
Towards Intelligent System Health Management using
Runtime Monitoring

Christoph Torens∗ Florian-Michael Adolf†
DLR (German Aerospace Center), Institute of Flight Systems

Braunschweig, 38108, Germany
Peter Faymonville‡ Sebastian Schirmer§

Saarland University, Reactive Systems Group
Saarbrücken, 66123, Germany

System health management is an important feature of autonomy, enhancing consistency
checks, overall system robustness and even some degree of self-awareness. Seemingly unre-
lated, debugging and analysis of such complex systems is another challenge during devel-
opment that should not be underrated. We propose that the so-called runtime monitoring
of relevant properties and system requirements is a viable technique to support both afore-
mentioned concepts. A suitable monitoring approach for a cyber-physical system has to be
efficient and capable of supervising various specifications, possibly relating different data
sources and data history. We present a formal approach for log-analysis and monitoring for
the DLR ARTIS framework using the stream-based specification language LOLA, currently
developed at Saarland University, for the runtime monitoring of formal specifications. We
have evaluated this approach by specifying relevant properties as LOLA stream equations.
While we have identified a number of possible improvements in the specification language,
we have demonstrated, even with the current language, that online and offline monitoring
of relevant properties is indeed possible and gives engineers a powerful tool for debugging
as well as implementing health management concepts.

I. Introduction

The DLR operates ARTIS (Autonomous Research Testbed for Intelligent Systems), a fleet of unmanned
aircraft for the research of functions towards all aspects of autonomous flight. As the name suggests,

the research focus emphasizes on highly automated functions and autonomy. To this end, ARTIS utilizes
several classes and sizes of aircraft with different autonomous capabilities as a generic flying platform for
autonomy research.

One important aspect of autonomy is the capability to create high-level mission plans and, as part of
this, generate paths from a given point to a desired destination. Since 2006, ARTIS has been equipped
with a Mission Planning and Execution (MiPlEx) software framework that comprises real-time mission plan
execution, 3-D world modeling as well as algorithms for combinatorial motion planning and task scheduling.
In the remaining work, this system will be used to demonstrate applications of runtime monitoring.

The framework is based on a decoupled approach for path planning, trajectory generation, trajectory
following, and inner loop flight control.1 The rotorcraft’s guidance algorithm has been evaluated in flight
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tests with respect to closed-loop motion planning in obstacle rich environments. The work in Ref.2 describes
a control architecture behind the guidance layer. It achieves hybrid control by combining the main ideas from
a behavior-based paradigm3, 4 and a three-tier architecture.5 The behavior-based paradigm reduces system
modeling complexity for composite maneuvers (e.g. land/take off) as a behavior module that interfaces with
the flight controller, Fig. 1. The three-tier architecture has the advantage of different abstraction layers that
can be interfaced directly such that each layer represents a level of system autonomy.

Figure 1. Mapping mission shown in context with the control architecture: High-level behaviors use task
specific planners (Deliberate Layer), behaviors are compiled into plans (Sequencing Layer), and movement
primitives (Reactive Layer) interface with the flight controller.

Figure 2. A DLR unmanned rotorcraft (left) and a simulation result of online planning in urban terrain for
our rotorcraft with onboard perception (right): path flown (red), virtual distance sensor (green), obstacles
mapped (grayscale).

As a result, the mission planner is able to execute autonomous behavior, for example exploration of
unknown terrain as shown in Fig. 2.

The novel aspect of unmanned aircraft as an application is the missing onboard pilot, an aspect the public
is most concerned about. Increased effort in verification and validation activities is therefore required. The
overall goal is to achieve fail-safe behavior and to guarantee certain limits in the safe behavior of high-level
software components as the mission planner.
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A. Problem Statement

We want to discuss two main challenges for the development of an unmanned aerial vehicle (UAV), that
first seem to be independent. At first with complex systems, there is always the need to have powerful
methodologies to debug and analyze the system. For the ARTIS framework, extensive data from all sensors
and software modules is logged into files. This logging capability is an important feature for debugging.
However, going manually through system log-files to analyze system behavior can become a huge effort and
is prone to errors. Analyzing more complex properties can become infeasible if data has to be derived, set
in context to data history, or data from a different data source. Therefore, a tool automation for finding,
filtering, or tagging of specific data with supplementary information can be a huge benefit for the analysis
of logging data.

Secondly, future unmanned aircraft are expected to be highly autonomous. Besides functional capabili-
ties, such as obstacle sensing and mission planning, another key issue of autonomy is the concept of health
management. Health management enables the aircraft to assess the own capabilities and, in case of degra-
dation, enables to react in a robust fashion by triggering contingency procedures. The first part of such
a health management concept is the monitoring of the system status, to enable a form of self-awareness.
The so-called Autonomy Levels For Unmanned Rotorcraft Systems (ALFURS) framework6 is used to assess
autonomy of unmanned aircraft, from Level 0, remote control, up to Level 10, fully autonomous. Starting
from autonomy Level 3, required capabilities include health diagnosis and detection of hardware and software
faults. In short, to achieve the concept of autonomy, an awareness of the system itself and its internal states
is necessary to cope with abnormal system states, degraded situations and unforeseen environmental events.

B. Approach and Paper Outline

The concept of runtime monitoring is capable of both, offline analysis of log-files for debugging purposes,
as well as the online supervision of system states and violation of specified properties to support health
management. The use of a formal description language for the specification of properties enables formal
reasoning and allows the automatic generation of monitors. Therefore, DLR and Saarland University are
cooperating to enable the detection of specification violations by using formal methods.

In this paper, we present a formal approach for log-analysis and monitoring for the DLR ARTIS framework
using a tool for the stream-based specification language LOLA, currently developed at Saarland University,
for the runtime monitoring of formal specifications. Runtime monitoring is a lightweight formal method to
ensure the correctness of a given system at runtime, i.e. through observation with a given formal specifi-
cation. Its main advantages are that it can be incrementally introduced into the system, it is applicable
even when exhaustive verification methods such as model checking fail due to large state spaces, and the
specifications are descriptive and express stateful properties which are easy to maintain compared to hand-
written monitoring code. When monitoring along the system execution, alerts of property violations can be
used to influence the behavior of the system under scrutiny, e.g. to change to a different set of sensors or a
more conservative flight controller. The stream-based formal specification language LOLA is, however, not
restricted to simply output a binary answer for every input trace (either the property holds or not), but is
much more expressive: It can be used to express and compute statistical properties of the current trace and
thus can monitor the current system performance, e.g. to accumulate the deviations of the planned flight
path to the actual one. This expressiveness is also very useful for the offline analysis of log-files to calculate
system performance measurements, which may be computationally too expensive to be calculated on-the-fly.

As the first phase of integration, LOLA is used to analyze aforementioned log-files. Existing sets of data
from real test flights, as well as the possibility to create custom logging data from software- or hardware-
in-the-loop simulations facilitates this integration. In a second phase, selected specifications are supervised
via online monitoring. To do this, the monitoring has to be integrated into the ARTIS framework, however,
detailed architectural considerations are not in the scope of this paper. Further work at DLR is researching
architectural considerations of integrating monitoring into a system architecture and triggering contingency
procedures for safety-related hazardous events.

Utilizing a stepwise approach for the integration of runtime monitoring, different stages of benefits to
system development and the system itself can be identified. A more detailed discussion of these benefits will
be discussed in the next section:

1. Offline analysis of given log data to generally support logging and debugging, as well as facilitating
complex analysis of internal processes.
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2. Offline analysis of execution performance to assess specific metrics and correlate this to historical data
to be able to supervise performance degradation.

3. Online monitoring of system boundaries and components states to support and increase the general
situational awareness.

4. Online monitoring of safety requirements as an inherent part of the safety concept, e.g. to inform the
pilot about abnormal states or to enable assurance cases of high-level runtime behavior.

5. Online monitoring of system components to invoke a degraded state or contingency procedure to
increase robustness as part of health management.

The remainder of this article is structured as follows: The following section II presents aspects of runtime
monitoring and system health management, in which aforementioned applications of runtime monitoring
are discussed in more detail. Next, in Section III, related work is presented on runtime monitoring and
system health management. Afterwards, Section IV presents the specific properties of the stream-based
specification language LOLA. Then, Section V discusses the specific approach of runtime monitoring for our
ARTIS unmanned aircraft. Finally, Section VI concludes this paper.

II. Runtime Monitoring and System Health Management

Runtime monitoring describes a collection of approaches to evaluate formal specifications on traces of
systems in order to verify the correctness of the system. Two main modes of operation are distinguished:
online monitoring and offline monitoring. In online monitoring, the interface of a system is observed at
runtime one event at a time, and the monitor produces a verdict with respect to the specification according
to the trace of observations seen so far. In contrast, for offline monitoring we may assume that the trace
is immediately fully available and may be traversed in either direction, which allows for more efficient
algorithms. Runtime monitoring is a lightweight formal method, compared to exhaustive verification methods
such as model checking, which may be infeasible to apply for complex practical systems. Gradual application
of runtime monitoring to existing systems is possible, since there is no need to first formally re-engineer the
system to a model. Specification languages for monitoring can be more expressive (types, functions, . . . ),
since we can evaluate them directly on the given trace. Also it is possible, that verdicts of the monitor
can be used in a feedback loop to influence the system behavior itself. Correctness of monitoring algorithm
and specification is easier to argue than correctness of system under test. Since the same methodology is
used, a single specification can be used for both online and offline monitoring. Additionally, the formal
specifications can potentially later be used for model checking of components. And statistical analyses can
be used to evaluate different runs of the system.

A. Application of Runtime Monitoring for Debugging and Behavior Analysis

Analyzing complex properties can become infeasible for debugging purposes. This is especially true, if data
from log-files has to be derived to be able to analyze it, e.g. put into a calculation. It may also be the case,
that such data needs to be set in context to data history, e.g. value A must not exceed a certain threshold
for more than B seconds. In a similar fashion, data may need to get related to a different data source, e.g.
if sensor S exceeds a threshold, then property T must always hold. An important feature is to filter out log
data, according to requirements and tag it with a specific keyword for further analysis. Moreover, often an
expert has to look at such system behavior and has to use his gut feeling to assess such data. In such cases it
is not always directly possible to formalize the specific property, or the property is specified, but the specific
boundary and threshold values are unknown. One possible solution to formalize such a gut feeling is the
ability to find and compare specific values or patterns in previous, historic data. Therefore, it is necessary to
easily check existing historical data for boundary values to come up with formalizations. Runtime monitoring
can easily be used to filter out specific values or patterns and, for example, tag maximum or minimum values.

B. Application of Runtime Monitoring for Benchmarking and Identifying Performance Degra-
dations

During the lifetime of a UAV parts may wear out. In some cases this can result in an immediate malfunction,
in other cases this could be the cause for a performance degradation of the vehicle. Runtime monitoring
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can be used as a tool for benchmarking specific properties, to compare the performance to historical data or
estimated behavior. Therefore, it is possible to automatically identify performance problems and possibly
identify system failures before they become hazardous.

C. Application of Runtime Monitoring for Situational Awareness of a pilot

Health monitoring is an important aspect of modern aircraft. In manned aircraft, some of these monitoring
functions are automated, others, maybe more complex monitoring functions are, however, left to the pilot.
UAV clearly differ from manned aircraft with respect to the pilots distance to the aircraft, his situational
awareness as well as his ability to bring resilience to unforeseen events into the guidance and control loop.
The onboard pilot is replaced by a command and control data link that sends specified data from and
to a safety pilot sitting at a ground control station. Therefore, the safety pilot may notice problematic
situations or abnormal behavior of the aircraft only after it is too late to recover. Because of these reduced
capabilities, software has to take over functions which the pilot would usually perform onboard, resulting
in software systems of increasing complexity. Moreover, software has to take over supervisory functions
which the pilot would usually perform, not only active tasks as mentioned above. As such it is important
to increase the pilots situational awareness. Runtime monitoring can easily be used to focus the attention
of a pilot to a specific critical item that has passed a certain warning threshold. For example, the display
of flight information would be always visible to the safety pilot, but this information would be highlighted
with a signal color if a limit is exceeded. For other information, that is not needed in all circumstances, it
would be possible to display the information only if a limit is exceeded.

D. Application of Runtime Monitoring for Robustness and Intelligent Behavior

The same information that can be given to a pilot to increase situational awareness can also be given to the
system itself. But beyond increasing the situational awareness of a pilot, a runtime monitor for supporting
autonomy and intelligent behavior should be able to not only supervise specific properties, but additionally
correlate such information to the known system state. Runtime monitoring is a suitable technique for such
tasks, since this new data of system inputs must be continuously assessed and correlated to the current
system states, as well as its history. Furthermore, it is possible to intelligently change the system state
according to specific inputs and thus react differently for the same situation. For example, when sensory
inputs cannot be trusted in the same way as under optimal conditions, safety boundaries for velocity and
obstacle distance could be increased. Or when an unusual rate of fuel consumption is registered, the mission
plan could be optimized for minimal fuel consumption, or the mission could be cut short, or a return to base
could be initiated.

E. Application of Runtime Monitoring for Safety

In order to be able to detect system and software faults, critical modules need to be continuously monitored.
In some cases, it may be easy to assess a system fault, e.g. if a system does not react anymore, or specific
hardware systems which themselves have some degree of failure detection could directly give this input to
a dedicated monitoring module. For complex systems on the other hand, especially for software intense
systems controlling certain behavior of the aircraft, it may not be evident if there is a failure. In these cases
more complex analysis is necessary to assess a failure. Furthermore, a failure may be dormant, in such a
case, the failure can only be exposed if one or more additional properties are active at the same time. With
runtime monitoring, it is possible to uncover dormant failures and analyze states as well as development and
trend of failure events, if according properties are properly monitored.

Generally, if the monitor assesses a system fault, then a mitigation action must be triggered. The monitor
could either initiate an action by itself, reset and reactivate the faulty system, or deactivate it and activate
a backup system. The backup system could have reduced capabilities but would just be able to maintain
or ensure a safe state. Therefore, the monitoring of systems and subsystems is the key approach to design
fail-safe software systems.

As a result, the DLR ARTIS MiPlEx software component takes over active tasks that an onboard pilot
should normally perform. To complement this, the proposed runtime monitor component takes over the
supervisory tasks of the onboard pilot. As such, the runtime monitor not only supervises mere functionality,
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but acts as an intelligent component that assures high-level decisions and actions which do not cause a
catastrophic situation and which are consistent with known environmental conditions.

III. Related Work

With the concept of monitoring, more specifically runtime monitoring, we refer to a formal methodology.
By using formal specifications, runtime monitoring offers techniques to generate a monitor for supervision
properties. The specialty of this approach is that it enables very efficient monitors, that can be verified
because they are automatically derived from a formal specification. The concept of runtime monitoring
is related to the concept of model checking. A good explanation of runtime monitoring and specifically a
differentiation to other verification techniques, such as testing and model checking is given by Leucker.7
Barringer8 proposes to use runtime analysis of log-files to introduce formal methods into the development
process using the metaphor of a Trojan horse. No system integration is needed to analyze generated log-
files. Therefore, there is no additional effort needed to introduce this technique. As a later step, the same
supervision properties developed for offline analysis, as well as further analysis, can be integrated online into
the system after a suitable logging capability has been integrated into the system. Further details for the
formal analysis of log-files is given in.9 The specifications for such monitoring properties can be arbitrary and
can differ largely from one case to another. However, Robinson10 proposes to use software requirements for
the monitoring of the software execution to provide assurances on software behavior. Runtime monitoring
specifically for checking safety, security, and other critical properties is proposed as runtime certification by
Rushby.11 Runtime certification proposes the monitoring of runtime assumptions to justify assurance cases
and thus make assumptions explicit.

Lately, runtime verification has been applied at NASA in context of Software Health Management12.13

Synchronous and asynchronous observers are used to assess the system status against a temporal specification.
The synchronous observers evaluate the specification, only based on the past events, at each time stamp to
true, false, or maybe. If necessary, the asynchronous observes will refine these values to true or false with
the help of future events. In order to decide the health of the system the system status is fed into a Bayesian
network. The network is used to perform diagnostic reasoning and system analysis. Temporal properties are
given to the network as input which means that it is possible without much effort to compile the network
into an arithmetic circuit. On the other hand, having no specification language to express these higher
level specifications requires an expert in designing the Bayesian network, i.e. dependencies of nodes and
the conditional probability. Additionally, Bayesian networks require an underlying directed acyclic graph
which prevents using bidirectional dependencies, e.g. between two health nodes. A translation from a high-
level specification language to a Bayesian network could help to specify a network in a concise and efficient
way. Despite these restrictions software health management could identify previously unknown faults in the
aircraft control system (file system, signal handling, and navigation).

From a certification point of view, the guidelines for development of civil aircraft and systems14 iden-
tifies monitoring as an alternative protective strategy to complement a proposed system architecture. The
preliminary aircraft safety assessment or preliminary system safety assessment (PASA/PSSA) would iden-
tify the need for such an protective strategy to validate that the architecture can be expected to meet the
safety requirements.15 Furthermore, the use of formal methods is standardized with the latest revision of
the standard for software development for civil aircraft and its specific supplement for the use of formal
methods16

As a result, the application of runtime monitoring for system health management gives an interest-
ing perspective on monitoring properties, assuring behavior, and even argue for certification of unmanned
aircraft.

IV. LOLA: Stream-based formal specifications

The formal specification language LOLA,17, 18 originally developed for monitoring synchronous circuits, is
a typed language based on stream equations. A monitoring specification consisting of LOLA stream equations
maps a given set of input streams to a set of intermediate and output streams and uses triggers to define user
alerts based on the observed behavior. As stream types, LOLA supports boolean, string, integer, and double
values and corresponding basic functions such as comparisons, arithmetic expressions and string matching.
Especially the numerical types are useful since they facilitate the expression of quantitative statistics within
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LOLA stream equations.
LOLA specifications are of a declarative nature. The output and intermediate streams are defined by an

expression over input streams, constants, and output streams which allows to establish a correlation between
several streams. Note that the equations only declaratively specify the value of an output stream, but do not
fix an evaluation mechanism or an evaluation order, which is left to the monitoring algorithm. This allows
us to leave optimizations, the management of monitoring state and the tracking of intermediate values to
the monitoring algorithm. The same specification might be evaluated differently in the context of online or
offline monitoring, where we have random access to the input trace. Furthermore, the ability to introduce
intermediate output streams offers a natural way to structure and modularize the specifications. Thereby, the
readability of LOLA specifications is improved and redundant stream computations are avoided. All these
characteristics keeps the specifications succinct and expressive in comparison to monitoring via hand-written
monitor code or temporal logic formulas.

Recall that a LOLA specification is given as a set of stream expressions. In order to be able to express
complex temporal properties, the stream expressions may not only depend on the current values of other
streams, but may also access past and future values of other streams, as can be seen in the examples below.
If the specification of a stream contains dependencies on future stream values, the evaluation will be delayed
until all dependencies can be resolved.

In comparison to classical monitoring of temporal logics like LTL,19 LOLA allows quantitative statistics,
modularization, and richer verdict domains in terms of the continuously produced output streams. The
disadvantage of LOLA is the non-constant space complexity in the length of the trace for future dependencies.

Formal LOLA specifications are one way to implement monitoring into the system. Another possibility
is to include hand-written monitors within the system. The difficulties of this approach, in comparison to
an external monitoring approach like LOLA, are the violation of the principle of unobtrusiveness and the
maintenance of the monitor code along the program.

The basic LOLA online monitoring algorithm is based upon two sets of equations, called stores: the
resolved store R and the unresolved store U. All resolved equations will be in R and all unresolved equations
will be in U. After new input values arrive, their values are added to R and propagated to all depending
stream equations in U. If a depending stream is resolved, it is removed from U and added to R. Entries in
R which are not required anymore are removed in time.

V. LOLA applications for ARTIS

In this section, we show some applications of runtime monitoring for UAV and provide examples for spec-
ifications, suitable for analysis of UAV. After a short motivation for the example, the according specification
is listed and explained.

supervising simple boundaries In Listing 1, we show exemplarily how we can encode height boundaries
into a LOLA specification. In our example, the height is restricted by an absolute bound, e.g. a legal
restriction (Flight space, Line 3) and additionally by a chosen relative mission specific bound, e.g. never
increase the height by more than 100 meters above takeoff altitude (Mission restriction, Line 7). Therefore,
our LOLA specification requires only one input stream in Line 1 which represents, in each step of the
stream, the current height of the UAV. Line 3 demonstrates how easy we can deploy our first absolute
boundary. A trigger describes a signal to the user with a condition, i.e. height > 150. Notice that in
this case, the output is only binary, i.e. either it fulfills the restriction or violates it. However, the full
expressiveness of LOLA is apparent when specifying the relative height bound. In Line 5, the output stream
max height computes, at each step, the maximum relative height increase. We are taking the max out of the
previous computed max height and the current height increase, i.e. the difference between current height
and starting height. Hence, the output stream max height carries statistical information. Its definition
incorporates the two most powerful LOLA operators, the absolute and relative offset operator. Both are
used to express temporal dependencies between streams. The absolute offset operator, i.e. height#[0, 0.0]
is used to capture the starting height and the relative offset operator accesses the last computed max height,
i.e. max height[-1, 0.0]. The operators differ in the semantic of their first value in brackets. The absolute
operator only allows a positive integer which represents the absolute position in the trace, e.g. here the first
height value. The relative operator allows both negative and positive integers which are evaluated relative to
the current position, i.e. a negative integer represents a past value of the stream and a positive integer a future
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value. The second value in brackets specifies the out-of-bounds value, i.e. the value which is used whenever
the accessed position is not existing or never exists, e.g. accessing a past value at the first position of the
stream. In Line 7, we specify a trigger on the max height to notify the user that the mission restriction is
violated. In case the trigger condition is satisfied, the user receives the message Mission Restriction Violated.

1 input double height
2

3 trigger height > 150.0 with "Absolute Altitude Flight Space Restriction Violated"
4

5 output double max_height := max ( max_height[-1, 0.0], height - height#[0, 0.0] )
6

7 trigger max_height > 100.0 with "Relative Altitude Mission Restriction Violated"

Listing 1. A simple LOLA specification which checks that no absolute and relative height restrictions are
violated during the flight.

Incorporating redundant sensory input A UAV uses several redundant sensors to guarantee the
detection of contradictions in case of erroneous behavior. In Listing 2, we indicate how LOLA can be used
to guarantee safe maneuver of the UAV. Our inputs are the range of sight of a laser and the range of sight
of an optical camera sensor as well as the commanded velocity. For a real pilot, it is natural to only fly
depending on the current range of sight. The following specification checks whether the UAV mimics this
natural behavior. In Line 3 and 4, we introduce two constants which are used as (arbitrary) bounds to either
raise a warning or an error. A warning can be used by a controller to adapt the commanded velocity to the
current sight whereas an error aborts the mission. Note that constants allow encapsulation, i.e. changing the
constant once instead of replacing each occurrence of the value. The output stream on which the warning
and error is raised is given in Line 6. It calculates the difference between the minimal range of sight of the
sensors and the absolute commanded velocity, i.e. it raises a trigger whenever we command a velocity which
is too fast given the current range of sight. This is an example for the intelligent adaptation of high-level
system behaviors according to inputs from other subsystems, here the different vision sensors. Monitoring is
capable to identify situations where the capabilities of the vision system are reduced, compared to optimal
conditions, and thus facilitates to adapt the safety thresholds accordingly.

1 input double visualRange_laser, visualRange_optical, velocity
2

3 const double velocity_warning := 5.0
4 const double velocity_avoid := 2.0
5

6 output double difference := min ( visualRange_laser, visualRange_optical ) - abs(velocity)
7

8 trigger difference < velocity_warning with "WARNING: Velocity Limit reached"
9

10 trigger difference < velocity_avoid with "ERROR: Abort mission."

Listing 2. A LOLA specification which receives three inputs: the range of sight of a laser camera sensor, the
range of sight of an optical camera sensor, and the current velocity. Based on the current minimal range of
sight and the velocity a trigger is raised which depicts either a warning or an error.

Checking high-level behavior In Listing 3, a specification is displayed which considers a possible walk
of the mission manager on its transition system and checks its correctness. Here, the specification depicts only
the basic idea and does not cover the complete transition system of the underlying model. In practice, the
coverage of the complete transition system is possible and abstractions from some implementation details
are applicable. In Listing 3, the specification states that whenever the safety pilot is set, after three
consecutive time steps (measured at 25Hz), the mission manager (i.e. the autopilot) has to be turned off
after 120ms. When the safety pilot is not set or if it gets deactivated, the manager should remain
on. The safety pilot[1..3, false, &] operator is called windowing. The operator can be unfolded
into several relative offset operators which are linked by the connector given by the third argument in
brackets, e.g. ’&’. The above statement can be unfolded to: safety pilot[1, false] & safety pilot[2,
false] & safety pilot[3, false]. In our example, the windowing is based on future values and, in case
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of a positive condition evaluation, we restrict the future behavior of our ManagerState to ManagerStateOff.
If this restriction is violated, turned off would evaluate to true and raises a trigger notification, defined
in Line 9. Notice that, similar to Listing 1 where we computed the maximum height increase during the
flight, we could also compute a statistic on the responsiveness of the ManagerState. For instance, we could
reformulate the example to capture the occurred worst case time required to switch the manager off when
the safety pilot is set for three consecutive time steps. Afterwards, a trigger on this worst case time could
be specified to notify a violation to the user. This re-use of statistical streams in other computations or
notifications are the key feature of the modular composition of LOLA specifications.

1 input bool safety_pilot
2 input string ManagerState
3

4 output bool turned_off := if safety_pilot[1..3, false, &]
5 { ManagerState[3, ""] = "ManagerStateOff" }
6 else
7 { ManagerState = "ManagerStateOn" }
8

9 trigger turned_off

Listing 3. A LOLA specification which states that whenever the safety pilot is set for three consecutive time
steps then the ManagerState should be set to ManagerStateOff.

filtering and tagging of data So far, the user receives notifications in case a trigger condition is
satisfied. The technique we present here allows to generate a log-file as a LOLA evaluation outcome. LOLA
can be used for automatic filtering and tagging of data according to specific properties. These techniques
especially support the post-flight analysis. Filtering is useful to separate meaningful data from the streams
and tagging is used to add further information (tags) to the data. The amount of data that needs to be
analyzed manually can be reduced and the attached tags allow to add additional explanatory information
that can further support manual analysis.

In Listing 4, an example specification is depicted. The input streams represent the current velocity and
the current state of the mission manager. Two output streams are specified. The stream cnd is used as
condition when to log the data into the new generated file at location filteredFlight.log (Line 8+9). The
value of the output magnitude can be seen as an indicator how much the velocity exceeds the specified
threshold. The function floor rounds down its argument. The semantic of tag is: If cnd holds then the
stream values of the specified streams after with are written in the respective column, specified after as.
Notice that the columns of the new file can be named arbitrary, e.g. the new first column is called velocity.
Listing 5 illustrates this approach. On the left side the incoming data streams are depicted and on the right
side the generated log-file is shown. The first line indicates the respective stream and the following lines its
data values. For instance, the stream vel contains the following values given in the correct temporal order:
10, 15, 8, 24, and 30.

1 input double vel
2 input string ManagerState
3 const double threshold := 10.0
4

5 output bool cnd := vel > threshold
6 output int magnitude := floor( vel / threshold )
7

8 tag as velocity, state , magnitude if cnd
9 with vel , ManagerState, magnitude at "filteredFlight.log"

Listing 4. A LOLA specification which generates as evaluation outcome a new log-file. The data logged in
the new file is a filtered version of the incoming data and it is additionally tagged by a value indicating the
magnitude the threshold is exceeded.
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1 vel ManagerState
2 10 "Accelerate"
3 15 "Slow-down"
4 8 "Accelerate"
5 24 "Accelerate"
6 30 "Remain"

1 velocity state magnitude
2 15 "Slow-down" 1
3 24 "Accelerate" 2
4 30 "Remain" 3

Listing 5. On the left side two streams are depicted: the current velocity and the state of the mission manager.
The first line represents the streams and the following lines the values of the respective stream in the column,
temporally ordered. On the right side, the resulting log-file is shown when applying the specification in
Listing 4 to the streams given on the left side.

VI. Conclusion and Outlook

The ARTIS UAV research platform enables the development and test of autonomous software functions.
In particular, two main challenges for the development of a UAV were considered. As one challenge, the
need of powerful methodologies to debug and analyze the system behavior via huge amounts of logged
data. Automated techniques are necessary to cope with the growing system complexity, since manual data
inspection takes huge effort and is prone to errors. The second challenge is the implementation of capabilities
to assess the own system status, to detect system failures, and enable intelligent system health management.
This self-awareness plays an important role in autonomous systems since it is necessary for robust reactions
in degraded situations.

Runtime monitoring can be used to cope both aforementioned problems. We have used the ARTIS UAV
research platform to demonstrate our best practice approach. As monitoring specification language, we
chose LOLA. LOLA is based upon streams and closes the gap between temporal logics like LTL and hand-
written monitors. Streams can incorporate mathematical computations such that quantitative statistics
are supported and also allows to express temporal (past and future) connections between other streams
and their values. Further, the modular composition of LOLA helps to keep the specification concise and
human readable. Given this innovative expressiveness of the used formal language, the utilized tool for
the specification language LOLA enables us to specify a large variety of specifications and we were able to
research interesting properties for the runtime monitoring of UAVs. The first application was focused on
offline log-file analysis which offers a first step to integrate monitoring into the existing development processes.
This approach supports the debugging and analysis of log files, that was mentioned as the first challenge
in the problem statement. The other applications depicted an incremental approach towards an intelligent
component that assures high-level decisions and actions to support the second problem for engineering and
developing an autonomous UAV. In general, a full online integration of runtime monitoring into the system
gives powerful possibilities to advance system awareness, health management, and intelligent behavior. An
online runtime monitor can supervise high-level behavior, safety, performance, and situational awareness.
Therefore, runtime monitoring can be utilized as a tool to increase autonomy and make software-intense
systems more robust and fail-safe.

Future work will focus on refining the approach and implementation of our online monitoring framework,
specifically applications for robustness and safety, as well as extending the specifications being supervised.
Finally, further research about the triggering and scope of contingency procedures and architectural con-
siderations to include monitoring and contingency management functions into a system architecture are
necessary, so that these functions are independent, unobtrusive, responsive, and realizable.
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