Saarland University
Faculty of Natural Sciences and Technology I
Department of Computer Science

Bachelor's Thesis

INEQUALITY CONSTRAINTS ON
SYNCHRONISATION COUNTERS

submitted by

WALID HADDAD
on Juli 09 2007

Supervisor
Prof. Bernd Finkbeiner, Ph.D.

Advisor
Klaus Drager

Reviewers

Prof. Bernd Finkbeiner, Ph.D.
Prof. Dr. Reinhard Wilhelm

Statement

Hereby I confirm that this thesis is my own work and that I have documented
all sources used.

Saarbriicken, Juli 09, 2007
Walid Haddad
Declaration of Consent

Herewith I agree that my thesis will be made available through the library
of the Computer Science Department.

Saarbriicken, Juli 09, 2007

Walid Haddad

2.3.5

Table of Contents

1 Introduction 2
1.1 Motivation and Organization 2
1.2 Preliminaries 4

1.2.1 Nondeterministic Finite Automaton - NFA 4
1.2.2 Communicating Finite Automata 5
1.2.3 Networks of Finite Automata 7
1.2.4 Modeling a Network of Finite Automata - Example: Up-

paal 7

2 Cycle Images For Finite Automata 10

2.1 Identifying Strongly Connected Components 11
2.1.1 Tarjan’s Algorithm 11
2.2 Combining Reachable SCCs 12
2.3 Computation of the Minimum Circuit Basis 13
2.3.1 Basis Notations 13
2.3.2 The Cycle Space of a Directed Graph 14
2.3.3 Minimum Circuit Basis For Directed Graphs 15
2.3.4 Algorithm on Finding the Minimum Circuit Basis of a
Strongly Connected Component with Directed Edges . . 15

Cycle Images For Circuits 22

ii

TABLE OF CONTENTS

3 Synchronization Counters And Inequality Constraints 24
3.1 Some Definitions 24
3.2 Computation of Coeflicients of the Inequality Constraints with Irs 26
3.3 Generation of Inequality Constraints For States 28

4 Conclusion 33
4.1 Final Thoughts 33
4.2 Further Work 33

A Experimental Results 35

Abstract

The state space of concurrent systems can grow exponentially in the number
of system components. Thus, to a certain extent, it may be impossible to
explore the entire state space with limited time and memory, a fact known as
the state space explosion problem [Val98]. This problem arises, for instance,
when dealing with reachability analysis. An approach to check synchroniza-
tion behavior on concurrent systems, with the aim of possible error detection
caused by this behavior, is one of the reachability problems. Dealing with this
problem by checking all possible states of the system needs a state space that
is constructed by the synchronous-product of all processes; this leads to the
state space explosion problem.

The aim of this thesis is to attack the state space explosion problem by an
approach which avoids an exhaustive construction of its state space, in order
to perform reachability analysis. The approach intends to introduce synchro-
nization counters for each process and generate inequality constraints on these
counters. The generation of these inequality constraints is done by apply-
ing certain algorithms and computations on the parallel composed automata
representing processes in a system. As a result, our approach can avoid the
generation of the whole state space of a system and bypass the state space
explosion problem, in order to reach the desired goal.

Keywords: concurrent systems, synchronization, reachability problem,
state space explosion.

1

Introduction

1.1 Motivation and Organization

Concurrent systems [BGO05] are composed of components that can operate
concurrently and communicate with each other. They can operate in real time
and thus can be difficult to implement, specify and validate.

A traditional problem faced by the analysis of concurrent systems is the
exploration of their state space. Reachability analysis is a powerful formal
method for analysis of concurrent systems, which generates the state space of
the concurrent program and checks the property of interest on that state space.

In this thesis, we are interested in synchronization behavior which takes
place between components (processes) of a concurrent system. Instead of gen-
erating the whole state space in order to check the reachability on states,
which is part of dynamic analysis, our approach will propose a static analysis
technique based on generating inequality constraints for each state of a single
process.

The idea is to generate constraints where each state of a single process in
a system will get a finite set of these constraints, i.e. inequality constraints;
with the help of these constraints we will be able to decide (for instance) if a
state in the state space of a system is not reachable under circumstances.

First, we will generate what we will denote as cycle images over cycles
in a finite automaton (which represents a process in a system); a cycle image
includes the count of each defined synchronization channel along a cycle (which
we will define later). With the help of these cycle images we will be able to
generate the constraints; we will denote them as inequality constraints on
synchronization counters.

For example, let P; and Pa be two processes and a, b be the defined channels
in a system R and let z1 be a state in P; and z9 in Pa. Suppose the inequality
constraints (the ones we want to generate) will be as follows:

1.1. Motivation and Organization 3

Ti:a—b>2
IQZb-(lZ-l

where Z; and Zs are inequality constraints for z; and zo, respectively; Zo can
be written as ¢ — b < 1; we deduce that any state in R which includes the
process states z; and zo is not reachable because 71 and Zo are incompatible.

Going more into details, for the cycle images we construct inequalities of
the form:

ajpr + ... +apun >0,

where n is the number of channels, pq,..., py, are the synchronization counter
variables (we want to find concrete values for those) and aj,..., a,, are positive
coefficients (the values in the cycle images). After finding the concrete values
for the synchronization counter variables, we are able then to identify inequality
constraints on the synchronization counters of a finite automaton for each
state in it; the inequality constraints will look like the inequalities given in the
example above.

The questions that now arise are: How can we compute cycle images for
processes of a system and for which cycles? How to identify the inequality
constraints on the synchronization counters of a process? How useful are the
resulting information about the processes and what can be deduced from them?

The outline of this thesis is as follows:

Chapter 1 is introductory and contains definitions of most basic notation
and terminology used throughout this thesis. We define automata as used in
this thesis and how to combine a set of automata in order to form synchronized
automata. As a modeling example, we will provide a short overview on the
modeling language used in this thesis.

In chapter 2, we start with some basic definitions and continue with detailed
computation steps of cycle images of finite automata; first we determine which
cycles should be considered and then we generate the cycle images for these
cycles.

Chapter 3 deals with the final steps, more precisely, with the help of the cy-
cle images we will show how to generate inequality constraints on synchroniza-
tion counters for each process; we will discuss also the use of these inequality
constraints.

In chapter 4, we summarize the whole approach and give a final outlook.

In the appendix, we include some experimental results based on this ap-
proach.

1.2. Preliminaries 4

1.2 Preliminaries

Before we go into details about our approach, we will first introduce some basic
definitions that are required in the following sections of this thesis.

1.2.1 Nondeterministic Finite Automaton - NFA

Formally, an NFA is a 5-tuple, (S, 3,0, 59, F), such that

e S is a finite set of states.

e Y is a finite set of symbols, called the alphabet of the NFA.
e 5: S x (XU{e}) — 29 is the transition function.

e Sy C S is a set of initial states.

e F C S is a finite set of accepting states.

The transition function 4, is also called a next state function, can be iden-
tified with the relation —C S x (X U {e}) xS given by s = &' iff ' € 4(s,).
This means that the automaton can move from state s to state s’ if it receives
the input symbol a.

The accepting states are defined in the finite set 7 C S. A run is a finite
sequence of states such that: sy € Sg and s; N si+1 for all 0 < i < n. An
accepting run is one where the last state (s,) in its sequence is an accepting
state.

The sequence of input symbols given to the finite automaton, starting from
the initial state sg, is "accepted", if there is an accepting run. Otherwise it is
not accepted.

Let M be an NFA. M can produce a language, over the finite set 3. The
language is the set of all strings for which an accepting run by M exists and
it is written as £(M). A set of strings is called regular if it is equal to £(M)
for some M.

Automaton M is called deterministic if |So| < 1 and |0(s,a)] < 1 for all
states s € S and o € ¥. (It is called total deterministic if |Sp| = 1 and
|0(s, a)|=1 for all states s € S and a € X).

Fig 1.1 shows an example of a nondeterministic finite automaton M, such
that: S = {so0, 51,52}, ¥ = {4, B}, So = {so} and F = {s1}.

1.2. Preliminaries)

Figure 1.1: An example finite automaton M.

For the transition function, we get the following definitions: §(sg, A)={s1},

5(307 B) - {50751}7 6(817 A) - {32}7 6(317 B) - {}7 6(327 A) - {}, 5(827 B):{}'
As a result, L(M) = {B*A, B*B}.

1.2.2 Communicating Finite Automata

A communicating automaton is an automaton which can communicate by syn-
chronization on actions with other communicating automata through parallel
composition of the whole. In this thesis, we will be using a communication
scheme based on binary channels; a communication which takes place between
two automata is called a binary communication.

The set of actions ¥ consists of send and receive actions along the channels
¢ € C, where C is the set of defined channels of the system. ¢! corresponds to

the sending action over a channel ¢ (state i!>state) and c? corresponds to the

receiving action over ¢ (state C—r">staute). For the sake of simplicity, we assume
that for every channel ¢ there is exactly one automaton A; with ¢! € ¥; and
one automaton Aj;, j # i, with c¢? € X;.

Let us define actions as « ::= a | @ | 7 where, considering a channel ¢, a is
a synchronization action of the form c! (¢?) and @ denotes its complement c?
(c!). T represents an atomic internal execution step.

Consider two communicating automata A; = (S, £1, 81, So', F1) and Ay —
(Sa, ¥, 62, So?, F») running in parallel. The product of the two communicating
automata is a new automaton B = (S x Sa, ¥1 U Xg, &', S§ x SZ, F1 x F1)
where ¢’ is defined as (S; x Sz) x (LU {1}) — 251%52,

For all s1,s] € 81, s2,58, € Sa where a is an action, the following inference
rules indicate the possible behavior of the transition function ¢':

a — 1) _
S1 —1 8/1 a¢22 S§9 —92 8,2 a¢21

(i)

]
(s1,52) 2 (s}, 52) (s1,52) = (s1,h)

1.2. Preliminaries 6

Figure 1.2: Example of two communicating processes modeled as automata Ag

and A;.

Figure 1.3: The product automaton of Ay and A; - all transitions are 7-
transitions.

T / T /
§1 —1 51 S2 —2 S9

(i)

(s1,82) 5 (s,82) (s1,82) = (s1,8h)

] / a /
S1 —1 51 §2 —2 Sy

(iii)

(s1,82) = (s}, s5)

(i) and (ii) represent a one-sided transition step from either 4; or As. (iii)
corresponds to communication via rendezvous.

Fig.1.2 shows an example of two deterministic finite automata which can
be composed in parallel; the corresponding product automaton is shown in
Fig.1.3.

So far we defined finite automata and communications which may occur
among two automata composed in parallel. Next, we will state the more general
use of such automata defined in a system or a network of finite automata.

1.2. Preliminaries 7

1.2.3 Networks of Finite Automata

It is convenient to describe a system as a parallel composition of automata.
We have the same two kinds of transitions as before. In the first case, one
of the components might do an internal action and the other would be when
two components do an action together (synchronization step). Let N = Ay ||
Ai || Az || ... || An be a network of finite automata, which are composed into
one system (the || - operator is used to denote the parallel composition; it is
associative and commutative). Each automaton is defined as A; = (S;, 3, 4,
sb, F;) (i= 1..n). We generalize the idea in section 1.2.2 to have the product
P of all automata in the system where

P=(S1X..x8y, LiU..UDL & SEx .. x SF, Fi x . x Fy)

where 0’ : S’ x (2 U {e}) — 25 is the transition function.

Similarly, as defined in section 1.2.2, we define the transition function ¢’ for
the general case. Note that rendezvous may only occur between two automata
in a system in each transition step.

1.2.4 Modeling a Network of Finite Automata - Example: Up-
paal

There are several proposed modeling languages with which a system (or a
network of finite automata) can be modeled such as Promela, UpPAAL modeling
language,... etc. For this thesis, we chose the UPPAAL modeling language as an
example. In UPPAAL !, a system is modeled as a network of several extended
timed automata? in parallel. It is designed mainly to check reachability and
invariant properties by exploring the state space of a system. For motivation
regarding the use of some examples which will rise up later in this work, there
are only few things we need to know about the UpPPAAL modeling language
before we proceed, such as: How are systems defined in UpPAAL ?

First, note that the UPPAAL syntax used for declarations is similar to the
syntax used in the C programming language. Fig. 1.5 shows an example.

Channels are declared as chan c. The synchronization label can be of the
form c!, ¢? or an empty label.

LUPPAAL is a model checker for verification of real-time systems jointly developed by Uppsala
University and Aalborg University. For more information on the UPPAAL project visit the
official website under: http://www.uppaal.com

2A timed automaton is a finite-state machine, extended with clock variables, where clocks
progress synchronously. Note: the time feature of automata will not be dealt with throughout
this thesis.

http://www.uppaal.com

1.2. Preliminaries 8

Figure 1.4: Ay and A;.

chana, b, c, d, e;

process PO() {

state
g4, 93, 92, q1, q0;

init qO;

trans
g4 -> g3 { sync e?; ...
g3 -> g4 { sync al; ...
g0 -> g3 { sync d?; ...
g2 -> q0 { sync c!; ...
gl -> g2 { sync b?; ...
g0 -> g1 { sync al; ...

[e e B Sy)

process P1() {

state
s2, s3, s1, sO;

init sO;

trans
sl -> sO { sync e!; ...
s3 -> s0 { sync d!; ...
s2 -> s3 { sync c?; ...
sl -> s2 { sync b!; ...
sO -> sl { sync a?; ...

e T

system PO, P1;

Figure 1.5: The Uppaal-textual-version of a system with processes representing
the finite automata shown in Fig.1.4, where PO and P1 correspond to Ag and
Ay, respectively.

1.2. Preliminaries 9

Process declaration begins with process which is followed by the name of
the process and possibly some parameters. All other definitions of a process
are declared inside an {}-block. Inside this block the states are declared as
state StateName and the initial state as init [nitStateName. Transitions
in a process are declared as trans followed by StateName — StateName
and an {}-block including the labellings and probably some more information
related to a transition; here we need only to distinguish the synchronization
labellings which are declared as sync ¢! or sync c?. Finally, processes which
must be composed into a system are declared as system followed by a list
of processes. For more information on the UPPAAL modeling language see
[GBYO02] and [ADLIly].

Now we can proceed to the next chapters; in this introductory chapter we
defined communicating automata representing processes and the way they in-
teract when composed together. Also we represented a modeling language
which should assist in understanding how communicating processes are mod-
eled in a system but also in understanding the experimental example (in the
appendix) based on this modeling language.

2

Cycle Images For Finite
Automata

In the first chapter, we have introduced how a system can be modeled (in
Uppaal). For our approach, we need first to extract some information from
a system model (for example by parsing the system configuration file which
includes the system model in Uppaal code).

The first step of our approach, is to generate what we denoted as the cycle
images of a finite automaton. A cycle image should include the count of each
synchronization channel along a cycle. With the help of the cycle images
we will be able to generate inequality constraints on synchronization counters
(more about this in the next chapter).

Now to compute the cycle images, we will be involved in different sequential
steps. A finite automaton can be represented as a directed graph where ver-
tices of the graph represent states and directed edges represent the transition
steps. For each finite automaton, we need to identify its strongly connected
components; we need these to form one strongly connected component from
all the strongly connected components which are reachable from the initial
state (more in details later). For this formed strongly connected component,
we apply an algorithm to detect cycles. Finally, we generate the cycle images
and represent inequalities based on them in the following chapter; let’s remind
here that the first form of inequalities we want to generate have the form:

ajpil + ... + appy > 0,

where n is the number of channels, pq,..., uy, are the synchronization counter
variables and aj,..., a,, are positive coefficients (the values of the cycle images).
This chapter will deal with computing these coefficients.

Note that we will use the example in Fig.1.2 as a running example to il-
lustrate each step and the different manipulations that may take place by

10

2.1. Identifying Strongly Connected Components 11

applying some algorithms throughout this work. Note also that we will con-
sider, for simplicity, processes which are represented as nondeterministic finite
automata but have one initial state.

2.1 Identifying Strongly Connected Components

For all the finite automata in a system, the strongly connected components can
be identified by applying Tarjan’s algorithm. The vertices of a directed graph
will get some identifiers, which are distinct natural numbers and will uniquely
determine to which strongly connected component the vertex belongs. What
are strongly connected components? How can we identify them?

Definition 2.1.(Strongly Connected Component (SCC)). Let G=(V, £) be a
directed graph, where V and £ are the sets of vertices and edges of G, respec-
tively. A subgraph D € G is strongly connected if for every pair of vertices
u, v € D there is a path from u to v. Mutual reachability is an equivalence
relation on V and its equivalence classes are called maximal strongly connected
components.

In Fig.2.1, automaton Ay has two SCCs, one of them containing the states
qs and qq; the other SCC containing qg, q1 and q2. Automaton A; forms one
SCC.

Definition 2.2. (Terminal Strongly Connected Component (TSCC)). A strongly
connected component G'=(V', £') of a graph G=(V, £) is said to be terminal
if there is no edge in € leading from a vertex s € G' to a vertex s’ ¢ G'.

Notice in Fig.2.1, states q3 and q4 in automaton Ag and the edges between
them form a terminal strongly connected component.

2.1.1 Tarjan’s Algorithm

Tarjan’s algorithm is one known elegant algorithm that finds the strongly con-
nected components of a directed graph in O(n + e) time, where n is the number
of vertices and e is the number of edges of the input graph, i.e. it has time
complexity that is linear in the size of the graph.

The basic idea of this algorithm is a depth-first search beginning from a start
vertex. The algorithm can be considered to contain two interleaved traversals
of the graph. The depth-first search traverses all edges and constructs a depth-
first spanning forest. Once a so called root of a strongly connected component

2.2. Combining Reachable SCCs 12

SCC-1D 1 SCC-1D 0 SCC-1D 0

Figure 2.2: Automata Ay and A; after combining the reachable SCCs.

is found, all its descendants that are not elements of components which were
previously found are labeled as elements of this component. Another inter-
leaved traversal uses a stack storing each vertex when being entered by the
depth-first search. Once a root of a component is exited, all nodes down to
the root are removed from the stack and they form the strongly connected
component which corresponds to the root.

Tarjan’s algorithm can be found in [Tar72] and some improved approaches
of the algorithm in [NSS94].

2.2 Combining Reachable SCCs

After applying Tarjan’s Algorithm to find the strongly connected components,
each vertex (state) is labeled with an identifier (SCC-ID). Let G=(V, &) be
a directed graph. An SCC-ID identifies to which SCC in G a vertex belongs
(Fig.2.1).

The initial state of a finite automaton is represented as the starting vertex
in the corresponding directed graph; we consider only having one initial state.
The starting vertex belongs to an SCC Sy. The SCC Sy C G needs to be
combined with all reachable SCCs, starting from the initial state, to form one

2.8. Computation of the Minimum Circuit Basis 13

single SCC. The reason behind this procedure is that combing the reachable
SCCs (from the starting vertex) will insure having cycles (to be detected later)
over all edges, which means that we would have inequalities that respect all
possible interferences of synchronization actions over the whole structure. Note
that unreachable SCCs are ignored. How can we combine the reachable SCCs?

The idea is to identify those SCCs which are terminal (TSCCs) by detecting
SCCs from which any other SCC in G is not reachable. For each TSCC, we
add a new edge from a representative of this TSCC to the starting vertex (we
call its SCC the init-SCC). As a result, adding the edges leads to the formation
of a new SCC which includes the starting vertex and combines the reachable
parts to the Init-SCC.

Obviously, if only one reachable SCC is detected, i.e. the init-SCC, then no
new edges need to be introduced to the directed graph and the SCC we want
to extract is, in this case, the Initial-SCC itself.

Fig.2.2 shows for the example (which was introduced in the above sections)
the detected TSCC in automaton 4y which gets a new edge; combining it to
the Init-SCC.

2.3 Computation of the Minimum Circuit Basis

In the previous section, we have dealt with directed graphs and the idea of
forming a strongly connected component considering the reachability from the
starting vertex. Let the starting vertex of a graph G represent the initial state of
a finite automaton having one initial state. The idea of combining all detected
SCCs together, by adding edges from TSCCs to the Init-SCC, allows to extract
information (i.e. the cycle images) over some cycles. For generating the cycle
images, some questions will arise, such as: Which cycles should be taken into
consideration? And how do we obtain the corresponding cycle images?

2.3.1 Basis Notations

Consider a directed graph G= (V, &), where V is a set of vertices and £ a set
of directed edges, which is a set of ordered pairs of vertices, € CV x V. Let

e € &€, then e = (u, v) (or also denoted by u—v) we call u the initial vertex
and v the terminal vertex of edge e. A chain c in G is a alternating sequence
of vertices and edges defined as:

C = (X0> €1, X1, €2, X2, ..., €¢—1, Xg—1, €q, Xq)

2.8. Computation of the Minimum Circuit Basis

14

4 | 93 | 92 | 91 | Yo
qqe —q3 | —1 1 0 0 0
Q3 —qs | 1 | =11 0 0 0
Qo —g3 | O 1 0 0 | -1
q2 —qo | O 0O |—-110 1
qa—q | 0 0 1 | -1]0
Qo —q1 | O 0 0 1 | -1

new

=w | -1l oo lo |1

Table 2.1: Incidence matrix of Ajg

s1—so| O 0 | —1 1
s3—so| 0 | —=1] O 1
So — s3 | —1 1 0 0
S1 — S9 1 0 —1 0
so—s1| O 0 1 -1

Table 2.2: Incid. matrix of A;

such that for all &, ey, = (xx_1, Xg) or e = (Xg, Xk—1) (eg is called a forward
or backward edge respectively), x¢ is the initial vertex and x, is the terminal

vertex of the chain.

Let’s define the following;:

e A chain is closed if its terminal vertex is the same as its initial vertex.

e A simple chain is one that does not contain the same edge twice.

e FElementary chains are chains where each vertex x appears only once in
the sequence of a chain aside from the terminal/initial vertex.

e The length of a chain is determined by the number q of its edges.

e A walk is a chain in which each (directed) edge is a forward edge.

e A path is defined as a simple walk.

e A closed simple chain is a cycle and a closed path is a circuit.

2.3.2 The Cycle Space of a Directed Graph

Definition 2.3. The incidence matric M of a directed graph G = (V, £) is an
(nx e)-matriz where n and e are the number of vertices and edges respectively;
it consists of entries which are either M;; = —1 if x; € £ leaves s; € V or if it
enters s; € V then My; = +1, and 0 otherwise.

2.8. Computation of the Minimum Circuit Basis 15

Tables 2.1 and 2.2 show the incidence matrices related to automata Ag and
Ai1. We will only consider the incidence matrix of Ag as a running example
for the following computations.

Definition 2.4. Let G = (V, £) be a directed graph. The cycle space S of G
is defined as the subspace of RI€! generated by the cycles of G.

Proposition 2.1. [GLS03] v € § <= Muv =0

The cycle space of a strongly connected graph has a spanning set which
consists of directed circuits. In the following, we introduce the notion of a
minimum circuit basis and how to compute it. Later on the minimum circuit
basis of a directed graph will be essential for the later computations, i.e. when
we deal with the generation of cycle images.

2.3.3 Minimum Circuit Basis For Directed Graphs

Definition 2.5. A circuit Basis is defined as a spanning set of the cycle space
S of a graph G= (V, &) consisting only of elementary circuits. The minimum
circuit basis is a circuit basis with minimal length, where the length of a basis
B is defined as:

L(B) = >ces [C]

Proposition 2.2. [Ber85] A strongly connected directed graph has a circuit
basis.

2.3.4 Algorithm on Finding the Minimum Circuit Basis of a
Strongly Connected Component with Directed Edges

Before going into details, some basic definitions for the algorithm are needed:

Definition 2.6. Let X7,Xs, ..., X, be n vectors. We say that X1,Xo, ..., X, are
linearly dependent vectors iff there exist scalars ci,ca, ...,cn, not all zero, such
that

aXi+ coXo+t ... +ep X, =0

If such scalars do not exist, then the vectors are said to be linearly independent.

Definition 2.7. The orthogonal complement of a subspace S of R is the set
of all vectors v in R such that v is orthogonal to every vector in S. Knowing

2.8. Computation of the Minimum Circuit Basis 16

that the span of a finite set of vectors is a subspace, the orthogonal complement
of a matrix H which consists of a finite set of vectors (columns) is defined as
the span of all the vectors that are orthogonal to the span of the vectors in
H. Let Ht denote the orthogonal complement of a matriz H. We have then
HTHE=0.

Definition 2.8. (Permuted Column Echelon Form - PCEF)A matric M is
said to be in its Permuted Column Echelon Form if it satisfies the following
properties:

e Fach non-zero column contains a 1 at a Tow i, all other entries of the
row t are zero; we say, a column has an isolated entry

o All columns that contain only zeros are placed at the right end of the
matrix, if they exist.

The algorithm to compute the minimum circuit basis consists of finding the
basis of the orthogonal complement of the incidence matrix and the elimination
of negative entries in the obtained matrix, which results in is the minimum
circuit basis of the input directed graph.

To compute the orthogonal complement of a matrix M, which is supposed
to be an incidence matrix of a strongly connected digraph, first we are going
to transform the matrix into the Permuted Column Echelon Form and then
construct the vectors (columns) of the basis B of the orthogonal complement.

I. Computing the Permuted Column Echelon Form.

The algorithm starts with an input matrix M; we want to transform the
matrix M into a matrix M’ in PCEF. The PCEF of M can be computed
by some column operations, i.e. for each column in M, we detect an entry
e=1 (or e=—1) and we want to isolate e in its row r; the column is added or
subtracted to a finite set of columns in such a way to replace all the columns
(but not the column of e) which have non-zero entires in r by columns which
will have 0 entries in 7. Columns having a negative isolated value (i.e. —1)
instead of 1, can be multiplied by —1 in order to have the column in the desired
form. The whole thing is done with sequential transformation steps considering
each column until each column satisfies the desired property as stated in the
definition of the PCEF.

Tables 2.3 and 2.4 shows the incidence matrix Mg of the digraph corre-
sponding to automaton Ay (Fig. 2.3) and the PCEF Mj, of M.

2.8. Computation of the Minimum Circuit Basis 17

c! al
@) (D)

Figure 2.3: Automaton Ay (with the new edge q4 — qo).

d?

Q—gs | -1 1 0] 010 a—qs | [1]] 0O 0|0
g3 —qa | 1 | =11 0 0 0 Qg3 —q4 | =1 O 0 0
Qo—g| 0] 1]0]0|-1 Qo —qs| O [1] | 0|0
@—q | 0| 0 |-1]0 1 a—q | 0 | 0 |[1]] 0
qr —q2 | 0 0 1 | =110 qi—¢q2 | 0O 0 | -1 -1
Q—q¢ | 0| 0] 0] 1|-1 Q—q | 00| 0[]
Q4 —qo | —11] O 0 0 1 ¢ —q | 1 | —-11 0 0
Table 2.3: Incidence matrix Mg of Ay Table 2.4: PCEF of Mg

II. Computing a Basis of the Orthogonal Complement of the Inci-
dence Matrix.

After computing the PCEF M’ of M, we perform the following computa-
tions to output a basis B of the orthogonal complement of M (Note that: zero
columns in M’ can be eliminated from the matrix):

Let rq, ..., 7% be the rows in matrix M’, which are not those of the obtained
isolated entries. For the construction of the basis vectors of the orthogonal
complement, k vectors need to be constructed. Each of these &k vectors is
associated to one of the rows rq, ...or 7 in matrix M’; which means that the
associated vector to 7, (1 < m < k) contains the entry 1 at the column index
where 7, was detected and the entries at column indices which are the same
as the indices of the rows r, for all 1 < z < k and x # m, become all zeros.

To complete the construction of the vectors of the basis of the orthogonal
complement of M, all other indices of the basis vectors (i.e. those which are
the same as the indices where the isolated elements were detected) get their
values as follows:

If in a row ¢, column j has an isolated entry ¢ (i.e. 1) and in row 7,

2.8. Computation of the Minimum Circuit Basis 18

c! al
@) (D)

Figure 2.4: Automaton Ay (with the new edge q4 — qo).

d?

(1<m<k) column j has a value d then the basis vector which has the entry 1
in row 7, gets the value — (d/c) at the index i, knowing that ¢ has the value
1.

Lemma 2.1: The above computational steps form a basis of the space of all
the vectors which are orthogonal to the vectors (columns) of M. The resulting
matrix B is a basis of the orthogonal complement of the matrix M.

Proof. The first step where the input matrix is transformed into its PCEF in-
cludes a finite sequence of column operation (addition/subtraction of columns);
the vector space stays the same in M’ as in M. Then vectors (columns) were
constructed in such a way to have each of them orthogonal to all the vectors
in M’; i.e. the dot product of a constructed column and any column in M’
must result in 0. Following Proposition 2.1, we know that these vectors are
in the cycle space of the directed graph of M. Because the vector space does
not change between M and M’ we have that any constructed vector is also
orthogonal to the columns of M. Knowing that each constructed vector is
orthogonal to all the columns of M and notice that the algorithm constructs
a complete set of vectors for a basis, then these vectors form a basis of the
orthogonal complement of the matrix M.

O

Table 2.5 shows the resulting orthogonal complement B of Mg correspond-
ing to Ap in Fig. 2.4.

Proposition 2.3. [DMC94]| Let B be a basis of a vector space S. If any vector
v in B is replaced by the sum of v and a linear combination of the vectors in
B — {v}, then the resulting set of vectors is again a basis of S.

2.8. Computation of the Minimum Circuit Basis 19

4 — q3
a3 — 44
q0 — 43
a2 — qo
d1 — q2
dqo — 41

d4 — qo

O O O O O =
O = == O O O
_ o O O = O

Table 2.5: Matrix B

III. Eliminating Negative Entries.

The vectors in matrix B may still contain negative entries, i.e. —1’s. An
entry of the value —1 refers to a backward edge. We are searching for circuits,
this means, for every vector in B we have to eliminate the negative entries
because we want to avoid having different directions indicated by the vector
(i.e. only forward edges) to possibly obtain a circuit. Elimination of these
entries must occur by linear combinations between some vectors. The resulting
vectors will form a minimum circuit basis.

To get rid of the negative entries (—1’s), we do the following:

For all columns in matrix B, as long as negative entries exist, select a row
at index 7 with negative entries; for all columns v; with negative entries —c; in
the row at index ¢ and all columns v, with positive entries d; also in row index
i compute the linear combination of v; and vy, (sjr = ¢; * vi + dj * v;), which
has a zero entry in row 7. Substitute the columns v; by the linear combinations
sjk- If the selected row has m negative and n positive entries, then m columns
will be substituted by m*n columns, thats why it is more efficient to always
select a row at index i so that (m*n) — n is minimal. Columns which contain
negative entries, but no positive entries in the same row of the negative entry
in the matrix exist are eliminated. We denote the resulting matrix as B'.

Lemma 2.2: It is always possible to get rid of negative entries in the matrix
for which negative entries are to be eliminated after step (II).

Proof. First, linear combinations only take place when having a positive
entry (namely 1) at the same row index of the negative elements. So, if such
a positive entry exists then after a finite number of linear combination with
the same vector (column) the negative entry will be replaced by a the entry 0.

2.8. Computation of the Minimum Circuit Basis

20

4 — 43
a3 — 44
qo0 — 43
q2 — 4o
q — q2
do — q1

d4 — qo

SO O O O O = =
O = Rk = O O O

- O O O = = O

Table 2.6: Matrix B’

Mnimum Circuit Basis

Figure 2.5: Automata Ay and its minimum circuit basis.

Also when having a situation where no positive entries in the same row of the

negative entry is detected, then the column is simply eliminated.

O

With these steps the minimum circuit basis can be obtained by the help of
these resulting vectors (columns), which indicate the existence (when having
a non-zero entry) of an edge in a circuit; the edges indicated by the positive

entries in each resulting vector construct when combined together a circuit.

Table 2.6 depicts the matrix consisting of the vectors of the minimum circuit

basis of automaton Ag - see also Fig.2.5.

2.8. Computation of the Minimum Circuit Basis 21

Why does this algorithm work? On finding the PCEF of a matrix M,
notice that the entries in each row of the input matrix contain a 1 and a —1
and all the other values are 0’s. Let’s recall that for each column, we detect
an entry e=1 (or e=—1) and we want to isolate e in its row r; the column is
added or subtracted to a finite set of columns in such a way to replace all the
columns (but not the column of e) which have non-zero entires in r by columns
which will have 0 entries in 7. We notice that it is always possible, after some
finite transformation steps, to isolate the entry e. For the next columns, the
same follows and it is important to note that the rows which were taken into
consideration before and which got isolated elements will not be affected by
transformation steps which will follow. This implies that the algorithm will
always find a PCEF after some finite steps. Also note that performing column
operations does not change the column space.

The idea of constructing the basis of the orthogonal complement of a matrix
M’ will also always terminate as the number of vectors to be constructed
cannot exceed the number of rows in M’ according to the algorithm and the
values are determined by having the dot product of a constructed vector with
a vector in M or M’. About the existence of negative entries the algorithm
performs some finite steps to have these entries eliminated and to get a basis
of vectors which are still orthogonal to vectors in M and M’.

Lemma 2.3: The generated circuits form together a circuit basis of the input
directed graph.

Proof. According to Lemma 2.1, from the input incidence matrix a basis of the
orthogonal complement for this matrix is constructed. Later on negative entries
were eliminated from such a matrix by a finite number of linear combinations.
From Proposition 2.3 it follows that the set of vectors in the resulting matrix
is again a basis of the vector space, i.e. a circuit basis because only forward
edges are included and this fact is based on Lemma 2.2.

0

The first two steps of the algorithm take polynomial time but for the third
step we studied a worst-case where the computation may grow exponentially
in the number of the columns. Transforming the input matrix into its PCEF is
bounded by O((n—1)nm) where n is the number of vertices (columns) and m
is the number of edges (rows). The second step, where a basis of the orthogonal
complement of the input matrix is constructed, i.e. k vectors in the size of a
column are constructed (k is the number of rows with no isolated elements)

2.8. Computation of the Minimum Circuit Basis 22

and so the whole computation is bounded by O(mk) (Note: we assumed that
we know the row indices of isolated entries from the first step).

For the final step, namely the elimination of negative entries, detecting the
negative entries considers the whole matrix and detection must also consider
the columns resulting from the linear combinations; we have that for each
negative entry e in column ¢ and in a row r, we replace ¢ by a set of linear
combinations with at most n—1 columns where n is the number of columns.
There is a case where the generation of vectors resulting from the linear com-
binations will grow exponentially because the linear combinations will also get
positive values which need to be considered in the steps to follow where we
have to generate new columns formed by linear combinations.

2.3.5 Cycle Images For Circuits

The circuit vectors contained in the minimum circuit basis are the circuits for
which we construct the cycle images. Consider the edges of G and check for
the existence of each edge in a circuit, this is when the circuit vector has a
(non-zero) positive value at the corresponding index, a channel counter is then
incremented by the detected positive value at the index which is mapped to
the corresponding channel in a channel counter array.

In other words, we are counting distinguished synchronizations over circuits
contained in the minimum circuit basis and for each of these circuits a cycle
image is generated.

Table 2.8 depicts the resulting cycle images for automaton Ag; c1, co and
c3 are cycle images corresponding to the vectors vy, vo and vs in Table 2.7,
respectively.

In this chapter we computed the cycle images of circuits in the minimum
circuit basis of the directed graph which corresponds to a finite automaton. We
are now ready to illustrate in the next chapter how we are going to generate
inequality constraints on synchronization counters with the help of the obtained
cycle images.

2.8. Computation of the Minimum Circuit Basis

23

Figure 2.6: Automaton Ay (with the new edge q4 — qo).

U1 U2 V3

e’

Qs —q3 | 1

a!

0
qs — q4 1 0 1
d? 0

qo —q3 | 0 1

@S| 0| 1|0
b?

qq—¢q2| 0] 1|0

do “ g1 | 0| 11]0

1 —q | 0] 0|1

Table 2.7: Matrix B’

c1 | ca2 | c3
a—0| 111
b—1]01] 1|0
c—2 10110
d—3| 0] 0|1
e—4 | 11010

Table 2.8: Cycle images for Ay

3

Synchronization Counters
And Inequality Constraints

In the previous chapter, we have dealt with detecting circuits in a directed
graph corresponding to a finite automaton and the computation of cycle im-
ages associated to those circuits. Now we are ready to generate inequality
constraints on the synchronization counters with the help of the cycle images.
Next, we would then explore the states of the corresponding finite automaton,
to define inequality constraints for each state in each communicating process.

The inequality constraints will have the form:
PIXT A+ e A+ i Xp > kg

where p,..., !, are values which we will compute using the cycle images, xi,...,
xp, are channel names (7 is the number of channels) and &, stands for a value
depending on a state q.

How to generate the general inequalities? And how to define the inequality
constraints for states? Before answering these questions, we will first consider
some definitions and basic notations.

3.1 Some Definitions

Definition 3.1. (Convex Polyhedron). A convex polyhedron or simply a poly-
hedron P in R? is the set of solutions to a (finite) system of linear inequalities
in d-variables: P = {x € R : Mx < b} where M € Rmxd gnd b € R™.

Note that, for the case d=2, P is said to be a convex polygon.

Definition 3.2.(Convexr Combination). A convex combination of a set of vec-
tors (points) {v1, va, ..., v, } is an expression of the form:

24

3.1. Some Definitions 25

Y = QU1 + U2 + ... 1+ Qplp
where oy + g + ... +ap = 1ando; > 0V 1 <3< n.

Definition 3.3.(Conver Hull). The convex hull of a set X is the set of convex
combinations of all points in X. It is the minimal convex set containing X .

Definition 3.4.(Convex Cone). A convex cone K is a subset of a vector space
that is closed under linear combinations with positive coefficients.

According to the Farkas-Minkowski- Weyl theorem [Sch86| a convex cone is
polyhedral if and only if it is finitely generated.

Definition 3.5.(Extreme Points). A point u in a polyhedron P is said to be
an extreme point of P if there do not exist two points u; and ug in P, such
that, u = X w3 + (1 —X)ug, where 0 < A\ < 1 and uy # us.

Definition 3.6.(Ray). Let K = {re R*: Mr>0} . Any rin K\ {0} is a ray
of K.

Definition 3.7.(Eztreme Rays). An extreme ray is a ray r in K for which
there do mot exist rays 1 and ro in I with ry # Are for any X > 0, such that,
r=pr+ (1- p)re, where 0 < p < 1.

Definition 3.8.(Conic Hull). Let D C RN then the conic hull of D is a union
of all rays through the origin intersecting D.

The Minkowski-Weyl theorem [Sch86]| states that every convex polyhedron
P has two representations, one as the intersection of a finite set of half spaces,
denoted by the H-representation of the convex polyhedron; formally, for
some real (finite) matrix M and real vector b (b € R™),

P ={z: Mz < b},

and the other representation, known as the V-representation of a convex
polyhedron, is defined as the Minkowsk: sum of the convex hull of a finite set
of vectors uy,..., us and the conic hull of finitely many directions in R%:

P = conv{uy,...,us} + cone{ry,...,rq}

where {u1,...,us} C R? is the set of wvertices or ewtreme points of P,
{r1,...,rq} € R% is the set of extreme directions(rays) of P, and

8.2. Computation of Coefficients of the Inequality Constraints with lrs 26

Polygon H-representation V-represetation
inequality LN point
¢) « e
B y \ P /
2 \ v’
\\\ // \\ /’
fffffff ! o 14
7
/
\ s ray
NQ Q Q
A ’
A 7’
A /
N
\
v

Figure 3.1: An example of two polygons in H- and V-representations.

conv{ug, ...,us} = {51 Aw; - D5 1 i =1, A1 >0,..., Ay >0},
cone{ry, ..., rq} = {30y piri : p1 > 0, .., p1g > 0}

Fig. 3.1 shows an example of two polygons and the corresponding H- and
V-representations.

At this point, we notice that the values in the cycle images, which were
discussed in chapter 2, are to be coefficients aq,..., a,, of inequalities of the
form:

ajpl + ... + apln >0

where n is the number of channels, p1,..., 4, are some variables. The set of
these inequalities (half spaces), form a polyhedron, i.e. a polyhedral cone, and
denote its H-representation.

3.2 Computation of Coefficients of the Inequality Con-
straints with Irs

Irs [Avi] is a C program which converts an H-representation of a polyhedron
to a V-representation or vice versa. It is based on the reverse search algorithm
of Avis and Fukuda[AF92], which uses simplex method with systematic search
over sequence of bases; we refer to Avis [Avi99b] for a technical description,
and [Avi99a] for some computational experience.

8.2. Computation of Coefficients of the Inequality Constraints with lrs 27

c1 | c2 | c3
a—0| 1 1 1
b—1] 01110
c—2| 0] 110
d—3|0 |01
e—4 | 11010

Table 3.1: Synchronization counters for Ag.

For our approach, we need to convert an H-representation into a V-representation;
this is known as the vertexr enumeration problem. The H-representation is given
in an input format for Irs, it contains a list of inequalities, i.e. their coeflicients.

The input files, which were developed for Irs in a proposed polyhedra format,
are constructed as follows:

H-representation
begin
m n integer

{list of inequalities}
end

where m is the number of inequalities and n is the number of coefficients
of each inequality.

Considering the example of the automaton Ag, the constructed cycle images
(Table 3.1) are the vectors ¢c; = (1000 1)T, co = (11100)% and ¢3 = (10
01 0)7; thus, we obtain the following inequalities Z1, Zo and Z3 for the vectors
c1 ,co and c3, respectively:

Iy po+ pa >0
Iy s po +p1+ p2 >0

I3 : po + p3 >0

The H-Representation formed by the values of the cycle images for Ay is
then given in the following input form:

8.8. Generation of Inequality Constraints For States 28

H-representation
begin
3 5 integer
i1 0 0 0 1
i 1 1 0 O
i1 0 o0 1 ©

Irs computes the V-representation of the input and outputs the following:

V-representation

begin
**x*x*xx 5 rational
0-1 1 0 O
1 -1 0-1-1
0 1 0 0 O
0O 0 0 0 1
0O 0 0 1 O
end

The output in V-representation shows that the polyhedron has two vertices
(0,—1,1,0,0) and (1,—1,0,—1,—1) and three extreme rays (0,1,0,0,0), (0,0,0,0,1)
and (0,0,0,1,0).

We need these values as coefficients of inequalities, which we are going to
generate.

3.3 Generation of Inequality Constraints For States

The values which we computed in the above section are the the coefficients
phseeey pir, which we need for the inequalities which have the form:

I/i : ,LL/1X1 + ... + ,U’;IXn > k‘q,

where n is the number of channels, m the number of inequalities, z the
number of states (vertices) in the finite automaton , xi,..., x,, are channels, k,
stands for a value depending on a state q.

After generating the left-hand-side part of these inequalities we are going
to associate inequality constraints for each state of a finite automaton. We
determine the right-hand-side value (k;) of the inequalities and what we get
are the inequality constraints in the following form:

8.8. Generation of Inequality Constraints For States 29

/. 1 .
T & > ki jin sj,

where &; is an expression of the form pfx; + ... + pl,x, (see first paragraph),
s; is a vertex in the input graph, and forall 1 <7 < mand 0 < j < 2-1.

Let G=(V,€) be the input graph. To compute the k; ; for a related inequality
T';, the algorithm begins by initializing all vertices in the input graph G with
temporary labels; the starting vertex is labeled by 0, all the others are labeled
by a value which must be large enough that, when compared with any value
during the algorithm run later, it must always be greater (for example let it
be +00). The reason behind this is related to the next step of the algorithm,
where vertices will get minimal values.

Now we can apply a procedure, namely explore(u, Z'), which takes at the
beginning the starting vertex and an inequality 7’ as arguments; its imple-
mentation is shown in the pseudocode below. In the following we define some
functions which appear in the pseudocode:

e label(e): returns the label of an edge e.

e getValue(u): returns a value currently assigned to a vertex u.
e setValue(h, u): assigns a new value h to a vertex u.

e terminalVertex(e): returns the terminal vertex of an edge e.

e inequalityCoefficient(l, Z’): returns the coefficient corresponding to
an edge label [in an inequality 7.

procedure explore(u,Z")

1: for all outgoing edges e of u do
2: ¢ « inequalityCoef ficient(label(e),T")
3: S «— getValue(u) + ¢

4. x «— terminalVertex(e)

5. if S < getValue(z) then

6: setValue(S, x)

7 explore(x,T")

8 end if

9: end for

As obvious, explore(u, Z') performs a graph search starting from the starting
vertex for which it takes O(|V| 4 |£]) time to visit each vertex once; this is
always the case as the algorithm starts at the starting vertex and all the other
vertices v € V are labeled with +o0o values which makes reduction of these

8.8. Generation of Inequality Constraints For States 30

-1
6
O,

0

Initial vertex labels (in red) Resulting vertex labels

+inf +inf +inf

Figure 3.2: Ay and the specifications for inequality Z'5 : a-b-d-e > ky;
(Note: the label +inf means plus infinity).

values always possible during the first visit, this means also that there exists
for every vertex € V a path from the staring vertex which will map a minimal
value to a vertex. Moreover, consider also the (update) steps when applying
explore(x, Z') on a vertex z (pseudocode — line 7) which can still get smaller
values after being visited by another path. As it is possible that all vertices
can still get minimal values and we know that the input graph is an SCC, each
update step also takes O(|V| + |€]) time in a worst case. Knowing that, there
exists a path to any vertex z’ where z’ will get a minimal value, so the number
of possible update steps for z’ is limited to the number of possible paths from
the starting vertex leading to it where 2’ occurs only once in each path.

Remember that we should apply the algorithm for each non-specified in-
equality and perform the represented algorithm to obtain for each vertex (state)
an associated set of inequality constraints.

For the example automaton A the following non-specified inequalities Z;
are constructed:

T'hi: c-b>kiy

T'9: a-b-d-e>ky
I'3: b>ks,

T'y: e>kaj

I/5 : d > k5,j

The following inequality constraints for the states q; are obtained:

8.8. Generation of Inequality Constraints For States 31

0 1in qq
in qi
Ill,j :c—b Z -1 in q2 (31)
0 in q3
0 in qq

in qo
in q
in qo (3.2)
-1 in qs
0 in qq

S = D

in qo
n qi
in qo (3.3)
n g3
n qq

I/37j :b Z

DS RDDD

in qo
in qq
in qo (3.4)
in qs
in qq

Il4’j . e Z

SIS DD

in qg
in qi
in q (3.5)
in qs
n g4

I,5J‘) Z

N R O DD

Fig.3.2 shows for Ay and the inequality 7’y : a - b - d - e > ko ; the initial
labels and the resulting labels after performing the exploration algorithm.

For the running example we showed how the the computations are per-
formed on a single process in a system. For sure we have to perform the com-
putations on all the processes of a system, and the resulting inequalities which
are viewed as inequality constraints allow under circumstances, for example,
the knowledge on if a state in the considered system is not reachable.

8.8. Generation of Inequality Constraints For States 32

For instance, consider an inequality Z’ for a process P; specified for a state
z; in P; in a system R and another inequality Z” for a process P; specified for
a state z; in P; also in R; then if 7 and Z” are incompatible, we know that
any state in the state space of R which in its composition includes both basic
states z; and z; is not a reachable state in R.

We can also generalize this idea for a set of states in P’ satisfying a common
inequality constraint Z’ to be considered with a set of states in P” that have
an incompatible inequality constraint Z”.

Now we can remind about the example which was stated in the introductory
chapter; let P; and Py be two processes and a, b be the defined channels in
a system R’ and suppose there exist a state z; in P; and z9 in Py for which
inequality constraints were obtained by our approach, such that:

Ti:a—b>2
To:b—a> -1

7, can be written as a — b < 1 (Z; and Zy are inequality constraints for z; and
z9, respectively); then we know that any state in the state space of R’ which
is composed of the basic process states z1 and zo is not reachable because 77
and 7, are incompatible.

In this chapter we showed how inequality constraints on synchronization
counters can be generated after having computed the cycle images; first we
constructed inequalities having the values in cycles images as coefficients and
put together they formed the H-representation of a polyhedron, then we trans-
formed this H-representation the V-representation of the polyhedron. General
inequalities were then constructed out of which we derived inequality con-
straints for each state in an automaton. We then showed how one could deduce
information concerning reachability in a system.

4

Conclusion

4.1 Final Thoughts

It is known that it is sometimes impossible, to a certain extent, to explore the
entire state space of concurrent systems with limited time and memory; based
on the state space explosion problem. We succeeded in this approach to collect
information regarding reachability without having to explore the whole state
space of a system. Thus dealing with the problem the way our approach deals
with it is a more efficient and successful.

The idea was the generation of inequality constraints on synchronization
counters. More precisely, we considered each single process of a system, gen-
erated constraints on the synchronization counters for a process, and then
compared these constraints together in such a way to obtain some reachability
analysis; this is related to the interaction which occurs between the processes
of a system.

The valuable information about the defined processes of a system which
this thesis provided leads to the derivation of some kind of a system abstrac-
tion defined by inequality constraints on the synchronization counters of the
processes of a system.

4.2 Further Work

Possible extensions of this thesis could deal with how to make use of the ob-
tained results; dealing with these efficiently and deriving new ideas of how some
properties of interest in relation to the reachability problem can be checked.
Let us also note here that the algorithm which was used by this approach
to find the minimum circuit basis had a problem denoted by the worst case

33

4.2. Further Work 34

computation time which happened to be exponential; finding a more efficient
algorithm for computing the minimum circuit basis (being an essential part of
this approach) is also one possible future work.

A

Experimental Results

The implementation for this approach was developed in C++. The program
is a tool which gets an input file in Uppaal format (.xta), parses the file,
performs the computations which were discussed throughout this thesis, and
outputs the results (i.e. the inequality constraints on the synchronizations for
each defined process in a system). The program displays the results of almost
each computational step.

We tested the program with various system models; an example execution of
the program on a system model defining four processes results in the following:

Input file: input.xta (see next page)

35

36

- INPUT FILE BEGINS HERE -

J A e
// CSMA/CD 3

// Carrier Sense, Multiple-Access with Collision Detection

// automatically generated by script genCSMA_CD.awk

// M. Oliver Moeller <omoeller@brics.dk>

// Wed Sep 19 11:48:20 2001

chan begin, end, busy, cdl, cd2, cd3;

process PO {

clock x;

state bus_idle, bus_active, bus_collisioni{ x < 26 1},

bus_collision2{ x <= 0 }, bus_collision3{ x <= 0 };

init bus_idle;

trans

bus_idle -> bus_active { sync begin ?; assign x:= 0; },

bus_active -> bus_idle { sync end ?7; assign x:= 0; },

bus_active -> bus_active { guard x >= 26; sync busy !; },

bus_active -> bus_collisionl { guard x < 26; sync begin 7; assign x:= 0; },
bus_collisionl -> bus_collision2 { guard x < 26; sync cdl !; assign x
bus_collision2 -> bus_collision3 { guard x <= 0; sync cd2 !; assign x:= 0; },
bus_collision3 -> bus_idle { guard x <= 0; sync cd3 !; assign x:= 0; };

}

process P1 {

clock x;

state sender_wait, sender_transm{ x<= 808}, sender_retry{x < 52};
init sender_wait;

trans

sender_wait -> sender_transm { sync begin !; assign x:= 0; 1},
sender_wait -> sender_wait { sync cdl 7; assign x:= 0; 1},
sender_wait -> sender_retry { sync cdl ?; assign x:= 0; },
sender_wait -> sender_retry { sync busy ?; assign x:= 0; },
sender_transm -> sender_wait { guard x == 808; sync end !; assign x:= 0; },
sender_transm -> sender_retry { guard x < 52; sync cdl 7; assign x:= 0; },
sender_retry -> sender_transm { guard x < 52; sync begin !; assign x:= 0;
sender_retry -> sender_retry { guard x < 52; sync cdl ?7; assign x:= 0; };

}

1},

process P2 {

clock x;

state sender_wait, sender_transm{ x<= 808}, sender_retry{x < 52};
init sender_wait;

trans

sender_wait -> sender_transm { sync begin !; assign x:= 0; },
sender_wait -> sender_wait { sync cd2 ?; assign x:= 0; },
sender_wait -> sender_retry { sync cd2 ?; assign x:= 0; 1},
sender_wait -> sender_retry { sync busy ?; assign x:= 0; 1},
sender_transm -> sender_wait { guard x == 808; sync end !; assign x:= 0; },
sender_transm -> sender_retry { guard x < 52; sync cd2 ?; assign x:= 0; },
sender_retry -> sender_transm { guard x < 52; sync begin !; assign x:= 0;
sender_retry -> sender_retry { guard x < 52; sync cd2 ?; assign x:= 0; };

}

1,

37

process P3 {

clock x;

state sender_n {x <= 2}, sender_wait, sender_transm {x<= 808},
sender_retry {x < 52};

init sender_wait;

trans
sender_wait -> sender_n { sync cd3 !; assign x:= 0; I,
sender_wait -> sender_transm { sync begin !; assign x:= 0; 3},
sender_wait -> sender_wait { sync cdl ?; assign x:= 0; }

s
sender_wait -> sender_retry { sync cdl ?; assign x:= 0; 1,
sender_wait -> sender_retry { sync busy ?; assign x:= 0; 1},

sender_transm -> sender_wait { guard x == 808; sync end !; assign x:= 0; 1},
sender_transm -> sender_retry { guard x < 52; sync cdl ?; assign x:= 0; },
sender_retry -> sender_transm { guard x < 52; sync begin !; assign x:= 0 },

sender_retry -> sender_retry { guard x < 52; sync cdl ?7; assign x:= 0; };

}

system PO, P1, P2, P3;

- END OF INPUT FILE -

Program output:

PHASE 1 - File Parsing:

Nr of Processes: 4

Number of channels: 6

Defined Process-names: PO - P1 - P2 - P3

Computations for process PO ->

PHASE 2 - Detection of SCCs:

Table of SCCs for process PO

SCC-ID | Vertex(State)
0 | bus_idle
0 | bus_active
0 | bus_collisionl
0 | bus_collision2
0 | bus_collision3

PHASE 3 - Combining Reachable SCCs (Incidence matrix).

Incidence Matrix of SCC in PO:

= O O O -

O O O - KB =
|

O O = OO

O FPr O OO

= =, O O OO

38

PHASE 4 - Permuted Column Echelon Form:

1 o o0 oO
-1 o 0 O
0 1 0o 0
o o0 1 0
o 0 O 1
-1 -1 -1 -1

PHASE 5 - Basis of the orthogonal complement:

O O O O+
e e e e

PHASE 6 - The Minimum Circuit Basis:

O O O O - -
e e e e

PHASE 7 - The Cycle Images:

O O O O
= = =2 O O0ON

PHASE 8 - Generation of Inequalities with 1lrs:

*1lrs:1lrslib v.4.2b, 2006.10.31(32bit,lrsmp.h)

*Copyright (C) 1995,2006, David Avis avis@cs.mcgill.ca
*Input taken from file PO_H_REP.ine

*0utput sent to file PO_V_REP.ext

0o 0 1 0 0 O
o o0 o0 -1 1 0
o o0 o0 -1 0 1
i -1 0 -2 0 O
0 i1 o0 o 0 oO
o o0 O 1 0 O

39

PHASE 9 - State Exploration and Inequalities Specifications:
+++++++++++ RESULTS FOR PROCESS: PO +++++++++++

1 * busy >= [bus_idle -> O, bus_active -> 0, bus_collisionl -> 0, bus_collision
2 -> 0, bus_collision3 -> 0]

(-1) * cdl + 1 * cd2 >= [bus_idle -> 0, bus_active -> 0, bus_collisionl -> 0, b
us_collision2 -> -1, bus_collision3 -> 0]

(-1) * cdl + 1 * cd3 >= [bus_idle -> 0, bus_active -> 0, bus_collisionl -> 0, b
us_collision2 -> -1, bus_collision3 -> -1]

1 * begin + (-1) * end + (-2) * cdl >=
[bus_idle -> 0, bus_active -> 1, bus_collisionl -> 2, bus_collision2 -> 0, bus_

collision3 -> 0]

1 * end >= [bus_idle -> 0, bus_active -> 0, bus_collisionl -> 0, bus_collision2
-> 0, bus_collision3 -> 0]

1 * cdl >= [bus_idle -> 0, bus_active -> 0, bus_collisionl -> 0, bus_collision2
-> 1, bus_collision3 -> 1]
Computations for process P1 ->

PHASE 2 - Detection of SCCs:

Table of SCCs for process P1

SCC-ID | Vertex(State)
0 | sender_wait
0 | sender_transm
0 | sender_retry

PHASE 3 - Combining Reachable SCCs (Incidence matrix).
Incidence Matrix of SCC in P1:

-1 1
-1 0
-1 0
1 -1
o -1
0 1

= B OR RO

PHASE 4 - Permuted Column Echelon Form:

|
O O r KB P K
= = O R KB O

40

PHASE 5 - Basis of the orthogonal complement:

-1 -1 1 0
1 0o 0
0 1 0 O
0 1 0

-1 -1 0 1
0o 0 o0 1

PHASE 6 - The Minimum Circuit Basis:

O O OO~
= = O O OO
= OB O F O
= O R = OO

PHASE 7 - The Cycle Images:
1 1 1 1
i 0 1 1
0o 0 o0 1
o 1 1 0

PHASE 8 - Generation of Inequalities with 1rs:
*1lrs:1lrslib v.4.2b, 2006.10.31(32bit,lrsmp.h)

*Copyright (C) 1995,2006, David Avis avis@cs.mcgill.ca
*Input taken from file P1_H_REP.ine

*0utput sent to file P1_V_REP.ext

i1 0 -1 -1
0o 0 1 0
0 1 -1 0
1 -1 0 O
o 0 1 0
o 0 O 1

PHASE 9 - State Exploration and Inequalities Specifications:
+++++++++++ RESULTS FOR PROCESS: Pl +++++++++++

1 * begin + (-1) * busy + (-1) * cdl >=
[sender_wait -> -1, sender_transm -> -2, sender_retry -> -4]

1 * busy >= [sender_wait -> 0, sender_transm -> O, sender_retry -> 0]

1 * end + (-1) * busy >=
[sender_wait -> -1, sender_transm -> -1, sender_retry -> -1]

1 * begin + (-1) * end >=
[sender_wait -> O, sender_transm -> 1, sender_retry -> 0]

1 * busy >= [sender_wait -> 0, sender_transm -> O, sender_retry -> 0]

1 % cdl >= [sender_wait -> 0O, sender_transm -> 0, sender_retry -> 0]

Computations for process P2 ->

PHASE 2 - Detection of SCCs:

Table of SCCs for process P2

SCC-ID | Vertex(State)
0 | sender_wait
0 | sender_transm
0 | sender_retry

PHASE 3 - Combining Reachable SCCs (Incidence matrix).
Incidence Matrix of SCC in P2:

-1 1
-1 0
-1 0
1 -1
0o -1
0 1

BB OR PO

PHASE 4 - Permuted Column Echelon Form:

|
OO r KB KL K
B = O R, P, O

PHASE 5 - Basis of the orthogonal complement:

-1 -1 1 0
1 0O 0
0 1 0 O
0o 0 1 0

-1 -1 0 1
o o0 O 1

PHASE 6 - The Minimum Circuit Basis:

O O O O
= = O O OO
= O O O
= O R = OO

42

PHASE 7 - The Cycle Images:

O O O - =
= O O O
» O O R K
O O KB =

PHASE 8 - Generation of Inequalities with 1rs:
*1lrs:1lrslib v.4.2b, 2006.10.31(32bit,lrsmp.h)

*Copyright (C) 1995,2006, David Avis avis@cs.mcgill.ca
*Input taken from file P2_H_REP.ine

*0utput sent to file P2_V_REP.ext

corooOroO
corroOOO
]
Or ORr KL RELO
coooocowr
~roo0oo0ooroO

PHASE 9 - State Exploration and Inequalities Specifications:
+++++++++++ RESULTS FOR PROCESS: P2 +++++++++++
1 % cdl >= [sender_wait -> 0O, sender_transm -> 0, sender_retry -> 0]

1 * begin + (-1) * busy + (-1) * cd2 >=
[sender_wait -> -1, sender_transm -> -2, sender_retry -> -4]

1 * busy >= [sender_wait -> 0, sender_transm -> O, sender_retry -> 0]

1 % end + (-1) * busy >=
[sender_wait -> -1, sender_transm -> -1, sender_retry -> -1]

1 * begin + (-1) * end >=
[sender_wait -> O, sender_transm -> 1, sender_retry -> 0]

1 * busy >= [sender_wait -> 0, sender_transm -> O, sender_retry -> 0]

1 * cd2 >= [sender_wait -> 0, sender_transm -> 0, sender_retry -> 0]

Computations for process P3 ->

PHASE 2 - Detection of SCCs:

Table of SCCs for process P3

SCC-ID | Vertex(State)
sender_n
sender_wait
sender_transm
sender_retry

43

>> New SCCs after adding new edges:

Table of SCCs for process P3

SCC-ID | Vertex(State)
| sender_n
| sender_wait
| sender_transm
| sender_retry

PHASE 3 - Combining Reachable SCCs (Incidence matrix).
Incidence Matrix of SCC in P3:

-1
-1
-1
-1

1

1

O, P P, OORFrO

H O OOOOOoOR
OrRr P, ORFRr P, OO

0
0
1

PHASE 4 - Permuted Column Echelon Form:

H O OOOOOoOr
|

O OO R P RFL, PO

OrFr P, ORFR P OO

PHASE 5 - Basis of the orthogonal complement:

I
OO OO H=»O
|
OOk, OrFr ORFr O
O OO OO Oo
Ok, kP, OOO0OOoOOo
H OO OO OO K

PHASE 6 - The Minimum Circuit Basis:

OO O OOrOo
Or P, OOOOOo
OO OO0 O
Or OFr ORFr OO
O, O, P» OOO

44

PHASE 7 - The Cycle Images:

O O O O K~
OO OO
= O O O OO
O O O =
C OO R R R

PHASE 8 - Generation of Inequalities with 1rs:
*1lrs:1lrslib v.4.2b, 2006.10.31(32bit,lrsmp.h)

*xCopyright (C) 1995,2006, David Avis avis@cs.mcgill.ca
*Input taken from file P3_H_REP.ine

*0utput sent to file P3_V_REP.ext

O OO Fr OO OO
|
OO O0Or OFr OO0OOo
I
OO Fr OO~ P~ O
O OO0 O0O0OO0ORrOoO
O OO OO OO O
P OOOKr OO0 OO

PHASE 9 - State Exploration and Inequalities Specifications:
+++++++++++ RESULTS FOR PROCESS: P3 +++++++++++

1 * cd2 >= [sender_n -> 0, sender_wait -> O, sender_transm -> O, sender_retry -
>01]

1 * begin + (-1) * busy + (-1) * cdl >=
[sender_n -> 0, sender_wait -> -1, sender_transm -> -2, sender_retry -> -4]

1 * busy >= [sender_n -> 0, sender_wait -> 0, sender_transm -> 0, sender_retry
-> 01

1 % end + (-1) * busy >=
[sender_n -> 0, sender_wait -> O, sender_transm -> -1, sender_retry -> -1]

[y

* cd3 >= [sender_n -> 1, sender_wait -> 0, sender_transm -> 0, sender_retry -
01

v

1 * begin + (-1) * end >=
[sender_n -> 0, sender_wait -> O, sender_transm -> 1, sender_retry -> 0]

1 * busy >= [sender_n -> 0, sender_wait -> 0, sender_transm -> 0, sender_retry
-> 01

1 * cdl >= [sender_n -> 0, sender_wait -> O, sender_transm -> O, sender_retry -
>01]

1 * cd3 >= [sender_n -> 1, sender_wait -> 0, sender_transm -> O, sender_retry -
>0 1]

[ADLIy]

[AF92]

[Avi]

[Avi99a]

[Avi9ob)

[Ber85]
[BGO5]

References

Gerd Behrmann Alexandre David and Kim G. Larsen. Tu-
torial on Uppaal. Department of Computer Science, Aalborg
University, Denmark, This document is updated regularly.
http://www.it.uu.se/research/group/darts/uppaal /documentation.shtml.
9

D. Avis and K. Fukuda. A Pivoting Algorithm for Convex Hulls
and Vertex Enumeration of Arrangements and Polyhedra. School of
Computer Science, McGill University, Montreal, Canada, 1992. 26

D. Avis. Users Guide for Irs . Version 3.2, 1997. available from lrs
homepage ftp://mutt.cs.mcgill.ca/pub/C/lrs.html. 26

D. Avis. Computational Experience with the Reverse Search Ver-
tex Enumeration Algorithm. School of Computer Science, McGill
University, Montreal, Canada, 1999. 26

D. Avis. lIrs: A revised implementation of the reverse search ver-
tex enumeration algorithm. School of Computer Science, McGill
University, Montreal, Canada, 1999. programs Irs*.c available from
ftp://mutt.cs.mcgill.ca/pub/C/. 26

C. Berge. Graphs. North-Holland, Amsterdam, NL, 1985. 15

Howard Bowman and Rodolfo Gomez. Concurrency Theory: Calculi
an Automata for Modelling Untimed and Timed Concurrent Systems
. Springer, Berlin, 2005. 2

45

REFERENCES 46

[DMC94| David Heckerman David M. Chickering, Dan Geiger. On finding a

[GBY02]

[GLSO03)]

[NSS94]

[Sch86]

[Tar72]

[Valog]

cycle basis with a shortest maximal cycle. Information Processing
Letters, 54:55-58, 1994. 18

Alexandre David Kim G. Larsen Paul Pettersson Gerd Behrmann,
Johan Bengtsson and Wang Yi. UPPAAL Implementation Secrets.
Department of Information Technology, Uppsala University, Sweden,
2002. 9

P. Gleiss, J. Leydold, and P. Stadler. Circuit bases of strongly con-
nected digraphs. 2003. 15

Esko Nuutila and Eljas Soisalon-Soininen. On Finding the Strongly
Connected Components in a Directed Graph. IPL 49, 1994. 12

A. Schrijver. Theory of Linear and Integer Programming. Wiley,
1986. 25

Robert Tarjan. Depth-first search and linear graph algorithms.
SIAM Journal on Computing. Bd. 1, 1972. 12

A. Valmari. The State Ezplosion Problem. In Lectures on Petri Nets
I: Basic Models, volume 1491 of LNCS, pages 429-528, Springer-
Verlag, 1998. 1

	Introduction
	Motivation and Organization
	Preliminaries
	Nondeterministic Finite Automaton - NFA
	Communicating Finite Automata
	Networks of Finite Automata
	Modeling a Network of Finite Automata - Example: Uppaal

	Cycle Images For Finite Automata
	Identifying Strongly Connected Components
	Tarjan's Algorithm

	Combining Reachable SCCs
	Computation of the Minimum Circuit Basis
	Basis Notations
	The Cycle Space of a Directed Graph
	Minimum Circuit Basis For Directed Graphs
	Algorithm on Finding the Minimum Circuit Basis of a Strongly Connected Component with Directed Edges
	Cycle Images For Circuits

	Synchronization Counters And Inequality Constraints
	Some Definitions
	Computation of Coefficients of the Inequality Constraints with lrs
	Generation of Inequality Constraints For States

	Conclusion
	Final Thoughts
	Further Work

	Experimental Results

