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Abstract

Throughout our lives, we are increasingly subjected to decisions made by algorithms.
Insurance eligibility, employment screening, and criminal justice sentencing are just some
of their operational areas. Since they are deployed in such important fields of society,
these algorithms have to take decisions or suggestions for decisions properly to guaran-
tee fair and balanced outcomes. However, subsequent analyses of deployed algorithms
have uncovered cases of significant bias towards some demographic subgroups.
This thesis presents an approach to monitor the fairness of an algorithm during its exe-
cution. Translating fairness conditions into an RTLola specification makes it possible to
generate the monitor. Then, the monitor allows us to check in real-time whether the fair-
ness criteria are fulfilled during an execution of a certain algorithm or not. Furthermore,
we investigate the practical feasibility of the approach by comparing several different
algorithms for the example of assigning seminars to students.

Zusammenfassung

In unserem Alltag begegnen wir immer öfter Algorithmen, welche uns oder anderen
Entscheidungen abnehmen. Versicherungsfähigkeit, Einstellungstests bei Arbeitgebern
und strafrechtliche Verurteilung sind nur ein Bruchteil ihrer Einsatzgebiete. Da sie in
wichtigen Gebieten der Gesellschaft eingesetzt werden, ist es notwendig, dass diese
Algorithmen angemessen entscheiden oder Entscheidungsvorschläge treffen, um ein
ausgeglichenes und faires Ergebnis zu erzielen. Jedoch wurde mithilfe von Verfahren,die
dem Maschine Learning zuzuordnen sind festgestellt, dass einige Entscheidungsalgorith-
men bezüglich demographischer Untergruppen Voreingenommenheit reflektiern, was
zu einem unfairen Ergebnis führt.
Unter Verwendung von RTLola als Spezifikationssprache wird in dieser Arbeit die
Möglichkeit, Entscheidungsalgorithmen bezüglich Fairness zu untersuchen, vorgestellt.
Indem man gewisse Fairness-Eigenschaften zu einer Spezifikation übersetzt, kann man
einen Monitor generieren, welchen man für das Untersuchen benötigt. Dies erlaubt es
uns zu überprüfen, ob diese Fairness-Kriterien bei bestimmten Algorithmen erfüllt sind
oder nicht. Darüber hinaus werden wir das Verhalten der verschiedenen Algorithmen in-
terpretieren und bewerten diese anhand der Ausdruckskraft der Fairness-Eigenschaften.
Als Beispiel verwenden wir die Zuordnung von Studenten zu Seminaren.
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Chapter 1
Introduction

Over the past decades, algorithms were established more and more in decision-making
procedures. They work whenever they are needed and they also make decisions in much
less time than a human. In our everyday life, recommendations and suggestions that
are based on an algorithm play a major role. They suggest to us what products to buy
or which movie to watch. Furthermore, they are applied in critical situations like hiring
decisions [7] or loans [38] .
However, deciding if algorithms determine their result in a "fair" way is still an open
question. In practice, algorithms can be "unfair", meaning they discriminate against
certain groups of people. Since the data these algorithms are trained on is based on the
past, they learn historical biases. This leads to an output that lacks fairness. A popular
example is the Correctional Offender Management Profiling for Alternative Sanctions
(COMPAS) tool used by courts in the United States. The COMPAS tool is software that
calculates the risk of a person committing another crime. Based on this measurement
Judges decide whether to release a person or to keep the person in prison. However,
analysts found a bias against black defendants in the COMPAS tool. African-American
defendants were far more likely determined to be at high risk than white defendants [24].
To take action against this form of bias different forms of fairness conditions have been
proposed. However, because of the variety of those conditions, with every condition
covering up a specific fairness property, the results differ regarding the fairness aspect.
This depends on the definition that is used to check.
The goal of this thesis is to have a tool that reveals algorithms behaving unfairly. To
be able to realize this, a strategy that can detect unfairness based on the input of the
algorithm and its corresponding output is required. The aim is to use monitoring as
the tool that detects unfairness in algorithms. With monitoring, it is possible to check
whether an execution of a system satisfies a correctness property. By replacing the
correctness property with a fairness condition the monitor can spot unfairness. The input
is an execution of a system, and the monitor checks whether the execution satisfies the
fairness condition. In addition, it is challenging to have a temporal input, e.g. the input
expands as time progresses. With the input not being fixed the monitor still can detect
unfairness, even though the input could expand at a later point in time. This opens up
the possibility of to model e.g. a seminar assignment system, where students can apply
for a place in a seminar. Since everyone can apply at any point in time, up to a certain
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deadline, the temporal aspect of the input becomes important.
To be able to model different candidates at different time points we use RTLola, a
specification language based on getting input "streams" and features the option of
monitoring. These streams are suitable for modeling our input since the elapse of
time is part of the stream and can therefore be modeled.
This thesis aims to provide a case study for RTLola where, given several different decision-
making algorithms, it detects which of these algorithms are regarding under which
fairness condition is considered "fair". The case study focuses on seminar-assignment
systems, i.e., given arbitrary input streams of applicants and a decision-making algorithm,
the benchmark can detect unfairness under certain conditions. Finally, the monitor is
given the input streams and the output. According to that, the monitor detects if the
output lies in the fairness condition. To realize the monitor that exposes unfairness the
fairness condition is specified in RTLola. It is possible to plug in different algorithms to
see the behavior of these algorithms according to fairness.
With that, the goal of monitoring temporal inputs can be realized for inputs given at
several stages of time.



Chapter 2
Preliminaries

In this chapter, we briefly introduce the required background on fairness as well as
present the specific fairness conditions used in this thesis. Furthermore, we give the
required background to the specification language RTLola, which is used to implement
these fairness conditions and to continue by monitoring these conditions.
Lastly, this chapter covers the general idea of monitoring and its evaluation.
The following sections introduce fairness in algorithms:

2.1 Algorithmic Fairness

Algorithmic fairness studies the behavior of algorithms regarding biases. In the following
sections, we will first see the environment this thesis is based on, i.e. fairness in algo-
rithms is studied in a specific setting in this thesis (2.1.1). After that, a brief background
on the origin of fairness definitions is given (2.1.2). Finally, fairness definitions that are
required in this thesis, are introduced in Section 2.1.3.

2.1.1 Setting

This thesis is based on the setting of a seminar-assignment system regarding practical
experiments. Specifically, this means that within that setting, people can apply at any
point in time (up to a certain deadline) to any sort of seminar. Also, every person has
an average grade from previous courses, since some factors of applicants are needed
to evaluate certain fairness conditions. Eventually, the applicants get a response about
whether they are accepted or rejected for the seminar they applied for. Each person can
only apply once and also just for one specific seminar.
The goal thereby is detecting unfairness in relation to the gender of applicants. An
applicant therefore could look like Figure 2.1

In this case, a woman applied for the computer science seminar. She has an average
grade of 2.7 and is accepted to that seminar.
Note that in later examples redundant parameters for the specific fairness conditions are
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Figure 2.1: Single Applicant

not shown to keep the examples as simple as possible.

2.1.2 Sources of Unfairness

Bias in algorithms occurs in different shapes and forms. Mostly this happens during the
training phase of a machine learning algorithm. However, since a bias does not occur
out of nowhere, biases are the result of mistakes during the training process.
The reasons for algorithms behaving unfairly are explained in the following:

Historical Bias
This bias occurs if the data set given to the algorithm during the training phase
contains a bias [48]. Consider a data set that contains data from the past, where it
was more likely to have a bias against certain demographic groups like people with
black skin color. The algorithm might include this historical bias in its behavior [43].

Algorithmic Bias
In difference to historical bias, where the input is the misleading point, algorithmic
bias occurs if the algorithm itself behaves biased [4]. This happens when e.g. the
algorithm relies on randomization and the random generation function is not
purely random. This leads to a bias which then could lead to unfair behavior.
Also, algorithmic design choices, such as the usage of optimization functions,
regularization, and choices in applying regression models on the data as a whole
can all contribute to biased algorithmic behaviour [15].

Evaluation Bias
Evaluation bias happens during model evaluation [43]. The usage of inappropriate
benchmarks for evaluation purposes leads to distorted, biased results. E.g. Adience
and IJB-A benchmarks are biased against skin color and gender [9]. By using
benchmarks like these the outcome will be biased during the evaluation phase.

2.1.3 Fairness Definitions

Considering fairness in algorithms, there does not exist one perfect condition that repre-
sents the whole variety of different fairness approaches. In practice, several definitions
differ in their expressiveness and targets. According to Kleinberg et al. [28] it is even im-
possible to satisfy some fairness conditions at once by showing inherent incompatibility
of any two out of several conditions. In this thesis, we focus on three popular fairness
conditions and study the degree of fairness in algorithms based on these conditions.
These conditions are picked since they are not defined for prediction tasks but for tasks
with a binary outcome, e.g. true or false.
In the following, the three definitions this thesis is focused, on are expounded:
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Definition 2.1.1. Demographic Parity:∣∣∣∣P [A = 1
∣∣G = 1]− P [A = 1

∣∣G = 0]

∣∣∣∣ ≤ ϵ

Having a lower value of this measure indicates more similar acceptance rates. Therefore,
this leads to better fairness. Formula-wise the value of G represents the group the person
belongs to (e.g. male or female), while A indicates the positive outcome. ϵ represents
the maximum deviation of acceptance rates for each group and has to be specified a
priori as a small positive number, e.g. ϵ = 10−1. With that, the absolute value of the
difference between these two probabilities should be lower or equal to ϵ. Also, ϵ has to
be a positive number). Demographic parity ensures that positive outcomes are assigned
to the two groups at a similar rate. Verma and Rubin [47] describe demographic parity
as the likelihood of a positive output being the same, no matter if the person is in the
protected or unprotected group [31].
Regarding the seminar-assignment system, the two groups (protected and unprotected)
correspond to males and females applying to a seminar. Concluding, this means that
demographic parity checks whether the acceptance rates for males and females are the
same with a certainly acceptable deviation independent of other factors like what seminar
they applied for.
Consider the following example:

Figure 2.2: Applicantion Scenario

Example 2.1.1. Say that in total eight people apply for any type of seminar as shown in
Figure 2.2. Four of them being male and also four being female. Also, Figure 2.2 shows
that two of the four females are accepted while only one of the four males is accepted to
the applied seminar. Regarding Definition 2.1.1 of demographic parity, we now need
to compute the probability of being accepted for both males and females. Trivially for
females, it is 2

4 in this case since two out of four females got accepted to a seminar they
applied for, so the probability for a female person being accepted is 1

2 . Since only one of
the four males got accepted the probability of getting accepted as a male person calculates
to 1

4 . Lastly, we subtract one probability from the other and compute the total number
of it, so:

∣∣ 1
2 − 1

4

∣∣ = 1
4 . If 1

4 is bigger than the value of ϵ this scenario would be unfair
according to demographic parity.

Definition 2.1.2. Conditional Statistical Fairness:∣∣∣∣P [A = 1
∣∣L = 1, G = 1]− P [A = 1

∣∣L = 1, G = 0]

∣∣∣∣ ≤ ϵ

Conditional Statistical Fairness states, similar to demographic parity, that both people in
protected and unprotected (female and male) groups should have an equal probability of
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positive output. As in demographic parity, G is the value representing the demographic
group the person belongs to(male or female), and A is the value for the status of the
outcome. In addition to that other legitimate factors are concerned as well [12]. This is
represented in the definition by the factor L, which represents the set of factors that are
concerned.
For the seminar-assignment setting, this means that the factor of what seminar people
apply for now plays a role. With conditional statistical parity, the acceptance rates of
both groups are compared within each seminar (e.g. in each subgroup) to detect decision
unfairness within specific seminars.
This procedure will be outlined in the following example:

Figure 2.3: Applicants

Example 2.1.2. Again, we have in total eight people applying for seminars. This time,
it is specified which seminar they applied for. In this Example (Figure 2.3), six people
apply for the computer science seminar with three of them being male as well as three
being female. For each other seminar (chemistry seminar and biology seminar) only one
person applied for it. In this case, no computations can be done since there are not both
demographic groups represented within one seminar. Regarding acceptance rates inside
the computer science seminar on average every third woman gets accepted( 13 ). The same
counts for males. Concluding this means that if we compute the general acceptance rate
according to Definition 2.1.2, we get:

∣∣ 1
3 − 1

3

∣∣ = 0. Since 0 ≤ ϵ, this scenario is definitely
fair according to conditional statistical parity.

Simpson’s Paradox Example 2.1.1 and Example 2.1.2 showed two scenarios of an
application process. Further, in Example 2.1.1 the applied seminar was not regarded
and the scenario could be declared as unfair according to demographic parity. However,
taking the applied seminar into account as shown in Example 2.1.2, the scenario that is
the same regarding the number and gender of applicants is fair.
Having one scenario that is unfair according to demographic parity and fair according to
statistical conditional parity is an occurrence of Simpson’s Paradox. This paradox states
that the result of an investigation over an entire critical group may differ from those of
the underlying subgroups.
Since it is possible to compute both results using demographic parity and conditional
statistical parity, such a Simpson’s paradox can be detected.

Definition 2.1.3. Counterfactual Fairness:∣∣∣∣P [YA←a

∣∣S = s,G = 1]− P [YA←a′
∣∣S = s,G = 0]

∣∣∣∣ ≤ ϵ
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Counterfactual fairness, also known as Individual fairness, states that two similar indi-
viduals are treated similarly [17, 25, 31]. This means that any two individuals who are
similar with respect to a similarity get a similar output. In this case, YA←a means that
a can be any value attainable by A. Particular this means that every possible outcome
should have equal probabilities. L is a set of similarities between two individuals. Lastly,
G is the demographic group the person belongs to, and besides that the only difference
between the two individuals.
In the set of the seminar assignment system, this means that people that only differ in
their gender should have an equal outcome, i.e. should both get accepted or rejected.

Figure 2.4: Applicants

Example 2.1.3. In this Example (Figure 2.4) the similarity is the average grade of previous
courses. We see three people applying for a seminar with an average grade being
3.0. Also, both demographic groups have a similar outcome, namely being accepted.
According to counterfactual fairness, this is a fair situation. Taking a look at the people
applying with an average grade of 2.7 shows that the males got rejected while the females
got accepted. This behavior is, according to counterfactual fairness, unfair.

2.1.4 Estimating Probabilities

We will now cover the problem with its corresponding solution of computing statistically
accurate values regarding fairness. In our seminar-assignment environment, the problem
of distorted values occurs at the early stages of the monitoring process, i.e. with low
numbers of applicants.
A solution for that is "Maximum a Posteriori Probability" (MAP). The intention of this
algorithm is to add imaginary, prior information. The algorithm is defined as:

Definition 2.1.4. Maximum A Posteriori Probability
In this definition, α1 describes the number of positive results observed, and α0 is the num-
ber of negative results observed. Further, γ1 is the number of imaginary positive results,
and γ0 is the number of imaginary negative results. In this environment, "imaginary"
refers to the prior value that is artificially added to the actual observation.

θ =
(α1 + γ1)

(α1 + γ1) + (α0 + γ0)

With that, θ represents the relative frequency of observed positives plus the relative
frequency of imaginary positives.

Example 2.1.4. If we use MAP on a coinflip scenario, say "head" is the positive result
while "tail" is the negative result. If we now have somehow a reason to assume that θ =
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0.6, we can add imaginary flips like γ1 = 6 and γ0 = 4. With that, at the beginning of the
observed coinflips, the estimation θ is at 0.6. Also, a single observed coinflip has now a
smaller impact on the general head/tail ratio.

By adapting this to the computation of the acceptance ratio of males and females, it is
now possible to execute small examples in our seminar-assignment setting, since a single
decision now does not have that big of an impact on the overall ratio. By that, we make
the monitor robust by dynamically adapting the metadata before the actual execution of
the input.
Concluding, the fairness specifications in RTLola feature an adapted form of MAP that
allows us to monitor small groups of applicants making the monitor robust, as well as
having statistically accurate results.

2.2 RTLola

We use RTLola [18] in this thesis to describe fairness properties appropriately. RTLola is
a stream-based specification language featuring the possibility of monitoring based on
real-time computations. Directly, stream-based means that each input type is defined
as a separate input stream. Every time an input gets a new value, the corresponding
stream gets updated to that value. Computations with these input streams can be done
by defining output streams, that act exactly at that time when their needed input streams
get updated.

Figure 2.5: Temporal Streams

Example 2.2.1. Let us say that in the seminar-assignment-setting, people apply at dif-
ferent times to seminars. The goal here is to compute the number of male applicants.
To represent this, we need an input stream in RTLola. The input stream only focuses
on the applicants, i.e. whenever a person applies to a seminar, the value of this stream
gets updated to the gender of the newly applied person. This is why we call that input
stream "gender", as shown in Figure 2.5. Further, we need an output stream that counts
the number of males applying for a seminar. This stream synchronously accesses the
input stream always when there occurs a new value in that input stream since there
might apply a new male person. By accessing the input stream, the output stream checks
whether the new value of the input stream is male, and if so, it counts up the total number
of males by one.
Though, if the new value in the input stream is female, the output stream still accesses
the stream synchronously and checks for the male gender. However, since the condition
is not fulfilled the counter does not get counted up by one but just stays with its value.
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Besides that, RTLola introduces asynchronous monitoring to the specification language
Lola [14]. In the following section, we first have an overview of the syntax and semantics
of RTLola. Thereafter, we describe the transformation from concrete syntax to an abstract
syntax tree (AST). (Remark that we only present the required subset of the RTLola
grammar.)

2.2.1 Syntax & Semantics

The semantics of RTLola is based on the abstract representation of specification. There-
fore, the function AST transforms the concrete syntax of a specification to an abstract
syntax tree (AST).
In the following table the concrete and abstract syntax for input streams, output streams,
and triggers are given and described.
The ith input stream si is defined by:

input i: T defines an input stream i of type T

In RTLola, T can be of the following types: Int, UInt, Float, and Bool.
The jth output stream sj is defined by:

output o: T
eval @i when cond
with e

defines an output stream o of type T which is de-
scribed by the expression e and gets evaluated when
an input i comes in and cond is fulfilled

This syntax does not differ that much from input streams, however, it introduces new
components: the keyword "eval", the @i, the condition "cond" as well as the evaluation e.
This line of code expresses explicitly that output o is updated when a new value in input
stream i occurs and the condition related to i is fulfilled with the value e.

Example 2.2.2. If we look at Figure 2.1, we saw the output stream "countMale", which
counts the total number of male applicants. With this definition of output streams, we can
realize this output stream. By specifying the evaluation time with @gender countMale
always accesses the input stream gender synchronously when it gets updated, e.g. a new
person applied for a seminar. Implementing the condition gender == male ensures
that we only execute the expression e when the updated value is male. If this condition
is fulfilled, the expression e can be executed which simply counts up the total number of
male applicants by one.

The kth trigger sk is defined by:

trigger cond "msg" warns if the condition cond evaluates to false

Trigger contain a condition cond, however, a condition can just be any (input-/output-
)stream. If the condition is fulfilled the trigger gets activated with the message "msg".
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2.2.2 Stream Access

There are several different computation rules for output streams provided in RTLola.
To access previous values of a stream, the offset expression is featured in RTLola:

a.offset(by: n) accesses value with offset n of stream a(n has to be
negative)

An expression of type: a.offset (by: n) is a lookup to access the nth previous value
of the stream. This explains the necessity of n being a negative value since it is not
possible to access future values. The time the accessor stream looks up this value is
bounded by the schedule of the accessed stream.
In case a lookup fails, e.g. the specified offset doesn’t exist it is possible to return a
desired value via the default command:

a.defaults(to: v) this defines the default value v of stream a(in case it
is used out of bounds)

"hold" is defined by:

a.hold() Lookup the current value of a asynchronously

The expression a.hold() is used to achieve the accessor stream not being bound to the
schedule of the assessed stream. To execute a synchronous lookup it is enough to name
the accessed stream:

a Lookup the current value of a synchronously

2.2.3 Parameterization

RTLola also features the possibility to evaluate over parameterized streams. This is
desired when e.g. the different values in a stream are arbitrary constants and the goal
is to calculate over every different value in that stream. In this case, it is not possible
to create an output stream for every value in that stream, since the exact number is not
known. Instead, it is possible to create a new output stream for every new value coming
into the stream. In this procedure, the output streams are not bounded and therefore it
doesn’t matter how many different values exist in the stream since the parameterized
stream can always create a new output stream if there occurs a new value in the specified
stream.
To create a specified stream following expressions are used:

output o(p)
spawn with i

spawns a parameterized stream over i

Having parameterized streams, it is essential to specify over which parameter the stream
is parameterized as well as the time the stream starts to live. This can be achieved using
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the keyword spawn. Following the keyword, it is necessary to indicate at which stream
to start living. However, experience shows that this is often the same stream as the one
to parameterize.
The evaluation of a parameterized stream can be done the same way as with normal
streams.
To close a parameterized stream the following expression is used:

close cond ends the output if condition cond is fulfilled

Once a stream is closed it is impossible to gain access to the values evaluated in that
stream.

trigger(p) cond with p being an input stream, the trigger over p
warns if condition cond evaluates to false

Trigger work almost the same as not parameterized triggers with the exception that
the parameterized value is specified. This results in a trigger that gets triggered if the
condition cond is fulfilled in at least one of the different values of the stream that is
parameterized over.

2.2.4 Dependency Graph

Since the goal is to build a monitor out of the specification, an analysis of dependency
graphs (DG) is required to define semantical validity. RTLola makes use of the definition
of DG to describe dependencies between streams. Furthermore, the DG is then used for
checking type analysis or the existence of an evaluation model. A dependency graph
consists of a finite set of vertices and edges with each vertex representing a stream. To
express the relation between the timelines of streams, edges are labeled with the kind
of dependency, e.g. if the access occurs in the spawn or close clause, semantic filter, or
stream expression. The weight of an edge is the offset to the accessed stream.

Definition 2.2.1. Dependency Graph:
The dependency graph G = (V,E) is a labeled graph with the vertices representing the
streams and each edge being a dependency

In this context, V is the number of streams in the specification. E represents all depen-
dencies between streams: if and only if s1 accesses s2, there exists an edge from s1 to s2
in the DG. From that, it follows that, if s1 accesses s2 directly or indirectly by accessing
another stream before this stream accesses s2, there is a path from s1 to s2 in the DG. To
get a brief impression of transforming specification into a dependency graph, consider
the following part of an RTLola specification:

input gender : String
input seminar : Int64
input accepted : Bool

trigger seminar < 0 // A Seminar is represented as positive Integer

output countWomen
eval when gender == "F"
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with countWomen.offset(by: -1).defaults(to: 0) + 1

output countWomenAccepted
eval when accepted == true && gender == "F"
with countWomenAccepted.offset(by: -1).defaults(to: 0) + 1

output femaleRelation
eval when gender == "F"
with (countWomenAccepted.hold(or: 0)) / (countWomen)

This specification represents a small seminar assignment system. With the inputs being
the gender of an applicant, which seminar the person is applying to, and whether the
person is accepted at the seminar or not, at first, the trigger checks whether the seminar
is an invalid input. After that, the output stream countWomen computes the absolute
number of females applying to a seminar. To compute the ratio between women being
accepted and all women applying, it is necessary to compute the number of females
being accepted.
These computations can then be used to, e.g. check if the relation of accepted individuals
between men and women is roughly the same. This proceeding is used later in this thesis
to evaluate the accuracy of demographic parity in decision-making algorithms.

Example 2.2.3. This specification has the following dependency graph:

gender accepted seminar

cWom. triggercWomAcc.

femRel.

00

-1

0 0

-10

0 0

This DG is then used to check for valid execution, i.e. ensure the correct execution
order. If this procedure is done then there cannot occur any contradictions regarding the
execution process.

2.2.5 Monitoring

In the last section, we saw the syntax and semantics of RTLola as well as the process for
checking for semantical validity via dependency graphs(DG). We now briefly introduce
the process of monitoring:
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Internally, RTLola converts a given specification into a monitor. The procedure of
synchronous monitoring operates as follows: the monitor iterates (this may happen
infinitely often) over the defined input streams. By getting new input values the monitor
updates the values according to the values within the input streams.
In this context synchronous means that all input streams receive an input simultaneously,
e.g. all input streams get new values at the same time. In contrast to that, asynchronous
monitoring allows input streams to receive values at different times. With that, these
input streams are no longer bounded to each other and thus can still be monitored.
The number of already analyzed iterations is called evaluation depth. According to that
value, the monitor iterates over every stream as often as the values of the evaluation
depth. Hence, every stream is evaluated as often as the evaluation depth. Therefore each
iteration is called evaluation step.



Chapter 3
Specifying

In this chapter, we translate the fairness conditions specified in Section 2.1.3 from for-
mulas to equivalent RTLola code. However, we have to deal with the fact that initially,
fairness conditions are liveness properties while the resulting RTLola specification has to
be a safety property in advance. The goal thereby is to transform these fairness condi-
tions into a similar safety property. This transformed safety property is then translated
into RTLola code. To realize this, parameterization in RTLola (Section 2.2.3) is required.
Parameterization in RTLola also includes the possibility to investigate more realistic
inputs and handle a wider variety of them.
Finally, we see a way to detect potential occurrences of Simpson’s paradox by looking at
the results from different fairness properties from the same input. This is an important
task concerning fairness, since having an occurrence of Simpson’s paradox in the data,
could lead to mislead evaluation and hence to the wrong conclusion. This is caused
by the fact that within Simpson’s paradox, the results differ from those within certain
subgroups.
In consequence, the RTLola benchmark presented in this thesis detects possible unfair-
ness, while also ensuring that there are no false conclusions.

3.1 Using Parameterization

In the following section, we introduce the naive translation approach from fairness
definition to RTLola specification. Resulting from that, we acknowledge that, in order
to process more realistic inputs, the usage of parameterization is required. Finally, we
see an example of parameterized RTLola specification to understand the necessity of
parameterization.

3.1.1 Naive Translation Approach

We now present the naive idea of translating a fairness condition into an RTLola spec-
ification code. For this, demographic parity (Definition 2.1.1) is the desired translated

14
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Figure 3.1: Roadmap for demographic parity

fairness definition. However, before we can start to translate, we first need to identify
the required values to calculate the acceptance rates for both demographic groups. In
this thesis, the represented demographic groups are males and females. Figure 3.1 shows
the approach of how to acquire the acceptance rates.

In Figure 3.1 the total values of male applicants and female applicants are required.
Furthermore, we need the number of males and females that are accepted to any seminar.
We then divide these two values within the demographic group. Lastly, we check whether
these two values are similar to each other in order to say if there exists a bias or not
according to demographic parity.
We now proceed with the translation process. First, we compute the total number of
male and female applicants:

input gender : String
input decision : Bool

output countMale
eval @gender when gender == "M"
with countMale.offset(by: -1).defaults(to: 0) + 1

output countFemale
eval @gender when gender == "F"
with countFemale.offset(by: -1).defaults(to: 0) + 1

For this fairness definition, it is enough to have the values of the demographic group, as
well as the status of acceptance to a seminar. This results in having the two input streams
"gender", where each value is a string ("M" for male, "F" for female) and "decision" as
a stream of type boolean (true for accepted, false for rejected). Besides that, we need
an output stream that counts the total number of males that apply for a seminar. The
output stream "countMale" always checks for updating its value when there occurs a
new value in the input stream gender. Further, the condition that the applied person has
to be a male person is required. If this condition is fulfilled, the output stream takes its
value from the previous iteration (if it exists) and increments by one. This is achieved by
having a synchronous lookup to the past iteration of its stream. If there is no previous
iteration, e.g. the first person applied to a seminar, we take the default value of zero and
add one to it.
For the female people, we compute the exact same with the single difference, that the
condition checks, if the person currently applying is a female person.
The following code provides the required number of accepted males and females sep-
arately. Note, that we assume that the input streams are still the same as in the code
above:
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output countMaleAccepted
eval when gender == "M" ∧ decision == true
with countMaleAccepted.offset(by: -1).defaults(to: 0) + 1

output countFemaleAccepted
eval when gender == "F" ∧ decision == true
with countFemaleAccepted.offset(by: -1).defaults(to: 0) + 1

These two output streams mostly correspond to the output streams that count the total
number of male/female applicants with the major difference of a second condition that
has to be fulfilled to update the stream value. By adding the second condition decision ==
true, we ensure that the counter only adds plus one to itself if the applicant got accepted
to a seminar. Further, we recognize that it is not explicitly specified when to try to update
the value (via an "eval @" -statement) since it is not required to indicate the evaluation
trigger in RTLola. For readability purposes, we will not provide the explicit evaluation
trigger in further RTLola code examples.
Having both necessary values for computing the ratios of each demographic group, the
RTLola code shown below contains two new output streams, each containing the current
ratio of acceptance of one demographic group:

output maleRatio
eval when gender == "M" with countMaleAccepted.hold(or: 0) / countMale

output FemaleRatio
eval when gender == "F" with countFemaleAccepted.hold(or: 0) / countFemale

Every output stream in the specification code shown above calculates the intended divi-
sion to gain the acceptance ratio of the corresponding group. It is essential to mention
the asynchronous hold lookup in the numerator of the fraction. This hold means that
if countFemaleAccepted/countMaleAccepted is not updated in the current iteration of the
runtime, the most recent value in countFemaleAccepted/countMaleAccepted gets chosen, i.e.
hold takes the result value of the last successful iteration of countFemaleAccepted/count-
MaleAccepted. We now saw the necessity of the asynchronous hold lookup, let us now
analyze the reason why it can happen that both of the "..."-Accepted streams do not get
updated simultaneously with the other output streams.
It is safe to say that we want the rate of acceptance updated always when at least one
value of either the numerator or the denominator gets updated. Therefore it is enough
to specify the one condition that ensures the correct gender for the respective accep-
tance ratio. Since the corresponding output streams that compute the total number of
applicants of each gender contain the exact same condition, these output streams get
updated simultaneously. However, countMaleAccepted and countFemaleAccepted contains
more conditions that have to be fulfilled in order to update their stream values. If there
is now a scenario where the condition for the gender is fulfilled but the condition for
the decision is not fulfilled, the denominator of the fraction in the ratio streams gets
updated while the numerator does not get updated and therefore does not get updated
simultaneously with the other output streams.
What still remains to be done is the computation of the difference between the calculated
acceptance ratios. Also, to gain feedback from the specification, a trigger is required that
informs whenever the acceptance ratios differ too much from each other:
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output demographicParity
eval with |maleRatio - femaleRatio|

trigger demographicParity > i

The output stream demographicParity computes the total value of the subtraction of both
acceptance rates. The resulting stream value is the difference in the acceptance rates. If
the margin is higher than a certain specified value i (i is a float value), the trigger informs
that currently there exists an unfairness according to demographic parity. Note that
besides not specifying the evaluation time, there is also no condition specified, since we
want the value updated whenever at least one of the two streams maleRatio or femaleRatio
gets updated. If that happens, no further condition is required since it is essential to
calculate the current margin of acceptance rates.

3.1.2 Necessity of Parameterization

In the previous section, we introduced the first simple form of implementing a fair-
ness condition into RTLola code. However, this approach is not sufficient for analysis
purposes, since we are bound by the simplicity of the specification. The decision, of
whether a person gets accepted to the applied seminar, has to be made at the time of the
appliance. Though, in practice, such decisions may be done after a given deadline. Until
that deadline, people can apply to seminars, and when that deadline has been reached,
decisions of acceptance are made for all applicants. In the current state of the fairness
condition, this could not be monitored, since the fairness condition expects the decision
values at the time the people apply for a seminar. To realize working with different forms
of delay, the use of parameterization in RTLola is required. With that, we are able to store
data from each applicant and look it up at a later point in time, when we need it. Further,
as we saw above, it is possible to implement (a simple form of) demographic parity
without parameterization. If we take a look at conditional statistical parity (Section 2.1.2)
though, we see that computations within each different seminar are required. Since it is
not always clear how many seminars are offered, again, parameterization is required.
With that, we can realize computations within each seminar. For every different seminar,
a new output stream spawns and one can do computations separately.
Concluding, with parameterization we can accomplish monitoring more realistic inputs
as well as realizing the implementation of all fairness conditions presented in this thesis.

3.1.3 Parameterization Example

In the following example, we see a snippet of RTLola code using parameterization. We
want to count the total amount of applicants within each seminar. Since it may not be clear
in all scenarios how many different seminars there exist, we use parameterization, since
we can handle arbitrary numbers of seminars with that. The parameterized specification
that counts the number of applicants for each seminar is shown below:

input gender : String
input seminar : Int64
input decision : Bool

output countApplicants(p)
spawn with seminar
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eval when seminar == p
with countApplicants(seminar).offset(by: -1).defaults(to: 0) + 1
close when countApplicants(seminar) ≥ 12

In the specification fragment, we see the input streams gender, seminar, and decision.
Note, that in this case we only need the information of the seminar stream, since it is
enough to calculate the number of applicants within each seminar. The output stream
countApplicants is parameterized, indicated from the (p). The spawning condition is over
the seminars. Specifically, this means that the stream spawns a new separate output
stream for each new value in the input stream seminar. The stream evaluates a new
value every time when there is a new value in the input stream seminar. Then, the
corresponding output stream from the parameterization gets updated with the value
from the previous iteration plus one. When there are 12 or more applications for the
same seminar, the corresponding parameterized stream closes. With that, it is possible to
see in which seminars are still spaces left.
Using this technique, it is possible to evaluate fairness over each type of seminar, as
well as parameterize over each applicant, resulting in stored data from each user. With
this approach, we can compute the desired fairness conditions in this thesis using
specifications in RTLola.

3.2 Fairness Conditions as Liveness Properties

In this chapter, we analyze the behavior of fairness conditions as liveness properties
and how we can form a new safety property that represents the same expression as the
initial fairness condition. Therefore, we first introduce safety and liveness properties
themselves and then transfer this definition to the respective fairness conditions. With
that, we present the transforming method for the fairness conditions used in this thesis
from liveness property to safety property in order to utilize them later in this thesis.

Liveness to Safety Properties Liveness properties ensure that "good things do happen"
[32]. This means directly that something has to happen during the execution of a program
code. Further, the "good thing" that has to happen, does not need to be discrete. With that,
it could require an infinite number of steps, since no matter how the program execution
starts, it is always possible to "save" the execution by ensuring that the good thing will
happen eventually in the future. However, most of the time it is not satisfactory to know
that the program eventually does a "good thing". Though, giving a specific bound to the
"good thing" would result in having a safety property rather than remaining the liveness
property.
Transferring this property to fairness conditions, we see that we can adapt the definition
of liveness property to the fairness conditions: the "good thing", in the fairness scenario,
is that ultimately, the fairness condition does not get harmed. Also, no matter how "bad"
the algorithm starts to decide (by e.g. accepting one hundred females but zero males) it
is always possible to save the current execution (by accepting only one hundred males
from now on) with a correct suffix from the current state of execution. Eventually, the
algorithm has to be fair, but the algorithm is not unfair by having one point in time where
the execution yields unfairness, since it always can be fixed in the future.
Since we cannot monitor an infinite execution, we need to transform the initial fairness
conditions to properties with a specific bound, which makes them safety properties.
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Figure 3.2: Small input Example

A safety property proscribes "bad things" from occurring in an execution [32]. With that,
the "bad thing" is discrete, i.e. if there is a "bad thing", it has to occur at some identifiable
point. If a "bad thing" happened, it is impossible to fix the execution with a suffix for the
execution.
Concluding, we need to introduce some bounds to the fairness conditions in order to
get a bounded property, which then is possible to be monitored since it is now a safety
property. Having a specific bound ensures that the monitor never has to analyze an
infinite execution sequence.

Besides the necessity of changing the initial fairness conditions in order to be able to
monitor them, it has also advantages regarding the relation to the real world. Usually,
it is not beneficial if an algorithm performs fair eventually, but rather unfair in realistic
bounds. In the real world, it is not sufficient if an algorithm will be fair eventually in
the future with a certain number of steps. Rather, this thesis follows the hypothesis
that observed unfairness is focused on the past, not on the future. In cases of specific
deadlines or time limits, it has the advantage to introduce the bound to the fairness
conditions to evaluate the algorithm in more detail and nearer to the real-world example.
By looking for prefixes within that bound violating fairness, we can realize the conversion
of the fairness conditions. Moreover, with the bound, the initial expression of the fairness
conditions does not get changed since we only focus on a certain time window of
the execution where we look for bad prefixes. However, it is required to introduce a
certain "tolerance" to the fairness conditions, realized by the "≤ ϵ" in the definitions of
demographic parity (Section 2.1.1) and conditional statistical parity (Section 2.1.2). This ϵ
is the tolerance, meaning that the acceptance rates of males and females do not have to be
exactly the same but rather be not too far apart. The tolerance is a constant value, since
we do not require a dynamic tolerance when using maximum a posteriori estimation
(MAP) (Definition 2.1.4). The following section (Section 3.3) covers the necessity, as well
as the usage of MAP in our calculations.

3.3 Using Maximum a Posteriori Estimation

We now show the necessity of using maximum a posteriori probability estimation (MAP)
(Section 2.1.4). For that, we first come up with a scenario with a small number of
applicants and try to check for unfairness naively. After that, we do the same example,
but now in addition with a MAP. Finally, we will discuss the results of both examples.
Say, we want to check for unfairness according to demographic parity (Section 2.1.1)
with the input shown in Figure 3.2
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In this example (Figure 3.2), all three female applicants get accepted, while the single
applicant does not. Note, that in this scenario we do not focus on temporal aspects, so
the time of the decision made for these applicants is not of interest. Further, say that all
apply for the same seminar.

Naive Approach Computing now the acceptance ratio of both demographic groups
(Figure 3.1) yields the following results:
The acceptance rate of females is 3

3 = 1.0 meaning that every woman that applied for
a seminar also got accepted. Thus for males, the acceptance rate is 0

1 = 0.0, since the
only man that applied got rejected. According to demographic parity, this scenario is
highly unfair. By comparing the difference of the acceptance ratios for both demographic
groups, we get |1.0− 0.0| = 1.0. However, the maximum deviation that is tolerated by
the trigger is a constant, say 0.2.

Using MAP Investigating the same example by additionally using MAP, however, the
difference between both acceptance ratios is not that high:
One seminar has a capacity of twelve. Say that for each seminar that is seen so far,
six applicants from each demographic applied for a seminar. From both demographic
groups, all of them got accepted, resulting in the prior acceptance rate being 6

6 = 1.0 for
each demographic group. If we now investigate the input scenario with also applying
the formula for MAP (Definition 2.1.4), we get θF = 3+6

(3+6)+(0+0) = 9
9 = 1.0 for females

and θM = 0+6
(0+6)+(1+0) = 6

7 for males. Comparing these two acceptance rates yields
|1.0− 6

7 | ≈ 0.143 which is still in the bound of 0.2.

With MAP we can make the monitor robust, i.e. the monitoring process is statistically
accurate, independently of the number of applicants. If an algorithm makes seemingly
unfair decisions within its first few steps, it is wrong to say that the whole algorithm is
unfair, since after a few decisions it is hard to tell whether an algorithm behaves fair or
not in general.
Though, utilizing MAP alone is not sufficient since the prior needs to be normalized
fairly. With normalization, we handle cases, where one specific demographic group
occurs predominantly. Without normalization, this would mean that the prior from the
minor demographic group impacts too much and outvote the actual decisions.
To overcome this problem, we modify the initial definition of MAP (Definition 2.1.4)
featuring normalization:

Definition 3.3.1. New Definition of MAP with Normalization
Here, γ1 is the number of imaginary positive results and γ0 the number of imaginary
negative results. Also, α1 are the actual positive outcomes and α0 are the actual negative
decisions. Further, κ describes the confidence, and o the overflow of applicants (if exists).
Hence, o is the difference between applicants and total spaces in the seminars. If this
value is smaller than zero, o becomes zero

θ̂ =
α1 +

γ1

γ1+γ0+o ∗ κ
α1 + α0 + κ

With this definition (Definition 3.3.1) we gain the advantage that the confidence param-
eter stays fixed in the denominator. This results in the acceptance rate not changing
rapidly when there are new decisions, and therefore new acceptance rates, for the other
demographic group. This is realized by adding the proportion of imaginary positives
(γ1) and all imaginary applicants (γ1 + γ0) added to the overflow of actual applicants (o)
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in the numerator.
Using this adapted definition, the example (Figure 3.2) yields following results:

MAP plus Normalization In the scenario of Figure 3.2, the acceptance rate for females,

with a confidence of six, would be: θ̂F =
3+ 6

6+0+0∗6
3+0+6 = 9

9 = 1.0 while the acceptance rate

for males would be θ̂M =
0+ 6

6+0+0∗6
0+1+6 = 6

7 .
Here, we see the same results as in the approach, where we only made use of MAP.
Though, this new approach can handle cases, where the number of applicants from the
demographic groups differs considerably. Further, this approach features the possibility
of adapting the confidence κ to adapt the level of robustness.

3.4 Translating Fairness Conditions Into RTLola Specifica-
tions

We now focus on the actual translation and implementation of the fairness definitions.
In the last sections, we saw the necessity of parameterization in order to analyze and
monitor realistic scenarios. Also, we saw the idea of bounding these fairness definitions
as liveness properties to gain safety properties with their expressiveness not being
changed.

Remark. In all the following implementations of fairness definitions, we ignore types.
In many cases, a cast from an Int to a Float (cast<UInt64,Float64>) is required. however,
for reading purposes, we omit this specific cast.

In the following, we will see the actual implementation of fairness conditions in RTLola:

3.4.1 Demographic Parity

We now give the implementation of demographic parity. To be able to check whether the
fairness condition to hold, every applicant needs several parameters:

input time : Int64
input id : Int64
input gender: String
input seminar: Int64
input qualification: Int64
input accepted: Bool
input idAccepted: Int64

The parameters are represented as input streams. Each time a new person applies for
a seminar, these streams get updated with their new value. We need a time parameter
to make statements about the timing of applicants, as well as the id as a parameter to
uniquely identify each person. The gender is required to make calculations about the
acceptance rates of the demographic groups and the seminar parameter is primarily for
conditional statistical parity (Section 2.1.2). Besides that, the qualification parameter is
mainly used by counterfactual fairness (Section 2.1.3). Both input streams accepted and
idAccepted exist for realizing the temporal aspect, namely the delay of the decision. At a
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point later in time than the application, the decision for the person is made. Meaning,
that accepted is the parameter for the decision and idAccepted is to whom the decision
belongs.
To generate better readability in the code, we introduce ENUMs’ representing the state
of the decision:

constant UNDEFINED : UInt64 := 0
constant ACCEPTED : UInt64 := 1
constant REJECTED : UInt64 := 2

With that, we gain the advantage of having now a third value "UNDEFINED" in addition
to the truth values of the Boolean.
The next step is to store the provided data from each applicant. If we are at a time, where
a decision for a previous application is made, we only have the decision and the id for
the applicant provided in the input table. Though, in order to make calculations about
acceptance rates, we need more information, like the gender or the seminar the person
applied for. For that, we introduce a triple that stores the gender, the seminar, and the
decision of a person:

output userData(p)
spawn with id
eval when id == p with (gender,seminar)
close when p == idAccepted

output userDataAccepted(p)
spawn with idAccepted
eval when idAccepted == p with if accepted then ACCEPTED else REJECTED

This parameterized output stream userData spawns a new stream for each new id that
occurs in the input stream id. This stream then stores the parameters gender and seminar
for the person currently applying. The stored data then is needed later, when this exact
person gets a decision, for calculations shown later in this section. Also, the stream for
a person is closed when the according person gets a decision. In that timestamp, we
calculate all needed values and with that, the stream that stores data from a specific
person can be closed then.
Further, userDataAccepted also spawns a new stream for every different id that occurs in
the stream idAccepted. It then stores the decision of the corresponding person, i.e. either
"ACCEPTED" or "REJECTED". This results in three parameters stored for each person in
total.
Having now the required data stored, we can start to investigate for unfairness according
to demographic parity (Definition 2.1.1). For that, we need the total value of males
and females that applied for a seminar. We generate a separate output stream for each
demographic group:

output allMale
eval @idAccepted when

userData(idAccepted).hold(or: ("D",0)).0 == "M"
with allMale.offset(by: -1).defaults(to: 0) + 1

output allFemale
eval @idAccepted when
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userData(idAccepted).hold(or: ("D",0)).0 == "F"
with allFemale.offset(by: -1).defaults(to: 0) + 1

These two output streams count up the number of applied males and females that
already have a decision of whether they are accepted or not. These streams check at
the time of a new value in the idAccepted stream if the person with this id is male or
female. This is done by accessing the parameterized stream userData with the parameter
idAccepted. With that, we access the tuple with the stored data for the applicant that
currently received their decision. Also, the hold operator ensures that the stream gets
accessed asynchronously if needed. Depending on the gender, the counter is increased
by one by taking the value of the stream from the last iteration and adding plus one to it.
To compute the acceptance rates, we also need the number of males and females, that are
accepted to a seminar separately:

output maleAccepted
eval when userDataAccepted(idAccepted).hold(or: UNDEFINED) == ACCEPTED

∧ userData(idAccepted).hold(or: ("D",0)).0 = "M"
with maleAccepted.offset(by: -1).defaults(to: 0) + 1

output femaleAccepted
eval when userDataAccepted(idAccepted).hold(or: UNDEFINED) == ACCEPTED

∧ userData(idAccepted).hold(or: ("D",0)).0 = "F"
with femaleAccepted.offset(by: -1).defaults(to: 0) + 1

These streams check if the person that currently got their decision is accepted, as well as
if the gender of this person is matching. For both parameters, the userDataAccepted of
this person is checked if the person is indeed accepted. Further, these streams check the
userData for the gender of the corresponding person. If both conditions are fulfilled, the
stream for the according demographic group gets counted up by one.
The next step of the computation is to calculate the acceptance rates for each demographic
group. Additionally, we saw earlier that the naive formula for the acceptance rates,
namely (fe−)maleAccepted

all(Fe−)Male is not sufficient (Section 3.3). Thus, it is required to use a
modified formula for the acceptance rates, that also implements maximum a posteriori
estimation (MAP) as seen in Definition 2.1.4. MAP introduces prior, imaginary, decisions
that result in one actual decision having less impact on the acceptance rates.
To implement the modified formula for the acceptance rates, the number of imaginary
decisions has to be calculated first. The amount of prior, imaginary decisions is dependent
on the number of different seminars seen so far in the actual input list. For each new
seminar seen, the prior value increases, resulting in single decisions having less impact
and acquiring a robust monitor.
In the following, the prior values are calculated:

output seminarTicker(p)
spawn with seminar
eval when seminar.offset(by: -1).defaults(to: 0) == p with true

output seminarCounter
eval @seminar with (if seminarTicker(seminar).hold(or: false)

then seminarCounter.offset(by: -1).defaults(to: 0)
else seminarCounter.offset(by: -1).defaults(to: 0) + 1)
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The stream seminarTicker is parameterized over the seminars, i.e. generates a new stream
for every different seminar seen in seminar. The purpose of this stream is to see which
seminars are already seen and which are new since the prior value increases for each new
seminar. If there is a new seminar, the stream sets the according parameterized stream to
true one timestamp later.
To gain the number of different seminars seen so far, seminarCounter checks if the seminar
currently in the input stream seminar has been seen already. This is done by checking
for the according parameterized stream whether this stream is true. If the stream is new,
seminarCounter increases by one. Otherwise, the value stays the same.

output overflowCounter
eval @idAccepted
with (if (allMale.hold(or: 0) + allFemale.hold(or: 0))

>= (seminarCounter.hold(or: 0) * 12)
then (allMale.hold(or: 0) + allFemale.hold(or: 0))

- (seminarCounter.hold(or: 0) * 12)
else 0)

output priorValue
eval @idAccepted
with (seminarCounter.hold(or: 1) * 12)

/ ((seminarCounter.hold(or: 1) * 12) + overflowCounter)

The output stream overflowCounter evaluates whenever there is a new decision made and
checks whether there applied more people than there are total spaces in the seminars. If
this is the case, the stream adapts the value of the difference between the total applicants
and total spaces in the seminars, else the value is zero. This value is required for the
calculation of the acceptance rates using MAP and normalization (Definition 3.3.1) since
we need the number of people that applied more than there are spaces in all seminars.
Then, priorValue calculates the total number of spaces in the seminar divides by the total
number of spaces plus the overflow, i.e., γ1

γ1+γ0+o from Definition 3.3.1.
Having now calculated the necessary prior values, it is now possible to compute the
acceptance rates:

output maleRelation
eval when userData(idAccepted).hold(or: ("D",0)).0 == "M"
with (maleAccepted.hold(or: 0) + (priorValue.hold(or: 1.0) * 6.0))

/ (allMale + 6)

output femaleRelation
eval when userData(idAccepted).hold(or: ("D",0)).0 == "F"
with (femaleAccepted.hold(or: 0) + (priorValue.hold(or: 1.0) * 6.0))

/ cast<UInt64, Float64>(allFemale + 6)

The condition in each stream ensures that the acceptance ratios are updated when a
person from the corresponding demographic group gets a decision. When the condition
is fulfilled, these streams calculate the acceptance rate including MAP and normalization
(Definition 3.3.1). Further, all(Fe-)Male corresponds to α1 + α0 in the definition of MAP.
Note, that MAP plus normalization is applied separately to every demographic group.
These robust acceptance rates can now be compared:
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output statParity
eval @idAccepted with abs(maleRelation.hold(or: 0.5) -

femaleRelation.hold(or: 0.5))

The stream statParity calculates the absolute value of the difference between both accep-
tance rates.
The final step is to check whether this value is higher than a certain fixed value:

trigger statParity > 0.1

The trigger always activates when the discrepancy between acceptance rates is higher
than 0.1.

In this section, we saw the actual implementation of demographic parity (Definition
2.1.1). With this implementation, experiments are done later in this thesis (Chapter 5).
The next section shows the realization of conditional statistical parity (Definition 2.1.2) in
RTLola.

3.4.2 Statistical Conditional Parity

In the last section, we saw the implementation of demographic parity. We now see the
implementation of statistical conditional parity step-by-step. Note, that in many cases
the implementation of statistical conditional parity is similar to the implementation of
demographic parity. The major difference between the implementation of demographic
parity and conditional statistical parity is that computations regarding acceptance rates
of demographic groups are now calculated separately for every different subgroup.
As for demographic parity, we now also need the following input streams:

input time : Int64
input id : Int64
input gender: String
input seminar: Int64
input qualification: Int64
input accepted: Bool
input idAccepted: Int64

Since this fairness definition investigates acceptance ratios within seminars, the parame-
ters gender, seminar and accepted are important in this section.
Also, since there are three different states of the decision, namely accepted, rejected, and
undefined, there are the same ENUM’s as in demographic parity:

constant UNDEFINED : UInt64 := 0
constant ACCEPTED : UInt64 := 1
constant REJECTED : UInt64 := 2

We further use the same structure for storing the data from each user as in the previous
fairness implementation:
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output userData(p)
spawn with id
eval when id == p with (gender,seminar)
close when p == idAccepted

output userDataAccepted(p)
spawn with idAccepted
eval when idAccepted == p with if accepted then ACCEPTED else REJECTED

These two parameterized streams store the gender, the seminar, and the state of the
decision for each user. These informations are required for later calculations and therefore
need to be stored until the calculation process is over.
With the necessary data stored, it is now possible to start making computations for
fairness according to statistical conditional parity (Definition 2.1.2):

output allMale(p)
spawn with seminar
eval @idAccepted when userData(idAccepted).hold(or: ("D",0)) == ("M",p)

with allMale(p).offset(by: -1).defaults(to: 0) + 1

output allFemale(p)
spawn with seminar
eval @idAccepted when userData(idAccepted).hold(or: ("D",0)) == ("F",p)

with allFemale(p).offset(by: -1).defaults(to: 0) + 1

These two parameterized streams calculate the total number of applicants for each
demographic group within each seminar. For each different seminar, these streams
spawn a new stream that counts up the number for the new seminar. The condition now
also checks which seminar the person applied for. According to that, the corresponding
parameterized stream gets counted up by one. Besides that, these two streams behave
similarly to all(Fe-)Male streams from demographic parity (Section 3.4.1).
For the acceptance rates, we also need the number of accepted applicants for each
demographic group within each different seminar:

output maleAccepted(p)
spawn with seminar
eval when userData(idAccepted).hold(or: ("D",0)) == ("M",p)

∧ userDataAccepted(idAccepted).hold(or: UNDEFINED) == ACCEPTED
with maleAccepted(p).offset(by: -1).defaults(to: 0) + 1

output femaleAccepted(p)
spawn with seminar
eval when userData(idAccepted).hold(or: ("D",0)) == ("F",p)

∧ userDataAccepted(idAccepted).hold(or: UNDEFINED) == ACCEPTED
with femaleAccepted(p).offset(by: -1).defaults(to: 0) + 1

These two output streams work similarly to all(Fe-)Male(p) with the single difference that
these streams also check the status of the decision. Only if the person got accepted to a
seminar, the corresponding parameterized stream gets counted up by one.
Since we saw that the naive formula for the acceptance rates is not sufficient (Section 3.3),
we need further calculations to use MAP and normalization (Definition 3.3.1):
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output overflowCounter(p)
spawn with seminar
eval @idAccepted

when userData(idAccepted).hold(or: ("D",0)).1 == p
with if (allMale(p).hold(or: 0) + allFemale(p).hold(or: 0)) >= 12
then ((allMale(p).hold(or: 0) + allFemale(p).hold(or: 0)) - 12)
else 0

output priorValue(p)
spawn with seminar
eval @idAccepted when userData(idAccepted).hold(or: ("D",0)).1 == p
with 12.0 / (12.0 + (overflowCounter(p)))

The stream overflowCounter(p) checks if more people applied than there are spaces for
each seminar. If this is the case, the parameterized stream takes the value of the difference
of spaces for that seminar and applicants for that seminar. Else, the parameterized stream
has a value of zero.
These values are required for the calculations of the priorValue(p) stream. This stream
calculates the ratio between total spaces and total spaces plus overflow for each different
seminar. Hence, this stream calculates γ1

γ1+γ0+o from Definition 3.3.1 for each seminar.
Now that all necessary values are computed, we can calculate the actual acceptance rates
for both demographic groups:

output maleRelation(p)
spawn with seminar
eval when userData(idAccepted).hold(or: ("D",0)) == ("M",p)

with (maleAccepted(p).hold(or: 0)
+ (priorValue(p).hold(or: 1.0) * 6.0))
/ (allMale(p) + 6)

output femaleRelation(p)
spawn with seminar
eval when userData(idAccepted).hold(or: ("D",0)) == ("F",p)

with (femaleAccepted(p).hold(or: 0)
+ (priorValue(p).hold(or: 1.0) * 6.0))
/ (allFemale(p) + 6)

The streams are parameterized since these acceptance rates are computed separately for
every different seminar. Every stream checks if the person, that currently got a decision,
is of the "correct" demographic group and also, which seminar this person applied for.
Then, these streams calculate the acceptance rates according to Definition 3.3.1.
Now these acceptance rates remain to be compared:

output condParity(p)
spawn with seminar
eval @idAccepted when userData(idAccepted).hold(or: ("D",0)).1 == p
with abs(maleRelation(p).hold(or: 1.0) - femaleRelation(p).hold(or: 1.0))

With condParity(p) we get separate values for each different seminar. Each parameterized
stream stores the difference between the acceptance rates of both demographic groups
within that specific seminar.
Lastly, we need to check if (at least) one of these parameterized values of condParity(p)
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is too high, and whether there is a too big discrepancy between the acceptance rate for
males and females:

trigger condParity(userData(idAccepted).hold(or: ("D",0)).1).hold(or: 0.0) >
0.1

The trigger activates always when the discrepancy between both acceptance rates within
a specific seminar is higher than 0.1.

We now saw the implementation of both demographic parity (Section 3.4.1) as well
as statistical conditional parity (Section 3.4.2).
The next section shows the implementation of counterfactual fairness (Definition 2.1.3).

3.4.3 Counterfactual Fairness

This section covers the implementation of counterfactual fairness (Definition 2.1.3).
Note, that the original intention of counterfactual fairness, namely that "a decision is fair
towards an individual if it is the same in both the actual world and a counterfactual world
where the individual belonged to a different demographic group" [36] is not realizable
to implement. For that, it would be required to have a database in RTLola where
computations for the "counterfactual world". could be done. Hence, the implementation
provided in this section realizes a new interpretation of this fairness definition:

Modified Interpretation Instead of checking whether the decision for an individual
would be the same in a counterfactual world, this new approach checks if two applicants
within one scenario that only differ in their demographic group get the same result
(Example 2.1.3). Further, if a seminar has no spaces left, the excessive applicants do
not count for individual unfairness, even though, the original definition of that fairness
states so. The reason that case does not count as individual unfairness is the fact that
in a temporal approach, it occurs that there apply more people than there are spaces in
seminars. Hence, if every excessive applicant would count as an unfair decision, there
would exist (almost) no scenario that is fair according to counterfactual fairness.

Remark. Before the actual implementation, we introduce syntactical sugar for readability
purposes. By comparing the values of a tuple, a "_" indicates that this value can be any
value and therefore will not be regarded.

As for both other fairness conditions, we need the following input streams:

input time : Int64
input id : Int64
input gender: String
input seminar: Int64
input qualification: Int64
input accepted: Bool
input idAccepted: Int64

Since this fairness definition compares individuals that have the same qualification but
differ in the demographic group, the parameters gender, qualification and accepted are
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important in the following implementation.
For the different states of decision, we again use the following ENUM’s:

constant UNDEFINED : UInt64 := 0
constant ACCEPTED : UInt64 := 1
constant REJECTED : UInt64 := 2

There also has to be stored the required data from each applicant, which is realized by
similar parameterized output streams as in both other fairness definitions:

output userData(p)
spawn with id
eval when id == p with (gender,qualification,seminar)
close when p == idAccepted

output userDataAccepted(p)
spawn with idAccepted
eval when idAccepted == p with if accepted then ACCEPTED else REJECTED

Note that we now also store the qualification parameter in the userData stream, since this
value is required for later computations.
Then we need to keep track of whether people from each demographic group get accepted
with their corresponding qualification:

output maleQualificationAccepted(p)
spawn with qualification
eval when userData(idAccepted).hold(or: ("D",0,0)) == ("M",p,_)

&& userDataAccepted(idAccepted).hold(or: UNDEFINED) == ACCEPTED
with true

output femaleQualificationAccepted(p)
spawn with qualification
eval when userData(idAccepted).hold(or: ("D",0,0)) == ("F",p,_)

&& userDataAccepted(idAccepted).hold(or: UNDEFINED) == ACCEPTED
with true

These two parameterized streams check for every demographic group whether there is a
positive decision made and if this is the case, the stream with the according qualification
gets set to true. With that, we know for what qualifications people got accepted to a
seminar.
Further, we need the same streams as shown above with the difference to check whether
the applicant gets rejected.

output maleQualificationRejected(p)
spawn with qualification
eval when userData(idAccepted).hold(or: ("D",0,0)) == ("M",p,_)

&& userDataAccepted(idAccepted).hold(or: UNDEFINED) == REJECTED
with true

output femaleQualificationRejected(p)
spawn with qualification
eval when userData(idAccepted).hold(or: ("D",0,0)) == ("F",p,_)
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&& userDataAccepted(idAccepted).hold(or: UNDEFINED) == REJECTED
with true

Since if in a seminar all spaces are occupied all following applicants get denied and
therefore, unfairness would arise, we also keep track of the remaining free spaces:

output seminarCounter(q)
spawn with seminar
eval when userData(idAccepted).hold(or: ("D",0,0)).2 == q

&& userDataAccepted(idAccepted).hold(or: UNDEFINED) == ACCEPTED
with seminarCounter(q).offset(by: -1).defaults(to: 0) + 1

This parameterized stream counts up the number of accepted applicants for each seminar.
With the use of this stream, it is then possible to see whether there are free spaces left in
specific seminars.
Since now all required data is stored, it is possible to check for unfair decisions:

output unfairCheckerMaleR
eval with if ((userData(idAccepted).hold(or: ("D",0,0)).0 == "M")

&& (userDataAccepted(idAccepted).hold(or: UNDEFINED) == REJECTED)
&& femaleQualificationAccepted(userData(idAccepted).hold(or:

("D",0,0)).1).hold(or: false)
&& seminarCounter(userData(idAccepted).hold(or:

("D",0,0)).2).hold(or: 0) <= 11)
then unfairCheckerMaleR.offset(by: -1).defaults(to: 0) + 1
else unfairCheckerMaleR.offset(by: -1).defaults(to: 0)

output unfairCheckerFemaleR
eval with if ((userData(idAccepted).hold(or: ("D",0,0)).0 == "F")

&& (userDataAccepted(idAccepted).hold(or: UNDEFINED) == REJECTED)
&& maleQualificationAccepted(userData(idAccepted).hold(or:

("D",0,0)).1).hold(or: false)
&& seminarCounter(userData(idAccepted).hold(or:

("D",0,0)).2).hold(or: 0) <= 11)
then unfairCheckerFemaleR.offset(by: -1).defaults(to: 0) + 1
else unfairCheckerFemaleR.offset(by: -1).defaults(to: 0)

These two streams check for unfairness, each for one demographic group. They always
get evaluated when there is a new decision made for an applicant. With that, unfairCheck-
erMale and unfairCheckerFemale check, whether the person that currently got their decision
belongs to the corresponding demographic group. Further, they investigate whether this
person got rejected. If this is the case, these streams look up in (fe-)maleQualification if
there exist people belonging to the other demographic group who got accepted with the
same qualification. Finally, they check if there is still space left in the applied seminar.
Further, the same checks have to be done, except that the decision now has to be accepted
and we look at (fe-)maleQualificationRejected.

output unfairCheckerMaleA
eval with if ((userData(idAccepted).hold(or: ("D",0,0)).0 == "M")

&& (userDataAccepted(idAccepted).hold(or: UNDEFINED) == ACCEPTED)
&& femaleQualificationRejected(userData(idAccepted).hold(or:

("D",0,0)).1).hold(or: false)
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&& seminarCounter(userData(idAccepted).hold(or:
("D",0,0)).2).hold(or: 0) <= 11)

then unfairCheckerMaleA.offset(by: -1).defaults(to: 0) + 1
else unfairCheckerMaleA.offset(by: -1).defaults(to: 0)

output unfairCheckerFemaleA
eval with if ((userData(idAccepted).hold(or: ("D",0,0)).0 == "F")

&& (userDataAccepted(idAccepted).hold(or: UNDEFINED) == ACCEPTED)
&& maleQualificationRejected(userData(idAccepted).hold(or:

("D",0,0)).1).hold(or: false)
&& seminarCounter(userData(idAccepted).hold(or:

("D",0,0)).2).hold(or: 0) <= 11)
then unfairCheckerFemaleA.offset(by: -1).defaults(to: 0) + 1
else unfairCheckerFemaleA.offset(by: -1).defaults(to: 0)

When all these conditions evaluate to be true, individual unfairness is detected, and the
stream counts up its value by one. Otherwise, it keeps its former value.
To warn the user, there are triggers that rise when there occurs a case of unfairness:

trigger unfairCheckerMaleR
> unfairCheckerMaleR.offset(by: -1).defaults(to: 0)

trigger unfairCheckerFemaleR
> unfairCheckerFemaleR.offset(by: -1).defaults(to: 0)

trigger unfairCheckerMaleA
> unfairCheckerMaleA.offset(by: -1).defaults(to: 0)

trigger unfairCheckerFemaleA
> unfairCheckerFemaleA.offset(by: -1).defaults(to: 0)

These triggers check whether the value of either unfairCheckerMale or unfairCheckerFemale
got counted up by one. If this is the case, a trigger is thrown.

Summarizing, this section showed the implementation of fairness definitions, that are
investigated in this thesis.
The following section covers the input generation that is used to realize later experi-
ments.



Chapter 4
Input Generation

This section introduces the scripts to generate the input data for the evaluation in Chapter
5. These python scripts generate .csv files and represent applicants applying for different
seminars. We first look at how these csv generators work in general and then see how
each script can be adjusted to get the desired input. Lastly, we introduce the different
decision-making algorithms and the adaptions to the scripts.

4.1 Csv-Generator

This section covers the procedure of generating csv file representing the different appli-
cants. (Each line represents one applicant.) With that, in each line, the information about
this application is determined.

Parameters Each person has an attribute time representing the time at which the person
applies for a seminar. Further, to uniquely identify each person, everyone gets a unique
id. To execute fairness conditions in RTLola, we need the required parameters for
each applicant. In our setup, every person has a gender, either male or female, which
is determined by a coin flip. Also, each person applies for a seminar, which is also
randomly determined based on the existing number of different seminars. To monitor
counterfactual fairness (Section 2.1.3), each applicant has a qualification which is a random
number between 1 and 10. A representing line for an applicant looks like this:

time id gender seminar qualification decision idDecision
1 1 F 1 8 # #

Figure 4.1: Single Applicant

Note, that the two parameters decision and idDecision are for the decision for a person
that might come later than the application. Since we want to investigate rather realistic

32
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Figure 4.2: Control Flow for the Input Generation

inputs, there are two different output variants:

• The decision of whether a person is accepted or rejected is specified at a later point
in time. A time delay is a random number from 1 to 100, representing the time
"needed" to make a decision.

• There are bounded deadline "rounds", meaning that whenever a person applies, a
threshold gets counted up by 1. If the threshold is reached, all persons that applied
in this "round" get their decision at the same time and after that, the threshold
gets reset. Further, in these tables, there is an extra parameter called round, which
indicates in which iteration of rounds the process is currently.

For each of these two variants, there is a separate script, i.e. one script for the delayed
version and one script for the specific "rounds". To realize the delayed decisions, each
applicant has two extra parameters, as shown in Figure 4.1, one for the decision of being
accepted, and one to specify to whom the decision belongs indicated by the id. As an
example, if at any point in time, the parameter for the decision is true and the parameter
for whom the decision counts is 4, the person with id of 4 gets accepted to the applied
seminar. A later example visualizes this behavior.
The input generation procedure is represented in Figure 4.2. An exclamation mark ("!")
indicates that these values are provided from the source where the edge originated. A
question mark ("?") means the source "asks" the target for the specified value. Further,
the numbers indicate the order of execution.

Input Generation The user of the script first specifies the minimum, as well as the
maximum amount of applicants as shown in Figure 4.2. Then, the user specifies the
number of different seminars, each with a capacity of 12. The script that features specific
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"rounds" of applicants asks the user then to state the size of each round (In the figure in
brackets). When there are as many applicants as specified in the size of "rounds", these
applicants then get immediately their acceptance decision.
Then, the actual number of applicants gets calculated by taking a random number
between the minimum and the maximum number of applicants. Now, each applicant
gets generated with their information according to the description above and then gets
appended to the current list of applicants. Finally, the user gets asked which algorithm
should be used for decision purposes and according to that input, each applicant gets
their decision of being accepted or rejected at a later point in time than the application of
the person.
There exists also a third script, where steps three and four (Figure 4.2) do not exist and
the script "sends" the applicants to every different algorithm. This process is done 100
times, i.e. step two, and then step five is executed 100 times (Figure 4.2). With that third
script, it is possible to have different algorithms executed on the same input data. Hence,
we can evaluate these datasets and get statistically accurate results.

4.2 Different Decision-Making Algorithms

In this section, we introduce the different decision-making algorithms supported by the
scripts. We briefly explain the proceeding of each algorithm as well as the motivation to
analyze them. In this thesis, we focus on four different decision-making algorithms:

First come, First served This algorithm accepts the first people applying regardless of
any other metrics. In the input generation script, this is realized by checking for each
applicant, if there is still capacity in the applied seminar, i.e. if this is the case, then the
person gets accepted. With that, for each seminar people applied for, the first 12 get
accepted, while all others get rejected.
We expect this algorithm to be unfair in most scenarios. However, this algorithm is still
an interesting case, since there are cases in the real world where some sort of first come,
first served is applied. Further, based on this algorithm we can see if the monitoring
process in RTLola is executed correctly.

Randomize This algorithm randomizes the people that get accepted. This is done by
picking randomly 12 people that applied for the seminar. Additionally, this procedure is
repeated for each different seminar. All others then get rejected.
With that algorithm, we want to show that randomness generates a bias in general. With
randomization, certain demographic groups get disadvantaged since randomization
respects no specific parameter.
Concluding, we expect this algorithm to be unfair in most scenarios regarding (almost)
all fairness conditions.

Best Qualification The approach of this algorithm is to accept the best 12 applicants
for each seminar. I.e., the people with the highest qualification. We realize this in the
input generation by checking the qualification of each applicant for each seminar and
then accepting the best 12 for each seminar. All others then get rejected, because there is
no capacity left in the seminars.
Since this algorithm aims to fulfill the condition from counterfactual fairness (Section
2.1.3) we expect this algorithm to be fair in most scenarios according to counterfactual
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fairness. However, this might yield critical results, since the other fairness criteria may be
violated. This would show that picking the people with the best qualification is not fair
according to fairness definitions like demographic parity (Section 2.1.1) or conditional
statistical parity (Section 2.1.2). This finding would be interesting since it is a common
method in the real world to pick the best few applicants and with that, not respect other
aspects like the equality of gender.

Equal Gender The equal gender algorithm ensures that the acceptance rates of males
and females are (almost) the same. For that, the algorithm tracks the number of males, as
well as the number of female applicants, and with that, calculates the acceptance rate
and how many of each demographic group should be accepted.
By ensuring that the acceptance rates are roughly the same, we also expect demographic
parity to never be violated towards the end of the scenario, since the desired acceptance
rates should then be stabilized. We use this algorithm as a reference and to compare
other forms of algorithms with it. Furthermore, this algorithm shows that ensuring that
one fairness condition holds, does not mean that the algorithm is completely fair. Other
fairness definitions may be violated frequently.

4.3 Generating Input Scenario

We now want to execute both input-generation scripts and inspect the corresponding
outputs. The first script represents more of a scenario for a job application with no
specific deadline. In contrast, the second script describes the seminar-assignment system
that is mentioned in this thesis since it shows specific deadlines. For all people applying
before that deadline, a decision is made immediately when the deadline is over.
We will now see an example for each version of the script:

4.3.1 Delay-Script

To obtain an input file, the script itself has to be executed. Then, it is necessary to specify
the minimum and maximum amount of Applicants asked by the script, as well as the
desired amount of seminars. When these parameters are specified, the script generates
the input table and then asks the user to decide, which algorithm should be used in this
scenario for the decision of acceptance for each applicant. The user then gets a list of
available algorithms and specifies which one to use. After that, the script is done and
yields the resulting input table.
We now generate a .csv file by running the delay script with the following attributes:
Let us say we want exactly 10 applicants, so we choose both the minimum, as well as
the maximum of applicants to be 10. For 10 people it is sufficient to have 1 seminar, and
we choose the algorithm to be "first come, first serve", which accepts the first people
applying for a seminar.
The resulting csv file is shown in Figure 4.3
The table in Figure 4.3 presents a possible output generated with the delay script. In total
10 people applied for a seminar and all got accepted eventually to that seminar. Note
that at times when no person applies for a seminar but a decision for another person is
made, the first five parameters, except for the parameter time, just stay empty.
Further, the value of the parameter decision always refers to the applicant with the id of
the value of idDecision. With that, e.g. at time five the "true" value in decision refers to the
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time id gender seminar qualification decision idDecision
1 1 M 1 7 # #
2 2 F 1 8 # #
3 3 F 1 2 # #
4 4 M 1 10 true 1
5 5 F 1 4 true 2
6 6 M 1 6 # #
7 7 M 1 2 true 6
8 8 M 1 1 true 4
9 9 M 1 2 true 8
10 10 M 1 2 true 5
11 # # # # true 9
12 # # # # true 7
13 # # # # true 3
14 # # # # true 10

Figure 4.3: Input Table with Delay

person with the id "2". This concludes with the result that person with id 2 gets accepted
to seminar 1 at time 5.
Also, no person got rejected from the seminar, since the capacity of the seminar is 12 and
the chosen algorithm was "first come, first served".

4.3.2 Deadline-Script

Now we want to generate a csv file that features specific deadlines. For that, we execute
the deadline script with again the number of applicants being exactly 10 and also with
just 1 seminar. Further, we specify each "round" with 4, meaning that whenever 4 people
apply, all of the m get their decision immediately after the 4th applied. We also choose
"first come first serve".
The resulting csv file is represented in Figure 4.4. We see in this figure (Figure 4.4) that
when the number of applicants in each round hits up to 4, all of them get a decision
immediately. If there is a rest (10%4 = 2) the rest also get their results immediately, even
though the limit is not reached for the round. Since the limit will never be reached, these
applicants also need a decision. Also the parameter round indicates in which iteration
of rounds we are currently. This information is required to monitor these scenarios in
RTLola. We also see that within the lines of the decision for the applicants, the time
always stays the same, since we want every person from each round to get their result at
the same time as each other.

In conclusion, we introduced the proceeding of generating input in the form of csv-files
in this section. Further, we briefly explained the different decision-making algorithms
that are investigated in this thesis.
With these algorithms being introduced, we can now complete our csv-files by adding the
decisions made in the specified algorithm. Now, we can run these algorithms through
experiments. In the following section (Section 5) we analyze the behavior of these
algorithms in generated-practical scenarios.
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time id gender seminar qualification decision idDecision round
1 1 M 1 8 # # 1
2 2 F 1 5 # # 1
3 3 F 1 6 # # 1
4 4 F 1 1 # # 1
4 # # # # true 1 1
4 # # # # true 2 1
4 # # # # true 3 1
4 # # # # true 4 1
5 5 M 1 2 # # 2
6 6 M 1 9 # # 2
7 7 M 1 10 # # 2
8 8 F 1 9 # # 2
8 # # # # true 5 2
8 # # # # true 6 2
8 # # # # true 7 2
8 # # # # true 8 2
9 9 M 1 2 # # 3

10 10 F 1 5 # # 3
10 # # # # true 9 3
10 # # # # true 10 3

Figure 4.4: Input Table with Rounds



Chapter 5
Experiments

In this section, we evaluate the different algorithms from Section 4.2 with the speci-
fications of Section 2.1.3 regarding fairness. We analyze the frequency of occurring
triggers, as well as the timing of these triggers, i.e., when these triggers occur within the
scenarios. Further, we check how long the state stays unfair. We then interpret these
results to see the suitability of each algorithm. Further, we introduce an example of
"Simpson’s Paradox" (Section 2.1.3) and show that we can detect occurrences of that with
the specifications from Section 2.1.3.

5.1 Trigger Behavior in Demographic Parity

In this section, we analyze the different decision-making algorithms introduced in Section
4.2, namely "Equal Gender", "First come First served", "Best Qualification" and "Random-
ized" with respect to demographic parity (Definition 2.1.1). We compare each algorithm
regarding the total amount of triggers, as well as the temporal timing of triggers. We
then interpret these results according to the rank of fairness.
For the following experiments, 1000 input files were generated with the random delay
approach (Section 4.1), i.e. the decision for each applicant is made with a delay of 1-100
discrete points in time. Then, each algorithm made decisions for these input files. The
result is 1000 files for each different algorithm, i.e. 4000 in total. Further, each input
file has precisely 100 applicants and there exist three different seminars, resulting in 36
spaces in total for each input file.

5.1.1 Frequency of Triggers

The specified input tables run against the implementation of demographic parity from
Section 3.4.1. Hereby, it is important to set the confidence κ (Definition 3.3.1), as well
as the tolerance ϵ for the trigger to a matching value. Therefore, in Figure 5.1 different
confidences κ with different tolerances ϵ are compared.

This bar chart shows the number of thrown triggers for each algorithm.
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Figure 5.1: Total Amount of Thrown Triggers

By setting the confidence κ to 80, the amount of thrown triggers does not yield accurate
results. Even though there are only five triggers raised by the "Equal Gender" algorithm,
which would be an argument supporting the setting, this specific value for κ is not
suitable. The other algorithms also raise subnormal numbers of triggers, e.g., "Random-
ization" only raised 1309 triggers in total, meaning that 1383 decisions out of 100.000
decisions are unfair according to this algorithm. Since the expected behavior of this
algorithm differs from these results, this setting does not match real-world scenarios.
By assigning a value of 30 to the confidence κ, which is too low, there are too many trig-
gers thrown to be accurate. The "Equal Gender" algorithm raises 3012 triggers, though,
since its expected behavior is to make decisions fairly, this value for κ is not suitable as
well.
If the confidence κ is set to 54 and the tolerance ϵ to 0.12, the results might seem to be
realistic. However, in that case, "FcFs" only raise 975 triggers, which is too little for a
seemingly unfair algorithm. Therefore, this setting is not used in further experiments as
well.
When setting the tolerance ϵ to 0.085 while keeping the confidence κ at 54, we see that
there are thrown too many triggers to match realistic results. Since "Equal Gender" tries
to ensure the equality of acceptance rates between the demographic groups, 1031 thrown
triggers indicate a too strict tolerance.
Resulting from that, the setting where κ is set to 54 and ϵ to 0.1 serves the most realistic
results. While "Equal Gender" throws a feasible amount of triggers, the other algorithms
seem to face some issues regarding fairness, which is expected since within their calcula-
tions, these algorithms do not regard acceptance rates of males and females.
Concluding, the following experiments, i.e. the timing of triggers, as well as the period
of unfair states are executed with κ being 54 and ϵ being 0.1. We now analyze the result
of this experiment regarding this specific setting:
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Figure 5.2: Acceptance Rates over Time with Equal Gender

Equal Gender Iterating over 1000 input files yields 300 triggers in total, which is by far
the lowest number of all algorithms. This is an expected behavior since the equal gender
algorithm tries to balance the acceptance rates of both demographic groups to decrease
the margin. Since demographic parity checks the discrepancy between the acceptance
rates of both demographic groups, the condition mostly holds and therefore the number
of triggers is proportionally little.
However, there are still some scenarios that are unfair according to demographic parity.
The reason for that may be a local unequal distribution of demographic groups. Though
this might happen in real-world scenarios, one cannot ensure that different demographic
groups apply in alternating order. Also, this is the reason why the "Equal Gender"
algorithm still has triggers, and further, the algorithm only ensures gender equality
at the end of a scenario, meaning that there can occur local inequalities between both
demographic groups. An unequal distribution of different demographic groups is shown
in Figure 5.2.
Especially between time 77 and 90, the discrepancy between both acceptance rates grows.
This is caused by the fact that many females get rejected in this period, while there are
(almost) no decisions for males. This leads to a bigger margin between these acceptance
rates and results in thrown triggers. However, it is also worth noting that after that
time period, the discrepancy gets smaller, and acceptance rates have almost equal values
(∼ 0.0084 discrepancy) by the end of the table. We analyze this special behavior in later
experiments.
In conclusion, we decide "Equal Gender" is a fair algorithm in general, even though there
are thrown triggers. Since these thrown triggers result from an unequal distribution
between demographic groups, and ultimately the decisions in an input file get fair, this
algorithm can be seen as "fair".
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First Come First Served In Figure 5.1, "First come First served" (FcFs) has 1979 triggers
thrown in total. This is far worse than "Equal Gender" with ∼ 6.5 times as many triggers
are thrown. With ∼ 2 triggers thrown on average per input file, this algorithm cannot be
seen as fair in general. However, "First come First served" performs notably better than
"Best Qualification" and "Randomized". This is caused by the natural property of FcFs to
accept all applicants in the beginning while rejecting all excessive applicants at the end
of the input table.
Choosing FcFs as the algorithm, the first few applicants always get accepted (at least the
first 12 applicants, since there is always as least one seminar). In this stage, no unfairness
according to demographic parity (Definition 2.1.1) can occur since the acceptance rates of
both demographic groups stay a 1.0. Then, there is a stage where mixed decisions occur.
The reason for that is that some seminars are already booked full, while some of them
still have some vacancies. Within that stage, the acceptance rates can change rapidly,
dependent on the distribution of males and females. In the final stage, all remaining
applicants get rejected, since all of the available slots are already occupied. Also, in
this stage, the discrepancy between both acceptance rates does not change significantly.
Thus, this also includes that if at the end of stage two, the acceptance rates are within the
tolerated bound, this will not change anymore and therefore little triggers are thrown.

Best Qualification Iterating over 1000 input files with this algorithm, demographic
parity recognized 3808 unfair positions. Since "Best Qualification" picks the applicants
with the highest qualification, it does not regard gender. Hence, the distribution of
accepted males and females is not respected in the calculations of the algorithm, and
therefore the acceptance rates can differ significantly. Thus this may result in unfair
scenarios concerning gender.
All in all Figure 5.1 shows that "Best Qualification" is not a suitable algorithm when taking
respect to demographic parity. Picking the "best" applicants does not ensure gender
equality and therefore, this algorithm does not behave fair according to demographic
parity.

Randomization As shown in Figure 5.1, this algorithm behaves equally unfairly as
"Best Qualification". However, this is expected behavior since choosing the accepted
applicants randomly does not ensure gender equality. Thus, since this is the critical
criterion of demographic parity (Definition 2.1.1) "Randomization" behaves unfairly
according to this fairness definition.
In conclusion, this specific algorithm is not appropriate when trying to ensure fairness.
Even with an equal distribution of demographic groups, this algorithm can behave
unfairly and therefore is not applicable in real-world scenarios.
Though, this algorithm can be seen as a reference to whether the implemented specifica-
tions (Section 3.4.1,3.4.2,3.4.3) work properly. With that, the expected result is an unfair
behavior of the "Randomized" algorithm.

We now analyzed the accuracy of algorithms regarding the total number of thrown
triggers. With that, "Equal Gender" performed the best, making it a fair algorithm
according to demographic parity. All others were significantly worse and contained
a lack of fairness by not respecting the acceptance rates between both demographic
groups.
Further, we introduce temporal aspects of the experiments in the next section. We
compare the timing of triggers in the next section and interpret these results.
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Figure 5.3: Temporal Distribution of Triggers

5.1.2 Timing of Thrown Triggers

We now extract the timing of thrown triggers and according to that, analyze the behavior
of each algorithm according to demographic parity. The histograms in Figure 5.3 show
the temporal distribution of thrown triggers. In all histograms, there are no triggers
thrown in the early stage of the input files. This is caused by the application of MAP and
Normalization (Definition 3.3.1). With that, no triggers are thrown in the beginning since
it is not possible to tell whether an algorithm behaves fair after only a few decisions.

Equal Gender With "Equal Gender", most triggers are thrown in the time between
70-90. The impact of applying MAP and Normalization to the acceptance rates yields this
behavior. Further, after time ∼ 90 the number of thrown triggers goes rapidly down. The
latest trigger thrown is at time ∼ 120. This again supports the recognition from the earlier
experiment (Figure 5.1) that "Equal Gender" gets fair ultimately. Further, this histogram
(Figure 5.3) shows that unfairness according to demographic parity when using equal
gender can only occur in the middle of input tables. The first decisions cannot get unfair
because of MAP, and the last decisions are not unfair because of the behavior of the
algorithm. Only in the time between the impact of MAP and the stabilization of the
acceptance rates, there can occur local unfairness.
Concluding, this histogram supports the statement from the experiment earlier (Section
5.1.1), namely that this algorithm is suitable regarding demographic parity. It may behave
unfairly locally in specific scenarios, but it ensures to be fair ultimately.
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Figure 5.4: Acceptance Rates over Time

First Come First Served From the histogram, we can see, that the timing of thrown
triggers has similarity to the normal distribution. The peak is at time ∼ 140− 150, which
is later than with "Equal Gender". After that, the number of triggers decreases up to
time 200 due to the reason that the decision for a person is made with a delay of 1-100
timestamps. Resulting from that, the length of each input file differs and therefore, there
are fewer decisions made at later points in time. With that, the total number of triggers
decreases over time. Though, this behavior does not support the statement that the
algorithm gets fairer at later time points.
The histogram for "First come First served" therefore strengthens its ineffectiveness
regarding demographic parity, since one can see that if there is a trigger at a certain point
in time, the trigger usually keeps up until the end of the input file. This behavior can be
seen in Figure 5.4.

The lines representing the acceptance rates of each demographic group in Figure 5.4
show that until time ∼ 90 the acceptance rates are almost stable at 1.0-0.9. After that,
there is a downward trend, since now (almost) all slots from the seminars are occupied.
Also note, that FcFs accept the first applicants, but this does not imply that the first
decisions are positive. From the time a decision is made for a specific person, negative
decisions may occur before positives (e.g. the first few applicants all get a high delay
while the first applicant, where a seminar is booked full, gets a delay of 1). In this
situation, there is some impact at the beginning that lowers the acceptance rate of the
according demographic group.
Further, it is noticeable that the discrepancy between the acceptance rates of both demo-
graphic groups grows over time, especially from time ∼ 100 until the end of the input
file. This behavior is reflected in Figure 5.3.
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Best Qualification The histogram for "Best Qualification" in Figure 5.3 visualizes a high
amount of thrown triggers at time ∼ 70− 80. After that, there is a constant downward
trend up to time 200. Further, the number of thrown triggers is higher than with "Equal
Gender" or "FcFs" (Figure 5.1).
This result can be interpreted as the unsuitability of this algorithm according to demo-
graphic parity. After the impact of MAP, the number of thrown triggers goes rapidly up.
After that, the total number of triggers reduces per time, though ultimately not getting
fair.

Randomization For "Randomization", the histogram from Figure 5.3 shows a similar
effect as for "Best Qualification". Early, after the impact of MAP, the number of triggers
rises to a peak of almost 60 triggers at a specific time. After that, there is a downward
trend, which is caused by the different lengths of each input file. Since some files are
shorter than others, the total number of triggers decreases over time.
However, at the end of the input files, there are still errors thrown, leading to the fact that
"Randomization" is also not suitable, since the algorithm does not respect the acceptance
rates in its calculations.

In this section, we investigated the temporal timing of occurring triggers. With that, it
was possible to interpret the rank of fairness for each different algorithm.
In the next section, we analyze the rising edges.

5.1.3 Occurences of Rising Edges

We now investigate the occurrences of rising edges. Rising edges are points in time,
where currently a trigger is thrown but the last time the acceptance rates were checked,
there is no trigger thrown. With that, it is possible to observe, whether an algorithm is
close to the tolerated fairness bound. When there are many rising edges relative to the
total number of triggers, this means that the trigger is often thrown for a short period. In
contrast to that, if there are few rising edges relative to many total triggers, this means
that when a trigger is thrown, this trigger remains for a long period of time and therefore
the algorithm is behaving unfairly according to demographic parity.
Figure 5.5 shows the ratio of rising edges.

In this figure (Figure 5.5), the orange bars represent the total amount of thrown triggers
(as in Figure 5.1) while the blue bars show the number of rising edges. For "Equal
Gender", almost 1

3 of each trigger is a rising edge. This further supports the statement
that unfairness in this algorithm is only local since otherwise, the ratio of rising edges to
the total number of triggers would be less.
Regarding all other algorithms, the ratio lies between 0.164 and 0.176, which is signif-
icantly less than for "Equal Gender". With that, all other triggers, that are not rising
edge, have to follow up directly from a previous trigger. This results in a trend where
the period of triggers is longer and therefore the algorithms stay longer unfair and/or
stay unfair until the end of the input table. This behavior was already shown in earlier
experiments, however, with Figure 5.5, this statement gets strengthened further.
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Figure 5.5: Rates of Rising Edges

5.1.4 Trigger Behavior in Bounded Deadline Rounds

This section covers an analysis of the trigger behavior using the approach of having spe-
cific deadlines within the input files (Approach 4.1). Every time after 20 new applicants,
each of them gets a decision, all at one later point in time than the 20th applicant. Besides
this difference, the framework is the same as in earlier experiments, i.e. 1000 input files
for each algorithm with 100 applicants within each input file. In each scenario, there
are three seminars with a capacity of 12. Further, in demographic parity a confidence κ
(Definition 3.3.1) of 54 and a bound of 0.1 is chosen.
With this setting, Figure 5.6 shows a bar chart representing the total number of thrown
triggers for each seminar.

Figure 5.6 shows a seemingly similar chart as with the random delay approach. How-
ever, in "Equal Gender" there are almost no triggers thrown with less than 1

3 thrown
triggers. Also, in all other different algorithms, there are fewer triggers thrown, though
the relative difference to the random delay script is less with only ∼ 14.4%-18% fewer
triggers thrown. Thereby, the reason for this significantly better performance of "Equal
Gender" is that the local unequal distributions regarding the demographic groups do not
harm the outcome of that algorithm that much anymore. This is because there are always
made 20 decisions at once, so, in general, the local inequality can be balanced again.
For the other algorithms, since these do not regard the acceptance rates in their calcula-
tions, this behavior only gives slightly better performance.

Summarizing, regarding demographic parity, "Equal Gender" is a suitable algorithm
while all others lack fairness. Though we also saw, that even an algorithm that tries
to keep the acceptance rates the same may come up with some local unfair sections.
Further, demographic parity is a feasible fairness condition that can be computed in
many different scenarios. However, some experiments showed that one cannot rely on
single-thrown triggers, since local unequal distributions can disturb the acceptance rates
for a certain period of time.
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Figure 5.6: Total Amount of Thrown Triggers

The next section covers experiments for statistical conditional parity.

5.2 Trigger Behavior in Statistical Conditional Parity

This section covers experiments regarding conditional statistical parity (Definition 2.1.2),
as well as the analysis and interpretation of results. For that, the structure of the ex-
periments is similar to the experiments for investigating demographic parity (Section
5.1).

5.2.1 Frequency of Triggers

We now use the implementation of conditional statistical parity from Section 3.4.2 to
investigate the generated input files for unfairness. We thereby use the same approach
as for the experiments for demographic parity in Section 5.1.1 to find suitable values
for κ and ϵ. We then analyze and interpret the result for the different decision-making
algorithms. The bar chart in Figure 5.7 shows the total amount of thrown triggers for
each algorithm.
Further, we introduce a modified version of the "Equal Gender" algorithm. Since the orig-
inal version only ensures the equality of the acceptance rates between both demographic
at the end of the input table, this algorithm is not feasible as a reference for conditional
statistical parity. Though we want at least one algorithm to serve as a reference, we
adjust the current version of the "Equal Gender" algorithm. Thereby, the modified ver-
sion ensures, that the acceptance rates are equal within each seminar. To do that, the
algorithm calculates the number of males and females that should be accepted to each
seminar to have (almost) equal acceptance rates as a result. We then can use this new
version of the algorithm as a reference.
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Figure 5.7: Triggers thrown with Conditional Statistical Parity

Figure 5.7 shows the incompatibility of the original version of the "Equal Gender"
(OLD_EQGE) algorithm regarding positive reference. The reason for that is, it behaves
almost in the same way as "First come First served" regarding the amount of thrown
triggers. Therefore, we will not cover further experiments with this algorithm. Instead,
the experiments are executed with the new adjusted version of this algorithm.
Further, taking a look at the different confidences, a too-high value, i.e. κ = 54 results in
little triggers raised in general. Though, it is unlikely that the "Randomized" algorithm
behaves fair according to conditional statistical parity (Definition 2.1.2), a lower value
of κ is required. Also, taking the value 30 as confidence, the result is not suitable, since
even with the adjusted version of the "Equal Gender" algorithm, there are still over 1000
triggers thrown. Therefore, a confidence of 42 is realistic since there are few triggers
thrown with the seemingly most fair algorithm, but algorithms that do not take the
acceptance rates into account are raised with significantly more triggers.
Now, we analyze the number of triggers regarding the confidence κ of 42:

While there are only 104 triggers thrown using the modified "Equal Gender" algorithm,
"FcFs" raised over 1400 triggers and both other algorithms contain more than 2000 trig-
gers. We therefore can determine the "Equal Gender" algorithm to be fair regarding
conditional statistical parity, even though there occur triggers. The occurrence of these
triggers is based on local unequal distributions of demographic groups, as well as the
fact that the algorithm ensures equal acceptance rates at the end of an input file though,
not at every timestamp.
This behavior can be seen in Figure 5.8, where we investigate the behavior of the algo-
rithm in a specific scenario.

Equal Gender Within seminar one, there is a discrepancy between the acceptance rates
of both demographic groups at times 51-76, though, after that the margin between the
acceptance rates gets smaller and eventually stabilizes. Further, we see, that at the end of
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Figure 5.8: Acceptance Rates over Time with Equal Gender

the scenario, the acceptance rates are almost the same which is caused by the behavior of
the calculations of the "Equal Gender" algorithm.
For seminar two, there is almost no difference between the acceptance rates. This is
common when using this algorithm since if there is an equal distribution of demographic
groups, the algorithm decides to keep the acceptance rates the same. When there is no
unequal distribution, there does not occur local unfairness. Again, within this seminar,
we see that the algorithm ensures (almost) equal acceptance rates at the end of the
scenario.
In the third seminar, there occur some triggers. Between times 74 and 79, the difference
in the acceptance rates (∼ 0.113) is higher than the tolerance (ϵ = 0.1). Figure 5.8 shows
the acceptance rates of males decreasing since time 53 while until time 75 every female
got accepted. This results in local unfairness. Though, ultimately the acceptance rates
stabilize and at the end of the input file, the acceptance rates are (almost) the same.
Further, there are only two triggers raised in total, even though the discrepancy of the
acceptance rates in seminar three is higher than 0.1 at times 74-79. The reason for that is
in the time between 74 and 79 there are computations done for other seminars, and these
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Figure 5.9: Acceptance Rates over Time with Equal Gender

do not show unfairness which results in no trigger thrown for these timings.
To summarize, the "Equal Gender" algorithm is suitable regarding conditional statistical
parity, even though there occur some flaws. Since the algorithm only ensures equality of
acceptance rates at the end of each seminar, it does not respect the acceptance rates at
specific timestamps. With the usage of MAP and normalization 3.3.1, there cannot occur
triggers at the beginning because single decisions do not weigh enough to decrease the
acceptance rate to a critical value. Further, at the end of the input table, the algorithm
stabilizes the acceptance rates in its computations, leading to the fact that unfairness can
only occur in the middle of a scenario, and therefore is only a local unfairness.

First Come First Served According to Figure 5.7 there are 1488 triggers raised in the
setting of κ = 42 and ϵ = 0.1. Compared to "Qualification" or "Randomized", this algorithm
performs between 1.5 and 1.76 times better than these regarding triggers. Even though
this algorithm does not regard acceptance rates in its calculations, the behavior of this
algorithm delivers some advantages. Since always the first applicants get accepted,
there cannot occur unfairness, since the acceptance rates of both demographic groups
are at 1 in the early stage of a scenario. Further, towards the end of a scenario, every
excessive applicant gets rejected which results in both acceptance rates not changing
significantly anymore. If then the discrepancy between the acceptance rates is within the
tolerance bound, towards the end of an input table, there are no triggers raised, since
the acceptance rates do not change decisively anymore. Though, if this is not the case,
there are thrown many triggers because of this behavior. With that, "First Come First
Served" can not be considered a fair algorithm regarding demographic parity because of
its ignorance of gender equality in its calculations.

Best Qualification This algorithm performs unfairly according to demographic parity
with 2281 raised triggers. Since with the algorithm, the only metric that is regarded in
its calculations is the qualification of an applicant, it does not regard the demographic
group the person belongs to. With that, unfairness regarding gender equality occurs, and
therefore, demographic parity raises triggers.
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Figure 5.10: Temporal Distribution of Triggers

Randomized Similarly to "Best Qualification" and "First come First served", this algo-
rithm does not decide to stabilize the equality of acceptance rates. Since this algorithm
randomly chooses 12 applicants from each seminar, there occurs unfairness regarding
gender equality, leading to thrown triggers by demographic parity, since the discrepancy
of triggers is too high to be considered fair.

We now investigate the frequency of triggers with suitable confidence and tolerance. The
next section covers the analysis of the temporal timing of raised triggers.

5.2.2 Timing of Thrown Triggers

In this section, we analyze and interpret the timing of raised triggers within each decision-
making algorithm. Figure 5.10 shows the temporal distribution of raised triggers. Hereby,
also 1000 input files with 100 applicants and three seminars each are investigated. These
files are then monitored with the implementation of conditional statistical parity (Section
3.4.2) using κ = 42 as confidence and ϵ = 0.1 as tolerance.

Further, we see the impact of MAP and normalization, since up to time ∼ 45 there are
no triggers thrown in any algorithm. This behavior is desired, since we do not want to
make statements about the fairness of an algorithm while only regarding a few decisions.
Also we can see in the histogram of "First come First served" that the first triggers are
thrown late relative to the other algorithms. This supports the statement from earlier
experiments, namely that because of the behavior of this algorithm, the discrepancy of
the acceptance rates cannot differ significantly in the early stage of a scenario since all
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applicants get accepted. However, we also see the delay of incoming triggers within
that algorithm. Also, the reason for the decreasing amount of triggers per time towards
timestamp 200 is the different lengths of each input file. Since the delay of a decision is
between 1 and 100, some input files do not reach up to time 200.
Regarding "Equal Gender", the behavior in Figure 5.10 is the same as in Figure 5.3. Be-
cause of the behavior of the algorithm to be fair towards the end of a scenario, there is
no insurance for gender equality during the scenario. Therefore, some local unfairness
can occur. Note, that the dimension of the histogram for "Equal Gender" in Figure 5.10 is
smaller than for all other algorithms. There are at most six triggers thrown in total for a
single point in time, while in all other algorithms, there exists a point in time where over
30 triggers were raised. However, there are further no triggers raised after time ∼ 120
which underlies the argument of the algorithm to be fair eventually.
Both "Best Qualification" and "Randomized" seem to throw triggers with the decreasing
impact of MAP and normalization. Further, the number of triggers decreases over time
towards the end of an input file, though this is the same reason as for "First come First
served". There is no insurance that the acceptance rates stabilize to an (almost) equal
value. Both algorithms can be interpreted as unfair towards conditional statistical fair-
ness.

The results of this experiment lead to the conclusion that the adapted version of the
"Equal Gender" algorithm is suitable regarding conditional statistical parity while moni-
toring the other algorithms seems to yield unfairness.
To strengthen this argument, the next section investigates the occurrence of rising edges.

5.2.3 Occurences of Rising Edges

This section covers the proportion of rising edges. Rising edges are points in time, where
currently a trigger is raised, i.e. the discrepancy is larger than 0.1, but the previous
iteration of these computations was within the tolerance bound.
When there is a high number of rising edges relative to the total number of thrown
triggers, this means that the discrepancy between acceptance rates of demographic
groups is close to the tolerated value. Also, many rising edges mean the discrepancy to
get lower than 0.1 again in order to have the next rising edge.
Figure 5.11 shows the proportion of rising edges.

Here, the orange bars show the total amount of triggers thrown for each algorithm as in
Figure 5.7, while the blue bars represent the number of rising edges. For "Equal Gender"
there are 64 rising edges out of 104 triggers which is ≈ 0.615 as proportion. Further,
we recognize that for all other algorithms, the ratio is similar. With that, the ratio for
"FcFs" is 976

1488 ≈ 0.66, for "Best Qualification" it is 1456
2281 ≈ 0.64 and with the "Randomized"

algorithm the ratio of rising edges to the total number of thrown triggers is 1670
2624 ≈ 0.64.

This result differs from the experiment for demographic parity (Section 5.1.3), where
the ratio of rising edges using "Equal Gender" is significantly higher than using other
algorithms.
Since with conditional statistical parity, computations are executed simultaneously for
each seminar, rising edges occur more likely. The reason for that is if there occur lit-
tle rising edges, i.e. the thrown triggers are continuous, multiple conditions have to
be fulfilled, which is more unlikely than with demographic parity. To get continuous
triggers, every computation of the discrepancy between both demographic groups has
to be greater than 0.1 within a specific time frame. Since these computations are done
simultaneously, either every seminar has to show unfairness in this time frame, or there
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Figure 5.11: Rising Edges

are only computations done for seminars that are currently unfair. Since the timing of a
decision, as well as the seminar the person is applying for is random-based, it is unlikely
that these conditions are fulfilled. Therefore, the overall ratio of rising edges is higher
than with demographic parity (Section 5.1.3).

In this section we analyzed and compared the decision-making algorithms from Section
4.2 with the implementation of conditional statistical parity (Section 3.4.2).
The following section covers the possibility of detecting Simpson’s Paradox using the
specifications for fairness definitions proposed in this thesis.

5.3 Detecting the Simpson’s Paradox

In this section, we show the procedure for detecting an occurrence of Simpson’s Paradox
2.1.3. For that, a specific scenario is investigated according to demographic parity and
conditional statistical parity to find unfairness.
The upper Figure 5.12 shows a scenario with "Equal Gender" being the decision-making
algorithm investigated for unfairness according to demographic parity. The upper line
chart in Figure 5.12 shows unfairness between times 93 and 107. Since the acceptance
rates differ more than 0.1 at that time, triggers are thrown. However, investigating the
same input file regarding conditional statistical parity, there cannot be found unfairness
at all. The lower line chart in Figure 5.12 shows the discrepancy of acceptance rates within
each seminar. At every point in time, in every seminar, the difference in acceptance rates
is smaller than 0.1 which leads to a fair scenario according to conditional statistical parity.
With that, this scenario is exposed as Simpson’s paradox (Section 2.1.3) since the outcome
of the investigation for the critical group differs from the result of the investigation within
each subgroup.
This scenario of an application process showed that it is indeed possible to detect oc-
currences of Simpson’s paradox using the implementation of the fairness definitions
introduced in this thesis.
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Figure 5.12: Acceptance Rates with Equal Gender

The next section checks the suitability of counterfactual fairness (Section 2.1.3).

5.4 Suitability of Counterfactual Fairness

In this section, we check whether counterfactual fairness (Section 2.1.3) is applicable to
realistic examples. We, therefore, run through the same experiment for the frequency of
triggers as for the other fairness definitions.
Figure 5.13 represents the number of raised triggers for each algorithm when the de-
cisions are monitored using the specification for counterfactual fairness (Section 3.4.3).
Since there are 100.000 decisions made from each algorithm, over half of them are unfair
according to counterfactual fairness when using the "Randomized" algorithm. Choosing
the accepted applicants randomly does not ensure that applicants with the same qualifi-
cation get the same result. Also, if two applicants with the same qualification and the
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Figure 5.13: Number of Thrown Triggers with Counterfactual Fairness

same demographic group get different results, this does not count as unfair since these
two are in the same demographic group. However, after that, every applicant with the
same qualification and the other demographic group is counted as unfair because there is
a person with the same qualification and a different gender that has a different outcome.
The "Best Qualification" algorithm has by far the fewest triggers thrown. Since this
algorithm tries to only accept applicants with the highest qualification, the condition
for counterfactual fairness is fulfilled more often than with "Randomized". However,
because this is supposed to be the reference algorithm, there are still raised too many
triggers to label this algorithm fair according to counterfactual fairness.
Both other algorithms have between ∼ 25900 and ∼ 27700 triggers raised which can also
be labeled unfair.

Concluding, in general, the relations are as expected. Relatively, "Best Qualification" is by
far the fairest algorithm out of all according to counterfactual fairness, and "Randomized"
is the unfairest. However, the absolute value of the number of triggers is too high to
label any algorithm as fair. Since there is also no confidence or certain tolerance, it is not
possible to adapt this fairness condition to get the proportions right.
With that, counterfactual fairness is not suitable for monitoring, since there was a mod-
ification required as stated in Section 3.4.3 to even be possible to express this fairness
definition in RTLola. Further, even with this modification the result of the experiment
shows that this specification of the fairness definition is unfitting and therefore not
appropriate to monitor.

This section covered the analysis of the different decision-making algorithms in the envi-
ronment of the specifications of the fairness conditions. For that, we analyzed the number
of occurring triggers, investigated the timing of raised triggers, and examined sources of
local unfairness. Further, we studied the different types of triggers, i.e., whether there
are rising edges or the trigger is continuous leading to an unfair period.
Finally, we interpreted these results regarding the grade of unfairness within each algo-
rithm but also the possibility of realizing the fairness definitions as RTLola specification.



Chapter 6
Related Work

6.1 Algorithmic Fairness

Further Fairness Definitions To analyze machine learning algorithms in more detail
regarding fairness, other fairness conditions than the conditions used in this thesis were
used . These conditions involve prediction attributes to achieve statements about the true
positive rates (TPR) and the false positive rates (FPR). Moritz Hardt et al. [21] designed
the fairness condition "Equalized Odds" to overcome the disadvantages of other fairness
conditions. Equalized odds measure the difference between false positive rates and
the difference between true positive rates of the different groups. A smaller difference
between these rates indicates better fairness. The effectiveness of this condition is proven
by the fact that with this condition, it was possible to detect bias in the COMPAS tool
[24] that is mentioned in the introduction (Section 1).
Another fairness definition is "Equal opportunity", which requires true positive rates
(TPR) to be similar across different groups [21]. The focus lying on only the true positive
rates indicates one difference to equalized odds. The major difference, however, to
equalized odds is the fact that equal opportunity indicates individual fairness. Other
than demographic parity (Section 2.1.1), conditional statistical parity (Section 2.1.2), and
equalized odds, equal opportunity focuses on fairness regarding individuals, as opposed
to group fairness.
In conclusion, we saw that there exist more fairness conditions than the ones used in
this thesis. However, we chose fairness definitions that do not require prediction tasks
to gain binary results as output. Having binary results, it is possible to analyze the
decision-making algorithm in more detail, since further computations can be acquired
with the binary results.

Monitoring vs. Processing Mechanisms Over the past few years, the question of
fairness in algorithms became more and more relevant. Especially the process of detecting
unfairness and how to overcome the unfair part of these algorithms is still challenging
according to Mehrabi [36]. In Machine learning, there were developed several methods
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that impact the fairness of algorithms. in the following, we summarize the methods of
achieving fair outputs concerning machine learning algorithms.
While monitoring can detect unfairness in algorithms based on the input and the output
of an algorithm and a given specification, machine learning mechanisms however try
to improve the result, meaning that the output will be fairer than it would be without
the mechanism. Particularly three categories of mechanisms stand out, namely Pre-
Processing, In-Processing, and Post-Processing. Pessach and Shmueli [40] explain Pre-
Processing as changing the training data, before the algorithm gets the data as input,
in the way that labels that could be treated wrong or in that sense unfair get changed
so that the algorithm will treat them most likely fair [26]. Another way would be to
modify the training data until the algorithm has problems differentiating between the
two critical groups [19]. However, by modifying the input one cannot ensure that the
output corresponds to the original training data i.e. the output lacks explainability.
Another way of achieving fairer results is In-Processing, where the algorithm itself gets
changed during its execution [1]. Additional penalties or regularization terms are added
to e.g. satisfy the proxy for certain fairness conditions [27]. If, for some reason, it is
not possible to perform Pre-Processing or In-Processing one can still get fairer results
by applying Post-Processing mechanisms [12]. Here, Moritz Hardt et al. [22] suggest
modifying the output by flipping some decisions to keep the fairness conditions alive.
However one could argue that this technique is discriminatory for some individuals
since their particular output could be flipped with the fairness conditions being the only
reason.
Summarily monitoring observes unfairness in an "objective" way while the mechanisms
described above try to improve the result regarding fairness by modifying specific parts
of the whole process.

Formal Methods for Algorithmic Fairness A variety of different approaches for test-
ing and verifying fairness have been invented. Udeshi et al. [45] analyzed the idea
of designing an automated and directed testing technique to generate discriminatory
inputs for models in the fields of machine learning. Further, Traimèr et al. [44] mod-
eled the unwarranted-associations framework and instantiated it in FairTest. Another
approach is given by Bastiani et al. [6] by using adaptive concentration inequalities to
design a scalable sampling technique for providing fairness guarantees with the usage of
probabilities for machine-learning models. Albarghouthi et al. [3] transformed fairness
properties as probabilistic program properties and developed an SMT-based technique
to verify fairness of decision-making programs. However, this technique only scales up
to neural networks with at most 3 inputs and a single hidden layer with a maximum of
2 nodes. To overcome this issue a promising approach for analyzing fairness in neural
networks is given in [46]. The approach combines forward and backward static analy-
sis to certify fairness of feed-forward neural networks. With that, the forward pass is
utilized to reduce the overall effort by dividing the input space of the neural network
into independent partitions. The backward analysis then certifies fairness within each
partition with respect to optional given sensitive attributes. This approach in the end
yields which regions of the input space of the neural network are fair and which contain
bias. With this approach, it is possible to analyze neural networks with significantly
more hidden nodes.
To certify individual fairness like counterfactual fairness or equal opportunity mentioned
in the further fairness definition paragraph, Rouss et al. [42] introduced a local property
that coincides with robustness within a particular distance metric. Another approach is
to repair biased decision-making programs with a program repair technique [2].
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The approaches introduced above handle testing and verifying fairness in neural net-
works. However, by verifying networks the approaches are mostly unrealistic since
they are based on a theoretical framework that is way too expensive regarding runtime.
This thesis treats the algorithm (possibly a neural network) as a black box. With that,
the size and runtime of the algorithm/neural network do not matter since with the
monitoring approach the algorithm/neural network itself is not of interest. By only fo-
cussing on the input and output, we can monitor fairness conditions to (mostly) arbitrary
algorithms/neural networks.

6.2 Monitoring

In the early stages of runtime monitoring, the system was mostly based on temporal
logics [30, 33, 41]. With the rise of real-time temporal logics like MTL [29] and STL [35], a
series of work introduced monitoring algorithms for real-time properties [5, 16].

Temporal Logics The tool named FoCs [13], developed by Haifa, is among others, a
pioneer regarding translation from temporal logics to monitoring circuits. P2V [34] is
a compiler that translates assertions written in sPSL [10] to Verilog code. BusMOP [39]
synthesized monitor circuits from specifications written in past-time linear temporal
logic for monitoring PCI bus traffic. Finally, MBAC [8] is an automata-based monitor
synthesizer for PSL properties. Based on these constructions Jaksic et al. [23] introduced
hardware runtime monitors for real-time properties, where monitors for STL specifica-
tions were implemented in an FPGA. This work expanded further with the tool R2U2
[37], an outline monitoring approach that allows specifications written in MTL, including
future-time specifications, to be monitored.
Monitoring temporal logics brings the advantage of having formal guarantees on the
space and time complexity of the synthesized monitor. Though, in cyber-physical sys-
tems, it is not enough to have properties that can only express absolute values like
yes and no. For instance, monitoring LTL3 the result is definitely either true, false, or
unknown. The problem arising with this approach is having only absolute values, which
lack in referring to more realistic scenarios. Using LTL3 as logic in this thesis would state
that an algorithm is either completely fair or unfair (or insufficient) with no respect so
sensitive attributes. To monitor more realistic properties of certain systems, e.g. arith-
metic operators are required.
With temporal logics it is possible to monitor the control flow of a program, however, it is
not realistic to observe data in runtime. Since fairness is expressed in data, it is essential
to observe the data. For that reason, the stream-based approach is used in this thesis
rather than the temporal approach.

Stream-Based Language The specification-language RTLola [18] contains this expres-
siveness while still providing some formal guarantees. RTLola is a descriptive language,
which subsumes temporal logics and can express both past and future properties. There
are extensions to RTLola like TeSSLa and Striver. TeSSLa [11] introduces the possibility
of monitoring piece-wise constant signals with streams emitting at different speeds with
arbitrary latency. The major difference between RTLola and Striver [20] is that RTLola
both offers variable-rate and fixed-rate streams and provides naive operators featuring
sliding windows that translate between the two types of streams.
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With this bundle of features and the combination of expressiveness and formal guaran-
tees, RTLola is the specification language used in this thesis to investigate algorithmic
fairness appropriately. RTLola is capable of observing and analyzing data, which is
essential for investigating fairness conditions since they are based on data. Further, the
stream-based approach brings the advantage of having fast outputs. At every time of
the temporal input, it is possible to access the current state of fairness. In the runtime,
there is no extra work to be done to extract intermediate results. With that, it is possible
to investigate the behavior of decision-making algorithms in depth, since it provides
insides into intermediate behavior.



Chapter 7
Conclusion

This thesis presented an RTLola-benchmark.This benchmark monitors decision-making
algorithms regarding fairness. For that, we defined suitable fairness definitions regarding
expressiveness and the feasibility of translating them into RTLola specifications. We
then modified each fairness definition resulting in monitorable safety properties. These
properties were then translated into RTLola specifications.
Additionally, we introduced different decision-making algorithms to compare them
concerning fairness, and also to investigate the accuracy of the implemented fairness
specifications. We defined an algorithm that ensures gender equality as a reference and
also as a check of whether the fairness definitions are implemented correctly. Further,
we introduced an algorithm that decides completely randomized and one that yields
positive outcomes in its first decisions. These algorithms also serve as a check, because
the expected result from them would be to decide unfairly. By monitoring them regarding
fairness, we can see whether the fairness definitions can detect unfairness. Lastly, we
introduced an algorithm that gives positive outcomes to the seemingly "best" applicants
to investigate its behavior concerning fairness. To run a case study, we then generated
artificial input scenarios which then are monitored regarding specific types of fairness.
Finally, we made a case study where we analyzed and interpreted the results of different
experiments. We investigated the frequency of triggers, as well as the timing, i.e.,
the temporal occurrence of triggers. Furthermore, we compared the expected results
with the accuracy of the results from the different fairness specifications. By that, the
results for demographic parity (Definition 2.1.1), as well as for conditional statistical
parity (Definition 2.1.2) were as expected. The algorithm that was expected to decide
fair indeed yielded by far the best results compared to other algorithms. Further, we
supported the statement that the fairness definitions are translated and implemented
into RTLola specification by regarding the results of the experiments of an algorithm that
decides completely randomized. With this algorithm, we wanted to achieve feedback
about the accuracy of the specifications.
In our experiments, counterfactual fairness (Definition 2.1.3), however, is not suitable
for monitoring with RTLola. The intended definition of this fairness definition is not
realizable in RTLola and therefore needs a workaround. With that, the experiments
showed unrealistically often unfairness, even with algorithms that seemingly ensure to
fulfill the properties of counterfactual fairness.
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7.1 Future Work

In future work, we aim to extend the specification language RTLola. In our computations
for monitoring fairness, we require data from applicants. Because parts of the required
data come earlier than others, these have to be stored until all computations with that user
are executed. For that, we had to use a workaround where we use parameterized streams
that store data from incoming applicants until they are not needed anymore. Instead, a
database storing the data would be more practical. With that feature, a more adequate
version of counterfactual fairness could be implemented, since it would be possible to
compute the probability whether the same person belonging to a different demographic
group would get a similar result. With these probabilities, it would be possible to argue
whether individual decisions are made fairly according to counterfactual fairness.
Further, a request responding the number of parameterized versions of a stream would
be beneficial. In this thesis, we needed to number of different seminars seen so far. To get
this number, we had to parameterize over the seminar parameter and then always had
to check if the seminar seen currently is new or already seen before. For a request that
would yield a number of different versions of a parameterized stream, our workaround
would be redundant.
We also want to compare our temporal approach with a database query. While our
approach gives fast results, i.e. iterating through a file yields intermediate results, which
has the advantage of revealing the behavior of a decision-making algorithm during
processing. In contrast to that, with a database approach, one complete scenario could be
analyzed faster, since this approach iterates over the complete input and then, in the end,
checks for unfairness. However, analyzing intermediate results seems to be challenging
with this approach.
Also, we want to compare our monitoring approach with other monitoring tools and
evaluate the results.
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