
SMT-Based Synthesis of Distributed Systems∗

Bernd Finkbeiner
Universität des Saarlandes
finkbeiner@uni-sb.de

Sven Schewe
Universität des Saarlandes

schewe@uni-sb.de

ABSTRACT
We apply SMT solving to synthesize distributed systems
from specifications in linear-time temporal logic (LTL). The
LTL formula is translated into an equivalent universal co-
Büchi tree automaton. The existence of a finite transition
system in the language of the automaton is then specified as
a quantified formula in the theory (N, <) of the ordered nat-
ural numbers with uninterpreted function symbols. While
our experimental results indicate that the resulting satisfi-
ability problem is generally out of reach for the currently
available SMT solvers, the problem immediately becomes
tractable if we fix an upper bound on the number of states
in the distributed system. After replacing each universal
quantifier by an explicit conjunction, the SMT solver Yices
solves simple single-process synthesis problems within a few
seconds, and distributed synthesis problems, such as a two-
process distributed arbiter, within one minute.

1. INTRODUCTION
Synthesis automatically derives correct implementations
from specifications. Compared to verification, which only
proves that a given implementation is correct, this has the
advantage that there is no need to manually write and debug
the code.

For temporal logics, the synthesis problem has been stud-
ied in several variations, including the synthesis of closed
and single-process systems [2, 12, 6, 7], pipeline and ring
architectures [9, 8, 11], as well as general distributed ar-
chitectures [4]. Algorithms for synthesizing distributed sys-
tems typically reduce the synthesis problem in a series of
automata transformations to the non-emptiness problem of
a tree automaton. Unfortunately, the transformations are
expensive: for example, in a pipeline architecture, each pro-

∗This work was partly supported by the German Research
Foundation (DFG) as part of the Transregional Collabora-
tive Research Center “Automatic Verification and Analysis
of Complex Systems” (SFB/TR 14 AVACS).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AFM’07, November 6, Atlanta, GA, USA.
c©2007 ACM ISBN 978-1-59593-879-4/07/11...$5.00

cess requires a powerset construction and therefore causes
an exponential blow-up in the number of states.

Inspired by the success of bounded model checking [3, 1],
we recently proposed an alternative approach based on a
reduction of the synthesis problem to a satisfiability prob-
lem [10]. Our starting point is the representation of the LTL
specification as a universal co-Büchi tree automaton. The
acceptance of a finite-state transition system by a universal
co-Büchi automaton can be characterized by the existence
of an annotation that maps each pair of a state of the au-
tomaton and a state of the transition system to a natural
number. We define a constraint system that specifies the ex-
istence of a valid annotation and, additionally, ensures that
the resulting implementation is consistent with the limited
information available to the distributed processes. For this
purpose, we introduce a mapping that decomposes the states
of the global transition system into the states of the individ-
ual processes: because the reaction of a process only depends
on its local state, the process is forced to give the same re-
action whenever it cannot distinguish between two paths in
the global transition system.

In this paper, we report on preliminary experience apply-
ing the new approach with the SMT solver Yices. The re-
sult of the reduction is a quantified formula in the theory
(N, <) of the ordered natural numbers with uninterpreted
function symbols. The formula contains only a single quan-
tifier (over the states of the implementation, represented as
natural numbers).

While our experimental results indicate that proving the sat-
isfiability of the quantified formulas is currently not possi-
ble (Yices reports “unknown”), the problem immediately be-
comes tractable if we fix an upper bound on the number of
states. After replacing each universal quantifier by an ex-
plicit conjunction, Yices solves simple single-process synthe-
sis problems within a few seconds, and distributed synthesis
problems, such as a two-process distributed arbiter, within
one minute.

2. PRELIMINARIES
We consider the synthesis of distributed reactive systems
that are specified in linear-time temporal logic (LTL). Given
an architecture A and an LTL formula ϕ, we determine
whether there is an implementation for each system pro-
cess in A, such that the composition of the implementations
satisfies ϕ.

env

p1 p2

r1 r2

g1

g2

(b)

env p1
r1, r2 g1, g2

(a)

Figure 1: Example architectures: (a) single-process
arbiter (b) two-process arbiter

2.1 Architectures
An architecture A is a tuple (P, env , V, I, O), where P is a set
of processes consisting of a designated environment process
env ∈ P and a set of system processes P− = P r {env}.
V is a set of boolean system variables (which also serve as
atomic propositions), I = {Ip ⊆ V | p ∈ P−} assigns a
set Ip of input variables to each system process p ∈ P−,
and O = {Op ⊆ V | p ∈ P} assigns a set Op of output
variables to each process p ∈ P such that

S

p∈P Op = V .
While the same variable v ∈ V may occur in multiple sets
in I to indicate broadcasting, the sets in O are assumed to
be pairwise disjoint.

Figure 1 shows two example architectures, a single-process
arbiter and a two-process arbiter. In the architecture in
Figure 1a, the arbiter is a single process (p1), which receives
requests (r1, r2) from the environment (env) and reacts by
sending grants (g1, g2). In the architecture in Figure 1b, the
arbiter is split into two processes (p1, p2), which each receive
one type of request (p1 receives r1; p2 receives r2) and react
by sending the respective grant (p1 sends g1; p2 sends g2).

2.2 Implementations
We represent implementations as labeled transition sys-
tems. For a given finite set Υ of directions and a finite
set Σ of labels, a Σ-labeled Υ-transition system is a tuple
T = (T, t0, τ, o), consisting of a set of states T , an initial
state t0 ∈ T , a transition function τ : T × Υ → T , and a
labeling function o : T → Σ. T is a finite-state transition
system iff T is finite.

Each system process p ∈ P− is implemented as a 2Op -labeled
2Ip -transition system Tp = (Tp, tp, τp, op). The specification
ϕ refers to the composition of the system processes, which
is the 2V -labeled 2Oenv -transition system TA = (T, t0, τ, o),
defined as follows: the set T =

N

p∈P− Tp×2Oenv of states is
formed by the product of the states of the process transition
systems and the possible values of the output variables of
the environment. The initial state t0 is formed by the initial
states tp of the process transition systems and a designated
root direction ⊆ Oenv . The transition function updates, for
each system process p, the Tp part of the state in accordance
with the transition function τp, using (the projection of) o
as input, and updates the 2Oenv part of the state with the

output of the environment process. The labeling function o
labels each state with the union of its 2Oenv part with the
labels of its Tp parts.

With respect to the system processes, the combined transi-
tion system thus simulates the behavior of all process tran-
sition systems; with respect to the environment process, it
is input-preserving, i.e., in every state, the label accurately
reflects the input received from the environment.

2.3 Synthesis
A specification ϕ is (finite-state) realizable in an architecture
A = (P, V, I,O) iff there exists a family of (finite-state) im-
plementations {Tp | p ∈ P−} of the system processes, such
that their composition TA satisfies ϕ.

2.4 Bounded Synthesis
We introduce bounds on the size of the process implementa-
tions and on the size of the composition. Given an architec-
ture A = (P, V, I, O), a specification ϕ is bounded realizable
with respect to a family of bounds {bp ∈ N | p ∈ P−} on the
size of the system processes and a bound bA ∈ N on the size
of the composition TA, if there exists a family of implemen-
tations {Tp | p ∈ P−}, where, for each process p ∈ P , Tp has
at most bp states, such that the composition TA satisfies ϕ
and has at most bA states.

2.5 Tree Automata
An alternating parity tree automaton is a tuple A =
(Σ, Υ,Q, q0, δ, α), where Σ denotes a finite set of labels, Υ
denotes a finite set of directions, Q denotes a finite set of
states, q0 ∈ Q denotes a designated initial state, δ denotes a
transition function, and α : Q → C ⊂ N is a coloring func-
tion. The transition function δ : Q×Σ → B

+(Q×Υ) maps a
state and an input letter to a positive boolean combination
of states and directions. In our setting, the automaton runs
on Σ-labeled Υ-transition systems. The acceptance mecha-
nism is defined in terms of run graphs.

A run graph of an automaton A = (Σ, Υ, Q, q0, δ, α) on a
Σ-labeled Υ-transition system T = (T, t0, τ, o) is a minimal
directed graph G = (G, E) that satisfies the following con-
straints:

• The vertices G ⊆ Q × T form a subset of the product
of Q and T .

• The pair of initial states (q0, t0) ∈ G is a vertex of G.

• For each vertex (q, t) ∈ G, the set {(q′, υ) ∈ Q × Υ |
((q, t), (q′, τ (t, υ))) ∈ E} satisfies δ(q, o(t)).

A run graph is accepting if every infinite path g0g1g2 . . . ∈
Gω in the run graph satisfies the parity condition, which
requires that the highest number occurring infinitely often
in the sequence α0α1α2 ∈ N with αi = α(qi) and gi = (qi, ti)
is even. A transition system is accepted if it has an accepting
run graph.

The set of transition systems accepted by an automaton A
is called its language L(A). An automaton is empty iff its

language is empty. An alternating automaton is called uni-
versal if, for all states q and input letters σ, δ(q, σ) is a
conjunction.

A parity automaton is called a Büchi automaton if the image
of α is contained in {1, 2} and a co-Büchi automaton iff
the image of α is contained in {0, 1}. Büchi and co-Büchi
automata are denoted by (Σ, Υ, Q, q0, δ, F), where F ⊆ Q
denotes the states with the higher color. A run graph of a
Büchi automaton is thus accepting if, on every infinite path,
there are infinitely many visits to F ; a run graph of a co-
Büchi automaton is accepting if, on every path, there are
only finitely many visits to F .

3. ANNOTATED TRANSITION SYSTEMS
In this section, we discuss an annotation function for transi-
tion systems. The annotation function has the useful prop-
erty that a finite-state transition system satisfies the speci-
fication if and only if it has a valid annotation.

Our starting point is a representation of the specification as
a universal co-Büchi automaton.

Theorem 1. [5] Given an LTL formula ϕ, we can con-

struct a universal co-Büchi automaton Uϕ with 2O(|ϕ|) states
that accepts a transition system T iff T satisfies ϕ.

An annotation of a transition system T = (T, t0, τ, o) on a
universal co-Büchi automaton U = (Σ, Υ, Q, δ, F) is a func-
tion λ : Q × T → { } ∪ N. We call an annotation c-bounded
if its mapping is contained in { } ∪ {0, . . . , c}, and bounded
if it is c-bounded for some c ∈ N. An annotation is valid if
it satisfies the following conditions:

1. the pair (q0, t0) of initial states is annotated with a
natural number (λ(q0, t0) 6=), and

2. if a pair (q, t) is annotated with a natural number
(λ(q, t) = n 6=) and (q′, υ) ∈ δ(q, o(t)) is an atom
of the conjunction δ(q, o(t)), then (q′, τ (t, υ)) is anno-
tated with a greater number, which needs to be strictly
greater if q′ ∈ F is rejecting. That is, λ(q′, τ (t, υ))⊲q′ n
where ⊲q′ is > for q′ ∈ F and ≥ otherwise.

Theorem 2. [10] A finite-state Σ-labeled Υ-transition
system T = (T, t0, τ, o) is accepted by a universal co-Büchi
automaton U = (Σ, Υ, Q, δ, F) iff it has a valid (|T | · |F |)-
bounded annotation.

4. SINGLE-PROCESS SYNTHESIS
Using the annotation function, we reduce the non-emptiness
problem of the universal co-Büchi tree automaton to an
SMT problem. This solves the synthesis problem for single-
process systems.

We represent the (unknown) transition system and its an-
notation by uninterpreted functions. The existence of a
valid annotation is thus reduced to the satisfiability of a
constraint system in first-order logic modulo finite integer
arithmetic. The advantage of this representation is that the

1

2 3⊥

∗

g1 g2

r1 r2g1g2

Figure 2: Specification of a simple arbiter, rep-
resented as a universal co-Büchi automaton. The
states depicted as double circles (2 and 3) are the
rejecting states in F .

size of the constraint system is small (bilinear in the size of U
and the number of directions). Furthermore, the additional
constraints needed for distributed synthesis, which will be
defined in Section 5, have a likewise compact representation.

The constraint system specifies the existence of a finite
input-preserving 2V -labeled 2Oenv -transition system T =
(T, t0, τ, o) that is accepted by the universal co-Büchi au-
tomaton Uϕ = (Σ, Υ, Q, q0, δ, F) and has a valid annota-
tion λ.

To encode the transition function τ , we introduce a unary
function symbol τυ for every output υ ⊆ Oenv of the en-
vironment. Intuitively, τυ maps a state t of the transition
system T to its υ-successor τυ(t) = τ (t, υ).

To encode the labeling function o, we introduce a unary
predicate symbol a for every variable a ∈ V . Intuitively, a
maps a state t of the transition system T to true iff it is part
of the label o(t) ∋ a of T in t.

To encode the annotation, we introduce, for each state q
of the universal co-Büchi automaton U , a unary predicate
symbol λB

q and a unary function symbol λ#
q . Intuitively, λB

q

maps a state t of the transition system T to true iff λ(q, t)
is a natural number, and λ#

q maps a state t of the transition
system T to λ(q, t) if λ(q, t) is a natural number and is
unconstrained if λ(q, t) = .

We can now formalize that the annotation of the transition
system is valid by the following first order progress con-
straints (modulo finite integer arithmetic):
∀t. λB

q(t) ∧ (q′, υ) ∈ δ(q,−→a (t)) → λB

q′(τυ(t)) ∧

λ#
q′

(τυ(t)) ⊲q λ#
q (t), where −→a (t) represents the label

o(t), (q′, υ) ∈ δ(q,−→a (t)) represents the corresponding
propositional formula, and ⊲q stands for ⊲q ≡> if q ∈ F
and ⊲q ≡≥ otherwise. Additionally, we require the initiality
constraint λB

q0(0), i.e., we require the pair of initial states
to be labeled by a natural number (w.l.o.g. t0 = 0).

To guarantee that the resulting transition system is input-
preserving, we add, for each a ∈ Oenv and each υ ⊆ Oenv ,
a global consistency constraint ∀t. a(τυ(t)) if a ∈ υ and
∀t.¬a(τυ(t)) if a /∈ υ. Additionally, we require the root
constraint that the initial state is labeled with the root di-
rection.

Example. Consider the specification of a simple arbiter,
depicted as a universal co-Büchi automaton in Figure 2. The
specification requires that globally (1) at most one process
has a grant and (2) each request is eventually followed by a
grant.

Figure 3 shows the constraint system, resulting from the
specification of an arbiter by the universal co-Büchi automa-
ton depicted in Figure 2, implemented as a single process as
required by the architecture of Figure 1a.

The first constraint represents the requirement that the re-
sulting transition system must be input-preserving, the sec-
ond requirement represents the initialization (where ¬r1(0)∧
¬r2(0) represents an arbitrarily chosen root direction), and
the requirements 3 through 8 each encode one transition of
the universal automaton of Figure 2. Following the notation
of Figure 2, r1 and r2 represent the requests and g1 and g2

represent the grants.

5. DISTRIBUTED SYNTHESIS
To solve the distributed synthesis problem for a given archi-
tecture A = (P, V, I, O), we need to find a family of (finite-
state) transition systems {Tp = (Tp, tp

0, τp, op) | p ∈ P−}
such that their composition to TA satisfies the specification.
The constraint system developed in the previous section can
be adapted to distributed synthesis by explicitly decompos-
ing the global state space of the combined transition system
TA: we introduce a unary function symbol dp for each pro-
cess p ∈ P−, which, intuitively, maps a state t ∈ TA of the
product state space to its p-component tp ∈ Tp.

The value of an output variable a ∈ Op may only depend on
the state of the process transition system Tp. We therefore
replace every occurrence of a(t) in the constraint system of
the previous section by a(dp(t)). Additionally, we require
that every process p acts consistently on any two histories
that it cannot distinguish. The update of the state of Tp may
thus only depend on the state of Tp and the input visible to p.

The input visible to p consists of the fragment Ienv

p = Oenv ∩
Ip of environment variables visible to p, and the set Isys

p =
Ip r Oenv of system variables visible to p. To encode the
transition function τp, we introduce a |Isys

p |+1-ary function
symbol τυ

p for every υ ⊆ Ienv

p . Intuitively, τυ
p maps the

visible input υ′ ⊆ Isys

p of the system and a local position l
of the transition system Tp to the υ ∪ υ′-successor τp(l, υ ∪
υ′) = τυ

p (υ′, l) of l. This is formalized by the following local
consistency constraints:

∀t. τυ
p (a1(dq1(t)), . . . , an(dqn

(t));dp(t)) = dp(τυ′(t))
for all decisions υ′ ⊆ Oenv of the environment and
their fragment υ = υ′ ∩ Ip visible to p, where the
variables a1, . . . , an form the elements of Isys

p .

Since the combined transition system TA is finite-state, the
satisfiability of this constraint system modulo finite integer
arithmetic is equivalent to the distributed synthesis problem.

Example. As an example for the reduction of the dis-
tributed synthesis problem to SMT, we consider the problem

1. ∀t. r1(τr1r2
(t)) ∧ r2(τr1r2

(t)) ∧ r1(τr1r2
(t))

∧ ¬r2(τr1r2
(t)) ∧ ¬r1(τr1r2

(t))
∧ r2(τr1r2

(t)) ∧ ¬r1(τr1r2
(t)) ∧ ¬r2(τr1r2

(t))

2. λB

1(0) ∧ ¬r1(0) ∧ ¬r2(0)

3. ∀t. λB

1(t) → λB

1(τr1r2
(t)) ∧ λ#

1 (τr1r2
(t)) ≥ λ#

1 (t)

∧ λB

1(τr1r2
(t)) ∧ λ#

1 (τr1r2
(t)) ≥ λ#

1 (t)

∧ λB

1(τr1r2
(t)) ∧ λ#

1 (τr1r2
(t)) ≥ λ#

1 (t)

∧ λB

1(τr1r2
(t)) ∧ λ#

1 (τr1r2
(t)) ≥ λ#

1 (t)

4. ∀t. λB

1(t) → ¬g1(t) ∨ ¬g2(t)

5. ∀t. λB

1(t) ∧ r1(t) →

λB

2(τr1r2
(t)) ∧ λ#

2 (τr1r2
(t)) > λ#

1 (t)

∧ λB

2(τr1r2
(t)) ∧ λ#

2 (τr1r2
(t)) > λ#

1 (t)

∧ λB

2(τr1r2
(t)) ∧ λ#

2 (τr1r2
(t)) > λ#

1 (t)

∧ λB

2(τr1r2
(t)) ∧ λ#

2 (τr1r2
(t)) > λ#

1 (t)

6. ∀t. λB

1(t) ∧ r2(t) →

λB

3(τr1r2
(t)) ∧ λ#

3 (τr1r2
(t)) > λ#

1 (t)

∧ λB

3(τr1r2
(t)) ∧ λ#

3 (τr1r2
(t)) > λ#

1 (t)

∧ λB

3(τr1r2
(t)) ∧ λ#

3 (τr1r2
(t)) > λ#

1 (t)

∧ λB

3(τr1r2
(t)) ∧ λ#

3 (τr1r2
(t)) > λ#

1 (t)

7. ∀t. λB

2(t) ∧ ¬g1(t) →

λB

2(τr1r2
(t)) ∧ λ#

2 (τr1r2
(t)) > λ#

2 (t)

∧ λB

2(τr1r2
(t)) ∧ λ#

2 (τr1r2
(t)) > λ#

2 (t)

∧ λB

2(τr1r2
(t)) ∧ λ#

2 (τr1r2
(t)) > λ#

2 (t)

∧ λB

2(τr1r2
(t)) ∧ λ#

2 (τr1r2
(t)) > λ#

2 (t)

8. ∀t. λB

3(t) ∧ ¬g2(t) →

λB

3(τr1r2
(t)) ∧ λ#

3 (τr1r2
(t)) > λ#

3 (t)

∧ λB

3(τr1r2
(t)) ∧ λ#

3 (τr1r2
(t)) > λ#

3 (t)

∧ λB

3(τr1r2
(t)) ∧ λ#

3 (τr1r2
(t)) > λ#

3 (t)

∧ λB

3(τr1r2
(t)) ∧ λ#

3 (τr1r2
(t)) > λ#

3 (t)

Figure 3: Example of a constraint system for the
synthesis of a single-process system. The figure
shows the constraint system for the arbiter exam-
ple (Figure 2). The arbiter is to be implemented as
a single process as shown in Figure 1a.

of finding a distributed implementation to the arbiter speci-
fied by the universal automaton of Figure 2 in the architec-
ture of Figure 1b. The functions d1 and d2 are the mappings
to the processes p1 and p2, which receive requests r1 and r2

and provide grants g1 and g2, respectively. Figure 4 shows
the resulting constraint system. Constraints 1–3, 5, and 6
are the same as in the fully informed case (Figure 3). The
consistency constraints 9–10 guarantee that processes p1 and
p2 show the same behavior on all input histories they cannot
distinguish.

6. EDGE-BASED ACCEPTANCE
A variation of our construction is to start with a tree au-
tomaton that has an edge-based acceptance condition in-
stead of the standard state-based acceptance condition of
the automata of Theorem 1. Since the progress constraints
refer to edges rather than states, this often leads to a signif-
icant reduction in the size of the constraint system.

4. ∀t. λB

1(t) → ¬g1(d1(t)) ∨ ¬g2(d2(t))

7. ∀t. λB

2(t) ∧ ¬g1(d1(t)) →

λB

2(τr1r2
(t)) ∧ λ#

2 (τr1r2
(t)) > λ#

2 (t)

∧ λB

2(τr1r2
(t)) ∧ λ#

2 (τr1r2
(t)) > λ#

2 (t)

∧ λB

2(τr1r2
(t)) ∧ λ#

2 (τr1r2
(t)) > λ#

2 (t)

∧ λB

2(τr1r2
(t)) ∧ λ#

2 (τr1r2
(t)) > λ#

2 (t)

8. ∀t. λB

3(t) ∧ ¬g2(d2(t)) →

λB

3(τr1r2
(t)) ∧ λ#

3 (τr1r2
(t)) > λ#

3 (t)

∧ λB

3(τr1r2
(t)) ∧ λ#

3 (τr1r2
(t)) > λ#

3 (t)

∧ λB

3(τr1r2
(t)) ∧ λ#

3 (τr1r2
(t)) > λ#

3 (t)

∧ λB

3(τr1r2
(t)) ∧ λ#

3 (τr1r2
(t)) > λ#

3 (t)

9. ∀t. τ r1

1

`

g2(d2(t)), d1(t)
´

= d1(τr1r2
(t)) = d1(τr1r2

(t))

∧ τ r1

1

`

g2(d2(t)), d1(t)
´

= d1(τr1r2
(t)) = d1(τr1r2

(t))

10. ∀t. τ r2

2

`

g1(d1(t)), d2(t)
´

= d2(τr1r2
(t)) = d2(τr1r2

(t))

∧ τ r2

2

`

g1(d1(t)), d2(t)
´

= d2(τr1r2
(t)) = d2(τr1r2

(t))

Figure 4: Example of a constraint system for dis-
tributed synthesis. The figure shows modifications
and extensions to the constraint system from Fig-
ure 3 for the arbiter example (Figure 2) in order to
implement the arbiter in the distributed architec-
ture shown in Figure 1b.

For universal automata, the transition function δ can be
described as a set of edges Eδ ⊆ Q × Σ × Q × Υ with

e = (q, σ, q′, υ) ∈ Eδ ⇔ (q′, υ) is a conjunct of δ(q, σ).

For an edge-based universal co-Büchi automaton E =
(Σ, Υ, Q,E, F), the acceptance is defined by a finite set
F ⊆ E of rejecting edges, and E accepts an input tree if
all paths in the run graph contain only finitely many re-
jecting edges. A state-based acceptance condition can be
viewed as a special case of an edge-based acceptance condi-
tion, where an edge is rejecting iff it originates from a reject-
ing state, and edge-based acceptance can be translated into
state-based acceptance by splitting the states with outgoing
accepting and rejecting edges. For an edge-based universal
co-Büchi automaton E , we only need to adjust the definition
of valid annotations slightly to

2. if a pair (q, t) is annotated with a natural number
(λ(q, t) = n 6=) and (q, o(t), q′, υ) = e ∈ E is an
edge of E , then (q′, τ (t, υ)) is annotated with a greater
number, which needs to be strictly greater if e ∈ F is
rejecting. That is, λ(q′, τ (t, υ)) ⊲e n where ⊲e is > for
e ∈ F and ≥ otherwise.

Example. Figure 5 shows an example of a universal co-
Büchi word automaton with edge-based acceptance condi-
tion. The automaton extends the specification of the simple
arbiter such that the arbiter may not withdraw a grant while
the environment upholds the request. Nonstarvation is re-
quired whenever the grant is not kept forever by the other
process. Describing the same property with a state-based
acceptance conditions requires 40% more states.

1

2 3

4 5

⊥

∗

g1 g2

g1(r2 ∨ g2) g2(r1 ∨ g1)

r1 r2

r1 r2

g1 g2

g1g2

g1r1 g2r2

Figure 5: Extended specification of an arbiter, rep-
resented as a universal co-Büchi automaton with
edge-based acceptance. The edges depicted as
double-line arrows are the rejecting edges in F .

7. EXPERIMENTAL RESULTS
Using the reduction described in the previous sections, we
considered five benchmarks; we synthesized implementa-
tions for simple arbiter specification from Figure 2 and the
two architectures from Figure 1, and for a full arbiter spec-
ification and the two architectures from Figure 1, and we
synthesized a strategy for dining philosophers to satisfy the
specification from Figure 6. The arbiter examples are pa-
rameterized in the size of the transition system(s), the dining
philosophers benchmark is additionally parameterized in the
number of philosopher. As the SMT solver, we used Yices
version 1.0.9 on a 2.6 Ghz Opteron system.

In all benchmarks, Yices is unable to directly determine the
satisfiability of the quantified formulas. (For example the
formulas from Figure 3 and Figure 4, respectively, for the
monolithic and distributed synthesis in the simple arbiter
example.) However, after replacing the universal quantifiers
with explicit conjunctions (for a given upper bound on the
number of states in the implementation), Yices solved all
satisfiability problems quickly.

A single-process implementation of the arbiter needs 8
states. Table 1 shows the time and memory consumption
of Yices when solving the SMT problem from Figure 3 with
the quantifiers unravelled for different upper bounds on the
number of states. The correct implementation with 8 states
is found in 8 seconds.

7.1 Arbiter
Table 2 shows the time and memory consumption for the dis-
tributed synthesis problem. The quantifiers in the formula
from Figure 4 were unravelled for different bounds on the
size of the global transition system and for different bounds
(shown in parentheses) on the size of the processes. A cor-
rect solution with 8 global states is found by Yices in 71
seconds if the number of process states is left unconstrained.
Restricting the process states explicitly to 2 leads to an ac-
celeration by a factor of two (36 seconds).

Table 3 and Table 4 show the time and memory consumption
of Yices when solving the SMT problem resulting from the
arbiter specification of Figure 5. The correct monolithic im-

bound | 4 | 5 | 6 | 7 | 8 | 9
result | unsatisfiable | unsatisfiable | unsatisfiable | unsatisfiable | satisfiable | satisfiable

decisions | 3957 | 13329 | 23881 | 68628 | 72655 | 72655
conflicts | 209 | 724 | 1998 | 15859 | 4478 | 4478

boolean variables | 1011 | 2486 | 4169 | 9904 | 5214 | 5214
memory (MB) | 16.9102 | 18.1133 | 20.168 | 27.4141 | 26.4375 | 26.4414
time (seconds) | 0.05 | 0.28 | 1.53 | 35.99 | 7.53 | 7.31

Table 1: Experimental results from the synthesis of a single-process arbiter using the specification from
Figure 2 and the architecture from Figure 1a. The table shows the time and memory consumption of Yices
1.0.9 when solving the SMT problem from Figure 3, with all quantifiers replaced by explicit conjunctions for
different bounds on the number of states in the transition system.

bound | 4 | 5 | 6 | 7 | 8 | 9 | 8 (1) | 8 (2)
result | unsatisfiable | unsatisfiable | unsatisfiable | unsatisfiable | satisfiable | satisfiable | unsatisfiable | satisfiable

decisions | 6041 | 15008 | 35977 | 89766 | 197150 | 154315 | 178350 | 71074
conflicts | 236 | 929 | 2954 | 30454 | 33496 | 24607 | 96961 | 18263

boolean variables | 1269 | 2944 | 5793 | 9194 | 7766 | 8533 | 12403 | 6382
memory (MB) | 17.0469 | 18.4766 | 22.1992 | 33.1211 | 37.4297 | 36.2734 | 39.4922 | 29.1992
time (seconds) | 0.06 | 0.35 | 3.3 | 120.56 | 70.97 | 58.43 | 200.07 | 36.38

Table 2: Experimental results from the synthesis of a two-process arbiter using the specification from Figure 2
and the architecture from Figure 1b. The table shows the time and memory consumption of Yices 1.0.9 when
solving the SMT problem from Figure 4, with all quantifiers replaced by explicit conjunctions for different
bounds on the number of states in the global transition system and on the number of states in the individual
processes (shown in parentheses).

bound | 4 | 5 | 6 | 7 | 8
result | unsatisfiable | satisfiable | satisfiable | satisfiable | satisfiable

decisions | 17566 | 30011 | 52140 | 123932 | 161570
conflicts | 458 | 800 | 1375 | 2614 | 3987

boolean variables | 1850 | 2854 | 3734 | 5406 | 6319
memory (MB) | 18.3008 | 20.0586 | 22.5781 | 27.5000 | 35.7148
time (seconds) | 0.21 | 0.63 | 1.72 | 5.15 | 12.38

Table 3: Experimental results from the synthesis of a single-process arbiter using the specification from
Figure 5 and the architecture from Figure 1a. The table shows the time and memory consumption of Yices
1.0.9 when solving the resulting SMT problem, with all quantifiers replaced by explicit conjunctions for
different bounds on the number of states in the transition system.

bound | 4 | 5 | 6 | 7 | 8 | 9 | 8 (1) | 8 (2) | 8 (3) | 8 (4)
result | unsat | unsat | unsat | unsat | sat | sat | unsat | unsat | sat | sat

decisions | 16725 | 47600 | 91480 | 216129 | 204062 | 344244 | 309700 | 1122755 | 167397 | 208255
conflicts | 326 | 1422 | 8310 | 61010 | 11478 | 16347 | 92712 | 775573 | 13086 | 13153

boolean variables | 1890 | 7788 | 5793 | 13028 | 8330 | 10665 | 15395 | 25340 | 8240 | 7806
memory (MB) | 18.0273 | 22.2109 | 28.5312 | 43.8594 | 42.2344 | 61.9727 | 54.1641 | 120.0160 | 42.1484 | 42.7188
time (seconds) | 0.16 | 1.72 | 14.84 | 208.78 | 32.47 | 72.97 | 263.44 | 5537.68 | 31.12 | 30.36

Table 4: Experimental results from the synthesis of a two-process arbiter using the specification from Figure 5
and the architecture from Figure 1b. The table shows the time and memory consumption of Yices 1.0.9 when
solving the resulting SMT problem, with all quantifiers replaced by explicit conjunctions for different bounds
on the number of states in the global transition system and on the number of states in the individual processes
(shown in parentheses).

0

1 2 3 · · · n

⊥

∗

s1 s2 s3 sn

h h h
h

W

i=1,...,n

sisi⊕1

Figure 6: Specification of a dining philosopher problem with n philosophers. The environment can cause the
philosophers to become hungry (by setting h to true). The states depicted as double circles (1 through n) are
the rejecting states in F ; state i refers to the situation where philosopher i is hungry and starving (si). The
fail state is reached when two adjacent philosophers try to reach for their common chopstick; the fail state
refers to the resulting eternal philosophical quarrel that keeps the affected philosophers from eating.

3 states 4 states 6 states
philosophers | time (s) | memory (MB) | result | time (s) | memory (MB) | result | time (s) | memory (MB) | result

125 | 1.52 | 23.2695 | unsat | 23.84 | 36.2305 | unsat | 236.5 | 87.7852 | sat
250 | 5.41 | 29.2695 | unsat | 130.07 | 52.0859 | sat | 141.36 | 91.1328 | sat
375 | 22.81 | 38.9727 | unsat | 128.83 | 58.1992 | unsat | 890.58 | 154.355 | sat
500 | 17.98 | 39.9297 | unsat | 15.84 | 52.9336 | sat | 237.04 | 119.309 | sat
625 | 35.57 | 49.5586 | unsat | 417.05 | 94.7188 | unsat | 486.5 | 130.977 | sat
750 | 22.25 | 52.3359 | unsat | 20.85 | 69.1562 | sat | 82.63 | 99.707 | sat
875 | 51.98 | 56.0859 | unsat | 628.84 | 119.363 | unsat | 2546.88 | 255.965 | sat

1000 | 168.17 | 70.3906 | unsat | 734.74 | 117.703 | sat | 46.18 | 124.691 | sat
1125 | 67.14 | 70.1133 | unsat | 1555.18 | 165.922 | unsat | 1854.77 | 246.848 | sat
1250 | 165.59 | 76.2227 | unsat | 122.8 | 107.645 | sat | 596.8 | 203.012 | sat
1375 | 104.27 | 75.4531 | unsat | 3518.85 | 191.113 | unsat | 8486.18 | 490.566 | sat
1500 | 187.25 | 82.8867 | unsat | 85.52 | 129.215 | sat | 232.81 | 214.68 | sat
1625 | 85.83 | 88.8047 | unsat | 2651.82 | 246.734 | unsat | 1437.45 | 281.203 | sat
1750 | 169.93 | 97.543 | unsat | 107.14 | 126.477 | sat | 257.77 | 185.887 | sat
1875 | 174.03 | 105.25 | unsat | 3629.18 | 234.527 | unsat | 4641.03 | 405.781 | sat
2000 | 25.86 | 102.125 | unsat | 242.55 | 157.734 | sat | 811.78 | 269.375 | sat
2125 | 163.39 | 113.27 | unsat | 5932.24 | 315.711 | unsat | 6465.75 | 424.121 | sat
2250 | 412.37 | 115.438 | unsat | 523.87 | 162.391 | sat | 5034.83 | 456.316 | sat
2375 | 201.95 | 120.047 | unsat | 7311.03 | 313.168 | unsat | 4887.76 | 451.332 | sat
2500 | 375.29 | 135.535 | unsat | 235.17 | 202.59 | sat | 319.78 | 253.781 | sat
2625 | 544.03 | 135.379 | unsat | 6560.53 | 312.355 | unsat | 23990.5 | 808.633 | sat
2750 | 559.35 | 139.137 | unsat | 817.41 | 226.082 | sat | 632.28 | 349.992 | sat
2875 | 308.36 | 151.727 | unsat | 7273.89 | 299.016 | unsat | 8638.96 | 551.5 | sat
3000 | 666.18 | 155.57 | unsat | 533.23 | 228.961 | sat | 3158.26 | 493.617 | sat
3125 | 235.52 | 141.93 | unsat | 12596.6 | 377.328 | unsat | 10819.7 | 693.133 | sat
3250 | 869.53 | 153.633 | unsat | 2089.72 | 308.719 | sat | 21298.8 | 889.285 | sat
3375 | 260.88 | 145.918 | unsat | 11581.7 | 379.949 | unsat | 21560 | 741.09 | sat
3500 | 308.23 | 169.348 | unsat | 897.6 | 270.676 | sat | 829.52 | 398.008 | sat
5000 | 982.68 | 240.273 | unsat | 3603.7 | 421.832 | sat | 1357.48 | 582.457 | sat
7000 | 2351.87 | 313.277 | unsat | 7069.55 | 535.98 | sat | 6438.73 | 1081.68 | sat

10000 | 4338.83 | 448.648 | unsat | 4224.28 | 761.008 | sat | 10504.6 | 1121.58 | sat

Table 5: Experimental results from the synthesis of a strategy for the dining philosophers using the specifi-
cation from Figure 6. The table shows the time and memory consumption of Yices 1.0.9 when solving the
resulting SMT problem, with all quantifiers replaced by explicit conjunctions for different bounds on the
number of states in the transition system.

plementation with 5 states is found in less than one second,
and Yices needs only half a minute to construct a correct
distribute implementation. The table also shows that bor-
derline cases like the fruitless search for an implementation
with 8 states, but only 2 local states, can become very ex-
pensive; in the example, Yices needed more than 1 1

2
hours

to determine unsatisfiability. Compromising on optimality,
by slightly increasing the bounds, greatly improves the per-
formance. Searching for an implementation with 8 states
and 3 local states takes about 30 seconds.

7.2 Dining Philosophers
Table 5 shows the time and memory consumption for syn-
thesizing a strategy for the dining philosophers to satisfy the
specification shown in Figure 6. In the dining philosophers
benchmark, the size of the specification grows linearly with
the number of philosophers; for 10.000 philosophers this re-
sults in systems of hundreds of thousands constraints. In
spite of the large size of the resulting constraint system, the
synthesis problem remains tractable; Yices solves all result-
ing constraint systems within a few hours, and within a min-
utes for small constraint systems with up to 1000 philoso-
phers.

8. CONCLUSIONS
Our experimental results suggest that the synthesis problem
can be solved efficiently using satisfiability checking as long
as a reasonable bound on the size of the implementation can
be set in advance. In general, distributed synthesis is unde-
cidable. By iteratively increasing the bound, our approach
can be used as a semi-decision procedure.

Bounded synthesis thus appears to be a promising new ap-
plication domain for SMT solvers. Clearly, there is a lot of
potential for improving the performance. For example, Yices
is not able to determine the satisfiability of the quantified
formula directly. After applying a preprocessing step that
replaces universal quantification by explicit conjunctions,
Yices solves the resulting satisfiability problem within sec-
onds. Developing specialized quantifier elimination heuris-
tics could be an important step in bringing synthesis to prac-
tice.

9. REFERENCES
[1] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and

Y. Zhu. Bounded model checking. Advances in
Computers, 58:118–149, 2003.

[2] E. M. Clarke and E. A. Emerson. Design and synthesis
of synchronization skeletons using branching time
temporal logic. In Proc. IBM Workshop on Logics of
Programs, pages 52–71. Springer-Verlag, 1981.

[3] F. Copty, L. Fix, E. Giunchiglia, G. Kamhi,
A. Tacchella, and M. Vardi. Benefits of bounded
model checking at an industrial setting. In Proc. of
CAV, LNCS. Springer Verlag, 2001.

[4] B. Finkbeiner and S. Schewe. Uniform distributed
synthesis. In Proc. LICS, pages 321–330. IEEE
Computer Society Press, June 2005.

[5] O. Kupferman and M. Vardi. Safraless decision
procedures. In Proc. 46th IEEE Symp. on Foundations
of Computer Science, pages 531–540, Pittsburgh,
October 2005.

[6] O. Kupferman and M. Y. Vardi. Synthesis with
incomplete informatio. In Proc. ICTL, pages 91–106,
Manchester, July 1997.

[7] O. Kupferman and M. Y. Vardi. µ-calculus synthesis.
In Proc. MFCS, pages 497–507. Springer-Verlag, 2000.

[8] O. Kupferman and M. Y. Vardi. Synthesizing
distributed systems. In Proc. LICS, pages 389–398.
IEEE Computer Society Press, July 2001.

[9] R. Rosner. Modular Synthesis of Reactive Systems.
PhD thesis, Weizmann Institute of Science, Rehovot,
Israel, 1992.

[10] S. Schewe and B. Finkbeiner. Bounded synthesis. In
5th International Symposium on Automated
Technology for Verification and Analysis (ATVA
2007). Springer Verlag, 2007.

[11] I. Walukiewicz and S. Mohalik. Distributed games. In
Proc. FSTTCS’03, pages 338–351. Springer-Verlag,
2003.

[12] P. Wolper. Synthesis of Communicating Processes
from Temporal-Logic Specifications. PhD thesis,
Stanford University, 1982.

