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Abstract

In system synthesis, a specification is transformed into a framework which is
guaranteed to satisfy the specification. When the system is distributed, the goal
is to construct the system’s underlying processes.

Results on multi-player games imply that the synthesis problem for linear spec-
ifications is undecidable for general architectures. If the processes are linearly
ordered and information among them flows in one direction the problem be-
comes decidable with non-elementary complexity. It seems plausible that the
problem cannot be implemented in practice. However, LTL specifications and
distributed systems are used in system design. This suggests, that the blowup
does not really occur in practice. Former works concentrated on the theoretical
complexity of the problem. Here a proof of concept for practical use is given
by ReaSyn.

ReaSyn is based on the provided implementations. In case of realizability
ReaSyn produces a valid PROMELA implementation, that simulates the dis-
tributed system. This thesis shows that for practical examples distributed syn-
thesis is possible.



Chapter 1

Introduction

A reactive system consists of a set of processes which are connected by com-
munication channels and receive external input signals from an environment.

Reactive systems can be defined by an architecture specifying the assembly of
the processors and their signals of communication.

An interesting problem in computer science is the Distributed Synthesis Prob-
lem. The question is to find for a given architecture of a reactive system and a
temporal specification a distributed implementation of the processes, such that
their syncronous composition satisfies the specification.

The distributed synthesis problem was first considered by Pnueli and Rosner
[PR90]. They proofed that it is undecidable in general. However, they also
showed decidability in a setting of a hierarchical architecture named pipeline
architecture with fixed communication channels between processes. Their re-
sults are based on the work by Peterson and Reif [PR79].

For the non-distributed case, the synthesis problem can be reduced to a two
player game, where a player plays according to a strategy against an environ-
ment. This is called centralised synthesis problem and can be solved using
results of game theory [MAW89],[PR89],[Tho95] to determine a finite state
winning strategy. That strategy can be implemented as a program. As in a dis-
tributed synthesis problem more than two players exist, this approach cannot
be directly extended.

A formal model of distributed games is introduced by Mohalik and Walukiewicz
[MW03], where n players are playing against an environment that has full in-
formation about the signals. Each player has a local view on the game. The
distributed synthesis problem is equivalent to finding a distributed strategy that
is a collection of local strategies which win against the environment. [MW03]
gives two translations which allow to reduce the n-player-game successively
into a 2-player-game. After that, strategy generation is possible. Due to the
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properties of the simplification algorithms, the 2-player strategies can be de-
composed to local strategies in the n-player game.

Finkbeiner and Schewe [FS05] introduced a criterion to classify decidable ar-
chitectures. Jens Regenberg [Reg05] implemented the translations to produce
pipeline architectures from architectures that are by the criterion of Finkbeiner
and Schewe decidable. By this a larger class of archiectures can be handled.

This thesis combines the mentioned formal approaches. It gives implemen-
tations of datastructures and algorithms that allow to describe and solve the
distributed synthesis problem with the help of distributed games.

From the developed implementations ReaSyn was developed together with
Jens Regenberg. ReaSyn is a tool to decide if a reactive system is realizable.
In case of realizability it can synthesize the system. ReaSyn starts with defi-
nitions of an architecture and a specification. [Reg05] describes, how a pair of
a specification and an architecture can be translated into games. The resulting
games are transformed and solved by the methods presented in this thesis. The
resulting strategies are translated into a valid implementation for each process
by rebuilding the local strategies for each component of the n-player game.
[Reg05] explains how this is done.

Code generation

Formula− and Architecture Encoding
Architecture Transformations

Distributed Game construction,
simplification and solving

FIGURE 1.1 Interaction between the two theses

Figure 1.1 describes the interaction between the two theses. The information
flows in a unidirectional way starting from the architecture and specification to
be encoded into games. Then they are combined in one distributed game and
successively solved. At the end, PROMELA code defining a valid implemen-
tation for each of the processes is generated.

Observe that this thesis is concerned with the core part depicted in the middle
of figure 1.1. The organization of the work on the different parts and the proper
definition of interfaces is an additional challenge to the thesis. As a common
implementation environment is used for ReaSyn, the class definitions and data
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CHAPTER 1. Introduction

structures are kept abstract and can so be used in both theses for different
purposes.

The following section gives an overview on the content of each chapter.
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Structure of this thesis

This thesis is divided into eight chapters. The following paragraphs provide a
quick overview on the subsequent chapters.

Chapter 1, the present chapter, gives an introduction into the topic and relates
the work to previous works.

In Chapter 2, ReaSyn is introduced. The different parts are mentioned and
briefly described. It is pointed out, how the work was divided between this
thesis and [Reg05].

Chapter 3 explains the theoretical concept of games and gives fundamental
definitions which will be used in later sections. Determinacy of games is ex-
plained and a theorem that guarantees determinacy is presented. Based on the
theorem, algorithms to find strategies are developed and proven.

The idea of games as defined in Chapter 3 helps to understand the distributed
games introduced in Chapter 4. Transformations to reduce the number of play-
ers in a distributed game are explained. It is then shown that the winning sit-
uation is invariant under those transformations and that winning strategies can
be carried over.

In Chapter 5 the distributed synthesis problem is introduced before the repre-
sentations of architecture and specification are described. Next it is shown that
the distributed synthesis problem is decidable for pipeline architectures.

Chapter 6 gives implementations building on the results of Chapters 3 to 5.
This establishes the core part of ReaSyn. It is explained how the distributed
game is constructed and how it can be simplified. The transformations from
Chapter 4 are presented as algorithms.

Chapter 7 gives results of benchmark tests and the proceeding in the project.

The final chapter contains a summary of the several steps and insights through-
out the work.

In the appendix brief explanations of the developed classes by UML diagrams
and descriptions are given.
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Chapter 2

ReaSyn

ReaSyn is a tool taking a setup of processes and a behaviour specification as
input and synthesizes the whole system. This means it generates program code
for each process such that the overall behaviour satisfies the specification.

ReaSyn was developed in C++ mainly for performance issues. The advantages
of template datastructures and classes were used to create versatile implemen-
tations. The sourcecode and a precompiled executable is available under [MR].

This chapter provides additional information about the overall program. For
thorough descriptions on how the program is invoked and available options,
please refer to [Reg05]. For more information on the developed classes and
function please take a look at the appendix of this thesis.

2.1 A closer look

ReaSyn consits of three parts. In figure 2.1 these parts are presented as discrete
blocks named layer 1, 2 and 3.

The first and third part handle in- and outputs, respectively, whereas the middle
part checks if the input is realizable and, if so, produces an implementation.

To give a brief overview of the tasks of each part, they are shortly discussed in
the following. A deeper insight on the middle part is given in the subsequent
chapters. For now it should be mentioned that the middle part works on games,
a formal model in computer science that is defined in Chapter 3. The first and
third part are contained in [Reg05].

• Layer 1 translates the input specification which is given as a temporal
formula into games, one for each process. Additionally, the architecture

6



2.1. A closer look

Architecture−
Parser

LTL2BA

Architecture

Games

Games
Distributed−

Strategy

CodeGen

Synthesis
of Reactive Systems

Synthesis
of Reactive Systems

Formulafile Architecturefile

Spin code

FIGURE 2.1 The partition of ReaSyn

that describes the process alignment and communication is encoded into
a game.

• Next those games are merged into one big game, a so-called distributed
game where the architecture plays against a hostile environment that is
trying to violate the specification. A valid strategy can be viewed as
a behaviour of the system, such that the architecture respects the spec-
ification independent of any external signals. A strategy is found by
first reducing the distributed game to a two-player game and then ap-
plying known algorithms to solve the simplified game. The obtained
non-deterministic strategies are passed to the next layer.

• From the generated n-deterministic strategy the third part of ReaSyn
chooses a small and deterministic strategy, which is then translated into
an implementation. That implementation is in PROMELA code, so that
the resulting programs can be verified by SPIN [Hol03]. This was used
as a validation opportunity in the development process of ReaSyn.

7



CHAPTER 2. ReaSyn

A detailed description on how ReaSyn works as well as a userguide can be
found in Chapter 3 of Jens Regenbergs diploma thesis [Reg05].

2.2 Division of work

As ReaSyn was a project in cooperation with Jens Regenberg; it was splitted
to focus on the several interesting parts. Jens Regenberg describes in [Reg05]
the detailed proceeding concerning the first and third part (as fragmented in
2.1). This diploma thesis covers the details of the second part.

8



Chapter 3

Games

The main part of this thesis is concerned with games. To understand the func-
tionality and power of games it is helpful to give a brief introduction on two-
player games. In Chapter 4 distributed games will be introduced. Distributed
games can be considered as a special kind of games and are better understood
having the idea of commonly used games in mind.

Games in computer science are a theoretical construct, which is named “game”
as it has some things in common with board games. In both games there are
at least two players taking turns and every player is eager to win the party.
What it means to win a game is later elaborately discussed. To get an idea of
games, let us for now say a player would win, if the other player cannot move
anymore. If one of the players has a special approach to force its adversary
into such a position, independently of what the adversary is doing, the winner
of the game is determined. Such an approach is called a strategy.

Bipartite games have the restriction that the players alternately take turns. For
easier understanding it should be pointed out that only bipartite games are
referred to throughout this thesis.

The following definitions introduce games and their fundamental attributes on
a formal basis. Only two players are considered and the set of nodes owned by
a player is denoted by Pσ , where σ ∈ {0, 1}, for player 0 and 1, respectively.
This makes it easier, in case one talks about player σ to refer to the other player
as 1 − σ or σ. V stands for the set of all nodes P1 ∪ P2.
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CHAPTER 3. Games

3.1 Fundamental definitions

Definition 1: Infinite two-player games

An infinite two-player game

G = (P0, P1, T, χ)

consists of a finite set of nodes V = (P0 ] P1) where each set
Pσ∈{0,1} belongs to one of the players. T ⊆ ((P0 × P1) ∪ (P1 ×
P0)) is the set of directed transitions between game nodes. Ad-
ditionaly a game has a coloring function χ : P → C , that maps
game nodes to colors. In this context colors are natural numbers
(C ⊂ N).

Definition 2: Play

A play in a game G beginning at position q0 is a possibly infinite
sequence of nodes:

π : q0q1q2 · · · ∈ V ω ∪ V ∗V0

where V0 is the set of all nodes with exit degree 0. For all qiqi+1

there is (qi, qi+1) ∈ T .

Note, that in bipartite games the nodes qi,qi+1 always belong to different play-
ers.

For plays, the coloring function as defined above can be extended in a straight-
forward way:

χ(π) = χ(q0)χ(q1)χ(q2) . . . .

Definition 3: Initialized Game

A game G is called initialized, if there is a set of starting nodes
S ⊆ V and for every play π the first node of the play π(0) is
included in S. In other words, only plays starting in S are valid
plays. The game definition for initialized games extends to:

G = (P0, P1, T, χ, S)

10



3.1. Fundamental definitions

To define the behavior of an infinite game, it is essential to come up with
something finite. As the number of nodes of the games are finite, in an infinite
play some nodes have to appear infinitely often. They can be specified by an
infinity set.

Definition 4: Infinity set

The infinity set is the set of all nodes, that occur infinitely often in
a play.

Inf(π) = {q ∈ V : q occurs infinitely often in π}

It is still unclear what it means to win a play of a game. To define this, a
winning set and a winning condition is introduced:

Definition 5: Winning Set

W ⊆ V ω is the winning set, consisting of all infinite plays π that
are accepted according to a appropriate winning condition.

In this diploma thesis the definition of a minimal parity winning condition is
sufficient as [Reg05] already transformed the beforehand occuring winning
conditions into minimal parity conditions. Please refer to Jens Regenbergs
thesis [Reg05] on how this is accomplished.

Definition 6: Minimal parity winning condition

For all π ∈ V ω the minimal parity winning condition defines the
winning set Wσ of player σ ∈ {0, 1} to be:

π ∈ Wσ iff (min(Inf(χ(π))) mod 2) = σ.

The definition states, that if the minimum infinitely often occuring color is
even, player 0 wins. As the minimal color can only be even or odd, if player 0
does not win, player 1 is obviously the winner. Formally this leads to:

Definition 7: The winner of a play

Player σ ∈ {0, 1} wins a play of game G, if

• π is a finite play π = q0q1q2 . . . ql ∈ V + and ql ∈ Pσ is a
node, where player (1 − σ) cannot move anymore. Such a
position is called a dead end.

• π is an infinite play and π ∈ Wσ (cf. Definition 6).

11



CHAPTER 3. Games

The question of interest is now how a player can win a play. As in a board
game, he also needs a strategy here. A strategy defines, how a player behaves
in a specific node by telling him where to go next. Such a decision can depend
on previous observation, but in this thesis only memoryless strategies are used.
Those strategies do not use a history or other information on what nodes were
visited before.

Definition 8: Prefix of a play

The prefix of a play π is the first node in the sequence defined by
π.

The set of all prefixes of a play is equivalent to the set of nodes occuring in a
sequence.

Definition 9: Memoryless Strategy

A memoryless strategy for a player σ ∈ {0, 1} is a function

fσ : Pσ → P(1−σ)

that maps a σ-node to a σ-node. A play π respects f , if each of
its prefixes respects fσ. Let G be an arbitrary game defined as
above. The strategy fσ is called winning or a winning strategy on
U ⊆ V if all plays which respect fσ and start in a vertex from U
are winning for player σ.

A player σ ∈ {0, 1} is said to win a game G on U ⊆ V if he has a winning
strategy on U .

The following example helps to better understand the defined attributes. In
Figure 3.1 player 0 nodes are depicted as circles whereas player 1 nodes are
squares. The number in a node denotes its color. A play of a game that is not
initialized may start in any node. The player that owns the actual node decides
where to go next (this is also often refered to as to as passing the token in one
direction). This can then theoretically be repeated forever.

For every player a subset U ⊆ V of game nodes can be defined, where the
player can win a play in the following way:

Definition 10: Winning region

Given a game G a winning region for player σ ∈ {0, 1}, denoted
Wσ(G) or in short Wσ is defined as the set U of all nodes n such
that player σ has a memoryless winning strategy starting in a node
of U .

12



3.1. Fundamental definitions

n0 n1

n2

n3 n4 n5

1

12

2

0

1

FIGURE 3.1 An example parity game

In order to find a winning region one can start with an initial region U ⊆ V ,
where a player is known to win. Then, that region can be enlarged by adding
all nodes, where the player can force the play into U or the other player has no
other choice than to move into U . The attractor set can also be defined over
strategies:

Definition 11: Attractor set

The attractor set Attrσ∈{0,1}(G, U) for player σ and set U is the
set of nodes from which player σ has a memoryless strategy to
attract the token to U or a dead end node of Pσ in a finite number
of steps. The memoryless strategy is called attrσ(G, U)

In the example graph (cf. Figure 3.1) the attractor set Attr1(G, {n2}) is {n2}
as the only prior node n3 has other choices than to take the token into n2.
Attr0(G, {n2}) is {n0, n1, n2, n3}

A part of a game can be called a subgame wich is a game for itself, if the
following definition preconditions hold:

Definition 12: Subgame

Let S ⊆ V be any subset of V . The subgraph of G induced by S
is denoted G[S] = (P0 ∩S, P1 ∩S, T ∩ (S ×S), χ|S). Where χ|S
is the restriction of χ to S.

The graph G[S] is a subgame of G if every dead end in G[S] is also
a dead end in G.

In other words, in a subgame no new dead ends may be introduced.

G[{n0, n1}] in the example (cf. Figure 3.1) is no subgame, as it has a dead end
whereas the original game has none. A subgame that follows the definition is
for example G[{n0, n1, n2, n3}].

13



CHAPTER 3. Games

The two following definitions need to be understood for the upcoming strategy
generation as it will be introduced in the following section. Both define subsets
of game nodes according to the options of a player. A trap is a subset, where
one player cannot escape. In a paradise, one player can always win. The
following notation of traps and paradises includes the player that it is meant
for as σ ∈ {0, 1}.

Definition 13: σ-trap

A σ-trap is a subset U ⊆ V where player σ has no possibility
to choose a successor outside of U . Additionally player 1 − σ is
required to have a strategy that always chooses successors inside
U .

Definition 14: σ-paradise

A σ-paradise in a game } is a σ-trap U , such that in G[U ], U is a
σ-winning region.

Intuitively, a σ-paradise in a game is a σ-trap and σ wins from all nodes of this
region using a memoryless strategy.

Considering the before mentioned example (cf. Figure 3.1) as a minimum
parity game, {n4, n5} is a 1-paradise. A 0-paradise can be obtained by choos-
ing the nodeset {n0, n1, n2, n3}; a respective strategy for player 0 would be
f0 := {(n1, n0), (n3, n2)}. As by always taking those transitions, the play
always repeats the cycle (n0, n3, n2, n1)ω , where the minimal, infinitely often
occuring color is even (0). Thus player 0 is winning.

In the example U = {n4, n5} is a 0-trap that happens to be winning for player
1, too. Observe that this is not required, as for example U = {n0, n3} is a
1-trap, but obviously not winning for 0 (its minimum color is odd).

3.2 Determinacy

One important property of a game is whether one of the players can win a game
no matter how the opponent acts. This property is called “determinacy”.

The winning regions and strategies for both players will later be computed by
a recursive algorithm that is closely related to the following theorem’s proof.

To get an idea of how the algorithm works, it is first ilustrated by an example.
Consider Figure 3.2. It shows a two-player game G with nodes a,b,c,d and
colors 0,1. To compute the winning regions of G, the algorithm starts with the

14



3.2. Determinacy

lowest color, namely 0. The player that would win if 0 appears infinitely often
is player 0. Now the set of all nodes with color 0 is determined: N = {b, c}.
Now the attractor set for player 0 to N is computed.

Attr0(G, {b, c}) = {a, b, c}

Now the remaining game Z1 is G\{a, b, c} = {d}. As d is a dead end it is
winning for player 1. This situation is shown on the left of figure 3.4. Now the
attractor for player 1 to {d} which is part of the winning region for player 1 is
computed.

Attr1(G, Z1) = {c, d}

Now the computed winning region is substracted from the before calculated
attractor set fo 0:

Attr1(G, N)\Attr0(Z1) = {a, b}

And for this set the algorithm determines the winning regions again. N is
again the set of all nodes with minimal parity: N = {b}. And the attractor is
determined:

Attr0({a, b}, {b}) = {a, b}

As the remaining Z is empty, the algorithm stops. The computed winning
regions are the following:

WR0 = Attr0({a, b}, {b}) = {a, b}

WR1 = Attr1(Z1) = {c, d}

Figure 3.4 shows the resulting winning regions on the right.

For the general case, consider Figure 3.3. Suppose a game G with colors 0 . . . k
is given. The algorithm starts with the minimal occuring color. If this is k,
player 0 can only win G on dead end nodes in V , or on nodes from where
he can force the token into such a dead end. Otherwise let Xσ be the afore
defined σ-paradise (and a σ-trap). For σ = 1 − (n mod 2) the set N is
computed, having only nodes with color n. Then the attractor of N and the

15



CHAPTER 3. Games

a b

c d
0

1
0

1

Player 0

Player 1

FIGURE 3.2 An example two-player game

FIGURE 3.3 Construction of X1−σ and Xσ

winning regions for the subgame G[Z], where Z = Xσ\Attrσ(G[Xσ ], N) are
recursively computed. Xσ and Zσ are united to extend the σ-paradise.

The afore mentioned example can be divided into the above mentioned subsets.
Figure 3.4 shows the partition after the second step. Observe that Z is {d} and
afterwards no recursive steps are needed.

Theorem 1: Determinacy

The set of nodes of a parity game is partitioned into a σ-paradise
and a σ-paradise

The proof of Theorem 1 is carried out over the number of states occuring in G.

Proof of Theorem 1:

Base case (n = 1):
Since there is only one node in the game, the player owning the
node has no successor and therefore looses the game.

16



3.2. Determinacy

a b

c d
0

1
0

1

Player 0

Player 1

N

Attr (N)0

Z

→

a b

c d
0

1

1

Winning Region for
Player 0

Winning Region for
Player 1

FIGURE 3.4 Winning regions algorithm applied on Figure 3.2

Induction step (n ≥ 1):
Let j be the smallest color occuring on a node in Vσ . For σ = (j
mod 2) determine N , which is the set of all nodes which are col-
ored by j. Build Z = Vσ\Attrσ(G, N). Observe that finding a
winning strategy on G[Z] is a simpler problem, as it has less states
than G.

By induction hypothesis Z is partitioned into σ- and σ-paradises
Zσ , Zσ , respectively in G[Z] with the respective strategies zσ and
zσ .

Two cases must be differentiated:

• Zσ = ∅
in this case every position in G is winning for σ with the
following memoryless winning strategies:

– in Zσ follow the strategy in zσ

– in Attrσ(G, N)\N apply the attractor strategy attrσ(G, N)

– in N any successor can be taken

Let π be a play conform with the above strategies starting
at some node in Xσ . The three cases can occur. First, from
some moment on, the token stays forever inside of Z and
in this case some suffix of π is conform with zσ and player
σ wins. Second, the token is moved to a dead end in Vσ ∪
Attrσ(G, N)\N , in which case σ wins as well. Third, the
token visits infinitely often the maximal color in N and wins.

For the second case, if

• Zσ 6= ∅

– Attrσ(Xσ , Zσ) is winning for σ in G with zσ in Zσ and
attrσ(G, Zσ) in Attrσ(G, Zσ).
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CHAPTER 3. Games

Xσ\Attrσ(Xσ , Zσ) is a σ-trap and memoryless determined
by induction hypothesis.

2

Wieslaw Zielonka’s provides a more constructive proof in [Zie98] from wich
the later mentioned complexity is taken.

3.3 Finding a winning strategy

The straightforward constructive proof of Theorem 1 describes, how winning
regions (σ-paradise and σ-paradise) can be computed. It can be summarized
as followed:

Starting from a finite parity game G, the first thing to do is to determine the
lowest color n occuring in the game.

If this priority is k the base case holds: player σ can only win G on dead ends
or nodes from which he can force the token to such a dead end. Thus the
σ-paradise is the set Attrσ(G, ∅) with attrσ(G, ∅) as a memoryless winning
strategy. And since P\Attrσ(G, ∅) is a σ-trap and the minimum color of G is
k, it is easy to see that P\Attrσ(G, ∅) is a σ-paradise.

Otherwise, for σ = n mod 2 (n 6= k), wσ can be determined recursively.
To find the regions it is sufficient to start with the lowest color. The above
proof shows how by natural induction the winning sets are then extended by
adding the found memoryless attractor strategies to the recurcively computed
memoryless strategies. The main argument for correctness is that the number
of states is reduced in every recursion step.

3.4 Calculating winning regions

The before sections stated that it is possible to compute the winning regions of
a finite parity game. The algorithm as introduced in [GTW02], runs on max-
imum parity games and is here adapted to a version that works on minimum
parity games. The games considered are finite, and the highest possible color
k is known.

3.4.1 Pseudo algorithm

Given a finite parity game, the algorithm winning_regions (cf. Figure 3.5)
returns a tuple ((W0, w0), (W1, w1)), where Wσ is the winning region and wσ
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3.4. Calculating winning regions

winning_regions(G)

n := min{χ(v)|v ∈ V }
σ := n mod 2
If n = k then return ((P\Attrσ(G, ∅), wσ), (Attrσ(G, ∅), attrσ(G, ∅)))
// wσ is some memoryless strategy for player σ
// that avoids successor nodes within Attrσ(G, ∅)

// Otherwise
// compute Wσ , wσ

(Wσ, wσ) := win_opponent(G, σ, n)

// compute Wσ, wσ

Wσ := V \Wσ

N := {v ∈ Wσ|n = χ(v)}
Z := Wσ\Attrσ(G[Wσ ], N)

((Z0, z0), (Z1, z1)) := winning_regions(G[Z])

∀v ∈ Wσ ∩ Pσ :

wσ(v) :=





zσ(v) if v ∈ Z,
attrσ(G[Wσ ], N)(v) if v ∈ Attrσ(G[Wσ ], N)\N,
v′ if v ∈ N and v′ ∈ vE ∩ Wσ

return ((W0, w0), (W1, w1))

FIGURE 3.5 winning_regions

the respective memoryless strategy for player σ (σ ∈ {0, 1}). winning_regions
uses a second function win_opponent (cf. Figure 3.6) that calculates a win-
ning region and an according strategy for the opponent. The correctnes of the
proof follows directly from the constructional proof of Theorem 1. An attrac-
tor set can be computed in time O(|V |+ |T |), the running time of the winning
region algorithm results in O(|T | · |V |k) which is exponential in the number
of colors and polinomial in the number of nodes.

Definition 15: Non-deterministic strategy

A non deterministic strategy for a player σ ∈ {0, 1} is a function

fsigma : vσ → Pσ

that maps a node of player σ to a set of winning successors.
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win_opponent(G,σ,n)

(W,w) := (∅, ∅)

Repeat
(W ′, w′) := (W,w)
X := Attrσ(G,W )
∀v ∈ X ∩ Pσ :

x(v) =

{
w(v) if v ∈ W,
attrσ(G,W )(v) if v ∈ X\W.

Y = V \X
N := {v ∈ Y |n = χ(v)}
Z := Y \Attrσ(G[Y ], N)

((Z0, z0), (Z1, z1)) = winning_regions(G[Z])

W := X ∪ Zσ

∀v ∈ W ∩ Pσ :

w(v) =

{
x(v) if v ∈ X,
zσ(v) if v ∈ Zσ .

Until W ′ = W
return (W,w)

FIGURE 3.6 win_opponent

To find winning strategies it is normally sufficient to choose winning succes-
sor nodes. The here calculated winning strategies are non-deterministic, as the
algorithm does not choose successors but rather gives a list of all found succes-
sors. This gives more possiblities to the later applied code generation. It can
look for in some way optimal paths within the tree spanned by the strategies.

The algorithm for computing the winning regions and strategies were imple-
mented as a member function of the class Game (see Appendix).

20



Chapter 4

Distributed Games

This chapter introduces distributed games in general. They are later used to
solve the distributed synthesis problem (cf. Chapter 5). The idea is, that one
game has the role of a propositional formula and the other games stand for one
processor each.

A distributed game can be considered as a model to simulate various simul-
taneously running games. From the view of a local game it is not possible
to determine the global game position. This leads to general undecidability.
Here a information hierarchy is used to ensure decidability. The hierarchy or-
deres the processes according to their degree of information from the best to
the worst informed. All reduction algorithms as used here respect and prevail
the hierarchy.

The framework of distributed games as it is used here was presented by Moha-
lik and Walukiewicz [MW03]. Distributed games and their properties are intro-
duced in the following. Some changes were applied to the model by [MW03].
As for example the input architectures are more specific, some properties are
simplified. After the formal basis is established in this chapter, the next chap-
ter deals with efficient construction and simplification of the formally defined
distributed games.

4.1 Local Game

Local games behave like the games defined in Chapter 3 with the exception
that they do not have winning conditions. For convenience the two players are
here called player and environment with the respective sets of nodes P and E
(rather than P0 and P1 cf. Chapter 3).

A short definition and some remarks on the properties of local games follow.
For a deeper insight on the potentials and limitations of games please refer to
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Chapter 3.

Definition 16: Local Game

A local game G = (P,E, T ) is a bipartite game without winning
condition, where P and E are player and environment nodes, re-
spectively. The set of game nodes V is the disjunct union of player
nodes P and environment nodes E. T is the transition function
and T ⊆ P × E ∪ E × P .

For (v1, v2) ∈ T , v2 is called the successor of v1 and v1 the predecessor of v2.
In a play environment and player take turns. According to the current node v,
they choose a successor node v′ ∈ {v′′ ∈ V |(v, v′′) ∈ T}.

4.2 Distributed Game

As stated before, distributed games are one model to simulate various concur-
rently running local games. Now follows a definition on distributed games the
encoding will be explained later.

Definition 17: Distributed Game

Suppose n + 1 bipartite, local games are given (G0,G1,G2, . . . ),
a distributed game G is also bipartite and it is defined as follows:
G = (P,E, T,Acc ⊆ (E ∪ P )ω ∪ (E ∪ P )∗), where:

• P = E0 ∪ P0 × · · · × En ∪ Pn\E

• E = E0 × · · · × En

• T = Tp(layer) ∪ Te(nvironment) .

The transitions for player and environment positions are different:

• Player transitions:

Tp 3 ((x0, . . . , xn) 7→ (x′
0, . . . , x

′
n))

⇔: (xi 7→ x′
i) ∈ Ti for all xi ∈ Pi and xi = x′

i for all xi ∈ Ei.

• Environment transitions:

E × P ⊆ Te 3 ((x0, . . . , xn) 7→ (x′
0, . . . , x

′
n))

⇒: (xi 7→ x′
i) ∈ Ti or xi = x′

i for all xi ∈ Pi ∪ Ei.
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4.2. Distributed Game

In a distributed game a transition from a player to an environment position is
only possible if there is a transition for all the local player positions and if all
local environment positions stay the same.

Observe that, for a distributed player move, all positions have to change to
local environment positions. Transitions on the environment side is a bit less
restrictive, as for every position either the state stays the same or an arbitrary
local transition can be taken. Note that at least one node has to change, as
otherwise the global transition would lead into the same node which is not
permitted because the distributed games are required to be bipartite.

Definition 18: Projection of a distributed game sequence

Let η be an n + 1 tuple, describing a distributed game node as
mentioned above. With l = 0, . . . , n, let η[l] denote the l-th com-
ponent of η. For a sequence −→v = η0[l]η1[l] . . . denote the projec-
tion of the sequence to the l-th component.

Following the definition of distributed game transitions, a sequence projected
to the i-local game, −→v is of the form e+

0 p0e
+
1 p1 . . . .

Definition 19: View of a process

Let −→v be a play and e+
0 p0e

+
1 p1 . . . , its projection on the i-th com-

ponent. The view of process i of −→v is viewi(
−→v ) = e0p0e1p1 . . . .

Definition 20: i-local strategy

An i-local strategy σi is a strategy in the local game Gi.

Definition 21: Distributed strategy

A distributed strategy σ is a tuple of local strategies 〈σ0, σ1, . . . , σn〉.
It defines a strategy in the distributed game G by σ(−→v (x1, . . . , xn)) =
(e1, . . . , en), where ei = xi if xi ∈ Ei and ei = σi(viewi(

−→v ·xi))
otherwise. σ is called the global strategy associated with the given
distributed strategy.

By the definition of distributed games, any tuple of local strategies defines a
global strategy, as it always suggests a valid move.

23
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4.2.1 Examples

Figure 4.1 illustrates local games G0 and G1, where player nodes are depicted
as squares and environment nodes as round shapes. In the second game, player
has fewer moves.

p0 p’0

e’0e0

G0

p1 p’1

e’1e1

G1

FIGURE 4.1 Two local games with rectangles as player and circles as environment
nodes.

A distributed game G of the local games G0, G1 is given in figure 4.2.

e’1e’,0 e1e’,0

p’1p’,0

e’1e ,0 e1e ,0

p1p ,0

FIGURE 4.2 Distributed Game G constructed from local games G0, G1

In this case the environment has less posibilities than it would have in a free
product of G0 and G1. For example in G0 the environment can move from e0 to
p′0 and in G1 from e1 to p′1, but there is no transition from (e0, e1) 7→ (p′0, p

′
1)

in the distributed game.

Depending on what is modelled by the distributed game, this can make sense.
If the winning condition states, that a winning game has to avoid environment
positions with contemporary primed notions ((e0, e

′
1), (e

′
0, e1)). The global

winning strategy for player in the distributed game would then be: in position
(p0, p1) always go to (e0, e1) and in (p′0, p

′
1) always to (e′0, e

′
1). This strategy

is also a distributed strategy: player 0 chooses e0 in p0 and e′1 in p′1.

Changing the player position (p′0, p1′) to (p0, p
′
1) leads to the game as illus-

trated in figure 4.3. In this game a global winning strategy for player exists
that in (p0, p

′
1) chooses (e′0, e

′
1) and in (p0, p1) chooses (e0, e1) as the next

positions. But there is no distributed strategy because the local game 0 cannot
determine from it’s local view in which position the distributed game is. Sup-
pose there is a distributed strategy which is winning from the vertex (e′0, e2).
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e’1e’,0 e1e’,0

p’1p ,0

e’1e ,0 e1e ,0

p1p ,0

FIGURE 4.3 Distributed Game G constructed from local games G0, G1

If environment moves to position (p0, p
′
2) then player 0 should respond with

e′0. But if environment moves to (p0, p1) then the view of player 0 is the same
and he will also move to e′0, which is a loosing move.

Hence there exist distributed games with global winning strategies for the play-
ers that do not have distributed winning strategies.

As in this thesis the local winning strategies are going to be derived from dis-
tributed strategies, the player needs the ability to determine the global position
from its local view. This property is called environment determinism. The next
section gives detailed information on how this is achieved. For now it is only
important to see that environment determinism is required.

4.3 Transformations on Distributed Games

Theorem 1 in Chapter 3 states, that two player parity games are determined.
Distributed games in general are not determined. In order to solve a distributed
game it is first transformed into a two player parity game.

For a simplification of the distributed games, the following operations are in-
troduced and their correctness is proven.

4.3.1 Division

The division operation reduces the number of local games. By multiple ap-
plication of the division operation one can reduce a distributed game with an
arbitrary number of local games to a distributed game with only two players.
Each division operation reduces the number of local games by one.

In order to reduce the number of players, it is plausible that a player has to
know the global game position from it’s local view. Therefore a form of deter-
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minism is required. Hence the following definitions are needed:

Definition 22: i-determinism

A game G is i-deterministic if for every environment position η
of G and every transition (η, π1), (η, π2) ∈ Te, if π1 6= π2 then
π1[i] 6= π2[i].

A distributed game can be divided, if it is 0- and n-deterministic. The defini-
tion of the divided game is very intuitive if one considers the way distributed
games are defined. The first and the last local game are merged together and
every other local game stays the same. For the acceptance set ACC there is
only a different notation used. The following two definitions are required to
compare the rearranged tuples:

Definition 23: flat : (V × V ) × · · · × V → V × V × · · · × V

flat((x0, xn), x1, . . . , xn−1) = (x0, x1, . . . , xn)

and analogously:

Definition 24: flat−1 : V × V × · · · × V → (V × V ) × · · · × V

flat−1(x0, x1, . . . , xn) = ((x0, xn), x1, . . . , xn−1)

Division function

For the game G = (P,E, T,Acc), a function DIVIDE(G) translates this game
into a divided game G̃ = (P̃ , Ẽ, T̃ , Ãcc) with the following properties:

• P̃i = Pi, Ẽi = Ei and T̃i = Ti for i = 1, . . . , n − 1;

• Ẽ0 = E0 × En and P̃0 = (P0 ∪ E0) × (Pn ∪ En)\Ẽ0.

• For (p0, e0) ∈ T0 and (pn, en) ∈ Tn, we have the following transitions
in T̃0:

(p0, en) → (e0, en),

(e0, pn) → (en, e0),

(p0, pn) → (e0, en).

The global moves from environment positions and the acceptance set are de-
fined using the above stated flat function:

• (η → π) ∈ T̃ if (flat(η) → flat(π)) ∈ T
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4.3. Transformations on Distributed Games

• Ãcc = {−→v : flat(−→v ) ∈ Acc}.

1p p 20p

1e e20e ,

,,

,

G

2p p10p ,, )(

2e e10e ,, )(

G′

FIGURE 4.4 G′ is the result of divide(G)

The division function can easily be explained by an example: suppose a very
simple game of three players is given (cf. figure 4.4). The possible distributed
game player nodes are ((p0, e2), p1), ((p0, p2), p1) and ((e0, p2), p1).
((e0, e2), e1) is the respective environment node. As in the local games there
were only transitions from (p0, e0) and (p2, e2) as depicted in figure 4.4 the re-
sulting divided game has only one transition (((p0, p2), p1) → ((e0, e2), e1)).
This result is shown as game G ′ in figure 4.4.

Theorem 8 of [MW03] states that a given n + 1 distributed game with 0−
and n−determinism has a distributed winning strategy iff there is one for the
divided distributed game G̃. The theorem holds for every game position. It is
the main argument for the correctness of the following division operation. A
detailed proof of the theorem is given in [MW03] by Lemma 9 and 10.

Theorem 2:

Let G be a 0-deterministic and n-deterministic distributed game
of n + 1 players. For every position η of G: there is a distributed
winning strategy from η iff there is one from flat−1(η) in G̃.

4.3.2 Glue

As mentioned in the previous section 0- and n-determinisim is an inevitable
precondition for the division function. At the beginning, meaning before the
first division, the distributed game is 0- and n-deterministic, by setup. This
is because the specification game is determined and the n-th game has total
information about the environments variables. Nondeterminism in one of the
positions can arise after a divide step, as this step merges the first and last old
game into one new local game on position 0.

To determinize a game, the gluing operation is introduced. Note that it only
works if the following precrequisities hold.
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Definition 25: A game G is I-glueable if it satisfies the following conditions

(i) G is 0-deterministic

(ii) G has no 0-delays: if (e0, e1, . . . , en) → (x0, x1, . . . , xn)
then x0 ∈ P0

(iii) The winning condition ACC is a parity condition on P0:
there is a map Ω : (P0 ∪ E0) → N such that −→v ∈ ACC iff
lim inf i→∞ Ω(view0(

−→v )) is even.

The later construction of distributed games (cf. section 6.3) will ensure that
properties (i),(ii) and (iii) always hold. Thus, the here used distributed games
are always I-glueable. By Theorem 3 the I-glueable property is sufficient for
the correctness.

In [MW03] there is also a property II-glueable introduced. A checking algo-
rithm for the property was implemented in ReaSyn and may be used for later
extensions. For the sake of completeness the II-glueable property is men-
tioned here.

Definition 26: A game G is II-glueable if it satisfies the following conditions

(i) The moves of other players are not influenced by P0 moves:
for every transition (e0, e1, . . . , en) → (x0, x1, . . . , xn) and
every other environment position e′o we have
(e′0, e1, . . . , en) → (x′

o, x1, . . . , xn) for some x′
0.

(ii) The moves of player 0 are almost context independent: there
is an equivalence relation ∼⊆ (E0 × P0)

2 such that,
if (e0, e1, . . . , en) → (p0, x1, . . . , xn) then for every (e′0, p

′
0) :

(e′0, e1, . . . , en) → (p′0, x1, . . . , xn) iff (e′0, p
′
0) ∼ (e0, p0).

(iii) G has no 0-delays (cf. I-gluable (ii)).

(iv) The winning condition is a conjunction of the winning con-
dition for players 1 to n and the condition for player 0. Ad-
ditionally the condition for player 0 is a parity condition.

The definitions for the glueable characteristics are:

Glueing Operation

If a game is conform to one of the glueable preconditions (cf. 26), the follow-
ing glue operation can be applied to achieve a determinized game (respective
to the position 0). Then a further reduction of the number of players is possible
(cf. 4.3.1).
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In the following definition an abbreviated notation for (x0, x1, . . . , xn), namely
(x0, x) is used.

For the game G = (P,E, T,Acc) with n + 1 players, a function GLUE(G)

translates this game into a glued n + 1-player game G̃ = (P̃ , Ẽ, T̃ , Ãcc) with
the following properties:

• P̃i = Pi, Ẽi = Ei and T̃i = Ti for all i = 1, . . . , n

• P̃0 = 2E0×P0 and Ẽ0 = 2P0×E0

• p̃ →0 ẽ if, for every (e, p) ∈ p̃, there is (p, e′) ∈ ẽ ∩ T0

• (ẽ0, e) → (x̃0, x) ∈ T̃ for x0 6= ∅,
where x̃0 = {(e0, x0)|∃(p′, e0) ∈ ẽ0.(e0, e) → (x0, x)}

1p 1’p

e1

2p

e2

FIGURE 4.5 Two local games

1p 1’p

e1

2p

e2

p 2

FIGURE 4.6 The Distributed Game

1p 1’p

e1 e2

p2{ },

FIGURE 4.7 Glued Distributed Game

To define Ãcc, two auxiliary functions are needed:

The definition of distributed game transitions allows a local game to stay for
several global moves in a local environment position. Note that a local player
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position has to change. Therefore a projection of a play −→v to the i-th com-
ponent can be written as e+

0 p0e
+
1 p1 . . . (where e+

i denotes the stuttering in
position ei).

Definition 27: view()

The view of a process i of −→v = e+
0 p0e

+
1 p1 . . . is viewi(

−→v ) =
e0p0e1p1 . . .

Definition 28: threads()

A thread in −→u = u1, . . . , u2k ∈ (Ẽ0 · P̃0)
+ is any sequence

e1p1 . . . ekpk ∈ (E0P0)
+ such that (pi−1, ei) ∈ u2i−1 and (ei, pi) ∈

u2i for all i = 1 . . . k. Threads also work on infinite sequences.
Let threads(−→u ) be the set of threads in −→u .

With Definitions 27 and 28 the set of accepting sequences can be defined:

Definition 29: Accepting sequences

Let −→u be a sequence of sets of pairs of nodes of the game. Then
−→u ∈ Ãcc iff every −→v ∈ threads(view0(

−→u )) satisfies the parity
condition Ω .

The condition “every −→v ∈ threads(view0(
−→u ))” satisfies the parity condition

Ω” is a regular winning condition. This means that there is a deterministic
parity automaton recognizing sequences over (Ẽ0 · P̃0) with this property. By
adding this automaton as a component for player 0 positions the glued game G̃
can be converted to a game with parity winning conditions for player 0.

For II-glueable games the definition additionally requires −→u to satisfy the
conditions for players 1, . . . , n. But as before mentioned I-guleability is suffi-
cient for the here presented distributed games.

Theorem 3:

Let G be a I−gluable or II−gluable game. There is a distributed
winning strategy from a position η in G iff there is a distributed
winning strategy from the position η̃ in GLUE(G).

For easier provability of the above theorem, the two different glueable proper-
ties were introduced. The chain of proof differs from the two preconditions.
Detailed proofs can be found in [MW03] in sections 5.1 (for I-glueable) and
5.2 (II-glueable).
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Remarks

With the introduced distributed games it is possible to create a system that
represents various local games. As the here used construction implements a
information hierarchy by the used pipeline architectures, the preconditions for
glue and divide are always satisfied. The divide operation allows to reduce the
number of games, if the game meets the determinism precondition - otherwise
the glue operation allows to establish determinism in the considered games.

At the end of the simplifications a two player game is gained.
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Chapter 5

Distributed Synthesis Problem

A distributed system consists of a set of processes, that compute output values
from given input histories. One interesting problem in formal computer sci-
ence is if it is possible to synthesize a distributed system. A distributed system
is defined by an architecture of processes with their communication signals
and a logical formula. Synthesizing a distributed system is the task to find a
implementation for each process such that the formula is satisfied.

This chapter defines the mentioned vocabulary formally. At the end of the
chapter, a theorem is given, that states the decidability of the distributed syn-
thesis problem for pipeline architectures. In other words it states that it is
always possible to either synthesize a distributed system or to see that it is not
realizable.

Distributed Synthesis is defined over processes that are entities with in- and
output channels. A process reads from it’s input channels and writes to its
output channels.

An implementation is a description of a behaviour, that defines how to act
upon a specific input history. In this context a processor acts according to an
implementation, if the output is computed by running the implementation on
the inputs. An architecture defines how processors are interconnected. In an
architecture, every processor implements a deterministic function, that maps
histories of input signals to output signals.

A distributed system consists of multiple processors that share some informa-
tion over channels. They run in a usually common environment. The system
specifies possible interactions between the processes and the environment by
its structure.
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Definition 30: Specification

A specification is a LTL [GO01] formula describing properties of
a system.

A system is said to satisfy a specification, if the properties defined by the spec-
ification are fulfilled.

The distributed synthesis problem (DSP) is to find an implementation for
each of the processors such that the overall behaviour of the system satisfies a
given specification.

Definition 31: Distributed Synthesis Problem

Given an architecture A and a LTL formula ϕ the Distributed Syn-
thesis Problem (A, ϕ) is to decide whether an implementation for
A satisfying ϕ exists. Additionally, if there is such an implemen-
tation, the problem extends to finding one.

Pnuelli and Rosner [PR90] showed that the problem of realizing a given propo-
sitional specification over a given architecture is undecidable in general. They
also showed that it is decidable for the very restricted class of pipeline archi-
tectures. These results are based on the work of Peterson and Reif in [PR79]
on games of incomplete information.

In [KV01] a decision procedure for two-way pipelines and one-way rings is
given. The focus in this thesis lies on pipeline architectures. [FS05] describe
a special property of architectures, called information fork: a criterion that
characterizes all architectures for which distributed synthesis is undecidable.
The transformations of [Reg05] can handle all fork-free architectures as input
and produces architectures in which the information hierarchy is established.
In those architectures the processes are ordered according to their degree of
information. Every better informed process can simulate all subsequent pro-
cesses as it has strictly more information. In a next step those architectures
are translated into pipeline architectures. [Reg05] provides implementations
of those algorithms.

The two fundamental concepts of an architecture which specifies the processes
and their interaction, and specification that is to be respected are defined in the
following two sections of this chapter. With that background and with the help
of the before chapters, synthesis on the base of distributed games can be done
with the algorithms suggested in the third section of this chapter.
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FIGURE 5.1 A pipeline architecture consisting of n processes. The in- and output
signals are represented as labled arrows.

5.1 Architectures

An architecture consists of processes acting in a specific environment. Pro-
cesses in this thesis always communicate via channels through the environ-
ment. In other words: the signals are not hidden from the environment.

Practical examples on such architectures can be found in networking setups,
where machines communicate over external channels with each other.

5.1.1 Pipeline Architectures

Definition 32: Pipeline Architecture

A pipeline architecture A consists of a finite number of n proces-
sors P1, . . . Pn. Where there are disjoint alphabets Ai−1 assigned
to output of processor Pi the input alphabet of the pipeline is An.

The execution of a pipeline architecture follows in rounds, where
the processor connected to the environment (Pn) gets the initial
input over channel An. Now the next processor works on that
input and so on. A round is finished, when the last process (P1)
produces its output.

Pipeline architectures are strictly ordered processes, that comunicate via uni-
directional channels. As soon as the implementation is fix, better informed
processes can simulate those with a lower degree of information. The infor-
mation has no delay.

In the model presented in this thesis, properties on signals are always checked
at the end of a round.

5.1.2 Architecture transformations

Regenberg [Reg05] gives extensive explanations what kind of architectures can
be transformed into pipeline architectures. In [Reg05] architecture transforma-

34



5.2. Specification

x y

−→
�

�

�

�P −→

FIGURE 5.2 A pipeline architecture consisting of one process.

tion approaches are presented, which respect the fork criterion introduced by
Finkbeiner, Schewe in [FS05] into pipeline architectures. Also transformations
into games that form the interface to the in hand thesis are given.

5.1.3 Architecture game

Figure 5.2 shows an examplary architecture consisting of a single process.

If the signals x,y are binary then P has all four possible functions fi∈{0,1,2,3} :
{0, 1} → {0, 1}, that could be applied. A suitable game is given in figure 5.3,
where the functions are denoted as fi∈{0,1,2,3}.

FIGURE 5.3 A process game. The squared player vertices contain variable assign-
ments and the round environment vertices contain functions.

Observe that a player always chooses a function and the environment chooses
the respective input.

5.2 Specification

ReaSyn covers LTL specifications directly or deterministic Büchi automata
representing such specifications. Regenberg [Reg05] describes the transfor-
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mation into games. For a better intuition, LTL formulas are defined.

5.2.1 LTL

LTL or Linear Temporal Logic is a logical language that is used to specify
computational behavior over time. LTL can be used to make a statement what
happens to a set of variables in the future. For example one could state, that
from a fixed but unknown point in the future for all later points a specific
property is valid.

LTL defines properties on atomic propositions, that in this context are vari-
ables on signals, boolean atoms (true, false) over time. A LTL formula could
for example state that from a point in the future something holds forever or
that some other things never happen. Additionally, ReaSyn accepts simple
arithmetic expressions on the atom level of LTL formulas.

Definition 33: atom

atom is the set of atomic propositions. It contains true,false and
simple arithmetical expressions as defined by [Reg05].

Where in the above definition, true is the abbreviation for “1 == 1” and false
is “1 == 0”.

Definition 34: Syntax of LTL Formulas [GO01]

The set of LTL formulas on the set atom of atomic Propositions
is defined by

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2

| X ϕ | 3ϕ | 2ϕ | ϕ1 U ϕ2

where p ∈ atom.

The arithmetic expressions relate signals of the architectures. Available opera-
tions are “+” for addition, “−” for substraction, “∗” for multiplication, “/” for
integer division and “%” for modulo. The following self-explanitory relational
operators are also allowed: “=”,”<”,”<=”,”>” and “>=”.
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FIGURE 5.4 A simple specification game. Environment nodes are depicted as
circles and player node as rectangles. The player node contains an
identifier and an arithmetic expression, that is handled as an atomic
proposition.

Definition 35: Semantics of LTL Formulas [GO01]

Let σ = σ0σ1... be a word in Σω with Σ = 2atom and ϕ a LTL
formula. atom is the set of atomic propositions as introduced in
definition 33. The relation σ |= ϕ (σ models ϕ) is defined as
follows:

- σ |= p :⇔ p ∈ σ0,

- σ |= !ϕ :⇔ σ 6|= ϕ,

- σ |= ϕ1 ∨ ϕ2 :⇔ σ |= ϕ1 or σ |= ϕ2,
σ |= ϕ1 ∧ ϕ2 :⇔ σ |= ϕ1 and σ |= ϕ2,

- σ |= Xϕ :⇔ σ1σ2... |= ϕ,

- σ |= 3ϕ :⇔ ∃k ≥ 0.σkσk+1 · · · |= ϕ

- σ |= 2ϕ :⇔ ∀k ≥ 0.σkσk+1 · · · |= ϕ

- σ |= ϕ1 U ϕ2 :⇔ ∃k ≥ 0.σkσk+1... |= ϕ2

and ∀0 ≤ i < k.σiσi+1... |= ϕ1.

To translate the LTL specification the fast LTL to Büchi automaton algorithms
of Paul Gastin and Denis Oddoux [GO01] were used. As the resulting automa-
ton may not be deterministic, it is determinized by applying Safra’s construc-
tion [Saf88]. The resulting deterministic parity automaton is then translated
into a parity game to fit the interface of this thesis. Up to that point the work
of [Reg05] covers those topics.

In order to circumvent expensive translations (two exponential blowup in the
size of the LTL formula) [Reg05] provides the possibility to give the specifi-
cation directely as deterministic Büchi automaton.

5.2.2 Specification game

Consider the examplary specification game in figure 5.4:

The specification represented by this game is 2(x = 1 − y), where x and y
are signal denominators. It means from now on and forever x is equal to 1−y.
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The extra states in the game are obtained by the constructing and translating
algorithms defined and explained by [Reg05].

Player nodes are depicted as circles and environment nodes as boxes. Every
player node has a unique identification number. An environment node contains
the expression and the name of the player node that lead to it. Note that the
color of the nodes is not depicted in the figure. Nevertheless, there is a function
mapping each node to a color.

5.3 Synthesis

5.3.1 Encoding

To use the distributed game framework to successfully decide the realizability
of pairs of architectures and specifications as discussed before and synthesize
an implementation, a proper encoding is needed. The definitions in this section
were implemented and their implementation is discribed in chapter 6.

The distributed game is created from the local architectures and the specifica-
tion in the following way: game G0 represents the specification and the local
games G1, . . .Gn take the role of the processes in the pipeline (process i corre-
sponds to game i).

Specification game

The specification game is encoded from an underlying parity automaton that
defines the specification. This is done extensively by Regenberg [Reg05], but
in order to introduce the information a specification game node is carrying, the
encoding is briefly explained.

Definition 36: Deterministic Parity Word Automaton

A deterministic parity word automaton A is a tuple (Q,Σ, I, δ, C)
where Q is a finite set of states {q0, . . . qn}, I indicates the set
of starting states. Σ is the alphabet known to the automaton. δ :
Q × Σ → Q is a partial transition function. And C : Q → C is a
coloring function. C is the set of colors (C ⊂ N).

In case of a Büchi automaton the chromatographic function changes to χ(q) =
0 iff q is an accepted state and 1 otherwise.

Note that the winning condition of a parity automaton is equivalent to the one
of a parity game (cf. section 3 definition 6).
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The parity automaton is translated into a game in the following way. Let A
be the automaton as defined above and G = (P0, E0, T0) the game to be con-
structed and χ : P0 ∪ E0 → C (C ⊆ N) the coloring function for the game
nodes, then:

• P0 = Q × Σ

• E0 = Q

• (q, σ) 7→ (q′) ∈ T0 iff δ(q, σ) = q′

• (q) 7→ (q, σ) ∈ T0 ∀(q, σ) ∈ Q × Σ

• T0 = (P0 × E0) ∪ (E0 × P0)

The coloring function is defined as follows:

• χ : P0 → C, χ(v) = C(v) for player nodes and

• χ : E0 → C, χ(v) = C(v′) if v = (v′, σ) for environment nodes.

The starting nodes of I are also starting nodes in the game.

From Theorem 3 and 4 of [Reg05] follows the correctness of this construction.
A specification game has hence a winning strategy if and only if the specifica-
tion is satisfiable.

Process game

The process games are simulating all possible behaviours of the processes. For
this purpose, in each game the player chooses a function and the environment
selects an input for the process. As the functions are encoded in environment
and the input values in the player nodes, this is done by passing the token to
the respective successor node.

For each component i = 1 . . . n the process game of component i over the
signals Ai is defined as Gi = (Pi, Ei, Ti), where:

• Pi = Ai

• Ei = (Ai → Ai−1)

and Ti is the complete set of transitions:

• Ti = Pi → Ei ∪ Ei → Pi.
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5.3.2 Decidability

For the decidability of distributed games some definitions are needed.

Let η[1, i−1] denote the subsequence of the sequence η consisting of elements
on positions from 1 to i − 1; note that tuple η has also 0 position.

Definition 37: i-sequential

A distributed game G is i-sequential if, for all environment posi-
tions η1 and η2, the following holds: if π1 is a successor of η1

and π2 is a successor of η2, η1[1, i] = η2[1, i] and π1[1, i − 1] 6=
π2[1, i − 1] then π1[i] 6= π2[i] and π1[i], π2[i] ∈ Pi.

Definition 38: 〈0, n〉 -almost proper

A distributed game G is called 〈0, n〉 -almost proper if it satisfies
the following:

G is 0-deterministic

P0 has no 0-delays

the winning condition is a parity condition on P0

G is i-sequential for all i ∈ {1, . . . , n}.

Definition 39: 〈0, n〉 -proper

A distributed game G is called 〈0, n〉 -proper if it is 〈0, n〉 -almost
proper and also satisfies the following:

1. G is n-deterministic

Observe that the condition (4) of the 〈0, n〉 -almost proper criterion does not
imply (1) of the 〈0, n〉 -proper criterion, as the sequentiality does not say any-
thing about player 0.

From the definitions of a pipeline game follows, that it is 〈0, n〉 -proper. The
following two lemmata are proven in [MW03] and will be used to proof the
theorem on decidability later.

Lemma 1:

A 〈0, n〉 -proper distributed game G is dividable. Let G ′ be the
divided game, then G ′ is a 〈0, n − 1〉 -almost proper game.
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Lemma 2:

A 〈0, n〉 -almost proper distributed game G is I-glueable and the
glued game G ′ is a 〈0, n〉 -proper game.

Theorem 4: Decidability

The distributed synthesis problem is decidable for pipeline archi-
tectures.

Proof:

Given a pipeline game of n + 1 players, it is 〈0, n〉 -proper by
construction. Lemma 1 and 2 state, that the repetitive applica-
tion of divide and glue result in a 〈0, n − 1〉 -proper game G ′. By
Theorems 2 and 3, G has a distributed winning strategy iff G ′ has
one.

By n − 1 repeated applications of divide and glue followed at the
end by a divide operation, eventually a game consisting of one
player against the environment evolves. This game has a parity
winning condition. A distributed strategy in this game is just the
winning strategy for the player. By Theorem 1, the existence of a
winning strategy in this game is decidable. 2
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Chapter 6

Getting to the point

The previous chapters state that distributed synthesis is decidedable for pipeline
architectures and proves the correctness of the here used algorithms. Now the
algorithms and results of the previous sections are combined to build the core
part of ReaSyn. While the focus of previous sections was on formal con-
structs, in this chapter the implementation and practical use comes to the fore.

6.1 A top down look on ReaSyn

ReaSyn starts with architecture and specification definition as presented in
Chapters 5.1, 5.2. In a next step they are translated over various intermediate
steps into games. As mentioned, this thesis concentrates on constructing and
solving the distributed game. This section explains how this is established.
The code generation is extensively explained by [Reg05].

6.2 Enriching the specification game

Information about the last occuring environment’s choice of input signals are
annotated to the player nodes which makes the resulting game dividable. The
number of player nodes increases by this procedure.

Figure 6.1 shows a simple formula game (the formula used is 2(“x = 1−y ′′).
As the specification game on the left is constructed without connection to the
external input variables of the envirionment, those are now added to every
player node. The result of enriching the game can be seen on the right in figure
6.1.
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6.3. Constructing the Distributed Game

formula game enriched formula game

FIGURE 6.1 Enriching of the formula game as depicted on the left results in a
enriched formula game on the right. The before explained player
nodes is enriched by all possible environment values.

6.3 Constructing the Distributed Game

The construction starts with local games (as defined in 5.3.1) for every pro-
cessor with empty winning conditions and one game for the specification, that
comprises a parity winning condition.

Suppose n local games are to be encoded as a distributed game. Recall that
the processor games will take positions 1, . . . , n− 1 whereas the specification
game is encoded in position 0.

For simplicity, the following notation is introduced. Let η be a node in a dis-
tributed game. Then η(i) refers to the i-th component of the node, which
stands for the position of the i-th local game. Furthermore Gi means the i-th
local game.

6.3.1 Building distributed game nodes

A formal specification of distributed game nodes is given in section 4.2. Now
the practical construction is discussed. It turned out that the theoretical defini-
tions are not very efficient if directly implemented, because they create lots of
later unreachable nodes.

The presented construction only produces reachable nodes.

For this purpose, the execution begins from the start node of the distributed
game, which is the cartesian product of all possible start nodes of the local
games. From there, the reachable subgraph of the distributed game is com-
puted.

Every distributed game node gets the parity of the node of G0, which is coded
in η(0). An artificial dead end node is added to the distributed game. Owner
of the node is the player. The dead end node contains “dead”-lables on every
local position η(i) (i = 0 . . . n − 1). The dead end’s parity has no account so
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it can be set to an arbitrary value, let us say 1.

After this, a set of k start nodes is computed (plus the one dead end).

They are now memorized in a list of unprocessed nodes, where the succes-
sors are not yet computed. Now, beginning from that set, the new distributed
game nodes are successively computed, where every new node is, if not pre-
viously seen, also added to the list of unprocessed nodes (provided that they
are not already contained). Any new node is added, together with its incoming
transition, to the distributed game.

For a distributed game node η the distributed successor nodes are determined
as follows:

• if η is a player node:

Si contain the successors of the i-th component of the i-th game. Let
(S0, S1, . . . , Sn−1) be the sets of the local successors. Then all possible
cartesian products S = S0 × S1 × · · · × Sn−1 are computed and then
added together with their edges {η} × S to the distributed game.

• if η is an environment node:

For every input value the functions of the environment nodes are evalu-
ated and the local successors are added. Let (S0, S1, . . . , Sn−1) be the
sets of the local successors computed as for player nodes. As an en-
vironment node contains functions for all components, it is required to
check, whether they agree on the node description. Secondly it has to
be tested if the evaluated expression is valid. Therefore, functions are
evaluated with all startvalues coded in the nodes. The obtained variable
assignment is then used to evaluate the possible successor node. If both
succeeds, the node is a valid successor and is, together with the transi-
tion, added to the distributed game. The color of the newly added node
is equal to the color of its 0-th component.

For an example how a successor of a environment node is determined, consider
Figure 6.2, where f2 defines the following function: f2 : {0, 1} → {0, 1},
f2(0) = 0 and f2(1) = 0. To check, whether 〈0.x = 0 : x = 1 − y, x : 0〉 is a
valid successor of 〈0, f2〉, x = 0 as defined by the player node is used as input
for f2. By the definition of f2, y is 0. Now, with y = 0 and x = 0, x = 1 − y
is not valid. Therefore 〈0.x = 0 : x = 1 − y, x : 0〉 is a no valid successor of
〈0, f2〉.
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6.4 Simplifying the Distributed Game

The simplification of the presented distributed game is structured in two sec-
tions. One, in which the goal is to reduce the size of the graph, and a second,
through which the reduction of local players is obtained. This is important for
later synthesis.

6.4.1 Dead end removal

As the introduced nodes contain all information which is later used for synthe-
sis and code generation by Jens Regenberg [Reg05], special care with selecting
the nodes which can be removed has to be taken.

One in this way save attempt is to remove all player nodes which have no
choice but to take a successor that leads into a dead end. Recall that in a game
the environment wins if it can force a token to a player dead end node. Also,
all environment nodes that can force the token to such a node can be deleted,
as this would be a possible winning strategy for them.

This is called dead end removal. It can be defined by the use of the attractor
definition from Definition 11 in the following way:

Definition 40: Dead end attractor

For a distributed game G the dead end attractor is:

DeadEndAttr(G) := Attrenvironment(G, ∅)

The correctness of the approach follows directly from the definition of the
attractor set.

Figure 6.2 shows a distributed game and figure 6.3 shows the dead end free
version. Observe that the number of game nodes is significantly reduced. The
functions f0, f1, f2 and f3 represent the four possible total functions from
{0, 1} to {0, 1}. The commata mark the local parts of the distributed game
nodes. Observe that the function that is not reduced is exactly the one that
respects the specification.

In ReaSyn the dead end-optimization can be switched on with the comman-
dline parameter -optimize1. It is run directly after constructing the distributed
game. As no new dead end nodes are introduced by the subsequent operations
(glue and divide) a later run would have no effect. Chapter 7 shows some runs
of ReaSyn with and without dead end optimization.
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FIGURE 6.2 A distributed game after construction. The four functions fi map
bool values on bool values. f0(x) = x , f1(x) = 1, f2(x) = 0 and
f3 is the identity.

6.4.2 Removing environment winning positions

All environment winning positions after construction of the distributed games
will later also be loosing for player and can be removed. This is done by
directly solving the distributed game and then deleting all nodes that are in
the winning region of the environment. Note, that also all edges have to be
removed as the subsequent algorithms explore the game graph.

The algorithm that removes all environment winning positions is available as
member function “EnvWin” of class Game.

The solving algorithm is used as described in 3.4. As the Deadend-optimization
is much faster because it has to determine the dead end attractor, it is in prac-
tice run before EnvWin. Despite to the Deadend-optimization, the EnvWin-
algorithm has a high effect on distributed synthesis problems that have no so-
lution. Those games have many game nodes which are winning for the envi-
ronment.

In ReaSyn the EnvWin-optimization can be switched on by the commandline
parameter -optimize2. It is run after the dead end removal and also after every
glue operation.
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FIGURE 6.3 Result of dead end removal of the game in figure 6.2. All functions
that are not valid for the given specification disapeared.

6.4.3 Colorspace reduction

The following algorithm reduces the number of colors occuring in a game. It
first checks, if only two colors occur. In this case optimization is not required.
Otherwise, the algorithm determines which colors are occuring. A array occ[]
of the size of the maximal occuring color +1 marks every occuring color; in
other words color j occurs iff occ[j] = 1.

Next the algorithm loops over the colors, starting with 0. For every slot in occ
where a color is not used, the next occuring color is copied in that slot. The
algorithm runs until the number of colors cannot be further reduced.

6.5 Reducing the number of local players

The player reduction is done by dividing as defined in section 4.3.1. If a game
is not dividable it is glued in advance (cf. section 4.3.2). The glueing and
dividing algorithms were implemented closely to their definitions. They are
available as memberfunctions of class distributed game (cf. appendix section
A.13).

All algorithms presented in the following are simplified for better readablility.
It is neglected how the datastructures are concretely accessed. The appendix
gives more information on the available datastructures. With the following
pseudo code and the source’s inline comments the source files can be easily
understood.

Before divide() can be executed, the game has to be checked for 0 and n-
determinism. If it is not deterministic, glue() has to be executed first. Oth-
erwise the game can be directly divided. Observe that, as the specification
game and the first process game are deterministic (i.e. the distributed game is
0-deterministic), the first distributed game is always directly dividable. Recall
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divideNode (x0, . . . , xn) {

return (〈x0, xn〉 , x1, . . . , xn−1)

}

FIGURE 6.4 DivideNode can be applied on a distributed game node

that the specification games determinacy comes from the determinizations of
[Reg05]. The outermost process is deterministic because he has full informa-
tion about the environment variables.

6.5.1 Divide

Divide uses a subfunction divideNode that rewrites a node according to the
definition of divide (cf. Section 4.3.1).

The division algorithm is depicted in figure 6.5. It loops over the lists of player
nodes PlayerNodes, environment nodes EnvironmentNodes and start nodes
StartNodes. Every node is divided according to DivideNode (cf. Figure 6.4)
and the distributed game is updated by the addNew*-functions. For the player
and environment nodes lists the transitions are adapted. After the division the
distributed game ends up with n local players. The old players 0 and n are
encoded as a pair in position 0.

If division is not directly possible because the game is not n-deterministic, it
has to be determinized by glue in advance.

The running time of divide is linear in the number of all distributed game
nodes, as it simply rewrites the tuples.

6.5.2 Glue

Figure 6.6 shows the main loop of glue. It starts with the start nodes of the dis-
tributed game and the subfunctions update a list unseen of unprocessed nodes.
The algorithm stops, if unseen is empty. Successors for player and environ-
ment nodes are derived differently, the functionality is here divided in two
subfunctions pSucc and eSucc for player and environment nodes respectively.

For player nodes, the successors are computed in two steps. First, all possible
successors are computed and sorted by their tail (y1, . . . , yn), meaning they
have the same local view, put in the list of (succs) with the right tail. Second,
for every list of succs every 〈ek, pk〉 of set a new pair node 〈pk, e

′
i〉 is added
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divide() {
// create a new distributed game of n local games
// with positions 1 . . . n − 1 as before;
// calculate position 0 as follows

Foreach pNode of PlayerNodes {
addNewPlayerNode(divideNode(pNode))
Foreach successor of pNode {

addNewTransition(divideNode(pNode), divideNode(successor))
}

}
Foreach eNode of EnvironmentNodes {

addNewEnvironmentNode(divideNode(eNode))
Foreach successor of eNode {

addNewTransition(divideNode(eNode), divideNode(successor))
}

}
Foreach sNode of StartNodes {

addNewStartNode(divideNode(sNode))
}
}

FIGURE 6.5 Divide reduces the number of local games

glue() {
for every startnode (x0, x1, . . . , xn)
add ({< −−, x0 >}, x1, . . . , xn) to unseen

While unseen is not empty {
let dNode be the first node in unseen

If dNode is a player node then

pSucc(dNode)

else
eSucc(dNodedNode)

} }

FIGURE 6.6 glue loops over all unprocessed nodes and calls two subfunctions
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to rest, where e′i comes from the respective node of succs and rest is added to
possibleSuccs.

Now a cartesian product construction of possibleSuccs gives the new first com-
ponent of the distributed game nodes.

Since the possible successor nodes for the environment nodes are not required
to be equal in y1, . . . , yn, the proceedure is a bit different. Additionally, the
0-th position contains a set of pair nodes.

For perfomance issues, the colors of the glued nodes are by default approxi-
mated, as can be seen in Figures 6.7,6.8. This saves the expensive automaton
construction as suggested by [MW03] and the required determinization which
takes exponential time [Reg05]. If a system is considered not synthesizable by
ReaSyn it should also be checked with the provided over-approximation. The
over-approximation chooses the highest even, or if there are only odd number,
the lowest odd number.

Nevertheless, [Reg05] describes how the automaton construction according to
Definition 29 in Section 4.3.2 is implemented and gives the possibility to run
it optionally. All implementations found by the implemented algorithms are
correct. Even if there is a theoretical possibility that for a problem no result is
found, throughout wide tests with ReaSyn the used under-approximation did
not lead to any problems.

The running time for glue is n-exponential for n is the number of distributed
game nodes, by [MW03]. As this the complexity class of a determinization
algorithm, this is no surprise.

6.6 Solving the reduced game

After reducing the distributed game to a two player game, it is possible to
solve the game. The algorithm introduced in section 3.4.1 is used to generate
the winning regions and memoryless strategies fσ : Pσ → Pσ for the players
σ ∈ {0, 1} are produced.

If there is no such strategy, the formula is not satisfiable on the given architec-
ture (cf. 4.3).

If and only if there is a winning strategy from all start nodes, the formula
is satisfiable. The distributed game class produces strategies for player and
environment. Instead of adding an arbitrary successor all possible successors
are added in each step. By this, the possible paths through strategies increases
resulting in more possiblities for the code generation. [Reg05] shows, that the
so generated strategies can be used to synthesize the specification by evaluating
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the nodes’ information.

The code generation algorithms as implemented by [Reg05] can be used to
generate program code, that is a valid implementation of the specification on
the architecture.
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pSucc(dNode){
// dNode is of the form ({〈e0, p0〉 , 〈e1, p1〉 , . . . } , x1, . . . , xn)
dSNode := (NULL, x1, . . . , xn)
set := {〈e0, p0〉 , 〈e1, p1〉 , . . . }
initialize succs as a list of lists of pairs of nodes ({{〈_, _〉 , . . . } , . . . }).

Foreach < ei, pi > of set {

dSucc = getSuccessors((pi, x1, . . . , xn)) //break if empty

Foreach (e′i, y1, . . . , yn) of dSucc {

add < (e′i, y1, . . . , yn), < ei, pi >> to the list in succs containing

all pairs with the same y1, . . . , yn

}
}

Foreach a := 〈(e′0, y1, . . . , yn) , 〈e0, p0〉〉 , 〈(e′1, y1, . . . , yn) , 〈e1, p1〉〉 , . . .
of succs {

added = false
initalize sta as an empty list
Foreach b := < ek, pk > of set {

add each
〈
pk, e

′
i

〉
to rest where b equals second part of a

If rest is not empty then

push rest on possibleSuccs ; added := true

}

If added then {
succSet is the full cartesian product of possibleSuccs
Foreach s of succSet{

add environment node (s, y1, . . . yn) to the distributed game

set the nodes color to smallest odd or highest even occuring in s

add a transition dNode → (s, y1, . . . yn)

update unseen

}
}

}}

FIGURE 6.7 pSucc determines all successors of a player node
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6.6. Solving the reduced game

eSucc(dNode) {
// dNode is of the form ({〈p0, e0〉 , 〈p1, e1〉 , . . . } , x1, . . . , xn)
dSNode := (NULL, x1, . . . , xn)
set := {〈p0, e0〉 , 〈p1, e1〉 , . . . }
initialize succs as a list of lists of pairs ({{〈_, _〉 , . . . } , . . . }).

Foreach < pi, ei > of set {

dSucc = getSuccessors((ei, x1, . . . , xn)) //break if empty

Foreach (p′i, y1, . . . , yn) of dSucc {

add < (p′i, y1, . . . , yn), < pi, ei >> to the list in succs containing

all pairs with the same y1, . . . , yn

}
}

Foreach a := 〈(p′0, y1, . . . , yn) , 〈p0, e0〉〉 , 〈(p′1, y1, . . . , yn) , 〈p1, e1〉〉 , . . .
of succs {

Foreach 〈(p′i, y1, . . . , yn) , 〈pi, ei〉〉 of a{

add
〈
ei, p

′
i

〉
to succSet

}

add player node (succSet, y1, . . . yn) to the distributed game

set the nodes color to smallest odd or highest even occuring in succSet

add a transition dNode → (succSet, y1, . . . yn)

update unseen

} }

FIGURE 6.8 eSucc determines the successors of a environment node
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Chapter 7

Results

The sourcecode of ReaSyn and an executable are freely available on the project’s
homepage [MR]. A description of the user interface is available in Chapter 3
of [Reg05].

To demonstrate the efficiency of the program some examples are shown now
and the size of the games after the various steps are listed in the tables below.
All examples were run on a machine with a two gigahertz Intel pentium 4 pro-
cessor and 512 Megabytes ram. To circumvent the definition of the syntax, the
architecture and formulas are given as a graph and LTL formula, respectively.
As ReaSyn is the first program for distributed synthesis, there is no program
to compare it to.

7.1 Example 1

Consider the architecture in figure 7.1. It is a pipeline architecture of two pro-
cesses. The specification is 2 (x = z) which requires the processes to trans-
port the environment signal (x) through the pipeline. As the signal between the
two processes (y) can have values of {2, 3}, the implementation has to deliver
a proper encoding.

x ∈ {0, 1} y ∈ {2, 3} z ∈ {0, 1}

−→
�

�

�

�
P1 −→

�

�

�

�
P2 −→

FIGURE 7.1 2-process pipeline consisting of two processes and three signals. The
possible values of the signals are annotated as sets.

Table 7.4 shows some test results. Note that the division is left out as it does not
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add nodes to the distributed game. The number of nodes is during optimization
decreased by seven. The computation time without optimization is 110 ms,
with optimization the compuation takes 40 ms.

Number of nodes

distributed game 22
dto. glued -
running time 110 ms
optimized distributed game 15
dto. glued -
running time 40 ms

TABLE 7.1 Results of 2 (x = y)

As the game is deterministic glueing is not needed. ReaSyn returns an imple-
mentation for the processes where the first process maps 0 to 3 and 1 to 2. By
the second process the values are translated according to the specification: 3 to
0 and 2 to 1. This is only one possible implementation. ReaSyn always tries
to find small implementations, please refer to [Reg05] how this is done. The
produced PROMELA code can be seen in Figure 7.2. It simulates the three
processes. The code can be used to do a stepwise simulation in SPIN.

Let us now change specification 2 (x → �y), which means that whenever x is
valid (has value 1) then eventually y is valid. The computation result can be
seen in Table 7.2. In this case the optimization could not reduce the number
of nodes. The running times are 24.76s without and 24.93s with optimization.
But even with unsuccessful optimization the running time is not much higher.

Number of nodes

distributed game 82
dto. glued 443
running time 24.76s
optimized distributed game 82
dto. glued 443
running time 24.93s

TABLE 7.2 Results of 2 (x → �y)

The resulting implementation is the same as the one of the previous specifica-
tion.
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CHAPTER 7. Results

chan xChan = [1] of { int };
chan yChan = [1] of { int };
chan zChan = [1] of { int };

int x = 0; int y = 0; int z = 0;
bit check = 0

active proctype P1() {
byte state = 0; bit xRead = 0;
do
:: (state == 0) ->

xRead = 0;
do
:: xChan?x -> xRead = 1;
:: (xRead) -> break;
od;
if
:: ((x == 0)) ->

yChan!3;
state = 0;

:: ((x == 1)) ->
yChan!2;
state = 0;

fi;
od
}

active proctype P2() {
byte state = 0; bit yRead = 0;
do
:: (state == 0) ->

yRead = 0;
do
:: yChan?y -> yRead = 1;
:: (yRead) -> break;
od;
if
:: ((y == 2)) ->

zChan!1;
state = 0;

:: ((y == 3)) ->
zChan!0;
state = 0;

fi;
od
}

FIGURE 7.2 A implementation for the given architecture and specification in
PROMELA
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7.2 Example 2

x ∈ {0, 1} y ∈ {0, 1} z ∈ {0, 1} t ∈ {0 − k}

−→
�

�

�

�
P1 −→

�

�

�

�
P2 −→

�

�

�

�
P3 −→

FIGURE 7.3 Ak, a 3-process pipeline consisting of three processes and four sig-
nals. The possible values of the signals are annotated as sets. {0−k}
is an abbreviation for {j|0 ≤ j ≤ k}.

This generic example shows the power of the optimization. 2(y) is used as
specification in order to keep the effect on the specification game construc-
tion low. In each run the number of possible values for signal t is increased.
Ak indicates that the architecture as defined in Figure 7.3 has i + k possible
values for t (x, y and z are in {0, 1}). As the size of a processor game is in
O(|output||input|) this significantely increases the size of the distributed game.

The results in Table 7.3 show the efficiency of the node reduction. As the un-
derlaying datastructures properly destruct unused nodes, the size reduction has
a direct impact on the memory consumption of ReaSyn. Note, that for A15
the computation is not finished after 20 hours without optimization turned on
and the memory consumption exceeded the available 512 MB. The optimized
run had a memory peak of 250 MB and finished after 18 hours.

Number of nodes A1 A5 A10 A15

distributed game 70 582 1942 7062
dto. glued 467 4051 13571 49411
running time 1:27.48 34:21.64 5:46:47.11 *
optim. dist. game 21 149 489 1763
dto. glued 34 291 971 3528
running time 0:03.23 1:40.81 32:29.16 **

TABLE 7.3 Results of 2(y): the format of the running time annotation is hours
: minutes : seconds . miliseconds. * was aborted after the memory
exceeded. ** returned a valid implementation after 18 hours.
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CHAPTER 7. Results

7.3 Example 3

The running times of the previous examples were influenced by the dead end
optimization. To see what the precalculation of the environment winning states
in the distributed game does, the following example is introduced.

x ∈ {0, 1} y ∈ {2, 3} z ∈ {0, 1} t ∈ {0, 1}

−→
�

�

�

�
P1 −→

�

�

�

�
P2 −→

�

�

�

�
P3 −→

FIGURE 7.4 3-process pipeline consisting of three processes and four signals.

Again, a three process pipeline architecture is used (Figure 7.4 shows the setup.
All signals are binary. The specification is 2(y) ∧ 3(y = 0), which is clearly
unsatisfiable, as if y has to be always true, it cannot turn eventually 0.

Number of nodes

distributed game 138
dto. glued 860
optimized distributed game 1 41
optimized distributed game 2 0
dto. glued -

TABLE 7.4 Results of 2(y) ∧ 3(y = 0). The first optimization is done by dead
end reduction and the second by solving the distributed game and
deleting all environment winning nodes.

In this example, the dead end removal optimization deletes all nodes of the
dead end attractor (cf. Chapter 6.4.1). By solving the resulting distributed
game and deleting all nodes that are winning for the environment (according
to Chapter 6.4.2) no nodes remain. Thus, the game cannot be won by the
player and there is no valid implementation. This calculation takes 60 mil-
liseconds while the unoptimized calulation lasts more than fourteen minutes.
Observe that the unoptimized run needs one glue function. To gain a reliable
information on the synthezizability the under-approximation was switched on
for Example 3. This run takes the same time, as a computation without that
option would take.

Remarks

During the work with ReaSyn it turned out, that the colorspace reduction did
not have the desired effect, as the problems that are solvable in reasonable time
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7.3. Example 3

do not include many colors.

Best results were obtained, when Deadend optimization was called before En-
vWin optimization. This is justified by the fact, that building the dead end
attractor is much faster than solving the whole game. After the nodes found by
Deadend optimization are removed, the remaining game is smaller and can be
solved much faster. Both optimizations can be switched on or off by comman-
dline options. Please refer to the user interface description by Jens Regenberg
[Reg05].

For the running time of the used algorithms it should be mentioned, that the
formula game generation as done by [Reg05] is twice exponential if a deter-
minization is needed. This can be circumvented by directly giving a determin-
istic Büchi automaton as specification. Division is done in linear time but glue
is n-exponential for n glueing operations, as it is a determinization algorithm.
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Chapter 8

Summary

A reactive systems was introduced as an architecture, that defines a graph with
processes as vertices and signals as edges. A specification on the signals issues
how the reactive system should behave. An implementation for each processor
such that the overall behaviour respects the specification is a solution to the
distributed synthesis problem.

In this thesis an approach to find such an implementation for each processor
is presented. To achieve this, the distributed system is first modelled as a dis-
tributed game with n players. After simplifications of the game the number
of players is succesively reduced until a two-player game is obtained, the two-
player game is algorithmically solved.

This procedure provides a solution to the distributed synthesis problem. As
ReaSyn and all used implementations are provided as a framework to model
distributed systems by architecture and specification definitions, this also shows
the practical feasability of the distributed synthesis problem. All datastructures
and algorithms are implemented in an efficient way. To encourage further de-
velopment the classes are provided as well documented source code.

As no theoretical background is needed to work with ReaSynit can be handled
by unexperienced personell for realizability tests and prototyping.

ReaSyn was implemented in close collaboration with Jens Regenberg [Reg05].
Recall the three parts as depicted in Figure 1.1. The functions and simplifica-
tions were adapted several times to gain the best overall performance.

Two clearly defined interfaces between the layers as depicted in Figure 1.1
made a fast development possible. As needs of the later layers demanded the
before layers to propagate specific information, some of the specifications had
to be adapted several times during the development phase. For example the
code generation needs information about the values of the environment vari-
ables to be encoded in the distributed game nodes. Another example for the
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close connection of the parts is, that changes in the construction of the specifi-
cation games had immense influence on the size of the distributed games.

This thesis was a large practical project. Almost 20.000 lines of program code
were written and the compiled program has a size of 4 megabytes. As it was
not sure at the beginning, if the resulting program would be of any practical
use the thesis was quite a challenge. It should also be mentioned, that the
several optimizations in the parts of the overall programs caused interdepen-
dencys that sometimes minimized the results of former optimizations. Also
the arrangements during the development phase were demanding.

The high theoretical complexity of the distributed synthesis problem lead to
refrainment from giving an implementation until now. Thus the results of this
work are quite pioneering as it is the first implementation to show that with ef-
ficient optimizations and careful construction testing for realizability and even
synthesis is possible.

With ReaSyn a tool is provided for everyone to test the results and possibilities
of this thesis. It states, that the distributed synthesis problem is solvable in
practice.

Future Work

Efficient construction and simplification of the distributed games, as it is men-
tioned in the before chapters, strongly reduces the size of the problem. How-
ever, a further simplification could be investigated to solve even more complex
systems. A big problem in this context is, that eleminating to many nodes from
the distributed game leads to wrong synthesis results.

Two reliable algorithms were given to reduce the number of nodes in a game.
Further test could investigate the effects of the EnvWin simplification inbe-
tween glueing steps. This may not always be effective, as if unsuccessful the
game was solved without benefit. A possibility to predict the account of the
optimization would be very useful.

An often used approach to simplify games is splitting the game into strongly
connected components (SCC) and do simplifications therein. SCC and other
graph algorithmic approaches could be investigated.

Color reduction could be used on SCCs to further minimize the occuring col-
ors.

The generated strategies could be enlarged by edges, that start from a node that
is winning for the player. Note that the edges can only be added, if they do not
create a cycle.
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Appendix A

Classes

To implement the above mentioned definition of distributed games, an efficient
datastructure was developed. The following list shows the classes, that are
directly connected to the tasks of this thesis. ReaSyn also contains classes
for different automata and code generations. They are used and developed by
[Reg05] and therefore not included here.

Figure A.1 shows the class interaction as UML-diagram.

A.1 Class dependabilities

PairLinkedList

DynamicArray

WC

FunctionSet

Game

DistributedGame

TransitionFunction

Node

MemorylessStrategy

ParityWC

Function

FIGURE A.1 UML-Overview
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A.2. Basic datastructures

In the upper right corner of the figure are the basic datastructures, that were
used in multiple classes.

A.2 Basic datastructures

Node

-description: string

+Node()

+Node(desc:string)

+getDesc(): string

+getType(): nodetype

+eq(n:Node*): bool

+compare(n1:Node*,n2:Node*): bool

+toString(): string

+order(n:Node*,m:Node*): bool

+toString(n:Node*): string

+setDesc(desc:string): void

FIGURE A.2 Class Node

The class Node (figure A.2) is used to represent the game nodes. It contains a
description for identification and a typedef that defines the type of the node. A
Node can be of one of the following types: NODE, PAIRNODE, SETNODE,
DISTNODE and PARITYNODE.

PairNode

-first: Node*

-second: Node*

+PairNode()

+PairNode(n1:Node*,n2:Node*)

+getFirst(): Node*

+getSecond(): Node*

+setFirst(f:Node*): void

+setSecond(s:Node*): void

+getDesc(): string

+eq(n:Node*): bool

+getType(): nodetyp

FIGURE A.3 Class PairNode

PairNodes (figure A.3) combine classes Pair and Node to deliver a pair of
nodes, where the contents can be accessed by the provided member functions.

A SetNode (figure A.4) contains a list of pointers to nodes. They are internally
referred to as a LinkedList. Adding a node to the set does not check if the nodes
is already contained. The SetNode is sorted according to the node description.

Distributed game nodes can be represented by DistNode (cf. figure A.5), that
inherits from class Node. A DistNode contains multiple nodes and an attribute
size telling how many nodes are included. There are two possible access op-
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CHAPTER A. Classes

SetNode

-set: LinkedList<Node> *

+SetNode()

+SetNode(s:LinkedList<Node>*)

+getSet(): LinkedList<Node>*

+setSet(s:LinkedList<Node>*): void

+addNode(n:Node*): void

+getDesc(): string

+eq(n:Node*): bool

+getType(): nodetyp

FIGURE A.4 Class SetNode

DistNode

-size: int

-nodes: Node * (*)

+compare(d1:DistNode*,d2:DistNode*): bool

+DistNode(size:int)

+DistNode(n:Node* [],size:int)

+getDesc(): string

+getSize(): int

+getNodes(): Node**

+getType(): nodetyp

+operator[](i:int): Node*

+ith(i:int): Node*

+setIth(n:Node*,index:int): void

+eq(n:Node*): bool

+eqxi(n:Node*,i:int): bool

+toString(): string

+toString(d:DistNode*): string

FIGURE A.5 Class DistNode

erations provided: operator[] (int i) and ith(int i), where operator[] (int i) can
be used as with conventional arrays. “[i]” evoked on a DistNode will return the
same as the usual “->ith(i)”.

A.2.1 Template datastructures

The following datastructures can contain elements of any type. In the UML-
diagrams the type is noted with the placeholder T, indicating a template. By
instantiating an object of the following datastructures, the type is given. For
example

DynamicArray<int> *array = new DynamicArray<int>(2);

creates a new DynamicArray for integer values of size 2.

Pair A.6 is mainly used to represent pair nodes in the glue procedure.

For list representation two datastructures were implemented: LinkedList (fig-
ure A.7) and DynamicArray (figure A.8). Both classes provide a sorting al-
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Pair

+elem1: T1

+elem2: T2

+Pair()

+Pair(e1:T1,e2:T2)

+getFirst(): T1

+getSecond(): T2

+setFirst(e1:T1): void

+setSecond(e2:T2): void

+toString(e1toString:string (*) (T1),e2toString:string (*) (T2)): string

T1:

T2:

FIGURE A.6 Class Pair

LinkedList

-len: int

-head: Listelem*

+length(): int

+copyNodes(to:LinkedList*): void

+empty(): bool

+exists(elem:T*,compare:bool (*) (T*, T*)): bool

+append(elem:T*): void

+concat(l:LinkedList*): void

+insert(elem:T*): void

+remove(elem:T*): int

+remove(elem:T*,compare:bool (*) (T*, T*)): int

+nthElement(n:int): T*

+hd(): T*

+tail(): void

+toArray(): T**

+invert(): LinkedList<T>*

+getPos(e:T*): int

+toString(elem2String (T*):string): string

+intersect(l1:LinkedList*,l2:LinkedList*): LinkedList

+complement(l1:LinkedList*,l2:LinkedList*,eq:bool (*) (T*, T*)): *LinkedList

+unite(l1:LinkedList*,l2:LinkedList*): LinkedList*

+unite(l1:LinkedList*,l2:LinkedList*,eq:bool (*) (T*, T*)): LinkedList*

+filter(l:LinkedList*,p:bool (*)(T*)): LinkedList*

+compare(l1:LinkedList*,l2:LinkedList *,p:bool (*) (T*, T*)): bool

T:

FIGURE A.7 Class LinkedList

gorithm, that given a equivalence relation sorts the datastructure. The size of
a LinkedList is flexible and the length updated in a member variable. Addi-
tionally two pointers link to the head and tail of the list. With the function
toDynamicArray a LinkedList can be transformed into a DynamicArray.

The size of a DynamicArray is doubled each time an element is added with no
space left in the DynamicArray. Also, if the size occupied is lower than half of
the available space, the array’s size is halfed. This is always checked when an
element is deleted from the DynamicArray. It therefore has two member vari-
ables keeping track on how many elements are included and how many space
is reserved. Provided a relational and a comparison function, DynamicArrays
provide binary search. The access to an element is thus much faster as for
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DynamicArray

-len: int

-size: int

-array*: T

+DynamicArray()

+DynamicArray(n:int)

+DynamicArray(copy:DynamicArray<T*>)

+operator=(da:const T&): T&

+operator[](index:int): T&

+length(): int

+empty(): bool

+pushElement(element:T): void

+exists(element:T): bool

+mapFunction(f:void (*) (T)): void

+exists(elem:T,p:bool (*) (T, T)): bool

+existsTom(elem:T,p:bool (*) (T, T)): bool

+toArray(): T*

+removeElement(index:int): void

+getIndex(elem:T,compare:bool (*) (T, T)): int

+nthElement(n:int): T&

+assignElement(n:int,element:T): void

+getSize(): int

+toString(elem2string:string (*) (T) ): string

+sort(order:(*)(T,T))

+getIndex(elem:T,p:bool (*) (T,T),order:bool (*) (T,T)): int

+insert(elem:T,order:bool (*) (T,T))

T:

FIGURE A.8 Class DynamicArray

LinkedList. Note, that DynamicArrays can also be used without binary search,
if the speedup is not required or no relational and comparison functions are
applicable.
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A.3 Advanced datastructures

Advanced datastructures provide the possibility to model transition functions
as well as functions of the processes. FunctionSet represents a set of functions.

TransitionFunction

#size: int

#nodes: DynamicArray<Node*>

#matrix: DynamicArray<LinkedList<Node> *>

+getSize(): int

+setEdge(from:Node *,to:Node *): void

+deleteEdge(from:Node *,to:Node *): void

+isEdge(from:Node *,to:Node *): bool

+addNode(n:Node *): void

+removeNode(n:Node *): void

+printMatrix(wd:bool=true): void

+toString(wd:bool=true): string

+getSuccessors(n:Node *): LinkedList<Node> *

+getPredecessors(n:Node *): LinkedList<Node> *

+getNodes(): LinkedList<Node> *

FIGURE A.9 Class TransitionFunction

Function

+domain: DynamicArray<string>*

+image: DynamicArray<string>*

+images: DynamicArray<string>*

+Function(domain:DynamicArray<string>*,image:DynamicArray<string>*)

+Function(domain:DynamicArray<string>*,image:DynamicArray<string>*,images:DynamicArray<string>*)

+getDomain(): DynamicArray<string>*

+f(x:string): string

+def(x:string,y:string): void

+setImages(images:DynamicArray<string>*): void

+toString(): string

+toString(f:Function*): string

FIGURE A.10 Class Function

FunctionSet

-fset: FunctionSet*

-fns: DynamicArray<Function *>

-FunctionSet()

+getInstance(): FunctionSet*

+addFunctions(input:DynamicArray<string>*,output:DynamicArray<string>*): DynamicArray<string>*

+getFunction(fn:string): Function*

+getAllFunctions(): DynamicArray<string>*

+toString(): string

+findTotalFunction(nodes:DynamicArray<Node*>*): void

+functionSimulator(input:DynamicArray<string>*,output:DynamicArray<string>*): string

+findFunction(n1:Node*,n2:Node*): string

+findAllFunctions(n1:Node*,n2:Node*): DynamicArray<string>*

+simulator(in:DynamicArray<string>*,out:DynamicArray<string>*,fun:string): bool

+genNewStartVals(x:DynamicArray<string>*,fun:string): string*

FIGURE A.11 Class FunctionSet
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A.4 Game datastructures

The class Game A.12 represents lists of start, player and environment nodes,
a transition function of class Transitions (cf. figure A.9) and a parity winning
condition of class WC (cf. figure A.14). One helpful member function is
toGDL. It produces a game graph representation in .gdl format as used by the
graph tool aiSee [aAIG]. It is also used, when the option –gdl is given to
ReaSyn by the commandline.

Game

-start: LinkedList<Node> *

-player: LinkedList<Node> *

-environment: LinkedList<Node> *

-functions: TransitionFunction *

-w: ParityWC *

+addPlayerNode(n:Node *): void

+addEnvironmentNode(n:Node *): void

+addTransition(from:Node *,to:Node *): void

+addStartNode(s:Node *): void

+setParity(n:Node *,parity:int): void

+getParity(n:Node *): int

+getMaxParity(): int

+getMinParity(): int

+toString(verbose:bool=true): string

+removePlayerNode(n:Node *): void

+removeEnvironmentNode(n:Node *): void

+removeStartNode(n:Node *): void

+removeTransition(from:Node *,to:Node *): void

+getPlayerNodes(): LinkedList<Node> *

+getEnvironmentNodes(): LinkedList<Node> *

+getTransitionFunction(): TransitionFunction *

+getStartNodes(): LinkedList<Node> *

+getWinningCondition(): ParityWC *

+setTransitionFunction(t:TransitionFunction *): void

+setPlayerNodes(p:LinkedList<Node> *): void

+setEnvironmentNodes(e:LinkedList<Node> *): void

+isPlayerNode(n:Node *): bool

+isEnvironmentNode(n:Node *): bool

+isStartNode(n:Node *): bool

+isGameNode(n:Node *): bool

+subgame(u:LinkedList<Node> *): Game *

+solve(W[2]:LinkedList<Node> *,w[2]:MemorylessStrategy *,t:type=Game::MAXPARITY): void

+removeDeadends()

+removeEnvWin()

FIGURE A.12 Class Game

WC is kept generic, as within ReaSyn there are various winning conditions
due to the automaton representation of the specification.

The class ParityWC keeps track on the minimum and maximum occuring col-
ors and assigns them to nodes.

Distributed games are represented by the class DistributedGame (cf. figure
A.13), which inherits from Game and gains some extra information about the
number of local games, the distributed game itself and information on how the
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number of games can be transformed.

Edges between game nodes are internally maintained through the class Tran-
sitionsFunction. The edges are stored in matrix representation. This allows to
look up an edge between two arbitrary nodes can be very fast.

Functions, which map input strings on output strings are provided by class
Functions. They are used to map a processes’ input signals to output signals.

The collection of all available functions is stored in FunctionSet (cf. figure
A.11).

The memoryless strategy is represented by class MemorylessStrategy (cf. fig-
ure A.16). It has a list of winning successors for a node.

Distributed Game

-nGames: int

-games: Game **

-Iglueable: bool

-IIglueable: bool

-dividable: bool

-checked_Iglueable: bool

-checked_IIglueable: bool

-checked_dividable: bool

+divide(): DistributedGame *

+glue(): DistributedGame *

+getNumberOfGames(): int

+isDividable(): bool

+isIGlueable(): bool

+isIIGlueable(): bool

+isIDeterministic(i:int): bool

FIGURE A.13 Class DistributedGame

WC

+enum: typedef = BUCHI, PARITY, NONE

+getType(): short

+toString(): string

FIGURE A.14 Class WC
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ParityWC

-nodes: DynamicArray<Node *>

-colors: DynamicArray<int>

+maxpar: int

+minpar: int

-getIndex(n:Node*): int

+ParityWC()

+ParityWC(l:LinkedList<Node>*)

+getType(): short

+getMaxParity(): int

+getMinParity(): int

+addNode(n:Node*,color:int=-1,safe:bool=true): void

+removeNode(n:Node*): void

+setColor(n:Node*,color:int): void

+getColor(n:Node*): int

+isAccepted(infinitySet:LinkedList<Node>*): bool

+toString(): string

FIGURE A.15 Class ParityWC

MemorylessStrategy

-nodes: DynamicArray<Node *>

-succ: DynamicArray<LinkedList<Node> *>

+MemorylessStrategy()

+addSuccessor(node:Node*,succ:Node*): void

+addSuccessor(node:Node*,succs:LinkedList<Node>*): void

+removeSuccessor(node:Node*,nsucc:Node*): void

+getSuccessor(node:Node*): LinkedList<Node>*

+getNumberOfSuccessors(node:Node*): int

+toString(): void

FIGURE A.16 Class MemorylessStrategy
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