observes the sys-
tem and checks if the obtained data violates the specification. Reported errors
can be fed back to the system to possibly correct false behavior. While testing
compares the result of a system for a concrete input with an expected result,
a runtime monitor observes the system at every point of the execution. The
monitor verifies the current behavior of the system, especially in the context of
unknown scenarios, not considered by testing and not encountered previously.

When the behavior of safety-critical systems is supervised through runtime mon-
itoring, the correctness of the system depends on the correctness of the monitor

1https://www.bugsnag.com/blog/bug-day-race-condition-therac-25
2https://www.wired.com/story/tesla-autopilot-self-driving-crash-california/
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1 Introduction

supervising the system. For most specification languages, besides Copilot [23],
there are no formal guarantees that the monitor’s semantics correctly reflects
the specification. Without formal correctness of the monitor, the problem of
software flaws is not solved but rather moved to the monitor.

In this thesis, we introduce a translation algorithm that provides these formal
guarantees and proves the correctness of a monitor. We describe the specifica-
tion language Lola [8] and its stream-based computation model to specify correct
system behavior. A Lola specification allows the formulation of correct behavior
through numerical expressions. We use this specification to generate a Viper [22]
program that models the monitor supervising the system. Viper is an interme-
diate language connected to a set of tools using abstract interpretation and an
SMT-solver to prove the correctness of the input program with respect to given
verification conditions. We extend the model of the monitor with verification
statements to prove that the monitor semantics is equivalent to the formal de-
scription. To ensure correct behavior in a concurrent context, we encapsulate
the evaluation functions for stream computations and introduce an evaluation
order and a layer classification. With stream layers and the permission model of
Viper, we prove the absence of data races and non-deterministic behavior for all
stream computations.
A formally proven monitor can ensure the correctness of the system and safe
lives, as can be seen in the Therac-25 incident .
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2. Background

2.1 Lola
Lola is a specification language that provides a simple but expressive grammar
to formulate a correctness description for synchronous systems. A runtime mon-
itor uses this specification and validates that the supervised system fulfills the
specification or reports violations to the user. Lola models runtime monitor-
ing through stream computations. Intuitively, a stream can be described as a
continuously growing array of values. Each time a new input value is provided
by the system, the value is appended to the end of the corresponding stream.
Every time this happens can be seen as a computation iteration and in each
iteration, new values for dependent streams are computed and appended. The
newest value of a stream is given by an expression which may depend on other
stream values. Formally, streams can be classified into two kinds of streams, in-
put streams and output streams. Input streams capture the observed behavior of
the system, output streams derive values from input and other output streams.
Stream values can be accessed by another stream with a given discrete offset.
Figure 2.1 shows an example with a single input stream and two output streams
and their dependencies for a single value computation. A system is called syn-
chronous when all specified streams are extended at the same time. Similarly, a
system is asynchronous if the streams have independent frequencies.

Output Stream

Output Stream

Input Stream

Figure 2.1: Visualization of two output streams, blue, and an input stream, green.
The arrows show positional dependencies i.e. which values are used.
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2 Background

2.1.1 Formal Specification
A Lola specification is defined by a set of equations over typed stream variables
of the following form:

input i1 : T1
...

input im : Tm

output o1 : Tm+1 := e1(i1, . . . , im, o1, . . . , on)
... ...

output on : Tm+n := en(i1, . . . , im, o1, . . . , on)
trigger ψ1

...
trigger ψl

where i1, . . . , im are called independent stream variables or input streams,
o1, . . . , on are called dependent stream variables or output streams and e1, . . . , en

are stream expressions over i1, . . . , im and o1, . . . , on. T1, . . . , Tm+n are the corre-
sponding types for each stream. Within a Lola specification, the user can declare
some output streams as triggers. A trigger is an output stream of boolean type
which reports an error to the user if its trigger expression ψi evaluates to true.
Triggers are defined by the trigger keyword and a trigger expression ψ.

A stream expression is defined recursively as follows:

• If c is a constant of type T , then c is an atomic stream expression of type T .

• If s is a stream variable of type T , then s is an atomic stream expression
of type T .

• Let f : T1 × T2 × . . . × Tk 7→ T be a k-ary operator. If for 1 ≤ i ≤ k, ei

is a stream expression of type Ti, then f(e1, . . . , ek) is a stream expression
of type T .

• If e1 and e2 are stream expressions over the same type T and b is a ex-
pression of type bool, ite(b, e1, e2) is a expression of type T matching an
if -then-else expression

• If e is a stream expression of type T , c is a constant of type T , and i is an
integer, then e[i, c] is a stream expression of type T . The expression refers
to the value of the stream e accessed with an offset of i positions of the
current position or to the given constant c if the value does not exist.

Figure 2.2 shows an example specification. In this specification, the monitor gets
two different inputs from the monitored system; the current data flow amount

4



2.1 Lola

input flow: Int
input signal: Bool
output sum: Int := flow [1 ,0] + flow + flow [-1,0]
output expects : Bool := sum < 5 => signal [2, false]
trigger ! expects "flow below threshold without signal"

Figure 2.2: A Lola example specification. The first output stream sums up three
input values. If this value is to low and no signal is given, the speci-
fication would be violated and an error is reported.

and a binary signal. The monitor computes the sum by adding the current, the
next and the previous value of the input stream. Then, it checks if this value falls
below a given threshold of 5 and expects an input signal in two steps. Otherwise,
the trigger reports an error.

The semantics of a Lola specification is defined by its evaluation model. Given a
specification ϕ with input variables i1, . . . , in and output variables
o1, . . . , om, each with corresponding type Ti for 0 ≤ i ≤ n+m. Let τ1, . . . , τm be
streams of length N+1. The tuple S = 〈σ1, . . . σn〉 is called an evaluation model
if each stream equation oi := ei(i1, . . . , im, o1, . . . , on) and S fulfill the associated
equation:

σi(j) = val(ei)(j) for 0 ≤ j ≤ N

The function val is defined recursively:

val(c)(j) = c
val(ii)(j) = τi(j)
val(oi)(j) = σi(j)
val(f(e1, . . . , ek))(j) = f(val(e1)(j), . . . , val(ek)(j))
val(ite(b, e1, e2)) = if val(b)(j) then val(e1)(j) else val(e2)(j)

val(e[k, c](j)) =

val(e)(j + k) 0 ≤ j + k ≤ N

c otherwise

τi(j) is an access to the input stream τi at position j, equally σi(j) returns
the value of σi at position j. Intuitively, val(ei)(j) evaluates the mathematical
stream expression ei, accesses streams at position j and returns a value with the
type Ti.
2.1.2 Dependency Graph
A Lola specification induces a dependency graph (DG) through all stream
accesses. A dependency graph is a weighted multi-graph G = 〈V,E〉 with ver-
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2 Background

flow

signal

sum

expects

trigger

-1

0

1

2

0

0

Figure 2.3: Dependency Graph for the flow example

tices V containing all streams and E containing an edge e = (si, sj, w) of weight
w from si to sj iff the stream expression of si contains a stream access to sj with
offset w. The DG records that si depends on a particular position of sj. Note
that vertices representing input streams have no outgoing edges and trigger out-
put streams have no incoming edges. Figure 2.3 shows the dependency graph for
the specification of Figure 2.2. The DG is used to infer the maximum memory
requirement needed for each stream and the earliest moment a stream value can
be evaluated.

To classify specifications, we introduce the definition of efficiently-monitorable
and well-formed specifications.

Definition 2.1.1. A path p in the DG is a sequence of vertices p := v1, . . . , vk+1
for k ≥ 1 and edges e1, . . . , ek such that ei : (vi, vi+1, wi). A path is called a cycle
if v1 = vk+1. The weight of a path is defined as the sum over all edge weights.

Definition 2.1.2. If the dependency graph contains no cycle with weight 0, the
specification is called well-formed.

Definition 2.1.3. If the DG contains no cycle with positive weight, the spec-
ification is called efficiently monitorable as the total memory consumption is
constant.
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2.2 Viper

in out1 out2
0

1

-1

(a) DG of a not well-formed specification

in out1
0

1

(b) DG of a not efficiently monitorable
specification

Figure 2.4: Dependency Graphs for specifications violating Definition 2.1.2(left)
and 2.1.3(right)

Figure 2.4a shows the dependency graph of this not well-formed specification:

input in: Int
output out1: Int := in + out2 [1 ,1]
output out2: Int := out1 [-1,-1] - 1

As the graph contains the cycle of out1
1−→ out2

-1−→ out1 with a weight of 0, there
is no unique evaluation model. Intuitively, this specification cannot be evaluated
because to compute the value of out1 at iteration i we have to know the value of
out2 at iteration i + 1, but out2 at iteration i + 1 depends on out1 at iteration
(i+ 1)− 1 = i. This results in a circular dependency and we cannot compute a
value for either of the two streams.
Next, consider the DG in Figure 2.4b and the following specification which con-
tains a cycle of positive weight:

input in: Bool
output out1: Bool := in || out1 [1, false]

Specifications that are not efficiently monitorable can have a unique evaluation
model but require unbounded memory to evaluate. To evaluate the stream at
position i, we first have to consider position i+1, which depends on position i+2
etc. until the default value is used. All stream entries can be evaluated when
the stream ends. When the last position can be resolved, the result can be
back-propagated to all other entries.

2.2 Viper
Viper is an imperative programming language and a suite of tools that uses
a separation logic-based intermediate language. It is used to verify programs
modeled in Viper. The Viper toolchain utilizes abstract interpretation to en-
hance the program’s state information. This state information is analyzed with
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2 Background

Python Rust Java Chalice

Viper

Intermediate
Language

Specification
Inference

VC
Generation

Symbolic
Execution

Boogie

Z3

Figure 2.5: Overview of the Viper1toolchain and the used components

symbolic execution and interpreted by an SMT Solver. An alternative workflow
uses verification condition generation via an encoding into the Boogie language,
which is then passed to an SMT Solver. The general toolchain can be seen in
Figure 2.5.

A Viper program consists of a sequence of fields, methods, functions, and global
declarations. A field models a class field, storing data of an object. As Viper
has no class construct, every object contains all declared fields. Methods and
functions describe the program semantics and are like traditional C-style func-
tions. The difference is the state information. Viper functions and methods can
both read object memory, but only a method can change the data. The body
of a method consists of a list of statements and expressions, a function can only
use expressions to define its semantics. Global declarations consist of predicates,

1Image source: https://www.pm.inf.ethz.ch/research/viper.html
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2.2 Viper

method sum(n: Int) returns (res: Int)
requires n >= 0
ensures res == n * (n + 1) / 2

{
res := 0
var i: Int := 0
while(i <= n)

invariant i <= (n + 1)
invariant res == (i - 1) * i / 2

{
res := res + i
i := i + 1

}
}

Figure 2.6: Viper example program. The method computes the sum of the first
n natural numbers and ensures this result in the postcondition.

used to abstract over recursive assertions, and domains, to create custom types,
and macros.

Program verification is performed independently for each method. On the en-
trance of a method, the callee asserts its precondition and ensures only its post-
condition for the result and the heap state. The caller loses ownership and all
knowledge of passed objects. Loops within the program are considered to be a
black box for all statements after the loop. Each variable assigned within a loop
is considered unknown within the program state and only the loop invariant is
assumed to be valid. The loop body must ensure that the invariant holds before
and after every iteration.

Figure 2.6 shows a Viper program for iterative summation over the first n natural
numbers. The postcondition, provided with the keyword ensures, states what
we want to prove—the equivalence between the result of the computation and
the closed formula. The precondition, here requires n >= 0, defines the only
assumptions about the input arguments. The most important part is given by
the loop statement and its invariants. The first invariant bounds the value of the
iteration variable i and ensures the termination of the loop. The second invariant
states the relationship between the current value of res and the current iteration.
With this, the backend can verify the method as the negated loop condition and
the invariant implies the postcondition.

9



2 Background

To read or write a field, the function or method must hold the permission to
do so. Permissions are represented by a rational number r with 0 ≤ r ≤ 1.
Any non-zero permission allows for reading the heap location, and a value of
1 exclusively permits modifications. If the permission value r equals zero, all
access to the heap is denied. Declaring a new object can be achieved by creating
a variable of reference type and calling the new function. Every field, access
is required to, has to be passed by its name as a function argument, directly
granting permissions to all given fields. Consider the following statement:

var R: Ref := new(a,b)

This line creates a heap object with fields a and b and stores its reference in
the variable R. A function checking if both field values are equal has to ensure
it has the permission to read from memory and can be defined like this:

function check(obj: Ref): Bool
requires acc(obj.a, 1/1) && acc(obj.b, 1/1)

{
obj.a == obj.b

}

An important build-in type of Viper is the sequence type, given by the Seq
keyword. A sequence models an array of a single type and allows access through
indexing if the index is within the range of the sequence. Viper also provides
direct operators to append two sequences, take a subsequence or get the number
of elements. These functionalities are shown here:

Seq (0 ,1 ,2) [1..] ++ Seq (3) == Seq (1 ,2 ,3)
Seq (1 ,2) [0] + |Seq (3 ,4)| == 3

Here we first take a subsequence of all but the first element([1..]) append a
one element sequence containing a 3 (++), resulting in a new sequence [1 ,2 ,3].
In the second example, we take the first element ([1]) and add the length of
the next sequence (| |).

10



3. Translation

In this section, we introduce an algorithm that generates a Viper program for
a given Lola specification. We define functions for a streams computation delay
and memory requirement and present the algorithm with an example.

3.1 Algorithm Overview
Algorithm 1 shows the translation algorithm and its main parts. The transla-
tion can be split into three parts. The prefix, postfix and the main loop. Every
evaluation of a stream access with an offset in Lola can be seen as a case distinc-
tion. The monitor has to check whether the offset leads to a position before the
beginning of the monitoring or after the stream ends. To simplify stream access
expressions in the later verification, we unroll the loop iterating over all input po-
sitions. In the prefix, we explicitly handle all iterations in which a default value
has to be used due to a negative offset. The needed delay for the evaluation of
future reference will also be applied in this part. The postfix handles default
values for future offsets and the remaining delayed computations after the input
ends. The loop is responsible for all other iterations. Due to the unrolling, no
case distinction is needed. Several loop invariants are required for Viper to en-
sure valid sequence accesses and termination. The only precondition i.e. input
assumption, the algorithm has to make is that all input streams have an equal
length greater than the minimal prefix length. To compute the prefix length and
other important information, we have to analyze the dependency graph.

3.2 Dependency Graph Analysis
To evaluate a system trace for a specification with future dependencies, we have
to infer when a stream value can be computed and all values needed for the
evaluation are present. Consider the stream:

output check: Bool := sum [2 ,0] < 10

To compute the value of check at least three values of sum must already exist,
i.e. this value cannot be computed before the third iteration. If the expression
of sum also has future dependencies this delay could increase further. We define

11



3 Translation

Input : LolaSpec
Output : Viper-Program
begin

shifts,memory, p←−Graph_Analysis(LolaSpec);
Header(); // initializes meta variables
for i← 0 to p do // Prefix

for stream ∈ LolaSpec do
if shifts[stream] ≤ i then

Iteration(i,stream)
end
if memory[stream] > 0 then

Memory_Update(memory[stream],stream)
end

end
end
Generate_Invariant();
Loop_Computation();
for i← 0 to max(shifts) do // Postfix

for stream ∈ LolaSpec do
if shifts[stream] ≤ i then

Iteration(i,stream)
end
if memory[stream] > 0 then

Memory_Update(memory[stream],stream)
end

end
end

end
Algorithm 1: Lola translation algorithm

12



3.2 Dependency Graph Analysis

input in: Int
output b: Int := in[-3,0]
output f: Int := in [3 ,0]
output o: Int := f[-4,0]

in b

f o

-3
3

-4

Figure 3.1: A small specification and its DG to show the effect of a streams shift
to its memory requirement.

this computation delay as the shift of a stream, designated by the function
∆ : Stream 7→ N. ∆ maps a positive integer to each stream s which corresponds
to the weight of the longest path in the dependency graph starting in s. If the
weight of this path is negative, the shift is set to zero. With this, we can also
derive the memory needed for each stream.

Consider the specification in Figure 3.1. As b accesses the input stream with
a weight of −3 we need to store the last 3 input values of this stream. The
stream f only has a future access to the input stream and does not influence the
memory requirement. The stream o uses the value of f with an offset of −4 but
we only need to store a single value of f. Because ∆(o) = 0 and ∆(f) = 3 the
newest value of f is already three iterations behind o and could be accessed by
o with an offset of -3. The expression for o tries to get the previous value of f
due to the shift, so only this value has to be stored. The memory needed for a
stream s can be computed by the function memory : Stream 7→ N

memory(s) = max(0, max
(si,sj ,w)∈E

−w + ∆(si) if sj = s

0 otherwise

−∆(s))

Intuitively, we check the oldest value ever needed for a stream by iterating over
all incoming edges in the DG and subtract the number of iterations that are not
computed until the stream ends due to the streams shift.

To compute ∆ we have to solve the all-pairs longest path problem in the DG,
with any algorithm of choice. Note that the actual path is not of interest, only
the length of the path influences the results. With the two functionsmemory and
∆, we obtain the minimal prefix length p. The prefix length for a specification
ϕ is defined as follows:

p(ϕ) = max{∆(s) +memory(s) | s ∈ Streams in ϕ}

13



3 Translation

flow signal sum expect trigger
∆ 0 0 1 2 2

memory 2 0 1 0 0

Table 3.1: The values of memory and ∆ for the flow example from Figure 2.2

flow

sum

expect

trigger

signal

0

0

1

1

0

2

2

1

0

0

3

3

2

1

1

Figure 3.2: Visualization of stream accesses in the third iteration (black) and
new additions of iteration four (green) of the flow example specifi-
cation. Green nodes show values computed in the fourth iteration.
Black nodes with ingoing green edges need to be stored in previous
iterations.

For an explicit example, we compute all needed values for the flow example in
Table 3.1. The shift for all streams except the trigger can be read directly from
the edges, as the result is equal to the longest outgoing edge. ∆(trigger) is equal
to the shift of expect due to the zero edge.

3.3 Pre-/Postfix Construction
The prefix applies the shift to each stream and creates a code block for each
iteration needed. Consider again the example of Figure 2.2. In the very first
iteration we get the first set of input data, but cannot compute any values for
the outputs streams as both streams sum and expects have a shift greater
than 0. In the second iteration, we can evaluate the first value of sum as the
sum of the first and second entry of the flow stream and the default value for
the −1 access. This stream evaluation then could be emitted as the following

14



3.4 Loop Generation

Viper code:
sum := flow[1] + flow[0] + 0 (3.1)

The zero addition at the end results from the default value of the −1 access
i.e. flow[−1]. To ensure proper modeling of the Lola evaluation model, we only
allow access to the sequence in the current iteration and store the value for the
expression flow[0] in the memory sequence:

sum := flow[1] +mem.flow[0] + 0 (3.2)

Each value later needed is stored in sequences addressed by a single reference
object. Figure 3.2 shows the temporal dependencies between the streams and
what values are present or can be computed in the third iteration. The output
variable expect can be computed in the third iteration resulting in the first
value for this stream. Streams with a delay higher than the current iteration
will not be evaluated

The postfix reverses the computation delay and handles all accesses leading to
values after the stream ends. After the loop ends, the monitor received all N
values of all input streams and all remaining computations can be solved. If
a stream s was shifted by ∆(s) = k then the last k entries still have to be
resolved. For a better intuition, we omit memory accesses and provide the last
computation of the sum stream:

sum := 0 + flow[N − 1] + flow[N − 2] (3.3)

3.4 Loop Generation
The loop handles all remaining iterations not computed in the pre- or postfix.
The loop starts at iteration p+ 1 and models all other N − p− 1 iterations. In
the loop body all streams are evaluated and the memory is updates like in the
prefix. Additionally the loop variable is incremented. The important part lies
within the invariants we need to provide to Viper. The information reflected in
the invariants are:

• loop variable i is bounded: p ≤ i ≤ N

• permission for heap access is preserved

• length of each memory sequence is unchanged

These points can best be seen in the next example. Consider the following
example specification with its complete code in Figure 3.3:

15



3 Translation

Example 3.4.1.

input a: Int
input b: Int
output out: Int := b[1 ,1] + a[-1,-1]

To provide a complete intuition, we analyse the output for this specification.
First, we see that ∆(out) = 1, ∆(a) = 0 and ∆(b) = 0 as well as memory(out) =
0, memory(a) = 2, memory(b) = 0 and p = 2. We now know a memory sequence
for a of size two is needed but no memory for any other streams. The value of
p shows that the prefix handles the first three iterations.

Inspect the code model in Figure 3.3 line-by-line. The first line defines a field
of sequence type for every stream with memory > 0, here only the first input
stream a. Line 2 declares the monitor method. For each independent stream,
a sequence is given as an argument. The preconditions in lines 3 and 4 assert
equal length of all inputs and a minimal length of p + 1. The body starts with
declaration initialization of some meta-variables, the memory reference, and all
output variables, lines 6 to 11.

The first iteration has no output stream value to compute, only the current value
of a is stored in the corresponding memory. The second iteration can evaluate
the first value of out, using the default value for the stream access to a as it
would access the input stream at position −1. In the next step, we see a full
computation without the use of default values or missing evaluations for iteration
two. This additional iteration is not needed for the translation, but it will be
needed to verify the loop invariants we add in the next chapter. Line 23 declares
the loop variable with the initial value p + 1. The loop handles the remaining
iterations from p+ 1 to N . The first invariant has to ensure the loop terminates
and sequence accesses with index i are valid by bounding the variable in line
25. The next two invariant expressions ensure access permission to the memory
sequence is preserved and the sequence length is maintained. Without these two
lines, the access to memory in line 29 cannot be validated.

As we change the value of a field, without the invariant all information consider-
ing this field would be lost, including access permission. The ordering of these
invariants is important. All previous and already proven invariants are used as
an assumption to prove the next invariant. The loop body performs a similar
computation as the last prefix code, using parametrized access instead of a con-
stant value and increasing i. After the loop body, we compute the remaining
computation for the N -th value of out as in iteration zero we did not compute
a value for this stream, due to its shift.
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3.4 Loop Generation

1 field a_mem: Seq[Int]
2 method monitor (a: Seq[Int], b: Seq[Int ])
3 requires |a| == |b|
4 requires |a| >= 3
5 {
6 var N: Int := |a|
7 var mem: Ref
8 mem := new(a_mem)
9

10 mem.a_mem := Seq ()
11 var out: Int
12
13 // Iteration 0
14
15 mem.a_mem := mem.a_mem ++ Seq(a[0])
16 // Iteration 1
17 out := b[1] + (-1)
18 mem.a_mem := mem.a_mem ++ Seq(a[1])
19 // Iteration 2
20 out := b[2] + (mem.a_mem [0])
21 mem.a_mem := mem.a_mem [1..] ++ Seq(a[2])
22
23 var i: Int := 3
24 while(i < N)
25 invariant 3 <= i && i <= N
26 invariant acc(mem.a_mem)
27 invariant |mem.a_mem| == 2
28 {
29 out := b[i] + (mem.a_mem [0])
30 mem.a_mem := mem.a_mem [1..] ++ Seq(a[i])
31
32 i := i + 1
33 }
34 // Iteration N+1
35 out := 1 + (mem.a_mem [0])
36 mem.a_mem := mem.a_mem [1..]
37 }

Figure 3.3: Complete translation output for the specification of Example 3.4.1
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4. Verification

The translation in Chapter 3 returns a model for the monitor in Viper. In this
chapter, we provide additional verification conditions and invariants to prove the
soundness and completeness of all trigger expressions within the model of the
monitor. Afterwards, we examine the monitor’s behavior in a concurrent context
and prove its correctness in Section 4.2.

4.1 Trigger Evaluation
Consider the running example from Figure 2.2 and its trigger expression. The
output stream for the trigger so far is represented by the expression stated in the
specification. The expression trigger := !expect determines the result of
the trigger based on intermediate computations. To show the correctness of the
computation, we assert the equivalence of this result to the input values leading
to this value. For the first possible evaluation of this stream in iteration two, we
inline all subexpressions step by step

trigger = !expect
= !(sum < 5 => signal[2])
= !((flow[1] + flow[0] + 0) < 5 => signal[2])

and then emit an assertion for this expression

assert trigger == !(( flow [1] + flow [0] + 0)
< 5 => signal [2])

If the DG of the specification contains a negative cycle, inlining cannot be done
directly as the expression substitution can diverge or referenced values may no
longer be available. To handle this problem, we make use of ghost memory in
the proof.
4.1.1 Ghost Memory
Ghost memory is used to store additional information about the program state
to improve the expressiveness in the proof. While the monitor has only constant
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4 Verification

Input

Output

Ghost Memory

Proof

Figure 4.1: Visualization of ghost memory, additional memory stores intermedi-
ate results to be used in the proof but not in the computation

memory available, ghost memory uses potentially linear memory in the size of
the trace. The computation of the model is not influenced in any way by this
extension. Figure 4.1 shows an overview of the functionality. The input and
output of the function, which are normally used within the proof, now also may
be stored in the ghost memory alongside intermediate results. This will be used
to model an abstract memory for the proof. For each trigger expression, we
show the equivalence between the original computations and the evaluation on
the abstract state and input values.
4.1.2 Invariant Generation
To guarantee access to all variables needed in the abstract memory, we need to
store a value if a trigger expression or an inlined subexpression tries to access its
memory. To determine these values, we analyze the DG to search for affected
streams. The notion of direct edges simplifies this categorization.

Definition 4.1.1 (Direct Edge). An edge e = (si, sj, w) in a dependency graph
is called a direct edge iff ∆(si)− w = ∆(sj), and an indirect edge otherwise.

Evaluating an access over a direct edge results in the use of the newest stream
value, accesses over indirect edges result in a memory access. For each trigger,
we start at the corresponding node in the DG and mark all output streams s
if a path trigger = v1, . . . , vk+1 = s with edges e1, . . . , ek exists and e1, . . . , ek−1
are direct edges and ek is an indirect edge. For each marked stream and all
triggers, we introduce a local sequence variable to store all occurring values.
This information enables us to show the equality of the current trigger value and
its computation on the abstract memory state.

To verify these assertions for an arbitrary iteration within the loop body, it is
necessary to provide and prove additional loop invariants. First, we include
an invariant for the memory of input variables and the actual input. If an
input variable x has a memory requirement mx greater than zero, we provide
the invariant xmem = x[i −mx .. i], which proves that the memory entries are
a subsequence of the complete input stream. Next, we make use of the ghost
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4.2 Concurrency

memory information and provide a similar invariant for output streams. For
each output variable y marked as needed for a trigger and that has memory
requirements my greater than zero, we prove the equivalence between the older
values of this stream and the ghost memory for this variable. The invariant
yghost [i−∆(y)−my .. i−∆(y)] = ymem shows that the memory for an output
stream is a subsequence of the ghost memory. To ensure all accesses to the ghost
memory are within the sequence range, an invariant for each new sequence is
added to state its length, |yghost| = i−∆(y).

With these invariants, we prove the correctness for the trigger evaluations. For
each trigger, it is necessary to provide a loop invariant and an assertion in the
prefix and postfix for each computed value. The assertion for the second iteration
of the running example is given by:

assert trigger_ghost [0] ==
!( sum_ghost [0] < 5 => signal [2])

The added invariants for the running example from Figure 2.3 are:

invariant mem.c_mem == flow[i-2 .. i]
invariant | sum_ghost | == i - 1
invariant | trigger_ghost | == i - 2
invariant sum_ghost [i -2..] == mem. sum_mem
invariant trigger_ghost [i - 3] ==

!(!( sum_ghost [i - 3] < 5) || signal[i - 1])

4.2 Concurrency
The next property we want to verify is the correctness of the monitor in a
concurrent context. Intuitively, the evaluation of different streams can be done
in parallel if they do not use the result of each other. To analyze the monitor in
this context, we define independent functions and the notion of a stream layer
based on the input specification.

To separate the computation of each stream, we introduce a Viper function
handling the expression computation within the loop body. The previous as-
signment of expect := summem[0] < 5 ⇒ signal[i], which corresponds to
a loop computation of the boolean expect stream of Figure 2.2, is moved
to a parametrized function. Every value accessed via memory can be passed
through the memory reference object, in this case, the value of sum. The sec-
ond stream value needed, here signal[i], is first obtained in the current iteration
and is not stored in memory at this point. All values of this kind are passed
as an argument to the new function. This results in the new assignment of
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4 Verification

expect := compute_expect(mem, signal[i]). The compute function is then ap-
pended to the main method. As the control-flow enters a new function scope
when calling this function, we have to ensure the function holds all needed per-
missions to evaluate the expression. For every sequence in memory the stream
tries to access, the precondition requires access to the sequence and the sequence
length has to be stated. The emitted function to compute this stream is then:

function compute_expect (mem: Ref , signal: Bool) : Bool
requires acc(mem.sum_mem ,1/3)
requires |mem. sum_mem | == 1

{
mem. sum_mem [0] < 5 => signal

}

The chosen permission fraction of 1/3 in this example corresponds to one divided
by the number of output streams. When the main method creates the memory
object, it holds the complete permission of 1. Every function call transfers the
demanded permission to the callee and regains it after the call. An equal split
of this size can enable simultaneous read access for all streams. Note that using
Viper functions over methods simplifies pre- and postcondition and argumenta-
tion about the memory state significantly. Modeling an equivalent computation
as method would require the following code:

method compute_expect (mem: Ref , signal: Bool)
returns (expect: Bool)

requires acc(mem.sum_mem ,1/3)
requires |mem. sum_mem | == 1
ensures acc(mem.sum_mem ,1/3)
ensures |mem. sum_mem | == 1
ensures expect == mem. sum_mem [0] < 5 => signal

{
expect := mem. sum_mem [0] < 5 => signal

}

A method has to define its return value with a specific variable and explicitly
ensure that the access to all used memory fields is maintained. To get any in-
formation about the return value as a caller, we need to provide a respective
postcondition. The last condition in the code example above reflects this prop-
erty and asserts the exact computation. The evaluation of this expression needs
assumptions about the sequence length, so the postcondition has to ensure the
length, too. These postconditions could annotate the function, too, but are not
needed as Viper can infer these properties automatically. The function model
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4.2 Concurrency

a b c

diff sum

check const

Layer 0

Layer 1

Layer 2

input a,b : Int
input c: Bool
output diff: Int = a - b
output check: Bool =

diff > 0 ||
c[-1, false]

output sum: Int = sum [-1,0]
+ if c then 1 else -1

output test: Bool =
sum [1 ,0] &&
c[1, false] && !c

Figure 4.2: Layer visualization and the corresponding specification, the graph
only contains the direct edges of the DG

directly ensures an unchanged memory state, due to the read-only access to
the heap of functions, which is an important property we will use later in this
chapter.

Next, we want to model the concurrent behavior of the monitor in the annotated
monitor model. For this, we define dependent computations and the layer of a
stream.

Definition 4.2.1 (Layer). The layer L : Stream 7→ N of a stream si in
the set of all streams S in the specification ϕ is the least n ∈ N such that
∀sj ∈ S : L(sj) > L(si) if sj has a direct edge to si and L(sj) < L(si) if si has a
direct edge to sj.

Figure 4.2 shows a visualization of the stream layers. Note that input streams
are always in layer zero and all streams that have one or more direct edges are at
least in layer one. The stream layers determine an evaluation order for all stream
computations, representing a partial order over all streams, due to the less-than
ordering for different layers and no ordering for streams in an equal layer. Before
a new stream value can be computed, all streams in lower layers have to be
evaluated. A similar definition for layers and evaluation order is defined in recent
work on RTLola [4,24]. These publications do not directly consider future offsets
in their definitions, which leads to differences in the definitions. For the streams
of Figure 2.2 we obtain a layer of zero for both input streams, layer one for
sum and expect and only the trigger lies in layer two as it directly depends
on expect , which lies in layer one. Note that expect has an access with an
offset of zero to sum but does not lie in a higher layer as this access is based on
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4 Verification

an indirect edge. This difference can be seen in Figure 3.2, the node representing
the first value for the expect stream has no edge to the newest value of sum.
We can use the information of a stream layer to divide all streams into disjunct
classes. All streams in the same layer do not need the current value of any other
stream in this layer or a higher layer. We modify the monitor model concerning
the stream layers by sorting all stream computations in increasing layer order.
The layer ordering ensures that no variable is used before its computation within
the model and the semantics are unchanged.

In the context of computations based on heap state information, we define de-
pendency of functions and show independency of all streams in the same layer.
The notation of 〈· , · 〉 ⇓ symbols the evaluation of a function on a given program
state and returns the functions result and the program state after the evaluation.
The ; operator symbolizes consecutive execution.

Definition 4.2.2 (State-Dependency). A pair of functions or methods
f1 : A1 7→ B1,f2 : A2 7→ B2 is called state-dependent on a state h iff for any valid
inputs x1 ∈ A1, x2 ∈ A2 and some values in the target sets y1, y

′
1 ∈ B1, y2, y

′
2 ∈ B2

the two possible evaluations are 〈f1(x1), h〉 ⇓ y1, h1; 〈f2(x2), h1〉 ⇓ y2, h2 and
〈f2(x2), h〉 ⇓ y′

2, h
′
2; 〈 f1(x1), h′

2〉 ⇓ y′
1, h

′
1 and y1 6= y′

1 ∨ y2 6= y′
2 holds.

Theorem 1. A pair of Viper functions is state independent on any state.

Proof. A Viper function can only read heap information and not change them
due to the language semantics, even with a permission value of 1. Given two
Viper functions f1, f2, some inputs x1, x2 and a state h the two possible
executions are 〈f1(x1), h〉 ⇓ y1, h; 〈f2(x2), h〉 ⇓ y2, h and 〈f2(x2), h〉 ⇓ y′

2, h;
〈 f1(x1), h 〉 ⇓ y′

1, h with only h as possible state after any execution. The un-
changed state directly implies y1 = y′

1 ∧ y2 = y′
2. As functions are deterministic,

two execution on the same state and input return the same result.

Definition 4.2.3 (Dependency). A pair of functions or methods f1 and f2 is
dependent if they are state dependent on an arbitrary state or one function uses
the input of the other function, i.e. f1 returns a value v, and the input of f2 uses
v directly or as subexpression.

This definition intuitively says two functions are dependent if the order of eval-
uation influences the results i.e. f1; f2 6= f2; f1.

Theorem 2. Two stream evaluation functions within the same layer are inde-
pendent.
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4.2 Concurrency

Proof. The pair of functions for two streams si and sj in the same layer cannot
depend on the result of the other function as the definition of stream layer would
otherwise ensure L(si) > L(sj) or L(sj) > L(si). Furthermore, we know that
the evaluation functions are state-independent, shown in Theorem 1.

As stream evaluations are expressed as independent functions within a layer, all
computations within this layer are interleaving invariant. An arbitrary scheduler
cannot change the function results or produce data-races within a layer. Extract-
ing the stream evaluation into functions with partial permissions and arranging
all computations in order of the stream layers models the parallel processing
of the Lola semantics within a layer. With this and proving the independence
of functions, we can conclude the correctness of the concurrent behavior of the
monitor provided Viper can prove the correctness of the new model.
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5. Evaluation

The translation algorithm is implemented in Rust and is available on GitLab1.
The implementation uses the Lola parser from the StreamLAB [11] framework.
The Viper IDE is available as a Visual-Studio Code extension and a standalone
interpreter2. The translation implementation has to make several restrictions on
the input specification due to the semantics of Viper. We encountered some spec-
ifications with a long verification time. To reduce the runtime to an acceptable
level, we bound the expression inlining for trigger invariants, see Section 5.2.

5.1 Division and Rationals
Real numbers are needed to accurately describe real-world systems. In Viper,
these numbers are approximated with the built-in Rational type. A
Rational value is given by an expression of the form x / y. While x is a
value of type Int or Rational , y has to be of type Int. Computations like
5/(3/7) cannot be expressed without a semantic analysis and constant folding,
e.g. a valid representation is 5∗7/3. If the divisor is a variable of rational type, a
representation is not possible. Each division expressed in Viper has to be verified
separately. If the divisor cannot be proven to be unequal to zero, the verification
fails. Therefore, for each evaluation of a division in the specification, an internal
assertion has to be proven. Consider the following example expression with two
divisions and assume neither variable is a constant:

out := a / ((b - c)/d)

The assignment could not be verified unless it is extended with two assumptions:

assume d != 0
assume ((b - c)/d) != 0
out := a / ((b - c)/d)

1https://gitlab.com/Nekronod/vitola
2https://www.pm.inf.ethz.ch/research/viper/downloads.html
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5 Evaluation

5.2 Expression Inlining Depth
To show the equivalence of the trigger evaluations to the computation on the
abstract memory state, we described an expression inlining procedure in Sec-
tion 4.1.2. These inlined expressions are used in every iteration and the loop
invariant. The verification statements for these expressions can be hard for
Viper to prove as we do not reuse expressions and recompute all values if no
memory access is required. Consider a specification with a computation of the
following form:

a:= in1[i] + in1[i]
b:= a * a
c:= b * b
d:= c * c
e:= d * d
f:= e * e
trigger := in2[i] > f

All used values are either inputs or variables without the need of memory. Intu-
itively, this is easy to prove, but the computed invariant would expand into this
form:

invariant trigger_ghost [i -1] == in2[i -1] >
(in1[i -1] + in1[i -1]) * (in1[i -1] + in1[i -1]) *
(in1[i -1] + in1[i -1]) * (in1[i -1] + in1[i -1]) *
(in1[i -1] + in1[i -1]) * (in1[i -1] + in1[i -1]) * ...

After inlining, long specifications with many intermediate values and only a
few indirect edges in their DG, like the example above, can have an invariant
exponentially big in the size of the expression . To be able to prove specifications
like this, it is possible to restrict the number of recursive calls when inlining the
trigger expression. With a restricted exploration depth, other variables are stored
in the ghost memory and a smaller invariant is emitted. With a bound of two
iterations, the invariant would change to:

invariant trigger_ghost [i -1] == in2[i -1] >
( c_ghost [i -1]) * ( c_ghost [i -1]) *
( c_ghost [i -1]) * ( c_ghost [i -1])

This would reduce the number of subexpressions from 64 to four and can de-
crease the verification time in larger examples significantly. This expression and
runtime expansion shows the trade-off between verification runtime, the accuracy
of the monitor model and the expressiveness of the verification conditions.
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5.3 Runtime and Memory

Table 5.1: Runtime statistic over 50 runs of verifying the drone specification. A
timeout of 60 minutes was applied for long runs. Machine used: 16GB
RAM, Intel Core i7-8565U CPU @ 1.80GHz, 4 Cores

inline
level max [s] min [s] avg [s] number of

timeouts
1 13 5 7 0
2 10 5 7 0
3 TO 5 284 2
4 TO 8 889 10
5 TO TO TO 50

5.3 Runtime and Memory
The presented translation approach produces a Viper file for a given Lola speci-
fication. The Viper toolchain takes a Viper program as input, translates it into
an SMT model and calls the Z3 solver to obtain a verification result.
The Lola translation algorithm has negligible runtime. Generating a Viper file
for a specification is completed in under five milliseconds. The translation re-
sult was evaluated and tested with a simplified version of a specification used
to cross-validate GPS and IMU sensor data for drone flights. This specification
was originally presented in a case study on drone monitoring [1]. We simplified
the specification by changing the type of all variables from a real number to an
integer, as we have to ensure all divisors are of integer type. At two places, the
specification uses division by a variable. Therefore additional assumptions are
need to prove the correctness of the concerned stream expressions. Note that
this could be interpreted as an error within in the specification. In both cases
the correctness of the division results from an internal invariant which is not
explicitly stated. Furthermore, we removed mathematical function calls such as
sin and sqrt due to incompatible types. The used specification can be seen in
Figure 5.1. The direct translation of this specification could not be proven within
four hours.With a bounded inlining level, the specification was provable for sev-
eral small levels. While the SMT model generation of Viper is deterministic and
can be multi-threaded, the solving by Z3 only works with a single thread and has
an unpredictable runtime. As Z3 chooses random paths to explore in the search
space, the solver’s runtime can vary drastically. The translation for the drone
specification uses only five MB memory and runs in under ten milliseconds.

Table 5.1 shows the evaluation results for different inlining depths. Low degrees
of inlining could always be proven in under 20 seconds. For an inlining-bound
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input lat: Int32 , lon: Int32 , ug: Int32 , vg: Int32 , wg: Int32 ,
time_s : Int32 , time_micros : Int32

output time: Int32 := time_s + time_micros / 1000000
output count: Int32 := count [-1,0] + 1
output flight_time := (time - time [ -1 ,0]]) * count
output frequency := 1 / (time - time [ -1 ,0]])

output freq_sum := frequency + freq_sum [-1,0]
output freq_avg := freq_sum / count

output freq_max := if frequency > freq_max [-1,0] then frequency
else freq_max [-1,0]

output freq_min := if frequency < freq_min [-1,0] then frequency
else freq_min [-1,0]

output velocity := ug*ug + vg*vg + wg*wg
output R := 6373000
output approximate_pi := 3

output lon1_rad := lon [-1,0] * approximate_pi / 180
output lon2_rad := lon * approximate_pi / 180
output lat1_rad := lat [-1,0] * approximate_pi / 180
output lat2_rad := lat * approximate_pi / 180

output dlon := lon2_rad -lon1_rad
output dlat := lat2_rad -lat1_rad

output a := (dlat /2) *( dlat /2) * lat1_rad * lat2_rad * (dlon /2) *(
dlon /2)

output c := 2 * ( a*a + (a/2) * (a/2))
output gps_distance := R * c

output passed_time := time - time [-1,0]
output distance_max := velocity * passed_time
output dif_distance := gps_distance - distance_max
output delta_distance := 10
output detected_jump : Bool := dif_distance > delta_distance

trigger detected_jump "Jump"

Figure 5.1: Simplified specification for drone sensor cross validation.
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of three, some cases exceeded the timeout of one hour. Most evaluations could
be verified in several seconds. Inlining for four iterations shows similar behavior
as the previous case but took about four times longer on average. We can see
a drastic runtime increase when inlining for five iterations, as it could not be
evaluated within several hours. With a bound of five, the expression of the
stream a in Figure 5.1 is used inside the evaluation of stream c which leads to
a big expansion of the formula and the corresponding invariant. While for lower
inlining levels the model generation of Viper is completed in a few seconds, this
part takes up to 30 minutes for an inlining level of five. The resulting invariants
and their size for different inlining levels can be seen in Figure 5.2.

Figure 5.3a shows runtime and memory consumption for a test series of 100 runs,
with an inlining-bound of three and a timeout of 15 minutes. This experiment
has shown that executions with low runtime also have low memory usage. High
memory consumptions imply a high runtime but not vise versa. Every Z3 ex-
ecution that needed more then 500MB memory on this example resulted in a
timeout. Long runs did, however, not always need a lot of memory. Note, that
the runtime distribution builds a cluster of values below the one minute mark.
20 out of 100 runs showed a runtime above three minutes.

Specifications with only a few intermediate values and few direct edges within
a single path in the DG are far easier to verify. This is due to the fact that the
expression inlining for the invariant does not substitute dependencies through
memory accesses. The average runtime for all other examples, beside Figure 5.1,
is below five seconds. Besides all examples including division on real numbers,
Viper was able to prove all specifications that did not exceed the timeout. Every
proven specification could also be verified after applying the changes of Sec-
tion 4.2. With this, we have shown the monitor’s correctness in a concurrent
context.

Additionally, an experiment series on a smaller specification with a highly con-
nected DG has shown a relation between the specification size and the verifica-
tion time. While the drone specification shows a tree like structure with edge
weights close to zero, the specification used here has many edges with small neg-
ative weights. The corresponding DG has multiple edges with negative weights
and cycles with negative weights. The base test case, seen in Figure 5.4 has
an average verification time of nine seconds and needs 460 MB memory in the
process. Reducing the weight of all edges in the DG by one increased the ver-
ification time average to ten seconds. Iterating this process up to five times
increased the average runtime by about one second and the memory usage by 10
MB. Doubling the number of streams and providing a second trigger expression
increased the runtime up to 50 seconds and increased the needed memory by
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invariant trigger_Jump_ghost [i - 1] == (((( R_ghost [i - 1] *
c_ghost [i - 1]) - ( velocity_ghost [i - 1] * passed_time_ghost [
i - 1])) > 10))

(a) Generated with a bound of three

invariant trigger_Jump_ghost [i - 1] == ((((6373000 * (2 * ((
a_ghost [i - 1] * a_ghost [i - 1]) + (( a_ghost [i - 1] / 2) * (
a_ghost [i - 1] / 2))))) - (((( ug[i - 1] * ug[i - 1]) + (vg[i
- 1] * vg[i - 1])) + (wg[i - 1] * wg[i - 1])) * ( time_ghost [i

- 1] - time_ghost [i - 2]))) > 10))

(b) Generated with a bound of four

invariant trigger_Jump_ghost [i - 1] == ((((6373000 * (2 *
(((((((( dlat_ghost [i - 1] / 2) * ( dlat_ghost [i - 1] / 2))
* lat1_rad_ghost [i - 1]) * lat2_rad_ghost [i - 1]) * (
dlon_ghost [i - 1] / 2)) * ( dlon_ghost [i - 1] / 2)) *
(((((( dlat_ghost [i - 1] / 2) * ( dlat_ghost [i - 1] / 2)) *
lat1_rad_ghost [i - 1]) * lat2_rad_ghost [i - 1]) * (
dlon_ghost [i - 1] / 2)) * ( dlon_ghost [i - 1] / 2))) +
(((((((( dlat_ghost [i - 1] / 2) * ( dlat_ghost [i - 1] / 2))
* lat1_rad_ghost [i - 1]) * lat2_rad_ghost [i - 1]) * (
dlon_ghost [i - 1] / 2)) * ( dlon_ghost [i - 1] / 2)) / 2) *
((((((( dlat_ghost [i - 1] / 2) * ( dlat_ghost [i - 1] / 2)) *

lat1_rad_ghost [i - 1]) * lat2_rad_ghost [i - 1]) * (
dlon_ghost [i - 1] / 2)) * ( dlon_ghost [i - 1] / 2)) / 2))))
) - (((( ug[i - 1] * ug[i - 1]) + (vg[i - 1] * vg[i - 1]))
+ (wg[i - 1] * wg[i - 1])) * (( time_s [i - 1] + (
time_micros [i - 1] / 1000000) ) - time_ghost [i - 2]))) >
10))

(c) Generated with a bound of five

Figure 5.2: The invariant for the specification in Figure 5.1 with different inling-
ing levels
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100 MB, up to 560 MB. Adding a stream to the specification yields a higher
increase of the runtime than changes in the DG structure or changes of edge
weights. This experiment supports the conclusion that the specification is the
most relevant aspect of the verification runtime.
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5 Evaluation

(a) Visualization of runtime and memory usage of the drone specification. The data
consists of 100 runs with an inline bound three and 15 minutes timeout.

462

(b) Statistical values of the used data set. Memory is reported in MB, time in seconds.
14 evaluations exceed the timeout of 15 minutes.

time [s] memory [MB]
max TO 5455
min 14.22 375
avg 185.93 700

mean 42.32 460

Figure 5.3: Time and memory evaluation for the drone specification.
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5.3 Runtime and Memory

input a:Int32 , b:Int32 , c:Int32
output s:= a + b[1 ,1] + c[ -1 ,2]]
output r1 := s[-3,0] + s[-2,0]
output d := r1[-2,0] - r1[-3,0] + m
output h := d[-1,3] - r1 [ -2 ,13]
output k := h[-2,2] +r1[-1,2]
output n := a + b +c
output m := h + d[-1,3] - n[-1,4]
output j := b * n[-1,1] - c
trigger j > m[-1,2] "tr2"

Figure 5.4: The base specification for the test series to evaluate the influence of
the DG structure on the verification runtime. This specification is
step-by-step expanded to different sizes.
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6. Related Work

Similar to Lola [8], languages for synchronous programming like ESTEREL [5],
LUSTRE [15] and SIGNAL [14] also define programs as stream equations. These
programs can be compiled into an executable binary but lack future references.
An alternative approach for runtime monitoring, EAGLE [3], is based on ex-
tended regular expressions. By adding complementation to regular expressions,
the language allows for an intuitive way to formalize specifications. Each specifi-
cation is described by a set of parameterized recursive definitions and a few prim-
itive temporal operators. EAGLE allows the user to define rules that implement
a monitor and is the monitoring tool that most resembles Lola. As EAGLE uses
logical formulas similar to LTL, it lacks the power to express numerical queries.
The common approach for runtime monitoring is based on temporal logic, but
these approaches have to modify their logic to handle finite traces. Building on
Lola 2.0, RTLola (Real-Time Lola) [12] is capable of dealing with variable-rate
input streams and sliding windows, e.g. computing the average value of an input
stream over the last 5 seconds.

Other static verification tools for different languages, besides Viper [22], rely on
common intermediate representations like Boogie [20] or Why [13]. Boogie, for
example, is the core of Chalice [21] and Corral [19], while e.g. Frama-C [18] is
built on Why. These tools lack the ability to support permission-based logic,
which allows simulating heap read-only accesses and reasoning about concur-
rency and aliases. Several verifiers for commonly used programming languages
are build on top of Viper, like Nagini [10] for Python and Prusti [2] for Rust.
The tool coreStar [6] builds the basis for the JStar [9] verification tool for Java
and also builds on separation logic including permissions. Building on coreStar
requires the user to provide proof and abstraction rules to customize the behavior
of the symbolic execution. Viper supports a wide variety of languages without
the need for detailed back-end knowledge.
Iris [16,17], a framework similar to Viper, is built to encode and unify advanced
higher-order concurrent separation logic and formalizes them in Coq. Iris ad-
ditionally provides soundness of all proof rules and is not bound to a specific
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6 Related Work

surface logic. The logic used for Viper provides lower overhead for annotations
than approaches using Coq formalization and complete automation after the
logic application.

An approach similar to the one presented in this thesis is presented by Copi-
lot [23], a Haskell-based specification language. A Copilot specification is com-
piled into two separate C sources. One compiled through a custom back-end and
one by a copilot-SBV-C toolchain. A driver interleaves both sources step-wise
and asserts their equality. CBMC [7], a model-checker for C sources, proves that
both programs have equal outputs for all inputs within a stated iteration range.
The given verification attempt only considers a constant number of iterations
and cannot verify arbitrary behavior. Copilot specifications have to be causal,
i.e. no future references are allowed. Lola, which respects the descriptive nature
of runtime specifications, allows for future references. One significant advantage
of Copilot is the ability to monitor real-time systems. This also can be achieved
with RTLola, however, a translation to Viper is not immediately possible, as
Viper is not real-time capable.
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7. Conclusion

In this thesis, we presented a transpilation for the stream-based specification
language Lola to the verification language Viper. The Viper program models
the monitor which reflects the Lola specification. The model is annotated with
verification conditions to use the verification system of Viper. We use Viper to
prove the correctness of the monitor. The translation is implemented as a Rust
program and uses the Lola parser of the StreamLAB framework. To evaluate
a stream expression, the algorithm performs a graph analysis for the longest
paths and checks for streams reachable with paths over direct edges on the
dependency graph. Several loop invariants and assertions are added based on a
syntactical analysis to show soundness and completeness of all trigger evaluations
i.e. reports to the user. The notions of evaluation order and stream layer are
introduced to prove the correct behavior of the monitor in a concurrent context.
The evaluation shows features of the Rust implementation and bounds of the
Viper proof toolchain. Logical complex specifications with highly connected
dependency graphs and large edge weights are complex to model, but easy to
proof, while computation heavy specifications can overwhelm the Viper backend.

7.1 Future Work
In future work, we aim to expand the input grammar to the parametrized tem-
plate streams of Lola 2.0. Checking a network connection for too many re-
quests by a single user cannot be expressed in the first version of Lola easily.
Parametrized stream conditions can, for example, store the number of requests
per IP-address in a single line in the specification. With the extended grammar
it will be possible to prove the correctness monitors for more generic and abstract
specifications and systems.
Another interesting aspect to explore in more detail is the RTLola language for
real-time specifications and dependencies. Stream expressions aggregating over
the last minute of input values are useful to describe real-time systems but are
not easily representable inside the Viper architecture. Alternative verification
techniques or toolchains, next to Viper, are required to formally prove correct-
ness for RTLola runtime monitoring.

39



7 Conclusion

The final goal to prove the correctness of a Lola runtime monitor would be based
on the verification of the Lola interpreter and compiler. The presented approach
is the first step in this direction. As the Lola interpreter and compiler are writ-
ten as a Rust program another approach based on Viper can be applied. The
Rust verifier Prusti [2] is built on top of the Viper toolchain and can be used to
annotate Rust programs with verification conditions and prove their correctness.
Building on the language’s strong type system, it can show the correctness of
complete Rust programs and could be used to verify the whole Lola compiler.
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