
C A U S A L I T Y- B A S E D M O D E L C H E C K I N G
F O R R E A L - T I M E S Y S T E M S

bachelor’s thesis

J U L I A N S I B E R

Faculty of Mathematics and Computer Science
Department of Computer Science

Saarbrücken, 26 February 2019

advisor:
Prof. Bernd Finkbeiner, PhD.
Universität des Saarlandes
Saarbrücken, Germany

reviewers:
Prof. Bernd Finkbeiner, PhD.
Universität des Saarlandes
Saarbrücken, Germany

Dr. Andrey Kupriyanov
Barracuda Networks AG
Vienna, Austria

submitted:
26 February 2019

eidesstattliche erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selb-
stständig verfasst und keine anderen als die angegebenen Quellen
und Hilfsmittel verwendet habe.

statement in lieu of an oath

I hereby confirm that I have written this thesis on my own and that I
have not used any other media or materials than the ones referred to
in this thesis.

einverständniserklärung

Ich bin damit einverstanden, dass die (bestandene) Arbeit in beiden
Versionen in die Bibliothek der Informatik aufgenommen und damit
veröffentlicht wird.

declaration of consent

I agree to make both versions of my thesis (with a passing grade)
accessible to the public by having them added to the library of the
Computer Science Department.

Saarbrücken, 26 February 2019
Julian Siber

A B S T R A C T

For many of today’s digital systems, correctness not only depends on
the exact result that is computed, but also on whether the computa-
tion finishes in time. These real-time systems often fill safety-critical
roles and interact with their physical environment, circumstances that
call for rigorous verification of their correctness before deployment.

A common technique for verifying whether a given system satis-
fies a property is model checking. With timed automata as a formal
model, there exist multiple highly-optimized tools that facilitate spec-
ification and verification of real-time systems. However, even state-of-
the-art model checkers struggle with the complexity introduced by
concurrency. This is due to the large number of states present in a
network of timed automata.

For discrete systems, a promising technique for efficient model
checking in concurrent settings is causality-based verification. Unlike
conventional model checking methods, the causality-based approach
does not rely on a comprehensive state space traversal. Instead, it an-
alyzes the cause-effect relationships of events leading to a hypotheti-
cal error, aiming to prove the error’s non-existence by contradiction.
The analysis is driven by domain-specific proof rules that facilitate
inference of the causal dependencies between events. These rules po-
tentially allow for considerable shortcuts, in this way mitigating the
state space explosion inherent to the model checking problem.

In this thesis, we extend causality-based verification to networks
of timed automata. We apply the causality-based concurrency model
of concurrent traces to a real-time setting and provide the necessary
operations for model checking. Further, we define a number of appro-
priate proof rules that capture the cause-effect relationships in timed
automata and provide an algorithm for constructing proofs of safety
properties. We conclude by demonstrating that our algorithm proves
the safety of Fischer’s protocol for mutual exclusion in polynomial
space and time.

v

A C K N O W L E D G E M E N T S

First of all, I would like to express my deep gratitude to my advisor
Prof. Bernd Finkbeiner, not only for offering me a topic very much in
accord with my academic interests but also for the countless, insight-
ful discussions on the intricacies of time and his guidance throughout
this thesis.

Moreover, many thanks go to Dr. Andrey Kupriyanov for taking the
time to answer my questions on the topic of causality and reviewing
this thesis.

Lastly, I would like to take this opportunity to thank my family and
friends for their unconditional support, without which undoubtedly
neither this thesis nor my studies would have been possible.

vii

C O N T E N T S

1 introduction 1

2 timed automata 5

2.1 Syntax and Semantics 5

2.2 Networks of Timed Automata 8

2.3 Finite Abstractions . 8

3 causality-based verification 11

3.1 Concurrent Traces . 11

3.2 Trace Transformers . 15

3.3 Trace Unwinding . 19

3.4 Looping Trace Tableau 20

3.5 Abstract Trace Tableau 22

4 timed concurrent traces 25

4.1 Trace Language . 25

4.2 Checking Emptiness . 26

5 causality-based verification in real-time 31

5.1 Timed Trace Transformers 32

5.2 Refinement of Timed Concurrent Traces 34

5.3 Exploration of Trace Tableau 37

5.4 Polynomial Verification of Fischer’s Protocol 42

6 related work 47

7 conclusion & future work 49

a trace transformers for discrete systems 51

bibliography 57

ix

1
I N T R O D U C T I O N

Cyber-physical systems can be found in a multitude of applications
ranging from the smartphones in our pockets to aircraft control in the
sky. In many, safety-critical instances, failures threaten particularly
grave consequences for their users, because these systems interact
with their environment physically. Unfortunately, bugs are hard to
spot and the highest level of assurance is key. In fact, it is safe to
say a guarantee of correctness is desired in most cases. After all, who
would not prefer a controller for the nearby nuclear power plant to
be designed without errors?

A solution to guarantee the correctness of digital systems is for-
mal verification. The intended purpose of these methods is to for-
mally prove that a system satisfies all necessary properties before de-
ployment. One such method, model checking, automatically verifies
whether the implementation of a system, given as a model in form
of a state-transition-graph, satisfies some specification that expresses
the desired behavior. If the model is correct, a proof is constructed.
If it is not, the model checking algorithm provides a counterexample
violating the property. The potential value of model checking for the
reliability of system design cannot be overstated. However, there are
multiple aspects that make the model checking problem very chal-
lenging for real-world systems.

Firstly, correctness is often a question of the right timing. It is not
enough that the desired result is produced eventually, it has to be
produced in time, with respect to other, environmental or computa-
tional events. For instance, the gate of a train crossing should fully de-
scend in a predefined time interval after initiation by an approaching
train. Systems that have to meet such quantified real-time constraints
are called real-time systems. A popular formalism for specification of
these time-dependent systems are timed automata [1], finite state ma-
chines enriched with real-valued clock variables used to track time.
Model checking timed automata is a mature discipline, starting from
the first decidability results in the early ’90s based on the region ab-
straction [2] and culminating in sophisticated tools like Uppaal [4]
utilizing more efficient abstractions and data structures. At their core,
most state-of-the-art model checkers for real-time systems rely on a
comprehensive state space traversal, whereby the infinite state space
of a timed automaton is abstracted to a finite symbolic representation.

However, the applicability of even highly-optimized tools such as
Uppaal is diminished by another common aspect of real-world sys-
tems: concurrency. Most practically relevant systems are complex net-

1

2 introduction

works of multiple participating processes. This poses a problem for
conventional model checking methods, as the state space scales expo-
nentially with the number of processes.

Recently, causality-based verification [10] has been proposed by An-
drey Kupriyanov as a model checking framework for discrete systems
that allows for considerable savings in concurrent settings. For cer-
tain, practically relevant classes of programs such as multi-threaded
programs with binary semaphores, the heavy toll resulting from state
space explosion can be avoided. In fact, the causality-based model
checking algorithm reduces the complexity of verifying this class of
programs from exponential to polynomial [11]. The innovation of this
approach stems from the focus on causality, which is the dependency
relation between two events, where the first (the cause) is partly re-
sponsible for the second (the effect). This line of reasoning is usually
more common to manual proofs, where an exhaustive search of all
possibilities is not feasible. Instead, one infers from a given situation
(the effect) all possible explanations (the causes).

The causality-based model checking framework captures this line
of reasoning by replacing system states as the atomic proof object by
concurrent traces, which are abstractions of (sets of) system computa-
tions. They describe computational scenarios, and it is possible to de-
rive for a given scenario that describes some effect implicitly, such as
a change of system states, the necessary existence of an event causing
the effect. This process is used to refine the abstraction and formal-
ized with so-called trace transformers. When starting from scenarios
that describe all possible errors in a system, this process of refinement
either produces a causal chain of computational events leading from
start to error or infers that no such violation is possible.

When applying causality-based verification to other domains, it is,
however, necessary to recognize domain-specific dependencies for in-
ference of causal dependencies. In the case of timed automata, this
mainly concerns the real-valued clock variables. The main catch is
that these variables are implicitly synchronized, that is to say, all
clocks in a network of timed automata advance at the same speed.
In timed systems, this synchronization is often the main force of cor-
rectness. This circumstance makes them a particularly suited target
for causal analysis, because human reasoning, the basis for causality-

Figure 1.1: Roadworks with traffic lights.

introduction 3

based analysis, naturally assumes time to be a monolithic factor. Con-
sider for instance roadworks on one lane of a two-way street, secured
by traffic lights, as depicted in Figure 1.1. Let us assume that between
the green phase of any traffic light and the green phase of the other,
there is a delay of ten seconds. On the other hand, without outside
interference, a car will never need more than seven seconds to fully
pass the roadworks. Intuitively, it is quite clear that in a closed system
with only cars, roadworks and traffic lights, correctness is guaranteed.
After all, even when a car enters just before its traffic light turns red,
it will always need less time to pass than the other traffic light to turn
green. If we consider a scenario with other actors, what could possi-
bly cause an error? For two cars to both be passing the roadworks
at the same time, the first car somehow has to spend more than the
seven seconds in this section. One might think of children passing the
street, causing the driver to use his breaks. In any case, we can infer
from the hypothetical scenario of two cars passing the roadworks at
the same time, the effect, the existence of some cause, that is, the first
car taking more than seven seconds.

In this thesis, we will capture this line of reasoning about timing
consistency in a causality-based model checking approach for real-
time systems modeled as networks of timed automata.

outline

We provide the necessary preliminaries on timed automata and their
symbolic abstractions in Chapter 2. Further, we introduce the relevant
parts of the causality-based verification framework in Chapter 3. We
extend the causality-based concurrency model of concurrent traces to
timed automata in Chapter 4. This also includes necessary operations
we later need for model checking, such as satisfiability and emptiness
checking. In Chapter 5 we define trace transformers appropriate for
timed automata, and comprehensively describe our causality-based
model checking algorithm for timed automata and safety properties.
We conclude the Chapter by demonstrating this algorithm at the ex-
ample of Fischer’s protocol, where we achieve polynomial complexity
for a scaling number of processes. In Chapter 6, we expand upon how
our approach relates to other methods concerned with concurrency
in a real-time setting. The results of this thesis and an assessment of
promising avenues of future work are presented in Chapter 7.

2
T I M E D A U T O M ATA

Timed automata [1, 2] are finite state machines augmented with a fi-
nite set of real-valued clocks. At the start of any execution, all clocks
start with value zero and subsequently advance at the same speed.
Clocks can be reset on taking a transition. Timing behavior is further
modeled with guards and invariants, which are labels of transitions
and locations, respectively. Guards have to be satisfied by the cur-
rent clock valuation on taking the transition. An invariant has to be
fulfilled while staying at or entering the corresponding location.

2.1 syntax and semantics

Before formally defining timed automata, we develop some auxiliary
definitions. We closely follow [9] in notation. A clock is a non-negative,
real valued variable. The set of clocks is denoted by C. A clock valu-
ation is a mapping vc : C → R>0 from a set of clocks to their corre-
sponding values. For a given clock valuation vc and some δ ∈ R>0,
vc + δ denotes a clock valuation after the elapse of δ time units. It is
defined by: ∀x ∈ C : (vc + δ)(x) = vc(x) + δ. For a set of clocks R ⊆ C
and a clock valuation vc, vc[R] is a clock valuation where all clocks
x ∈ R are reset to zero, i.e.

∀x ∈ C : vc[R](x) =

0 if x ∈ R

vc(x) else

A clock constraint φ is defined by φ := x ./ n | φ1 ∧φ2 | true, with
x ∈ C,n ∈N and ./ ∈ {<,6,=,>,>}. The set of clock constraints over
C is denoted by Φ(C).

In this thesis, we consider a class of timed automata that also al-
lows timing-unrelated integer variables. These can be used in addi-
tional conditions and assignments on transitions. We denote the set
of integer variables by V . An integer valuation vi : V → Z maps all
integer variables to their respective values. An integer constraint ψ is
defined by ψ := x ./ n | ψ1 ∧ ψ2 | true, with x ∈ V ,n ∈ N and
./ ∈ {<,6,=,>,>}. The set of clock constraints over C is denoted by
Ψ(V). While clocks can only ever be reset to zero on taking a transi-
tion, we allow more complex assignments for integer variables. An in-
teger assignment ω is given by ω := x := n | x := x+n |ω1∧ω2 | true,
with x ∈ V ,n ∈ Z. To avoid ambiguity, we allow an integer variable x
to be present in a single conjunct only. The set of integer assignments
is denoted byΩ(V). The semantics of applying an integer assignment

5

6 timed automata

ω ∈ Ω(V) to an integer valuation vi, denoted vi[ω](x), is given by the
following equation:

∀x ∈ V : vi[ω](x) =



n if ω = x := n

vi(x) +n if ω = x := x+n

vi[ω1](x) if ω = ω1 ∧ω2 and x is defined in ω1

vi[ω2](x) if ω = ω1 ∧ω2 and x is defined in ω2

vi(x) else

In networks of timed automata, we allow synchronization through
explicit sender (a!) and receiver (a?) actions. To this end, we extend
the alphabet Σ to Σsync = {ε}∪ (Σ× {!, ?}). We can now define timed
automata as they will be used in this thesis.

definition 2.1 (Timed automaton). A timed automaton is a tuple
〈L, l0,Σ,C,V , I,E〉, where

• L is a finite set of locations;

• l0 ∈ L is the initial location;

• Σ is a finite set of actions;

• C is a finite set of clocks;

• V is a finite set of integer variables;

• I : L→ Φ(C) is an invariant assignment function;

• E ⊆ L×Σsync×Φ(C)×Ψ(V)×Ω(V)× 2C×L is the set of edges.

For an edge l1
α,β,γ,ω,ρ−−−−−−→ l2 ∈ E, l1 specifies the outgoing location,

α is an action, β is the guard in form of a clock constraint, γ is an
additional integer constraint that has to hold on taking the transition,
ω is an integer assignment, ρ is a set of clocks to be reset and l2 is
the target location.

l0

x 6 1
l1 l2

a?, x > 0 b!, x > 1

x = 1 x > 1, x := 0

Figure 2.1: Timed automaton

2.1 syntax and semantics 7

example 2.2 (Timed automaton). We visualize timed automata with
graphs as seen in Figure 2.1. Location labels and invariants can be
found in the corresponding node (e.g. x 6 1 in location l0). Edges are
labeled with their action (e.g. a), guard in form of clock (e.g. x > 0)
and integer constraints as well as integer assignments and clock re-
sets (e.g. x := 0). Differentiation is achieved through the proper vari-
ables (between clocks and integer variables) and syntax (between con-
straints and assignments). We omit the empty synchronization label
ε, i.e. the transition from location l2 to l3 is implicitly labeled with
action ε.

A timed automaton not only allows explicit transitions correspond-
ing to an enabled edge, but also delay transitions which model stay-
ing in a state for a certain amount of time. We call the former edge
transitions, the latter delay transitions. We follow [3] in defining the se-
mantics of timed automata as a transition system. In the following,
vc0 denotes the clock valuation where all clock variables are mapped
to zero, vi0 denotes the similar integer valuation.

definition 2.3 (Timed automata semantics). The semantics of a timed
automaton A = 〈L, l0,Σ,C,V , I,E〉 are defined by the labeled transition
system TS = (S, s0,→), with:

• S = L×RC>0 ×ZV is the set of states;

• s0 = (l0, vc0, vi0) ∈ S is the initial state;

• → ⊆ S× S contains delay (δ−→) and edge (α−→) transitions:

– (l,v
c, vi) δ−→ (l, vc + δ, vi) iff ∀0 6 δ ′ 6 δ : (vc + δ ′) |= I(l);

– (l1, vc1, vi1)
α−→ (l2, vc2, vi2) iff ∃l1

α,β,γ,ω,ρ−−−−−−→ l2 ∈ E s.t. vc1 |=

β, vc2 = v
c
1[ρ], v

c
2 |= I(l2), v

i
1 |= γ, vi2 = v

i
1[ω].

Timed automata read timed words ξ = (a1, t1)(a2, t2)...(ai, ti)...
where ti 6 ti+1 for all i > 0 and ai ∈ Σ is an action taken by the
automaton after ti ∈ R>0 time units.

definition 2.4 (Run of a timed automaton). A run of a timed au-
tomatonA = 〈L, l0,Σ,C,V , I,E〉 over a timed word ξ = (a1, t1)(a2, t2)...
(ai, ti)... is a sequence of alternating delay and edge transitions in TS:

(l0, vc0, vi0, t0)
d1−→ a1−→ (l1, vc1, vi1, t1)

d2−→ a2−→ (l2, vc2, vi2, t2)
d3−→ a3−→ ...

that satisfies t0 = 0 and ti = ti−1 + di for all i > 1.

We call a sequence π = s0, ..., sn with si = (li, vci , vii, ti) a timed
computation if s0 = (l, vc0, vi0, t0) with t0 = 0 and for all 1 6 i 6
n : ti > ti−1 and vci = vci−1 + ti − ti−1[R] for some set of clocks
R. For a timed automaton A = 〈L, l0,Σ,C,V , I,E〉, a timed automaton

8 timed automata

computation π = s0, ..., sn, with s0 = (l0, vc0, vi0, t0), of A is a timed
computation where there exists a corresponding run r of A, so that

r = s0
d1−→ a1−→ s1

d2−→ a2−→ s2
d3−→ a3−→ ... dn−−→ an−−→ sn...

Note that the notion of a timed automaton computation can be seen
as equivalent to a finite path fragment in traditional literature. We
further diverge in defining the language of a timed automaton A,
denoted by L(A), as the set of timed automaton computations.

2.2 networks of timed automata

In this thesis, we are first and foremost interested in concurrent sys-
tem composed of several timed automata. We call these compositions
networks of timed automata. As stated earlier, we model synchroniza-
tion with explicit sender (a!) and receiver (a?) actions. Furthermore,
all integer variables in a network are shared and in this way allow for
further communication.

definition 2.5 (Network of timed automata). LetA1, ...,An be timed
automata with Aj = 〈Lj, lj0,Σ,Cj,V , Ij,Ej〉 for 1 6 j 6 n. Σ and V are
shared and therefore equal for all n automata. We require Cj to be
distinct for all timed automata. A network of timed automata A1, ...An
is defined by the product automaton A = 〈L, l0,Σ,C,V , I,E〉, with:

• L = L1 × ...× Ln;

• l0 = (l10, ..., ln0);

• C = C1 ∪ ... ∪Cn;

• I(l1, ..., ln) = I1(l1)∧ ... ∧ In(ln);

• E is composed of:

– ∀i ∈ {1, ...,n} : (..., li, ...)
σ,β,γ,ω,ρ−−−−−−→ (..., li

′
, ...) if

li
σ,β,γ,ω,ρ−−−−−−→ li

′ ∈ Ei;

– ∀i 6= j ∈ {1, ...,n} : (..., li, ..., lj, ...)
ε,β,γ,ω,ρ−−−−−−→ (..., li

′
, ..., lj

′
, ...) if

li
a!,β1,γ1,ω1,ρ1−−−−−−−−−−→ li

′ ∈ Ei and lj
a?,β2,γ2,ω2,ρ2−−−−−−−−−−→ lj

′ ∈ Ej, with
β = β1 ∧β2,γ = γ1 ∧ γ2,ω = ω1 ∧ω2, ρ = ρ1 ∪ ρ2.

2.3 finite abstractions

The semantics of timed automata as seen in Definition 2.3 describe
an infinite transition system, due to the real-valued clock valuations
that produce an infinite state space. Early model checking proposals
were mainly concerned with decidability. To this end, Alur and Dill
[2] developed a finite abstraction of timed automata based on regions.

2.3 finite abstractions 9

The region abstraction utilizes the observation, that the behavior
of a timed automaton does not depend on the exact clock values,
e.g. for the timed automaton in Figure 2.1 and location l1, it does
not matter whether clock x equals 0.3 or 0.9 - both clock valuations
do not allow taking the transition to l2. This notion is formalized
in the following definition, where for a clock x ∈ C, bv(x)c and a
clock valuation v ∈ C → R>0, denotes the integral part of the clock
value, fract(v(x)) the fractal part, and cx is the largest constant x gets
compared to.

definition 2.6 (Region). For a timed automaton 〈L, l0,Σ,C,V , I,E〉,
two clock valuations v, v ′ ∈ C → R>0, are in the same region, also
denoted by v ∼= v ′, iff the following conditions are met:

• for each clock x ∈ C, either bv(x)c = bv ′(x)c or both v(x) and
v ′(x) are greater than cx;

• for each pair of clocks x,y ∈ C and v(x) 6 cx, v(y) 6 cy:

1. fract(v(x)) 6 fract(v(y)) iff fract(v ′(x)) 6 fract(v ′(y)),
and

2. fract(v(x)) = 0 iff fract(v ′(x)) = 0.

Extending the equivalence relation ∼= to composite states so that
(s, v) ∼= (s ′, v ′) iff s = s ′ and v ∼= v ′ yields the quotient [TA]∼=, called
the region graph of a timed automaton TA.

The number of regions is bounded by the largest constant in the
automaton and therefore finite. However, due to its fine granularity,
the size of the region graph scales exponentially with the number of
clocks and constants. Therefore, while the region abstraction proves
he decidability of timed automata model checking, it is generally un-
suited for practical purposes.

l0
x = 0

l0
0 < x < 1

l0
x = 1

l1
x = 0

l1
0 < x < 1

l1
x = 1

l1
x > 1

l2
x = 0

l2
0 < x < 1

l2
x = 1

l2
x > 1

τ

τ

τ

τ

τ

τ

τ

τ

a?

a?

b?

c?

Figure 2.2: Region graph of timed automaton seen in Figure 2.1

10 timed automata

A more efficient abstraction of the state space are zones [8], which
provide the basis of most state-of-the-art verification tools for timed
automata.

definition 2.7 (Zone). A zone D is the maximal set of clock assign-
ments satisfying its clock constraint of the form

D ::= x ∼ c | c ∼ x | x− y ∼ c | D∧D

with x,y ∈ C, c ∈N and ∼∈ {<,6}.

The zone graph for the timed automaton from Figure 2.1 can be
seen in Figure 2.3.

But not only do zones provide a coarser symbolic representations,
but the following operations for zones D,D ′ are also zone preserving
and facilitate analysis of timed automata:

• Future of D:
−→
D = {v+ t | v ∈ D and t ∈ R>0};

• Past of D:
←−
D = {v− t | v ∈ D and t ∈ R>0};

• Intersection of D and D ′: D∩D ′ = {v | v ∈ D and v ∈ D ′};

• Reset to zero of D with respect to set of clocks R:
[R← 0]D = {v[R] | v ∈ D};

• Inverse reset to zero of D with respect to set of clocks R:
[R← 0]−1D = {v | [R← 0]v ∈ D}.

With the help of these elementary operations, it is possible to ex-
press for some timed automaton A = 〈L, l0,Σ,C,V , I,E〉 and an edge

l1
α,β,γ,ω,ρ−−−−−−→ l2 ∈ E the effect taking this edge has on zone D. With

JβK = {v ∈ C→ R>0 | v |= β}, Jρ0K = {v ∈ C→ R>0 | v(x) = 0 ∀x ∈ ρ}:

• Poste(D) = [ρ← 0](
−→
D ∩ {v ∈ C→ R>0 | v |= β});

• Pree(D) = [ρ← 0]−1(
−→
D ∩ Jρ0K)∩ JβK.

l0
x 6 1

l0
x = 1

l1
x > 0

l2
x > 1

l2
true

a?
a?

b?

c?

Figure 2.3: Zone graph of timed automaton seen in Figure 2.1

3
C A U S A L I T Y- B A S E D V E R I F I C AT I O N

The causality-based verification proposed by Andrey Kupriyanov [10]
fundamentally changes the proof object under consideration. Instead
of comprehensively traversing the state space to conclude whether
an error state is reachable, it is based on the question: What events
have to happen necessarily for the system to go from the initial state to
some error state? And is it possible to arrange them in a way that is not
contradictory? To be more exact, the model checking algorithm works
on partial representations of executions called concurrent traces, which
get refined until it is clear whether or not they correspond to actual
system computations.

In this chapter, if not specified further, definitions and notations are
presented as proposed by Andrey Kupriyanov in [10]. To demonstrate
causality-based verification of safety properties for discrete-time, we
will use the following definition of transition systems as a model to
describe concurrent systems with interleaving semantics. In this chap-
ter we denote by φ(V) the set of first-order formulas over a set of
variables V. For a variable x ∈ V, we define a primed variable x ′, which
describes the value of x in the next state. Further, we call formulas
from the set φ(V) state predicates and from the set V ∪ V ′ transition
predicates, respectively.

definition 3.1 (Transition system). A transition system is a tuple S =

〈V,T,Θ〉, where:

• V is a finite set of system variables;

• T ⊆ V∪V ′ is a finite set of system transitions;

• Θ ∈ φ(V ′) defines the systems starting states.

A state of S is a valuation of the system variables V. We call a se-
quence of states s0, s1, s2... a computation. Moreover, a system computa-
tion of S is a computation, where Θ(s0) holds, and for all i > 1 there
is a system transition ti ∈ T such that ti(si−1, si) holds. For a system
S, we denote the set of systems computations by L(S).

3.1 concurrent traces

The smallest building block of the larger causality-based proof object
is a concurrent trace, whose role can be seen as corresponding to that
of a state in standard model checking.

definition 3.2 (Finite concurrent trace). A finite concurrent trace is a
tuple F = 〈E,C, , λE, λC〉, where:

11

12 causality-based verification

• E is a set of events;

• C ⊂ E× E is a set of causal links;

• ⊆ E× E is a symmetric conflict relation;

• λE : E → φ(V ∪ V ′) and λC : C → φ(V ∪ V ′) are labelings of
events and causal links with transition predicates.

A concurrent trace defines a set of computations that share the state
changes specified by its events. Further, the causal links describe the
partial order of the changes. While other state changes can occur be-
tween events, the labelings of causal links allow to formulate addi-
tional constraints on these changes. Multiple logical distinct events
can be mapped to a single system transition, however, the conflict re-
lation allows to restrict this. In the remainder of this thesis, we will
often simply refer to concurrent traces as traces. We denote the set of
all concurrent traces by F.

definition 3.3 (Trace language). The language of a concurrent trace
F = 〈E,C, , λE, λC〉 is defined as a set L(F) of finite computations,
such that for each computation π = s0, ..., sn ∈ L(F) there exists a
mapping σ : E→ {s0, ..., sn}, called a run of F on π, such that:

1. for each event e ∈ E and si = σ(e) it holds that λE(e)(si, si+1);

2. for each causal link (e1, e2) ∈ C, and si = σ(e1) and sj = σ(e2),
we have:

a) i 6 j, and

b) for all i < k < j, the formula λC(c)(sk, sk+1) holds.

3. for each pair of conflicting events e1 e2, with s1 = σ(e1) and
s2 = σ(e2), we have i 6= j.

example 3.4 (Concurrent traces). Consider the two concurrent traces
shown in Figure 3.1 and the transition system with:

V = {x,y};

T = {x++ : x ′ = x+ 1∧ y ′ = y, y++ : y ′ = y+ 1∧ x ′ = x,

x-- : x ′ = x− 1∧ y ′ = y, y-- : y ′ = y− 1∧ x ′ = x,

x&y++ : x ′ = x+ 1∧ y ′ = y+ 1, x&y-- : x ′ = x− 1∧ y ′ = y− 1};

Θ ≡ x ′ = 0∧ y ′ = 0.

Concurrent trace F1 requires that variables x and y get increased
somewhere in the computation. But as the two events are in conflict,
the computation characterized by the transition sequence Θ, x&y++, e
is not accepted because the two events are not allowed to be mapped
to the same system transition. Following this line of reasoning, Θ,

3.1 concurrent traces 13

x < x ′

Θ e

y < y ′

=

x < x ′

Θ e

y < y ′

y ′ = y

x ′ = x

F1 F2

Figure 3.1: Example of two concurrent traces.

x&y++, x++, y++, e is accepted. The same sequence is, however, not ac-
cepted by F2. This concurrent trace requires that after some transition
that increases x the value of y does not change, and vice versa. In our
system this is only realizable with x&y++ as the last transition.

Concurrent traces are, in essence, directed acyclic graphs. In the
following, we introduce some definitions for graph transformations
in order to lift them to concurrent traces later. The notations used are
borrowed from [6] [7].

A directed graph is a tuple G = 〈N,E〉, where N is a set of nodes and
E ∈ N×N is a set of edges. We use s, t : E→ N as functions that map
each edge to its source and target, respectively.

Given two graphs G = 〈N,E〉 and G ′ = 〈N,E〉, a graph morphism
f : G → G ′ is a pair of functions f = 〈fN : N → N ′, fE : E → E ′〉,
preserving s and t: fN ◦ t = t ′ ◦ fE and fN ◦ s = s ′ ◦ fE.

A graph production p : (L
r−→ R) is an injective graph morphism

r : L → R. We call L and R the left-hand side and right-hand side of r,
respectively. A production p : (L

r−→ R) can be applied to a graph G
if there is a match, that is, an injective graph morphism m : L → G.
The resulting graph H is obtained by adding to G all elements of R
with no pre-image in L, removing all elements of L with no image
in R and contracting all elements of L that have the same image. The
application of a production p to a graph G with match m is called a
direct derivation and will be denoted by pm(G).

Concurrent traces are in general a very expressive structure which
makes problems such as emptiness checking undecidable as shown
in [10]. However, for developing causality-based proofs, it is possi-
ble to restrict the classes of concurrent traces under consideration far
enough that the problems become tractable. Most important is the no-
tion of a compactization of some concurrent trace F, which in essence
is a gross underapproximation obtained by only allowing the explicit
events existing in the trace. To formalize this notion, we first need
some auxiliary definitions.

definition 3.5 (Linear trace, linearization). A linear trace is a con-
current trace F = 〈E,C, , λE, λC〉, where the transitive closure of the

14 causality-based verification

causality relation C is total: for all e, e ′ ∈ E we have that (e, e ′) ∈ C∗

or (e ′, e) ∈ C∗. We denote the set of linear traces by FL. For any
concurrent trace F ′, some linearization can be obtained by ordering
all unordered events. We denote the set of linearizations of F ′ by
Linearizations(F ′).

For a linear trace F with an ordered set of events E = {e1, e2, ..., en},
we call the sequence of formulas φ1,ψ1,φ2,ψ2, ...,ψn−1,φn, where
φi = λE(ei) and ψi = λC((ei, ei+1)), the linear normal form of F, de-
noted by NL(F).

definition 3.6 (Compact trace, contraction). A compact trace is a con-
current trace F = 〈E,C, , λE, λC〉, where the conflict relation is total:
for all e, e ′ ∈ E we have that (e, e ′) ∈ . We denote the set of compact
traces by FC. For any concurrent trace F ′, some contraction can be ob-
tained by uniting all events that are not in conflict. We denote the set
of contractions of F ′ by Contractions(F ′).

definition 3.7 (Compactization). For a given concurrent trace F =

〈E,C, , λE, λC〉, its compactization is any trace F ′ = 〈E ′,C ′, ′, λ ′E, λ ′C〉
such that:

• for traces FL ∈ Linearizations(F) and FCL ∈ Contractions(FL);
let φ1,ψ1,φ2,ψ2, ...,ψn−1,φn be the linear normal form of FCL;

• E ′ = E is an ordered set of events {e1, e2, ..., en};

• C ′ = {(ei, ei+1) | 1 6 i < n};

• = {(ei, ej) | 1 6 i 6 n, i 6= j};

• λ ′E = {ei → φi | 1 6 i 6 n};

• λ ′C = {(ei, ei+1)→ ⊥ | 1 6 i < n}.

We call the sequence of predicates φ1,φ2, ...,φn a compactization
normal form of F ′, denoted by NC(F ′). The set of all compactizations
of F is given by Compactizations(F).

A compactization of a given concurrent trace is obtained by order-
ing any unordered events in some unspecified order, uniting events
that are not in conflict, and disallowing any further state changes be-
tween events. This makes emptiness checking trivial, as the resulting
trace leaves no room for hidden, implicit transitions. The language of
a compactization (and consequently, of the original concurrent trace)
is not empty, when the SSA-shaped conjunction of formulas from its
normal form are satisfiable. As a compactization is an underapproxi-
mation of the original trace though, unsatisfiability and emptiness of
the compactization language does not necessarily mean emptiness of
the origianl trace’s language. It is, however, possible to identify which
parts of the trace are responsible for the unsatisfiability by extracting

3.2 trace transformers 15

the unsatisfiable core of the SSA-form. In the next sections, we will
focus on the refinement process of this unsatisfiable core that drives
the causality-based verification algorithm.

3.2 trace transformers

Standard, state-based model checking is effectively driven by the tran-
sition relation of the system under consideration. Introducing the
more powerful proof object of a concurrent trace, however, also ne-
cessitates more powerful proof rules to facilitate refinement of the
concurrent trace abstraction.

This is where the concept of causality comes into play. The idea is
to infer from a pre-existing event in a concurrent trace (the effect) the
necessity of another (the cause). This notion is best described with
the traces seen in Figure 3.2. Initially, F includes two events that do
not agree on post- and precondition: On the one hand, we have an
initial event ending with x having value 0. On the other hand, we
have an event requiring x to be 1. This lets us infer the existence
of another, necessary bridging event in between. Take note that we
do not know, however, which system transition is responsible for the
logical state change. The analysis therefore resorts to case distinctions
in subsequent steps.

In order to formalize causal inference on concurrent traces, we ex-
tend the graph transformations seen earlier in this chapter.

definition 3.8 (Trace production). A trace morphism behaves simi-
larly to a graph morphism and maps events and links to their counter-
parts in a different trace while preserving source and target functions.
Subsequently, a trace production τ : (L

r−→ R), where L and R are con-
current traces and r is a trace morphism defines a transformation of
one concurrent trace into another. The structural changes are defined
by the corresponding graph production, the changes in labelings are
defined by the operations of boolean algebra. Essentially, a trace pro-
duction is a graph production on attributed graphs, more details can
be found in [7].

x ′ = 0 x = 1

x = 0 ∧

x ′ 6= 0

x ′ = 0 x = 1

F

F ′

Figure 3.2: Causal inference.

16 causality-based verification

definition 3.9 (Context-bounded trace production). We call a trace
production τ : (L r−→ R) context-bounded if all events newly introduced
in R are bound to occur in the scope of the context defined by L.
Formally, for every event e ′ ∈ E(R) with no preimage in L, we require
that:

1. there are e1, e2 ∈ E(L), and e ′1, e ′2 ∈ E(R), such that e ′1 =

r(e1), e ′2 = r(e2);

2. there are causal links (e ′1, e ′), (e ′, e ′2) ∈ C(R).

This requirement ensures that new events only get introduced be-
tween preexisting events. All trace productions we will employ later
are trivially context-bounded by construction, but the property is
needed for some proofs later.

definition 3.10 (Trace transformer). For a given transition system
S = 〈V,T,Θ〉, a trace transformer τ = {τ1, ..., τn} is an ordered set of
trace productions τi : (L

ri−→ R) that share the left-hand side L. We de-
note L by pre(τ) and call it the transformer premise, while we denote
the set R = {τ1, ..., τn} by post(τ) and call it transformer conclusions.

A trace transformer should preserve the language of concurrent
traces in the context of a given system, i.e. no computations will be
lost in the combined language of the transformer conclusions. How-
ever, if the conclusions provide an over-approximation of the system
computations, the transformer is still useful for proof construction: if
there is no error trace in the over-approximated set, the property also
holds for the subset of system computations. In the same vein, an
under-approximation can still be useful for refutation: if there is an
error trace in a subset of the actual system computations, the property
does not hold. The following definition formalizes these transformer
properties.

definition 3.11 (Sound, precise, and exact trace transformer). A
trace transformer τ is called sound, iff:

∀ F ∈ F : F ⊆m pre(τ) =⇒ L(F)∩L(S) ⊆
⋃
τi∈τ

L(τmi (F))∩L(S)

A trace transformer τ is called precise, iff:

∀ F ∈ F : F ⊆m pre(τ) =⇒ L(F)∩L(S) ⊇
⋃
τi∈τ

L(τmi (F)) ⊆ L(S)

A trace transformer τ that is both sound and precise is called exact.

In the following, we list some trace transformers proposed in [10]
that demonstrate the concept behind causality-based verification best.
For a more detailed listing of the rules providing a foundation of our
own model checking algorithm, see Appendix A.

3.2 trace transformers 17

Order Split (Figure 3.3)

The OrderSplit(a,b) trace transformer considers the alternate inter-
leavings of two concurrent events a and b. Formally, we have

pre(OrderSplit(a,b)) = 〈E,C, , λE, λC〉, where:

• E = {a,b};

• λE = {a→ >,b→ >};

• C = = λC = ∅.

post(OrderSplit(a,b)) = {R1,R2}, where:

• R1 = 〈E, {(a,b)}, , λE, {(a,b)→ >}〉;

• R2 = 〈E, {(b,a)}, , λE, {(b,a)→ >}〉.

Necessary Event (Figure 3.4)

Given two causally related and conflicting events a,b and a predicate
φ such that the labeling of a implies φ ′ and the one of b implies
¬φ, the NecessaryEvent(a,b,φ) trace transformer introduces a new
event in between that resolves the contradiction. Formally:

pre(NecessaryEvent(a,b,φ)) = 〈E,C, , λE, λC〉, where:

• E = {a,b};

• C = {(a,b)};

• = {(a,b)};

• λE = {a→ φ ′,b→ ¬φ};

• λC = {(a,b)→ >}.

post(NecessaryEvent(a,b,φ)) = 〈E ′,C ′, ′, λ ′E, λ ′C〉, with

• E ′ = {a,b, c};

• C ′ = {(a,b), (a, c), (c,b)};

a b

L

a b

R1

a b

R2

Figure 3.3: OrderSplit trace transformer.

18 causality-based verification

• ′ = {(a,b), (a, c), (c,b)};

• λ ′E = λE ∪ {c→ φ∧¬φ ′};

• λ ′C = λC ∪ {(a, c)→ >, (c,b)→ >}.

φ ′ ¬φ

L

=

φ∧¬φ ′

φ ′ ¬φ

R

==

=

Figure 3.4: NecessaryEvent trace transformer.

First/Last Necessary Event (Figure 3.5)

NecessaryEvent(a,b,φ) can be strengthened to specify that the newly
introduced event c is the first or last) in the sequence of events that
satisfy the predicate φ∧¬φ ′. This is done with the trace transform-
ers FirstNecessaryEvent(a,b,φ) and LastNecessaryEvent(a,b,φ),
respectively. The corresponding causal link gets labeled with predi-
cate ¬φ∧¬φ ′ (last) or φ∧φ ′ (first), in this way only events that do
not change the truth value of the relevant predicate φ are allowed in
the link. Formally:

pre(FirstNecessaryEvent(a,b,φ)) = pre(NecessaryEvent(a,b,φ))

post(FirstNecessaryEvent(a,b,φ)) = 〈E ′,C ′, ′, λ ′E, λ ′C〉, with

• E ′,C ′, ′, λ ′E are the same as in post(NecessaryEvent(a,b,φ));

• λ ′C = λC ∪ {(a, c)→ φ∧φ ′, (c,b)→ >}.

pre(LastNecessaryEvent(a,b,φ)) = pre(NecessaryEvent(a,b,φ))

post(LastNecessaryEvent(a,b,φ)) = 〈E ′,C ′, ′, λ ′E, λ ′C〉, with

• E ′,C ′, ′, λ ′E are the same as in post(NecessaryEvent(a,b,φ));

• λ ′C = λC ∪ {(a, c)→ ¬φ∧¬φ ′, (c,b)→ >}.

3.3 trace unwinding 19

φ∧¬φ ′

φ ′ ¬φ

φ∧φ ′

Rfirst

==

=

φ∧¬φ ′

φ ′ ¬φ

¬φ∧¬φ ′

Rlast

==

=

Figure 3.5: The First/Last NecessaryEvent trace transformers.

3.3 trace unwinding

Trace transformers provide a way to transition from a given concur-
rent trace to other, more concise traces by performing case splits.
Starting from some initial abstract error traces that encode any hy-
pothetical system violations, applying transformers repeatedly pro-
duces multiple tree like structures. This notion is formalized as a
trace unwinding.

definition 3.12 (Trace unwinding). For a transition system S =

〈V , T ,Θ〉, we define a trace unwinding as a tuple Υ = 〈N,E,γ, δ,µ〉,
where:

• N is a set of unwinding nodes;

• E ⊂ N×N is a set of unwinding edges. We require that 〈N,E〉
is a directed forest, and partition the forest nodes into internal
nodes NI and leaves NL;

• γ : N→ F is a labeling of nodes with concurrent traces;

• δ : E → Π is labeling of edges with trace productions. We re-
quire that for all edges with the same source n, the correspond-
ing productions have the same left-hand side. Consequently, we
have an induced labeling of internal nodes n ∈ NI with trace
transformers: δ(n) = {δ(n,n ′) | (n,n ′) ∈ E};

• µ is a labeling of internal nodes with trace morphisms: for all
n ∈ NI we have µ(n) : pre(δ(n)) → γ(n). This function defines
to which subtrace a transformer gets applied to.

definition 3.13 (Properties of trace unwinding). For a given transi-
tion system S = 〈V , T ,Θ〉, we call a trace unwinding Υ = 〈N,E,γ, δ,µ〉
correct if for all internal nodes n ∈ NI the following conditions hold:

• γ(n) ⊆µ(n) pre(δ(n)): the trace transformer δ(n) can be applied
to the concurren trace γ(n) under the trace morphism µ(n);

• for all (n,n ′) ∈ E it holds that δ((n,n ′))µ(n)(γ(n)) = γ(n ′), i.e.
the trace production of each edge (n.n’) transforms trace γ(n)
into trace γ(n ′).

20 causality-based verification

Further, we call Υ sound (precise,exact) if it is correct and, addition-
ally, for all internal nodes n ∈ NI the trace transformer δ(n) is sound
(precise, exact).

3.4 looping trace tableau

While trace unwinding is sufficient for acyclic systems where no state
space cycles occur, cycles in the system potentially allow to revisit sim-
ilar configurations infinitely often. For constructing causality-based
proofs, revisiting some configuration means that this particular path
in the unwinding has been unfruitful for getting closer to a counterex-
ample and the language is potentially subsumed by an earlier seen
concurrent trace. To represent these properties in a concise manner,
trace unwinding is lifted to a more expressive proof object, looping
trace tableau. This allows, in essence, to stop the exploration at some
node in the tree and refer back to an earlier step in the proof object,
as long as the language of the former is included in the latter and re-
peated application of the proof steps leads to an infinitely long trace.
We therefore first introduce structural trace inclusion and the notion
of causal loops.

definition 3.14 (Trace inclusion). For two concurrent traces F =

〈E,C, , λE, λC〉 and F ′ = 〈E ′,C ′, ′, λ ′E, λ ′C〉 we define the trace inclu-
sion relation ⊆ as follows: F ′ ⊆ F iff there exists a trace morphism
µ = 〈µE : E→ E ′,µC : C→ C ′〉 such that:

1. event labels of F ′ are stronger than those of F: for all e ∈ E we
have λ ′E(µE(e)) =⇒ λE(e);

2. labels of the causal links in F ′ are stronger than those in F: for
all c ∈ C we have λ ′C(µC(c)) =⇒ λC(c);

3. conflicting events in F are mapped to conflicting events in F ′: for
all e1 e2 we have µE(e1) µE(e2).

We write F ′ ⊆µ F if trace inclusion holds for trace morphism µ.

definition 3.15 (Causal path). We define a causal path as an ordered
sequence τ1, ..., τk of trace productions τi : (Li

ri−→ Ri) such that for
all 1 6 i < k we have Ri ⊆ Li+1. For any trace F ⊆ L1 we define
the application of the causal path to the trace as a sequence F0 = F,
Fi = τi(Fi−1), for 1 6 i 6 k.

definition 3.16 (Causal loop). A causal loop is a causal path τ1, ..., τk
with τi : (Li

ri−→ Ri), where Rk ⊆ L1. For any trace F ⊆ L1 we define
the application of the causal loop to the trace as a sequence F00 = F,
F
j
i = τi(F

j
i−1), for 1 6 i 6 k and Fj+10 = Fjk.

A causal path is, therefore, a cyclic sequence of trace transforma-
tions. However, allowing these loops in a trace tableau is only sound,

3.4 looping trace tableau 21

as long as applying them repeatedly would yield an infinitely long
trace.

definition 3.17 (Soundness of causal loops). A causal loop τ1, ..., τk,
where τi : (Li

ri−→ Ri), is sound, if for any concurrent trace F ⊆ L1
its size increases beyond any bound under application of the causal
loop:

∃k > 0 : ∀i > k : |Fi+10 | > |Fi0|,

where the size |F| of a concurrent trace F is defined as the minimum
number of events between all contractions of F: |F| , min{|E(F ′)| | F ′ ∈
Contractions(F)}.

definition 3.18 (Looping trace tableau). For a transition system S =

〈V , T ,Θ〉, we define a looping trace tableau as a tuple Γ = 〈N,E,γ, δ,µ,
〉, where:

• Υ = 〈N,E,γ, δ,µ〉 is a trace unwinding; we extend labeling µ to
covered leaf nodes: for all (n,n ′) ∈ we have µ : γ(n ′)→ γ(n).

• ⊂ NL ×NI is a covering relation; for (n,n ′) ∈ we call n a
covered node, and n ′ a covering node;

We call a looping trace tableau correct, if Υ is a correct trace unwind-
ing and for all (n,n ′) ∈ we have that γ(n) ⊆µ(n) γ(n ′). We call a
looping trace tableau sound, when the corresponding trace unwind-
ing is sound and, further, all causal loops present in Γ are sound. A
looping trace tableau is complete if all leaves that are uncovered contain
a contradictory label.

The soundness criterion for causal loops is problematic, however. It
is a global condition and we would need to check the whole tableau
every time when deciding whether a node can be covered by another
node. A more efficient, local criterion is forgetful trace inclusion.

definition 3.19 (Forgetful trace inclusion). Let the trace inclusion
F ′ ⊆µ F hold for traces F, F ′ and a trace morphism µ = 〈µE : E →
E ′,µC : C → C ′〉. Let µE be the image of µE: µE = {e ′ ∈ E ′ | (e, e ′) ∈
µE}. We say the trace inclusion is left-forgetful (resp. right-forgetful), if
for all e ′ ∈ µE there exists e ′x ∈ E ′ \µE such that (e ′x, e ′) ∈ C∩ (resp.
(e ′, e ′x) ∈ C ∩). We call the trace inclusion forgetful if it is either left-
or right-forgetful.

proposition 3.20. Let a tableau Γ = 〈N,E,γ, δ,µ, 〉 be given. If
all trace productions in Γ are context-bounded, and for all coverings
(n,n ′) ∈ in Γ we have that γ(n) ⊆µ(n) γ(n ′) is a forgetful trace
inclusion, then all causal loops in Γ are sound.

Proof. Suppose, that all coverings are forgetful. Take any causal loop
Λ = (n1,n2), (n2,n3), ..., (nk,n1), where (ni,nj) ∈ (E∪). The loop
should contain atleast one covering edge; w.l.o.g., let (nk,n1) ∈ . For

22 causality-based verification

some trace F, let the sequence Fji be the application of Λ to F : F00 = F,
F
j
i = τi(F

j
i−1), for 1 6 i 6 k and F

j+1
0 = F

j
k. We have that Fj0 ⊆

γ(n1), F
j+1
0 = Fjk ⊆ γ(nk), and γ(nk) ⊆µ(n) γ(n1) is a forgetful trace

inclusion. All trace productions in Γ are context bounded; therefore,
we can partition events of the traces as follows (for some event ex, and
sets E0,E1) : F

j
0 = E0]E(γ(nk)), and E(γ(nk)) = E(γ(n1))] {ex}]E1,

where event ex is in conflict with all events from E(γ(n1)). Thus, after
j iterations of the causal loop we have at least j new events which are
linearly ordered and in conflict with each other (one event ex from
each iteration). Therefore, |Fj0| > j, and the causal loop is sound.

3.5 abstract trace tableau

The last step in constructing causality-based proofs is in abstracting
away unnecessary information present in the explicit trace unwind-
ing. This is important to correctly identify situations that necessitate
the same proof steps (and thus, can be covered by one another) even
when a direct trace inclusion might not hold.

definition 3.21 (Abstract trace tableau). We define an abstract trace
tableau as a tuple Λ = 〈N,E,γ, δ,µ, , γ̂, δ̂, µ̂,σ〉, where:

• Υ = 〈N,E,γ, δ,µ〉 is a (concrete) trace unwinding;

• Γ̂ = 〈N,E, γ̂, δ̂, µ̂, 〉 is an (abstract) looping trace tableau;

• σ : γ̂(n)→ γ(n), for all n ∈ N, is a concretization trace morphism.

The label γ(n) of the concrete trace unwinding at some node n
contains all information gather by applying a chain of trace trans-
formers defined int the path from some root to node n. The abstract
label, however, only tracks the information necessary to repeat all
proof steps taken in the subtree. Therefore, it has to be updated after
every new proof step, by propagating the premise of the correspond-
ing trace transformer upwards in the abstract looping trace tableau.
Further, any old covering of updated nodes has to be reevaluated.

definition 3.22 (Properties of abstract trace tableau). We call an
abstract trace tableau Λ = 〈N,E,γ, δ,µ, , γ̂, δ̂, µ̂,σ〉 correct if Υ =

〈N,E,γ, δ,µ〉 is a correct trace unwinding, Γ̂ = 〈N,E, γ̂, δ̂, µ̂, 〉 is a
correct looping trace tableau, and we further have for all n ∈ N :

γ(n) ⊆σ(n) γ̂(n). We call Λ sound, when both Υ and Γ̂ are sound. We
call Λ complete, when Γ̂ is complete.

example 3.23. We demonstrate proofs with an abstract trace tableau
for the system shown in Figure 3.6. Its a simple binary semaphore
ensuring mutually exclusive access to the critical sections of two pro-
cesses. The critical sections are c1 and c2, the error condition for this
systems therefore is e ≡ c1 ∧ c2. Mutual exclusion is ensured by the

3.5 abstract trace tableau 23

i1

c1

acq1 r rel1 r

i2

c2

acq2 r rel2 r

Syntax Semantics

acqi r r = 1∧ r ′ = 0

reli r r ′ = 1

Figure 3.6: Simple binary semaphore.

shared variable r, which gets set to zero by process i on taking the
transition acqi r, and set back to one on taking reli r. The abstract
trace tableau for this system and error condition e is shown in Figure
3.7. On the left, you can see the concrete trace unwinding. On the
right is the abstract looping trace tableau. Node 1 captures the initial,
abstract error trace. At first, the postcondition of Θ is i1∧ i2, which is
in conflict with the precondition of e. Two applications of trace trans-
former LastNecessaryEvent infers the existence of two necessary
events that satisfy ¬c1 ∧ c

′
1 and ¬c2 ∧ c

′
2, which can only be instan-

tiated by the system transitions acq1 r and acq2 r as seen in node 3.
Next, a case distinction about the order of the newly introduced event
is made. We omit the case where acq1 r precedes acq2 r, as both cases
work symmetrically. However, in any order the new events again do
not agree on post- and precondition and LastNecessaryEvent gets
applied. A transition that changes the value of r to one is needed in
between. This can be instantiated by two system transitions, namely
rel1 r as seen in node 5 and rel2 r as seen in node 6. Node 6 contains a
contradiction, as the newly introduced rel2 r leaves c2 for i2, which is
not allowed by the causal link between acq2 r and e. The concurrent
trace in node 5 requires the first process to be in its critical section
already, so c1 holds for this event. Through the causal link we also
infer that c2 holds at this point. However, c1 ∧ c2 was our original
error condition, so the concurrent trace in the abstract looping trace
tableau of the first node can be mapped into the trace in node 5 with
some µ̂ and the trace inclusion γ̂(5) ⊆µ γ̂(1) is (right-)forgetful. Re-
peated application of this causal path would lead to an infinitely long
trace, so we can cover node 5 with node 1 and stop the exploration at
this point.

24 causality-based verification

Θ e1:

Θ acq1 r e
c1∧ c

′
1

2:

acq1 r

Θ e

acq2 r

c1∧ c
′
1

c2∧ c
′
2

3:

...

Θ acq2 r acq1 r e
... ...

4:

Θ acq2 r rel1 r acq1 r e
...

5:

Θ acq2 r rel2 r acq1 r e
...

6:

⊥

i1∧ i2 e1:

Θ r=1∧ r ′=0 c2
c1

2:

r=1∧ r ′=0

Θ >

r=1∧ r ′=0

c1

c2

3:

...

Θ r ′=0 r=1 >
c2

4:

Θ c1∧ c2 >5:

> >

i2

c2
... ...

6:

⊥

Figure 3.7: Abstract trace tableau for binary semaphore (Figure 3.6). Con-
crete trace unwinding is seen on the left, abstract looping trace
tableau on the right. Error condition is e≡c1 ∧ c2, initial condi-
tion is Θ=i ′1 ∧ i

′
2.

4
T I M E D C O N C U R R E N T T R A C E S

Syntactically, we need not alter much to adapt concurrent traces as
outlined in Chapter 3 to timed automata. Labels of events and causal
links now not only reason about discrete variables, but also about
the clocks and locations of timed automata. To this end, we encode
the transitions of timed automata in first-order logic. The finite set of
locations L can be encoded in a fixed number of discrete variables.
We denote the location variables by L and L ′ to specify the source
and target location of some transition, respectively. For readability,
we will omit explicit valuations of location variables in this thesis
and write l1 to mean a valuation corresponding to location l1. Guards
are encoded as conditions over unprimed integer or clock variables,
while assignments and resets are conditions over primed variables.

definition 4.1 (Timed concurrent trace). A timed concurrent trace is
a tuple Ft = 〈E,C, , λE, λC〉, where:

• E is a set of events;

• C ⊂ E× E is a set of causal links;

• ⊆ E× E is a symmetric conflict relation;

• λE : E → (φD(L ∪ L ′ ∪ V ∪ V ′),φC(C),φR(C)) and λC : C →
(φD(L∪L ′ ∪V ∪V ′),φC(C),φR(C)) are labelings of events and
causal links with transition predicates.

We split the labels of events and links between the discrete part
composed of location variables and integer variables, clock constraints
and clock resets, because as we will soon see, we need to treat con-
straints on integer and clock variables differently.

4.1 trace language

definition 4.2 (Trace language). The language of a timed concurrent
trace Ft = 〈E,C, , λE, λC〉 is defined as a set L(Ft) of timed compu-
tations, such that for each computation π = s0, ..., sn ∈ L(Ft), with
si = 〈li, vci , vii, ti〉, there exists a mapping σ : E → {s0, ..., sn}, called a
run of Ft on π, such that:

1. for each event e ∈ E, λE(e) = (φD,φC,φR) and si = σ(e) it
holds that (li−1, li, vii−1, vii) |= φD, vci−1 + ti − ti−1 |= φC and
for all x ∈ R so that vci = vci−1 + ti − ti−1[R] : φ

R(x) and for all
y ∈ C \ R : ¬φR(y);

25

26 timed concurrent traces

2. for each causal link (e1, e2) ∈ C, and si = σ(e1) and sj = σ(e2),
we have:

a) i 6 j, and

b) for all i < k < j, the formula λC(c)(sk, sk+1) holds.

3. for each pair of conflicting events e1 e2, with s1 = σ(e1) and
s2 = σ(e2), we have i 6= j.

4.2 checking emptiness

As outlined in [10], checking an arbitrary concurrent trace for empti-
ness is NP-complete already for untimed concurrent traces. Therefore,
causality-based verification utilizes the compactization of a concur-
rent trace as an underapproximation for emptiness checking. Recall
that a compactization is a concurrent trace that allows no transitions
besides the events explicitly specified by the trace. This makes empti-
ness checking trivial in the untime case. One simply needs to con-
struct the static single assignment (SSA) form of a trace and check the
resulting formula for satisfiability.

This treatment, however, is insufficient for timed concurrent traces.
Consider, for instance, the trace shown in Figure 4.1. The SSA-form
of its compactization looks like this:

l0 = 0∧ x0 = 0∧ l0 = 0∧ l1 = 1∧ x0 > 1

This formula is unsatisfiable, as it requires x0 to be zero and greater
than one at the same time. However, the language of the compactiza-
tion should not be empty, as x is a clock variable and the constraint
can be satisfied with any number of delay transitions that let more
than one time unit pass. The problem is that, while the SSA-form is
enough for the discrete parts of the trace, the naive approach fails for
the clock variables. This is because it does not allow for delay tran-
sitions between the events. In our method for emptiness checking of
timed concurrent traces, we will therefore split the constraint system
for satisfiability checking between discrete variables and continuous
clocks. We will first formalize the discrete, SSA part.

definition 4.3 (SSA-form). For a compactization Ft = φ0,φ1, ...,φn,
where φi = (φDi ,φCi ,φRi), we define the static single assignment form
of Ft as:

SSA(Ft) =
∧

06i6n

φDi [L∪ V/Li−1 ∪ Vi−1][L ′ ∪ V ′/Li ∪ Vi]

.

When checking the constraints of the continuous clock variables,
the most important part is to model the implicit synchronization be-
tween clocks. The question we therefore have to answer is whether

4.2 checking emptiness 27

l ′ = 0

x := 0

l = 0∧ l ′ = 1

x > 1

Figure 4.1: Timed concurrent trace Ft.

there are delays d0,...,n ∈ R between the events so that all clocks ful-
fill the constraints put upon them. We do this by linking each event ei
to some abstract time point ti and modeling the clock values at each
constraint based on these abstract values. After all, at any point in
time ti, a clock evaluates to the amount of time that has passed since
the last reset - or in other words: the difference between the current
point of time ti and the time of the last reset tk. The following lemma
formalizes this notion.

lemma 4.4. For some timed computation π = s0, ..., sn with si =

〈li, vci , vii, ti〉 it holds for any i with 0 < i 6 n and any clock x ∈ C:
vci−1(x) + ti − ti−1 = ti − tk for all k so that 0 6 k < i and there exist
R,N ⊆ C so that vck = vck−1+ tk− tk−1[R] and vcj = v

c
j−1+ tj− tj−1[N]

for all j : k < j 6 i and x ∈ R \N.

Proof. By induction. Induction basis: For s1 and any clock x ∈ C it
holds that vc0(x) + t1 − t0 = t1 − t0.
Induction step: Consider some i with 1 < i 6 n and any clock x ∈ C.
We make a distinction between two cases: For vci−1 = vci−2 + ti−1 −

ti−2[R], either x ∈ R or not.
If x ∈ R, then k = i − 1 and vci−1(x) = 0, it follows vci−1(x) + ti −
ti−1 = ti − ti−1 = ti − tk.
If x 6∈ R, we have by induction hypothesis that vci−2(x)+ ti−1− ti−2 =
ti−1 − tk. With x 6∈ R, we know that vci−1(x) = vci−2(x) + ti−1 − ti−2,
it follows vci−1(x) = ti−1 − tk. By adding ti − ti−1 on both sides we
get vci−1(x) + ti − ti−1 = ti − tk.

definition 4.5 (Temporal consistency constraint). For a compacti-
zation Ft = φ0,φ1, ...,φn, where φi = (φDi ,φCi ,φRi), we define the
temporal consistency constraint of Ft as:

TCC(Ft) = t0 = 0∧
∧

0<i6n

φCi [ti − tk/C]∧ ti > ti−1

with 0 6 k < i : φRk(x) and ∀k < j < i : ¬φRj (x) for any clock x ∈ C.

example 4.6. Consider the timed concurrent trace seen in Figure 4.1.
The temporal consistency constraint of the concurrent trace is

t0 = 0∧ t1 > t0 ∧ t1 − t0 > 1

This formula is satisfiable for any t1 > 1 and accurately models the
constraints put upon clock variables.

28 timed concurrent traces

We will use the temporal consistency constraint in conjunction with
the discrete parts of the compactization in SSA-form as a means to
underapproximate the emptiness check for a timed concurrent trace.
Lemma 4.7 provides the formal basis for this method.

lemma 4.7. For a timed concurrent trace Ft and its compacitzation
F ′t = 〈E,C, , λE, λC〉 it holds that L(F ′t) is not empty iff SSA(F ′t)∧
TCC(F ′t) is satisfiable.

Proof. Let Ft be a timed concurrent trace and F ′t = 〈E,C, , λE, λC〉 a
compactization of Ft. Let the compactization normal form of F ′t be
φ0,φ1, ...,φn with φi = (φDi ,φCi ,φRi).

1. Lets assume L(F ′t) is not empty, then there exists some timed
computation π = s0, ..., sn with si = 〈li, vci , vii, ti〉 and a map-
ping σ : E → {s0, ..., sn}. Since F ′t is a compactization and does
not allow implicit edge transitions, it holds for any i with 0 6
i 6 n, σ(ei) = si. From the definition of L(F ′t), it holds for each
ei and si = σ(ei) with λE(ei) = (φDi ,φCi ,φRi): (li−1, li, vii−1, vii) |=
φDi , so φDi [L∪V/Li−1 ∪Vi−1][L ′ ∪V ′/Li ∪Vi] is satisfiable for
any i. It follows that SSA(Ft) is satisfiable. We further now that
vci−1 + ti − ti−1 |= φCi . With Lemma 4.4 we know for any clock
x ∈ C : vci−1(x) + ti − ti−1 = ti − t

′
k for all k ′ so that 0 6 k ′ < i

and there exist R,N ⊆ C so that vck ′ = v
c
k ′−1+ tk ′ − tk ′−1[R] and

vcj = vcj−1 + tj − tj−1[N] for all j : k ′ < j 6 i and x ∈ R \N.
Therefore, it especially holds true for a k < i with φRk(x) and
∀k < j < i : ¬φRj (x) and it follows that φCi [ti − tk/C] is satifi-
able for any i. Therefore, TCC(F ′t) is satisfiable.

2. Lets assume SSA(F ′t)∧ TCC(F
′
t) is satisfiable, then there exist

t0,1,...,n ∈ R that are a solution for TCC(F ′t). Let π = s0, ..., sn
be some timed computation with si = 〈li, vci , vii, ti〉 where vii is
formed by vii = v

i
i−1 + ti − ti−1[R] with R = {x ∈ C | φCi (x)}. We

now show that we can construct π so that is in L(F ′t). Consider
mapping σ : E → {s0, ..., sn} : σ(ei) = si. From the satisfia-
bility of subformula TCC(F ′t), we know that ti > ti−1 for all
1 6 i 6 n and also t0 = 0. We have already ensured for all
x ∈ R with vci = vci−1 + ti − ti−1[R] : φR(x) and for all y ∈
C \ R : ¬φR(y) by construction. With Lemma 4.4 we know that
for all i > 0 and any clock x ∈ C: vci−1(x) + ti − ti−1 = ti − tk
for all k so that 0 6 k < i and there exist R,N ⊆ C so that
vck = vck−1 + tk − tk−1[R] and vcj = vcj−1 + tj − tj−1[N] for all j :
k < j 6 i and x ∈ R \N. These requirements are met by a k with
0 6 k < i : φRk(x) and ∀k < j < i : ¬φRj (x). Since φCi [ti − tk/C]
is satisfiable, we know that vci−1 + ti − ti−1 |= φCi . SSA(F ′t) be-
ing satisfiable means there is a solution l ′0, ..., l ′n and for any
variable v ′ ∈ V : v ′0, ..., v ′n. We construct li = l ′i and vii(v) = v ′i.
Therefore, for σ(ei) = si it holds that (li−1, li, vii−1, vii) |= φD

4.2 checking emptiness 29

and σ fully satisfies the first requirement. For the second and
third requirements, recall that F ′t is a compactization and there-
fore does not allow any additional transitions between events.
Further, no events are allowed to be mapped to the same index.
We have already ensured both requirements by constructing σ
as a bijection. It follows that π ∈ L(F ′t).

In the following, we provide four auxiliary functions SSA(F), TCC(F),
Satisfiable(F) and UnsatSubtrace(F), which we will use for empti-
ness checking at a later stage. For some compactization F, SSA(F)
builds its SSA formula and TCC(F) its timed consistency constraint.
Satisfiable(F) checks both formulas for satisfiability. Our goal, how-
ever, will eventually be to identify and refine the parts of the timed
concurrent trace that are responsible for a potential unsatisfiability
result. This process is realized in the UnsatSubtrace(F) function. For
both SSA and TCC form, it is possible to link any conjunct to an
event or link of the original trace. UnsatSubtrace(F) does this for
the conjuncts in the unsatisfiable core of the formulas and in this way
produces the part of the original trace that needs further refinement.

Function : SSA(F)
In : compactization F
Out : formula in SSA form
begin

let NC(F) = φ1, ...,φn where φi = (φDi ,φCi ,φRi)
set ψ← > foreach i ∈ [1,n] do

set ψ← ψ∧φDi (L
−1 ∪ V−1,L∪ V)

return ψ

Function : TCC(F)
In : compactization F
Out : formula in TCC form
begin

let NC(F) = φ1, ...,φn where φi = (φDi ,φCi ,φRi)
let r : C→N with r(x) = 0 ∀x ∈ C
set ψ← t0 = 0

foreach i ∈ [1,n] do
set ψ← ψ∧φCi (ti − tr(x∈C)/C)∧ ti > ti−1
foreach x ∈ C do

if φRi (x) then
set r(x) = i

return ψ

30 timed concurrent traces

Function : Satisfiable(F)
In : timed concurrent trace F
Out : true/false
begin

select F ′ ∈ Compactizations(F)
set φ← SSA(F ′)

set ψ← TCC(F ′)

return sat(φ∧ψ)

Function : UnsatSubtrace(F)
In : timed concurrent trace F
Out : timed concurrent trace F ′ ⊇ F
begin

select F ′ ∈ Compactizations(F)
set ψ← SSA(F ′)∧ TCC(F ′)

set Ψ← mininmal_unsat_core(ψ)
set F ′ ← 〈∅, ∅, ∅, ∅, ∅〉
let add(c) ≡ if c 6∈ E ′ then

set E ′ ← E ′ ∪ {c}
foreach φi ∈ Ψ do

if φi is from λE(cj) then
add(cj)

λ ′E(cj)← φi

if φi is from λC((cj, ck)) then
add(cj);add(ck)
C ′ ← C ′ ∪ (cj, ck)
λ ′C(cj, ck)← φi

set ′ ← ∩ E× E ′

return F’

5
C A U S A L I T Y- B A S E D V E R I F I C AT I O N I N R E A L - T I M E

In the previous chapter, we have already seen that clock variables re-
quire special treatment for emptiness checks because of their implicit
synchronization. We will now focus on the refinement process of tem-
porally inconsistent traces. Our goal will be to causally infer opera-
tions on clock variables, given the context of an unsatisfiable timed
concurrent trace. To this end, we define a number of trace transform-
ers applicable to timed concurrent traces. These transformers then get
utilized in our causality-based model checking algorithm for safety
properties. Lastly, we provide an comprehensive example of applying
real-time causality-based verification to Fischer’s protocol, a common
benchmark for timed automata model checking.

Before formally defining real-time trace transformers, we want to
illustrate their major intuition by example.

example 5.1. Consider therefore timed concurrent trace Ft shown
in Figure 5.1. While the discrete parts of the trace are satisfiable, its
implied temporal constraint system is not. The produced unsatisfi-
able subtrace F ′t therefore can be seen as a projection of the real-time
properties of the concurrent trace. The question is, how can we repair
the given subtrace? It is clear that the only valid operation in a timed
automaton on clock values is a reset. Consequently, the question can
be reduced to introducing a clock reset to the trace that changes the
validity of its temporal constraint system. Upon closer inspection of
F ′t, we can see that it is composed of both lower bounds on clocks y
and z (e.g. y > 1 and z > 1) and an upper bound on x (e.g. x 6 2). Fur-
ther, due to its causal links, the time between the lower bounds and
their respective resets lies in the scope of the upper bound, that is to
say, between the last reset of x and the clock constraint x 6 2. Because

l ′ = 0

x := 0

y := 0

l = 0∧ l ′ = 1

y > 1

z := 0

l = 1∧ l ′ = 2

z > 1

l = 2∧ l ′ = 3

x 6 2
Ft

x := 0

y := 0

y > 1

z := 0
z > 1 x 6 2F ′t

Figure 5.1: Timed concurrent trace Ft and unsatisfiable subtrace F ′t.

31

32 causality-based verification in real-time

z gets reset at the time y is greater than 1, we can safely assume that
the time between the first and last event of the trace has to be more
than two time units: After all, the only operation on clock values is a
reset. While a reset technically decreases the clock values, the overall
time spent between two events is greater or equal than before. This
effectively means that no reset of y or z can repair the trace at this
stage, but a reset of x can. Informally, we want to allow more time to
pass in clock x between the upper bound x 6 2 and the last reset that
goes before. Figure 5.2 shows the trace after the insertion of a clock
reset. Note that, in general, the time between the first and last event
is now completely unrestricted, because there is no constraint on the
time between first event and new reset.

l ′ = 0

x := 0

y := 0

l = 0∧ l ′ = 1

y > 1

z := 0

l = 1∧ l ′ = 2

z > 1

l = 2∧ l ′ = 3

x 6 2

x := 0

F∗t

Figure 5.2: Repaired trace F∗t after clock reset in Ft from Figure 5.1.

In the next section, we first formalize the inference rules for clock
resets as trace transformers on timed concurrent traces. Subsequently,
we will focus on how to identify the clocks which need to be reset.

5.1 timed trace transformers

Reset Split (Figure 5.3)

The ResetSplit(a,b, x) trace transformer performs a case split, given
two conflicting concurrent events a,b and a clock x. Either x gets re-
set somewhere between a and b, or not. Formally, we have

pre(ResetSplit(a,b, x)) = 〈E,C, , λE, λC〉, where:

• E = {a,b};

• C = {(a,b)};

• = {(a,b)};

• λE = {a→ >,b→ >};

• λC = {(a,b)→ >}.

5.1 timed trace transformers 33

post(ResetSplit(a,b, x)) = {R1,R2}, where:

• R1 = 〈E,C, , λE, {(a,b)→ x /∈ R∧¬x 6 0}〉;

• R2 = 〈E ′,C ′, ′, λ ′E, λ ′C〉, with

– E ′ = {a,b, c};

– C ′ = ′ = {(a,b), (a, c), (c,b)};

– λ ′E = {a→ >,b→ >, c→ x ∈ R};

– λ ′C = {(a,b)→ >, (a, c)→ >, (c,b)→ >}.

a b

L

a b
x /∈ R

R1

a x := 0 b
x /∈ R

R2

Figure 5.3: Reset Split trace transformer.

proposition 5.2. The Reset Split trace transformer is sound.

Proof. Let σ(a) = si and σ(b) = sj. As a and b are in conflict, it
holds that i < j. Consider a computation π ∈ L(F) with i+ 1 = j, i.e.
there is no other event between a and b. Then it trivially holds that
x /∈ R for all events between a and b and π ∈ L(R1). Now consider a
computation π ∈ L(F) with i+ 1 < j, i.e. there is an arbitrary number
of events between a and b. Either it holds for all indices kwith i+ 1 6
k < j that vck+1 = v

c
k + tk+1 − tk[R] with x /∈ R, or there exists at least

one index k with i+ 1 6 k < j so that vck+1 = vck + tk+1 − tk[R] with
x ∈ R. In the former case, it holds that x /∈ R for all events between
a and b and π ∈ L(R1). In the latter case, we have an index k so that
(x ∈ R)(lk−1, vck−1+ tk− tk−1, vk−1, lk,R, vik) holds and that qualifies
for σ(c) = sk, it follows π ∈ R2.

Timed Backward Unrolling (Figure 5.4)

The TimedBackwardUnrolling(a,b, lb,Zb, vib) trace transformer im-
plements one step of backwards reachability analysis by instantiating
all system transitions that can precede b. Formally, given a timed
automaton 〈L, l0,Σ,C,V , I,E〉, let {e1, ..., ek} = {e ∈ E | sat(e∧ l ′b ∧

vib) ∧ Pree(Zb) 6= ∅} be the set of transitions that can immediately
and validly precede b. Then:

pre(TimedBackwardUnrolling(a,b, lb,Zb)) = 〈E,C, , λE, λC〉, where:

• E = {a,b};

• C = {(a,b)};

34 causality-based verification in real-time

• = {(a,b)};

• λE = {a→ ¬l ′b,b→ lb ∧Zb ∧ v
i
b};

• λC = ∅.

post(TimedBackwardUnrolling(a,b, lb,Zb)) = {R1, ...,Rk}, and:

• Ri = 〈E ′,C ′, ′, λ ′Ei , λ
′
C〉, where with ei = li

αi,βi,γi,ωi,ρi−−−−−−−−−→ lb:

– E ′ = E∪ {c};
– C ′ = C∪ {(a, c), (c,b)};

– ′ = ∪ {(a, c), (c,b)};

– λ ′Ei = λE ∪ {c→ li ∧ Preei(Zb)∧wpωi(v
i
b)∧ γ};

– λ ′C = λC ∪ {(a, c)→ >, (c,b)→ ⊥}.

¬l ′b lb ∧Zb ∧ v
i
b

L

¬l ′b c1 lb ∧Zb ∧ v
i
b

R1

¬l ′b cn lb ∧Zb ∧ v
i
b

R2

...

Figure 5.4: Timed Backward Unrolling trace transformer. With E(ci) =

li ∧ Preei(Zb) ∧ wpωi(v
i
b) ∧ γi ∧ l ′b for some edge ei =

li
αi,βi,γi,ωi,ρi−−−−−−−−−−→ lb ∈ TA

5.2 refinement of timed concurrent traces

The trace transformers for timed concurrent traces provide a single
building block for proof construction. As a next step, we need to
define how to apply them in exploration of the abstract trace tableau
as seen in Chapter 3.

The same way as for discrete systems, we apply the trace transform-
ers in function SafetyRefinement. Many parts of the function are
inherited from the discrete case [10]. First, an unsatisfiable subtrace is
generated with a call to UnsatSubtrace. The analysis proceeds with
a case distinction if there is a pair of events that are not yet in con-
flict by applying trace transformer ConflictSplit. The same is done
in case there is a pair of events that are unordered.

Subsequently, for a trace that where all events are ordered and in
conflict, we proceed by analyzing whether its unsatisfiability stems

5.2 refinement of timed concurrent traces 35

Function : SafetyRefinement(F)
In : timed concurrent trace F = 〈E,C, , λE, λC〉
Out : transformer τ, morphism m : pre(τ)→ F

begin
set F ′ = 〈E ′,C ′, ′, λ ′E, λ ′C〉 ← UnsatSubtrace(F)

if ∃e1, e2 ∈ E ′.(e1, e2) /∈ then
return ConflictSplit(e1, e2)

if ∃e1, e2 ∈ E ′.(e1, e2) /∈ C then
return OrderSplit(e1, e2)

let F∗ = Compactizations(F ′)
if ¬TCC(F∗) then

if (x, e1, e2)← ViolatedBound(F ′, λC) is not null then
return Instantiate(c) ◦ ResetSplit(e1, e2, x)

else
return Contradiction(E ′)

switch E ′ do
case {e1} do

return Contradiction(e1)
case {e1, e2} do

φ← interpolate(λE(e1) ; λE(e2) ′)
return Instantiate(c) ◦ LastNecessaryEvent(a→
e1,b→ e2,φ[V ′/V])

otherwise do
else

φ← interpolate(λE(e1)∧ λE(e2)
′ ∧ ... ∧

λE(ek−1)
k−2 ; λE(ek)k−1)

return EventSplit(a→ ek−1,φ[Vk−1,V ′])

from its temporal constraints. We check this by extracting a compacti-
zation, which is deterministic as all events are ordered, and checking
its TCC formula. If it is unsatifiable, we search for some violated
lower bound with the function ViolatedBound.

This function recursively searches the ordered set of events starting
from the last and produces a pair of events and the clock to be reset
as long as the respective causal link does not disqualify the insertion.
As the unsatisfiable subtrace was produced from a minimal unsatifi-
able core, any constraint containing < or 6 is part of a violated upper
bound and qualifies for the reset. Identifying whether an equality
constraint is part of a violated bound is more challenging however, as
they function as both lower and upper bounds at the same time. The
key is to identify which function is essential for the given subtrace.
We check this by replacing the equality constraints in the last event
with ge. This changes nothing in case the constraint is responsible
for the violation of another, smaller bound. But if it is the violated

36 causality-based verification in real-time

Function : ViolatedBound(F)
In : unsatisfiable subtrace F = 〈{e1, ..., ek},C, , λE, λC〉,

original labeling function λ∗C
Out : clock x, events e1, e2
begin

let LastReset(ek) ≡ if ∃ ei so that λE(ei)→ x ∈ R∧ ∀j
with i < j < k : λE(ej)→ x /∈ R then ei else e0

if k < 2 then
return null

if ∃x ∈ C,n ∈N. λE(ek)→ x {<,6} n then
ei → LastReset(ek)

if λ∗C(ei, ek)→ ¬x /∈ R then
return (x, ei, ek)

foreach x ∈ C where ∃n ∈N. λE(ek)→ x = n do
set λ∗E ← replace x = n in λE(ek) with x > n

set F ′ ← UnsatSubtrace(〈{e1, ..., ek},C, , λ∗E, λC〉)
let F ′ = 〈E ′,C ′, ′, λ ′E, λ ′C〉
if ek /∈ E ′ ∨¬λE(ek)→ x > n then

ei → LastReset(ek)

if λ∗C(ei, ek)→ ¬x /∈ R then
return (x, ei, ek)

return ViolatedBound(〈{e1, ..., ek−1},C, , λE, λC〉)

bound itself, the minimal unsatisfiable core collapses and upon ap-
plying UnsatSubtrace again, the constraint will not be found. In a
way, this simulates the insertion of a clock reset.

In the case we do not find a place to insert a reset, but the TCC
formula is unsatifiable, we can safely assume that the trace is con-
tradictory. We close the branch by applying the Contradiction trace
transformer, which does not produce a new node.

If the unsatisfiable subtrace stems from unsatisfiability of the SSA
formula, different cases are considered with respect to the number
of events in the unsatisfiable subtrace. A subtrace with only a single
event means the label of a single event is contradictory, consequently
there is no possible refinement step and the exploration stops at this
point with trace transformer Contradiciton. If there are two events,
we apply Craig interpolation and transformer LastNecessaryEvent
to try and repair the conflict by introducing a bridging event in be-
tween. Finally, in case of more than two events, the unsatisfiable sub-
trace gets shortened by resolving the conflict in the last event first.
To this end, the interpolant between all preceding events and the last
is computed and used for trace transformer EventSplit, which, es-
sentially, produces a case split between whether the interpolant is
already satisfied in the preceding event or not.

5.3 exploration of trace tableau 37

Algorithm : Exploration of Abstract Trace Tableau
In : timed automaton TA = 〈L, l0,Σ,C,V , I,E〉, safety

property φ
Out : property holds/counterexample
Data : abstract trace tableau Λ = 〈N,E,γ, δ,µ, , γ̂, δ̂, µ̂,σ〉

with unwinding Υ = 〈N,E,γ, δ,µ〉 and looping tableau
Γ̂ = 〈N,E, γ̂, δ̂, µ̂, 〉, queue Q ⊆ NL, trace transformer
τ, trace morphism m

begin
set Λ← InititalAbstractTableau(TA,φ), Q← N

while Q is not empty do
select some n from Q

if Satisfiable(γ(n)) then
return counterexample γ(n)

else
if 〈pre(τ),m〉 ← TryCover(Λ,n) is not ⊥ then

continue
else

set 〈τ,m〉 ← SafetyRefinement(γ(n))

Apply(Υ, τ,m,n)

set Q← Q∪ {n ′ | (n,n ′) ∈ E} \ {n}
PropagateUp(Γ̂ ,pre(τ),m,n)

return property holds

5.3 exploration of trace tableau

In the following, we expand upon how the refinement of timed con-
current trace is embedded in the algorithm for exploring the abstract
trace tableau. Our algorithm is closely based on the exploration al-
gorithm proposed by Andrey Kupriyanov in [10] and informally de-
scribed in Chapter 3, with minor adjustments to accommodate timed
automata. The algorithm realizes the highest level of proof search and
works by keeping a queue of nodes labeled with timed concurrent
traces waiting to be refined. Given a system modeled as a timed au-
tomaton and a safety property φ, it initializes an abstract trace tableau
with some abstract error traces symbolizing any possible error traces.
For this, the function IntitialAbstractTableau is used, which itself
makes use of the Abstract function. This denotes a function for gen-
erating abstract system violations for an automaton and some safety
property. These initial nodes are the first put into the queue. The algo-
rithm terminates when there are no nodes in the queue left or when
a counterexample is found along the way. When taking a node out of
the queue, first we check whether the compactization of its label is sat-
isfiable. In that case, the label corresponds to a valid counterexample
and the property does not hold.

38 causality-based verification in real-time

Function : InitialAbstractTableau(TA,φ)
In : timed automaton TA, property φ
Out : abstract trace tableau Λ = 〈N,E,γ, δ,µ, , γ̂, δ̂, µ̂,σ〉
begin

set all of {N,E,γ, δ,µ, , δ̂, µ̂}← ∅
foreach F ∈ Abstract(TA,φ) do

set N← N∪ {n}, where n is a fresh node
set γ(n)← F,σ(n)← ∅, γ̂(n)← empty trace

Function : TryCover(Λ,φ)

In : abstract trace tableau Λ = 〈N,E,γ, δ,µ, , γ̂, δ̂, µ̂,σ〉,
node n

Out : 〈node n, morphism m〉 / ⊥
begin

if ∃n ′ ∈ N,m : γ̂(n ′)→ γ(n) s.t. γ(n) ⊆m γ̂(n ′) is forgetful
then

set γ̂(n)← γ̂(n ′),σ(n)← m

put (n,n ′) into
return 〈γ̂(n ′),m〉

else
return ⊥

Function : Apply(Υ, τ,m,n)
In : unwinding Υ = 〈N,E,γ, δ,µ〉, transformer τ,

morphism m, node n
Out : 〈node n, morphism m〉 / ⊥
begin

set µ(n)← m

foreach τi ∈ τ do
set N← N∪ {n ′}, where n ′ is a fresh node
set E← E∪ {(n,n ′)}
set γ(n ′)← τmi (γ(n))

set δ((n,n ′))← τi

If the compactization is unsatisfiable, we first check whether the
node is coverable by another, earlier seen node. This is realized in
function TryCover, which also updates the cover realization upon
successful coverage. If the node neither is satisfiable, nor coverable,
we refine the label with function SafetyRefinement, which we have
detailed in the previous section. This function returns a trace trans-
former and morphism. Function Apply inserts all resulting, new and
refined timed concurrent traces produced by the transformer into the
tableau. Lastly, if a trace transformer was used, resulting in new child

5.3 exploration of trace tableau 39

Procedure : PropagateUp(Γ̂ ,pre(τ),m,n)

In : looping tableau Γ̂ = 〈N,E, γ̂, δ̂, µ̂, 〉, premise pre(τ),
morphism m, node n

begin
if @m̂ = 〈m̂E, m̂C〉 : pre(τ)→ γ̂(n) s.t. m = σ ◦ m̂ then

foreach o ∈ γ(n).(∃o ′ ∈ pre(τ).o = ξ(o ′))∧ (@o ′′ ∈
γ̂(n).o = σ(o ′′)) do

add o ′ to γ̂(n), and (o,o ′) to σ(n)

let m̂ = 〈m̂E, m̂C〉 : pre(τ)→ γ̂(n) s.t. m = σ ◦ m̂
if γ̂(n) 6⊆m̂ pre(τ) then

foreach e ∈ E(pre(τ)).(λE(m̂E(e)) ; λE(e)) do
set λE(m̂E(e))← λE(m̂E(e))∧ λE(e)

foreach c ∈ C(pre(τ)).(λC(m̂C(c)) ; λC(c)) do
set λC(m̂C(c))← λC(m̂C(c))∧ λC(c)

foreach (n,n ′) ∈ do
if γ̂(n ′) ⊆µ(n ′) γ̂(n) is not forgetful then

remove (n,n ′) from
put n ′ into Q

if ∃ parent n ′.(n ′,n) ∈ E then
set 〈pre(τ) ′,m ′〉 ← Pullback(δ((n ′,n)),m)

PropagateUp(Γ̂ ,pre(τ) ′,m ′,n ′)

nodes, we need to update the abstract looping trace tableau with the
transformer premise. This premise is now a vital part of information
necessary to repeat not only the proof steps starting from this node,
but also for the proof steps starting in all parent nodes. Therefore,
procedure PropagateUp starts from the abstract label of the current
node and first inserts all components that exist in the transformer
premise pre(τ) but not in the abstract label into the latter. Then, their
labelings get updated with the predicates from the premise. However,
due to changing the abstract label, previous coverings might cease to
hold. This it therefore checked and coverings are removed when nec-
essary. Lastly, the procedure recursively moves through the tree by
checking for parent nodes of a given node, and continues the process.
However, the morphism m and premise pre(τ) need to be updated
for the parent nodes, which is done as a pullback obejct under con-
sideration of the trace transformer δ(n ′,n) between any parent node
n ′ and node n.

We will now consider soundness and completeness of the proposed
causality-based verification for timed automata. While we generally
can not claim that the proposed algorithm is complete as presented,
we will show that a conventional reachability algorithm can be sim-
ulated using the looping trace tableau with timed concurrent traces.
This proof closely follows Andrey Kupriyanovs proof for the most

40 causality-based verification in real-time

comprehensive class of infinte-state systems shown in [10] and is,
in fact, a consideration under the more specialized circumstances of
timed automata model checking of safety properties. The introduc-
tion of integer variables is problematic for completeness, however.
These variables can lead to an infinite state space under certain cir-
cumstances, so we have to make a distinction to only allow timed
automata that actually have a finite reachability quotient. We first
show completeness for the easiest case, where there are no integer
variables at all.

lemma 5.3 (Completeness for timed automata without integer vari-
ables). If a timed automaton TA = 〈L, l0,Σ,C,V , I,E〉, where V = ∅,
satisfies a safety property φ, then there exists a correct, sound and
complete looping trace tableau Γ for TA and φ.

Proof. This proof follows the completeness proof in [10]. The idea is
to simulate a standard backwards reachability analysis for timed au-
tomata, as for instance proposed in [5]. To this end, we construct a
looping trace tableau Γ = 〈N,E,γ, δ,µ, 〉 composed solely of linear
timed concurrent traces, where each trace in some node n contains
only two events n1 and n2. We first assume that safety model check-
ing is already reduced to reachability analysis by construction of TA.
The algorithm proceeds as follows:

1. Construct an initial set of nodes labeled with the traces from
function Abstract(TA,φ). These traces consist of two events,
the initial action Θ and the second event corresponds to some
error location.

2. Apply Contradiction to all leaf nodes NL with a contradictory
label, thus removing them from the set of nodes. If there is a leaf
node with a satisfiable label, return Yes (for error reachability).
If there are no more leaf nodes, return No. We use the functions
from Chapter 4 for satisfiability and emptiness checking.

3. For any leaf node n ∈ NL, apply TimedBackwardUnrolling to
the label of n and events n1,n2. Abstract the result by keeping
only the first two events in the resulting nodes.

4. For any leaf node n ′ ∈ NL and each internal node n ∈ NI, do:

a) Apply EventSplit to node n ′ and event n ′2 with the pred-
icate λE(n2). Let the resulting nodes be n ′+ and n ′−. Event
n ′+2 is labeled with λE(n ′2)∧ λE(n2). We can map it right
back to event n2 and have λE(n ′+2) imply λE(n2) (and n ′+1
to n1 in the same way, as its the initial event), we can there-
fore cover node n ′+ with n.

b) Assign n ′ ← n ′−.

5. Go to step 2.

5.3 exploration of trace tableau 41

The algorithm starts from the error locations and unrolls the tran-
sition relation backwards step-by-step by utilizing the predecessor
operation for clock zones as seen in Chapter 2. The Application of
EventSplit ensures that only previously unseen zones of the automa-
ton get included in the new set of leaf nodes. The set of states added
in each iteration (which is defined by the label of the second event in
each leaf node) is therefore defined by:∨

n ′∈N ′L

λE(n
′
2) =

∨
n∈NL

pre(λE(n2))∧
∧
n∈NI

¬λE(n2),

where for a location l and zone W, pre is the symbolic backwards
transitions system as seen in [5]: pre(l,W) = (l ′,W ′) if there is an

edge e = l ′
α,β,γ,ω,ρ−−−−−−→ l ∈ E and Pree(W) =W ′. In the formula above,

the left disjunction is already enough to calculate the sets of states
from the backwards reachability algorithm in [5]. The conjunction on
the right, however, ensures that the computation stabilizes for acyclic
systems.

We can now lift this proof very easily to timed automata that only
reach a finite number of integer valuations.

lemma 5.4 (Completeness for timed automata with integer variables).
If a timed automaton TA = 〈L, l0,Σ,C,V , I,E〉 satisfies a safety prop-
erty φ, then there exists a correct, sound and complete looping trace
tableau Γ for TA and φ, as long as the automaton contains no cycle
that increases or decreases the value of some integer variable as a
function of its previous value.

Proof. Based on Lemma 5.3, we can show this by constructing a new
automaton TA ′ = 〈L ′, l ′0,Σ,C,V ′, I ′,E ′〉 where V ′ = ∅ and the integer
valuations of the original automaton are encoded in the locations L ′.
More detailed, L ′ = {(l, v) | (l, c, v) is a state of TA for some clock

valuation c}, l ′0 = (l0, vi0), I
′((l, v)) = I(l) and E ′ = {(l, v)

α,β,γ,ω,ρ−−−−−−→
(l ′, v ′) | ∃l α,β,γ,ω,ρ−−−−−−→ l ′ ∈ E s.t. v |= γ, v ′ = v[ω]}. As the original
automaton TA contained no cycle that would lead to infinitely large
integer values, the new automaton TA ′ only has a finite number of
locations. According to Lemma 5.3, there exists a correct, sound and
complete looping trace tableau for TA ′, and by construction, also for
TA.

Since we only use sound trace transformers in the algorithm pre-
sented in this chapter, we can use the proof of soundness from [10].

theorem 5.5 (Soundness of abstract trace tableau exploration). Let
a timed automaton TA and a safety property φ be given. If the ex-
ploration algorithm terminates with property holds, and only sound
trace transformers are applied in SafetyRefinement, then all com-
putations of TA satisfy φ.

42 causality-based verification in real-time

Proof. The only way for the algorithm to terminate with property holds
is when the queueQ is empty. By construction, the final abstract loop-
ing trace tableau Γ̂ = 〈N,E, γ̂, δ̂, µ̂, 〉 is correct, sound and complete.
Moreover, for all traces F ∈ Abstract(TA,φ), there is a node such
that F = γ(n) ⊆ γ̂(n). Thus, the looping trace tableau Γ̂ is a proof of
correctness of TA with respect to φ.

5.4 polynomial verification of fischer’s protocol

example 5.6 (Fischer’s Protocol). Consider timed automaton TAi in
Figure 5.5. It describes a single process in a larger system modeled as
a network of n timed automata. The system uses Fischer’s protocol
for mutual exclusion. Each process has a critical section (correspond-
ing to location Ci). Only a single process may be in its critical section
at any time. The mutual exclusion is ensured by each process setting
a shared variable id, waiting a predefined amount of time and then
only entering the critical section when id has not been changed by
another process. Processes can only start setting id while its value is
zero and have to wait strictly longer than it takes to set the variable
for any other process that started later. This way, only one process
(the last to start setting id) manages to enter the critical section at any
time. Fischer’s protocol does not ensure bounded overtaking.

The trace tableau for a system composed of 3 timed automata is
shown in Figure 5.6. We hide many irrelevant details with a simple
"...". Initially, Abstract(S,φ) yields the nodes 1-3, corresponding to
all abstract error traces that might violate the property φ. We focus
on the unwinding of node 1. All other root nodes produce similar
unwindings but with different variables.

As Θ ≡ L ′1 ∧ L
′
2 ∧ L

′
3, Θ and e1 do not agree on the location in

post- and precondition, respectively. Consequently, the two necessary
events pass1 and pass2 are inserted by the LastNecessaryEvent

Li
Ai

xi 6 1

BiCi

ti : tryi

si : seti

pi : passi

li : leavei
ri : retryi

Syntax Semantics

tryi (id = 0)?, xi := 0

seti id := i, xi := 0

passi (id = i∧xi > 1)?

retryi (id 6= i∧xi > 1)?

leavei id := 0

Figure 5.5: Timed automaton TAi for Fischer’s mutual exclusion algorithm.

5.4 polynomial verification of fischer’s protocol 43

trace transformer and the trace of node 4 is produced. The events
are yet to be ordered, so in the next step, two different interleavings
are explored. We omit the exploration of the case where p2 precedes
p1, as both cases work symmetrically.

In node 5, pass1 requires id = 1 and does not change the value (so
it holds that id ′ = 1), while pass2 requires id = 2. Therefore event
set2 is necessary in between, as it is the only system transition that
could possibly change id to 2. Consequently, node 6 is produced by
the application of the LastNecessaryEvent trace transformer.

Node 6 is the first time in the unwinding where an unsatisfiable
subtrace is produced due to timing inconsistency. This is because
transition set2 starts in a location labeled with invariant x2 6 1,
which therefore is a precondition for the corresponding event. How-
ever, event pass1 is labeled with x1 > 1, and further succeeded by and
in conflict with set2. Both clocks do not get reset by any other event
than Θ, so their last reset before pass1 and set2 happens at the same
time. This means the timing information of the timed concurrent trace
is inconsistent, its timing consistency constraint is unsatisfiable. This
lets us infer the existence of a necessary reset of clock x2 between Θ
and set2.

Application of ResetSplit and Initialize yields nodes 7 and 8. It
further yields an immediately contradictory node, as a reset is strictly
necessary and the second case of ResetSplit will not get explored fur-
ther. We omit this node from the tableau. Node 7 and 8 explore the
occurrence of all possible system transitions that reset x2. One possi-
bility is another occurrence of set2 as seen in node 7. Subsequently,
all possible interleavings of the new set2 and pass1 are explored, as
these events are unordered.

Ordering the new set2 after pass1 yields a trace that has the trace
of node 6 as a subtrace. Furthermore, repeating the proof steps would
pump the trace infinitely - the forgetful trace inclusion holds and we
can cover this trace with node 6.

The trace unwinding from node 8, where set2 is ordered before
pass1, is very similar to the case where the other possible reset of x2,
that is try2, is chosen and ordered before pass1, we therefore only
show the latter in Figure 5.6.

Consider therefore the trace of node 11. Events try1 and pass1 do
not agree on the value of id, therefore an event that changes id to 1

is necessary and set1, the only such event, is introduced to the trace
with LastNecessaryEvent.

However,the resulting trace in node 12 again has inconsistent tim-
ing. Clock x1 gets reset in event set1, after x2 in event try2. At the
same time, it is supposed to surpass 1 (at event pass1) before event
set2, where x2 is still less or equal 1 - a contradiction.

Recall that we inserted try2 with ResetSplit and the causal link
between try2 and set2 therefore does not allow another reset. This

44 causality-based verification in real-time

leads to the trace in node 13, where the introduction of another reset
yields a single event labeled with a contradictory predicate. The lan-
guage of this trace is obviously empty and we can close this branch as
contradictory. Again, we omitted the case where no new reset occurs
as this trace is immediately closed as contradictory.

Lets return to node 8 and see what happens if try2 is ordered after
pass1. This leads to a special case, because while the two events again
disagree on the value of id, try2 does require it to be zero, not 2.
However, id can be set to zero by the leavei transition of an arbitrary
automaton i. Consequently all possible events get instantiated. But
leavei requires automaton i to be at location Ci. While the system is
also at C1 because it is preceded by event pass1. Therefore the label
of the new event implies C1 ∧Ci, that is some actual error condition,
which means it can be covered by some root node.

Upon inspection of the trace tableau in the previous example, it
easy to see that its size is proportional to the cubic power of the num-
ber of critical sections. Moreover, the size of the timed concurrent
traces labeling the nodes is independent of the number of automata.
Therefore, we can make the following statement regarding the execu-
tion time of our algorithm for Fischer’s protocol:

theorem 5.7. The causality-based model checking algorithm for real-
time systems proves the safety of Fischer’s protocol in deterministic
polynomial time with respect to the number of automata in the net-
work under consideration.

Proof. For k critical sections, we get O(k2) root nodes corresponding
to some pair of transitions by two automata, both trying to access a
critical section. Each root nodes yields a subtree of size O(k): Aside
from the branch where a third automaton is responsible for conflict
resolution (as seen in node 9 in Figure 5.6), and which consequently
has size O(k), the size of the branches is limited by some constant
independent of k. Overall, we consequently get O(k3) nodes in the
tableau. Application of trace transformers takes time independently
from k and the size of the tableau. Searching for possible coverings,
however, depends on the size of the trace tableau and examines each
existing node for a new vertex in the worst case scenario. This results
in quadratic time with respect to the size of the tableau, thus we have
a worst-case running time of O(k6)

5.4 polynomial verification of fischer’s protocol 45

Θ e11: Θ e2

...

2: Θ e3

...

3:

p1

Θ e1

p2

C1∧C
′
1

C2∧C
′
2

4:

...

Θ p1 p2 e1
... ...

5:

Θ
p1

x1>1

s2

x261
p2 e1

... id=id ′=2
...

...
6:

Θ p1 s2 p2 e1

s2

x2:=0

...

¬x2:=07:

...

Θ p1 s2 p2 e1

t2

x2:=0

...

¬x2:=08:

Θ
p1

id=1

t2

id=0
s2 p2 e1

...

...
...

...

9:

Θ
s2

id=2

p1

id=1
s2 p2 e1

...

...

10:
Θ

t2

id=2

p1

id=1
s2 p2 e1

...
11:

Θ
t2

x2:=0

s1

x1:=0

p1

x1>1

s2

x261
p2 e1

...
12:

Θ t2 s1 p1 s2 p2 e1

x2:=0 ∧

¬x2:=0

...

⊥

13:

Figure 5.6: Trace tableau for Fischer’s protocol (Figure 5.5) with 3 processes.
Error conditions are e1≡C1∧C2, e2≡C2∧C3 and e3≡C1∧C3.

6
R E L AT E D W O R K

Since the state space explosion is a large obstacle on the way to make
timed automata model checking scale to more complex systems, nu-
merous techniques have been introduced to mitigate the problem.
Most often, they are based on methods that were originally devel-
oped for discrete-time model checking and are applied on basis of
the region or zone abstraction of a timed system. In this chapter, we
outline how other methods for model checking real-time systems try
to overcome the problem of state space explosion and further relate
them to our causality-based approach.

Minea [14] presents an approach for applying Partial Order Re-
duction to networks of timed automata. This method reduces the
number of explored interleavings of independent concurrent transi-
tions. The traversed subset of the state space remains representative
regarding the verified property by choosing the transitions explored
in each state according to predefined rules. This way, the state space
never gets fully expanded, which has an especially positive impact on
memory consumption. However, networks of timed automata gener-
ally have less independent transitions, as they are implicitly synchro-
nized by all clocks advancing at the same pace. Minea solves this by
using local-time semantics where delay transitions are not global, but
per automaton. The notion of independent transitions is somewhat
contrarily related to causality, as it argues that the effect of two inde-
pendent transitions remains the same irrespective of ordering. This
can be seen as the total absence of a causal relation between two inde-
pendent events. This principle is also captured in the causality-based
verification algorithm in form of the OrderSplit trace transformer.
When applied in compliance with the conditions developed for Par-
tial Order Reduction, OrderSplit could realize similar properties and
would not explore the two cases explicitly.

Time Petri nets, as introduced by Merlin and Faber [13], provide
an alternative to timed automata as system models. A Time Petri
net is a Petri net where transitions are associated with an earliest
and latest firing time. Transitions must fire in this interval relative to
the time they became enabled. Unlike networks of timed automata,
all processes are modeled in a single Time Petri net. This effectively
requires defining cause-effect relationships in the model at design
time. Therefore our causality-based algorithm explores dependencies
in networks of timed automata that are an integral part of a Time
Petri net from the start. However, just like with the automata-based
approach, complex systems with a large number of participating pro-

47

48 related work

cesses modeled as Time Petri nets suffer from state space explosion.
Methods to combat this issue, like Partial Order Reduction [16], have
been studied and applied to Time Petri nets.

Isenberg and Wehrheim [9] extend IC3 to timed automata. This
algorithm incrementally computes an inductive invariant for the tran-
sition system and property under consideration. To this end, the ver-
ified property is strengthened by approximating the states reachable
in an increasing number of transitions. If a counterexample to induc-
tion is found, the algorithm strengthens the property by adding non-
reachability of the counterexample’s predecessor to the formula. The
new, refined property, however, might now generate another coun-
terexample in an earlier reachability step. The subsequent exclusion
of this new counterexample leads to backwards exploration and ei-
ther terminates in the initial states (when a counterexample trace is
found) or eventually excludes this counterexample. The property is
successfully strengthened once the set of reachable states does not
change when considering one more transition. For timed automata,
excluding counterexamples is not trivial, as there can be infinitely
many due to the infinite number of clock valuations. Isenberg and
Wehrheim therefore infer the zone corresponding to the counterex-
ample to induction and subsequently exclude the whole zone. The
backwards exploration starting from a counterexample of induction
is strongly related to our causality-based verification algorithm. How-
ever, while we start with the hypothesis of (possibly multiple) error
traces, IC3 initiates the exploration only on finding a counterexample
during approximative forward reachability analysis.

7
C O N C L U S I O N & F U T U R E W O R K

This thesis originated from the idea to capture causal, human reason-
ing about time in an automatic proof system for real-time systems
modeled as networks of timed automata.

Based on the causality-based verification framework proposed by
Andrey Kupriyanov [10], we extended concurrent traces, which are
abstractions of sets of traces and the basic building block of causality-
based proofs, to timed automata. The implicit synchronization of
clocks and advancing nature of time present in these automata neces-
sitates a different approach to satisfiability and emptiness checking
of timed concurrent traces. We solved this by defining a constraint
system that captures the dependencies between different clock resets
and constraints in a given trace and allows for emptiness checking of
an important subset of concurrent traces, compactizations, as well as
extraction of unsatisfiable subtraces.

In the next step, we defined trace transformers that allow case
distinctions about the existence of clock resets in a trace. Building
on these, we proposed a causality-based safety model checking algo-
rithm for timed automata. We captured human reasoning about time
in this algorithm in the sense that the algorithm observes a timing in-
consistency, the effect of a necessary clock reset, and refines the trace
by considering all possible causing resets. It is hybrid in the sense
that, when no timing inconsistency is present, it resorts to repairing
discrete conflicts. Concluding, we demonstrated that our algorithm
proves the safety of Fischer’s protocol in polynomial space and time.

In future work, we will strive for an implementation of our algo-
rithm in order to evaluate its practical performance. For now, it re-
mains open how well our algorithm will perform compared to tools
like Uppaal, as despite the theoretical complexity, the high optimiza-
tion of these tools should make for an interesting comparison.

Furthermore, the example of Fischer’s protocol opens the question
whether our algorithm performs equally well on other practically rel-
evant models. Errors in timed systems often depend on timing incon-
sistencies, so our algorithm should be posed to extract these contra-
dictions efficiently. Comprehensive, empirical analysis of causality-
based model checking for real-time systems therefore promises to
yield further insight in future work.

There is also the open question of alternative exploration algo-
rithms. While our algorithm is firmly based on backward insertion of
clock resets and producing contradictions in the back of the unsatisfi-
able subtrace, one can easily imagine alternative strategies. This has

49

50 conclusion & future work

interesting implications when considered with regards to the func-
tion returning the unsatisfiable subtrace of a given timed concurrent
trace, which for sake of generality we assumed to be nondeterminis-
tic. In an implementation, it is highly desirable for both aspects to be
in tune to achieve termination as soon as possible.

Lastly, an interesting avenue of future work is to extend the prop-
erties under consideration. For discrete systems, causality-based ver-
ification has also been proposed for liveness properties [12]. When
thinking of expanding the proof system to a real-time logic like MTL,
however, it is important to note that the model checking problem for
MTL is undecidable [15]. Decidability can be attained by restriction
to certain fragments of MTL. Finding interesting fragments that are
a good fit for causality-based model checking is an exciting topic for
future work.

A
T R A C E T R A N S F O R M E R S F O R D I S C R E T E S Y S T E M S

Event Split

Given some event a labeled with predicate ψ and an arbitrary predi-
cate φ, the EventSplit(a,φ,ψ) trace transformer considers two alter-
natives: either a satisfies φ, or it does not. Formally:

pre(EventSplit(a,φ,ψ)) = 〈E,C, , λE, λC〉, where:

• E = {a}

• λE = {a→ ψ}

• C = = λC = ∅

post(EventSplit(a,φ,ψ)) = {R1,R2}, where:

• R1 = 〈E,C, , {a→ ψ∧φ}, λC〉

• R1 = 〈E,C, , {a→ ψ∧¬φ}, λC〉

Conflict Split

Given events a and b labeled with predicates φ and ψ respectively,
and an arbitrary predicate φ, the ConflictSplit(a,b,φ,ψ) trace trans-
former considers two alternatives: either a and b coincide in time, or
they do not. Formally, we define ConflictSplit(a,b,φ,ψ) as follows:

pre(ConflictSplit(a,b,φ,ψ)) = 〈E,C, , λE, λC〉, where:

• E = {a,b}

• λE = {a→ φ,b→ ψ}

• C = = λC = ∅

post(ConflictSplit(a,b,φ,ψ)) = {R1,R2}, where:

• R1 = 〈{ab},C, , {ab→ φ∧ψ}, λC〉

• R1 = 〈E,C, ∪ {(a,b)}, λE, λC〉

51

52 trace transformers for discrete systems

Conflict

Given two events a and b labeled with predicates φ1,φ2 such that
unsat(φ1∧φ2) holds, Conflict(a,b,φ1,φ2) establishes a conflict re-
lation between the two events. Formally:

pre(Conflict(a,b,φ1,φ2)) = 〈E,C, , λE, λC〉, where:

• E = {a,b}

• λE = {a→ φ1,b→ φ2} with unsat(φ1 ∧φ2)

• C = = λC = ∅

post(Conflict(a,b,φ1,φ2)) = 〈E,C, {(a,b)}, λE, λC〉

Event Restriction

The EventRestriction(a,b, c,φ,ψ) restricts an event b, which is in
scope of the causal link (a, c). b has the labeling ψ, the label of the
link is φ. Formally:

pre(EventRestriction(a,b, c,φ,ψ)) = 〈E,C, , λE, λC〉, where:

• E = {a,b, c}

• C = {(a,b), (b, c), (a, c)}

• = {(a,b), (b, c)}

• λE = {a→ >,b→ ψ, c→ >}

• λC = {(a,b)→ >, (b, c)→ >, (a, c)→ φ}

post(EventRestriction(a,b, c,φ,ψ)) = 〈E,C, , λ ′E, λC〉, with

• λ ′E = {a→ >,b→ φ∧ψ, c→ >}

Link Restriction

The LinkRestriction(a,b, c,φ,ψ) trace transformer, given a causal
link (a,b) labeled with ψ, which is in scope of causal link (a, c) la-
beled with φ restricts (a,b) with φ. Formally we have

pre(LinkRestriction(a,b, c,φ,ψ)) = 〈E,C, , λE, λC〉, where:

• E = {a,b, c}

• C = {(a,b), (b, c), (a, c)}

• = ∅

trace transformers for discrete systems 53

• λE = {a→ >,b→ >, c→ >}

• λC = {(a,b)→ ψ, (b, c)→ >, (a, c)→ φ}

post(EventRestriction(a,b, c,φ,ψ)) = 〈E,C, , λE, λ ′C〉, with

• λ ′C = {(a,b)→ φ∧ψ, (b, c)→ >, (a, c)→ φ}

Causal Transitivity

The CausalTransitivity(a,b, c,φ1,ψ,φ2) trace transformer, given two
causal links (a,b) and (b, c) labeled with φ1 and φ2 respectively, and
an event b labeled with ψ, introduces a new causal link (a, c) with
labeling φ1 ∨ψ∨φ2. Formally:

pre(CausalTransitivity(a,b, c,φ1,ψ,φ2)) = 〈E,C, , λE, λC〉, where:

• E = {a,b, c}

• C = {(a,b), (b, c)}

• = ∅

• λE = {a→ >,b→ ψ, c→ >}

• λC = {(a,b)→ φ1, (b, c)→ φ2}

post(CausalTransitivity(a,b, c,φ1,ψ,φ2)) = 〈E,C ′, , λE, λ ′C〉, with

• C ′ = {(a, c), (b, c), (a, c)}

• λ ′C = {(a,b)→ φ1, (b, c)→ φ2, (a, c)→ φ1 ∨ψ∨φ2}

Conflict Transitivity

The ConflictTransitivity(a,b, c) trace transformer, given a conflict
a b and causal links (a,b), (b, c), derives a new conflict a c. For-
mally we have

pre(ConflictTransitivity(a,b, c)) = 〈E,C, , λE, λC〉, where:

• E = {a,b, c}

• C = {(a,b), (b, c)}

• = {(a,b)}

• λE = {a→ >,b→ >, c→ >}

• λC = {(a,b)→ >, (b, c)→ >}

post(ConflictTransitivity(a,b, c)) = 〈E,C, ∪ {(a, c)}, λE, λC〉

54 trace transformers for discrete systems

Instantiate

The Instantiate(a,φ,ψ) trace transformer, given some event a in a
trace labeled with predicate φ, instantiates it with all system transi-
tions that satisfy φ. The predicate ψ lets to further restrict the po-
tentially large set of system transitions to the ones satisfying φ∧ψ.
Formally:

pre(Instantiate(a,φ,ψ)) = 〈E,C, , λE, λC〉

• E = {a}

• λE = {a→ φ}

• C = = λC = ∅

post(Instantiate(a,φ,ψ)) = {R0,R1, ...,Rk}, where

• R0 = 〈E,C, , {a→ φ∧¬ψ}, λC〉

• let {t1, ..., tk} = {t ∈ T | sat(t∧φ∧ψ)},
then Ri = 〈E,C, , {a→ ti ∧φ∧ψ}, λC〉

Forward Unrolling

The ForwardUnrolling(a,b,φ) trace transformer, given events a and
b in a trace that cannot follow immediately after another (similar to
NecessaryEvent(a,b,φ), explores all system transitions that can fol-
low a. Formally, given a transition system S = 〈V,T,Ω〉, let {t1, ..., tk} =
{t ∈ T | sat(φ∧ t)} be the set of transitions that can follow immedi-
ately after a. Then:

pre(ForwardUnrolling(a,b,φ)) = 〈E,C, , λE, λC〉, where:

• E = {a,b}

• C = {(a,b)}

• = {(a,b)}

• λE = {a→ φ ′,b→ ¬φ}

• λC = ∅

post(ForwardUnrolling(a,b,φ)) = {R1, ...,Rk}, and:

• Ri = 〈E ′,C ′, ′, λ ′Ei , λ
′
C〉, where:

– E ′ = E∪ {c}
– C ′ = C∪ {(a, c), (c,b)}

– ′ = ∪ {(a, c), (c,b)}

– λ ′Ei = λE ∪ {c→ ti}

– λ ′C = λC ∪ {(a, c)→ ⊥, (c,b)→ >}

trace transformers for discrete systems 55

Backward Unrolling

Similar to ForwardUnrolling(a,b,φ), BackwardUnrolling(a,b,φ)
explores all system transitions that can precede b. Formally, given a
transition system S = 〈V,T,Ω〉, let {t1, ..., tk} = {t ∈ T | sat(t∧¬φ ′)}

be the set of transitions that can immediately precede b. Then:

pre(BackwardUnrolling(a,b,φ)) = pre(ForwardUnrolling(a,b,φ))

post(BackwardUnrolling(a,b,φ)) = {R1, ...,Rk}, and:

• Ri = 〈E ′,C ′, ′, λ ′Ei , λ
′
C〉, where:

– E ′ = E∪ {c}

– C ′ = C∪ {(a, c), (c,b)}

– ′ = ∪ {(a, c), (c,b)}

– λ ′Ei = λE ∪ {c→ ti}

– λ ′C = λC ∪ {(a, c)→ >, (c,b)→ ⊥}

B I B L I O G R A P H Y

[1] Rajeev Alur. “Timed Automata.” In: Computer Aided Verification.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 8–22.

[2] Rajeev Alur and David L. Dill. “A Theory of Timed Automata.”
In: Theor. Comput. Sci. 126.2 (Apr. 1994), pp. 183–235.

[3] Gerd Behrmann, Patricia Bouyer, Kim G. Larsen, and Radek
Pelánek. “Lower and Upper Bounds in Zone-based Abstrac-
tions of Timed Automata.” In: Int. J. Softw. Tools Technol. Transf.
8.3 (June 2006), pp. 204–215.

[4] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Petters-
son, and Wang Yi. “UPPAAL - a Tool Suite for Automatic Veri-
fication of Real-Time Systems.” In: Hybrid Systems. 1995.

[5] Patricia Bouyer. “From Qualitative to Quantitative Analysis of
Timed Systems.” Mémoire d’habilitation. Université Paris 7, Pa-
ris, France, Jan. 2009.

[6] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and
M. Löwe. “Handbook of Graph Grammars and Computing by
Graph Transformation.” In: ed. by Grzegorz Rozenberg. River
Edge, NJ, USA: World Scientific Publishing Co., Inc., 1997. Chap.
Algebraic Approaches to Graph Transformation. Part I: Basic
Concepts and Double Pushout Approach, pp. 163–245.

[7] H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner,
and A. Corradini. “Handbook of Graph Grammars and Com-
puting by Graph Transformation.” In: ed. by Grzegorz Rozen-
berg. River Edge, NJ, USA: World Scientific Publishing Co., Inc.,
1997. Chap. Algebraic Approaches to Graph Transformation.
Part II: Single Pushout Approach and Comparison with Dou-
ble Pushout Approach, pp. 247–312.

[8] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. “Symbolic
Model Checking for Real-Time Systems.” In: Information and
Computation 111.2 (1994), pp. 193 –244.

[9] Tobias Isenberg and Heike Wehrheim. “Timed Automata Verifi-
cation via IC3 with Zones.” In: Formal Methods and Software Engi-
neering - 16th International Conference on Formal Engineering Meth-
ods, ICFEM 2014, Luxembourg, Luxembourg, November 3-5, 2014.
Proceedings. Lecture Notes in Computer Science. 2014, 203–218.

[10] Andrey Kupriyanov. “Causality-based Verification.” PhD the-
sis. Universität des Saarlandes, Saarbrücken, Germany, 2016.

57

58 bibliography

[11] Andrey Kupriyanov and Bernd Finkbeiner. “Causality-Based
Verification of Multi-threaded Programs.” In: vol. 8052. Aug.
2013, pp. 257–272.

[12] Andrey Kupriyanov and Bernd Finkbeiner. “Causal Termina-
tion of Multi-threaded Programs.” In: Proceedings of the 16th
International Conference on Computer Aided Verification - Volume
8559. Berlin, Heidelberg: Springer-Verlag, 2014, pp. 814–830.

[13] Philip M. Merlin and David Farber. “Recoverability of Com-
munication Protocols–Implications of a Theoretical Study.” In:
Communications, IEEE Transactions on 24 (Oct. 1976), pp. 1036 –
1043.

[14] Marius Minea. “Partial Order Reduction for Model Checking of
Timed Automata.” In: Proceedings of the 10th International Con-
ference on Concurrency Theory. CONCUR ’99. London, UK, UK:
Springer-Verlag, 1999, pp. 431–446.

[15] Joël Ouaknine and James Worrell. “Some Recent Results in Met-
ric Temporal Logic.” In: Proceedings of the 6th International Con-
ference on Formal Modeling and Analysis of Timed Systems. FOR-
MATS ’08. Saint Malo, France: Springer-Verlag, 2008, pp. 1–13.

[16] Tomohiro Yoneda and Bernd-Holger Schlingloff. “Efficient Ver-
ification of Parallel Real-Time Systems.” In: Form. Methods Syst.
Des. 11.2 (Aug. 1997), pp. 187–215.

	Abstract
	1 Introduction
	2 Timed Automata
	2.1 Syntax and Semantics
	2.2 Networks of Timed Automata
	2.3 Finite Abstractions

	3 Causality-based Verification
	3.1 Concurrent Traces
	3.2 Trace Transformers
	3.3 Trace Unwinding
	3.4 Looping Trace Tableau
	3.5 Abstract Trace Tableau

	4 Timed Concurrent Traces
	4.1 Trace Language
	4.2 Checking Emptiness

	5 Causality-based Verification in Real-time
	5.1 Timed Trace Transformers
	5.2 Refinement of Timed Concurrent Traces
	5.3 Exploration of Trace Tableau
	5.4 Polynomial Verification of Fischer's Protocol

	6 Related Work
	7 Conclusion & Future Work
	A Trace Transformers for Discrete Systems
	Bibliography

