
Semi-Automatic Distributed Synthesis

Bernd Finkbeiner and Sven Schewe

Universität des Saarlandes, 66123 Saarbrücken, Germany
{finkbeiner|schewe}@cs.uni-sb.de

Abstract. We propose a sound and complete compositional proof rule
for distributed synthesis. Applying our proof rule only requires the man-
ual strengthening of the specification into a conjunction of formulas that
can be guaranteed by individual black-box processes. All premises of the
proof rule can be checked automatically.
For this purpose, we give an automata-theoretic synthesis algorithm for
single processes in distributed architectures. The behavior of the local
environment of a process is unknown in the process of synthesis and
cannot be assumed to be maximal. We therefore consider reactive envi-
ronments that have the power to disable some of their own actions, and
provide methods for synthesis (and realizability checking) in this setting.
We establish upper bounds for CTL (2EXPTIME) and CTL* (3EX-
PTIME) synthesis with incomplete information, matching the known
lower bounds for these problems, and provide matching upper and lower
bounds for µ-calculus synthesis (2EXPTIME) with complete or incom-
plete information. Synthesis in reactive environments is harder than
synthesis in maximal environments, where CTL, CTL* and µ-calculus
synthesis are EXPTIME, 2EXPTIME and EXPTIME complete, respec-
tively.

1 Introduction

In the synthesis of distributed systems, we transform a given specification into a
collection of finite-state programs that satisfy the specification when composed
according to a given architecture. For some restricted architectures, such as
pipelines and rings in which only one designated process communicates with the
environment [1], synthesis can be done automatically. However, as soon as the
architecture contains an information fork, i.e., a pair of processes that have an
incomparable degree of information about the system state, the problem becomes
undecidable [2].

In this paper, we investigate a semi-automatic approach where we synthesize
one process at a time. It turns out that the synthesis of a single process can be
done automatically and it is always possible to decompose a realizable specifica-
tion into a conjunction of properties that can be guaranteed by single processes.
This approach therefore works for all distributed architectures, including those
with information forks.

The problem of synthesizing a single process has been studied in a number
of variations. Closed synthesis excludes any interaction with the environment

Env

p1

Arbiter

p2

(a)

request
1

request
2

access1

access2

release1

release2

grant
1

grant
2

(b)

grant
1

:= true

grant
2

:= false

release1

grant
2

:= true

release2

grant
1

:= true

¬release1 ¬release2

Fig. 1. A simple distributed shared-resource application. (a) The system architecture.
An edge between two process nodes p and q labeled with variable v indicates that v is an
output variable of process p and an input variable of process q. (b) The implementation
of the white-box process Arbiter, represented as a finite-state automaton.

[3, 4]. Open synthesis finds implementations that satisfy a specification in any
environment. For universal specifications (e.g., ACTL*), it suffices to consider
the maximal environment, which shows all possible behaviors [5, 6]. In general,
it is necessary to account for reactive environments, which may disable some of
their responses [7].

We consider the problem of synthesizing a single black-box process in a given
distributed architecture. An architecture consists of an external environment
and a set of system processes, which we partition into subsets of white-box and
black-box processes: each white-box process comes with a known and fixed im-
plementation, while the implementation of the black-box processes is yet to be
found.

A single black-box process may interact with the external environment, the
white-box processes, and with other black-box processes. Like in open synthe-
sis, we assume that the behavior of the external environment is maximal. The
behavior of white-box processes is known beforehand, but may be nondetermin-
istic. The other black-box processes show reactive [7] behavior: in each state,
they may disable some (but not all) of their responses. An important difference
between synthesizing systems that consist of a single process, and synthesizing
a single process within a general architecture is that, while the process has com-
plete information about the system state in the former case, it only sees a part
of the state as defined by the architecture in the latter case.

Figure 1a shows the architecture of a simple distributed shared-resource ap-
plication. The external environment Env can request access to the resource by
setting the request variable of one of the two black-box processes p1 and p2. Mu-
tual exclusion is accomplished using a white-box Arbiter process that alternates

a grant between p1 and p2, such that each process retains the grant until the
respective release variable is set, as shown in Figure 1b.

We can specify the expected behavior of the shared-resource system as a
conjunction ψ = ψ1∧ψ2∧ψ3 of three CTL* formulas, where the first two formulas
specify that there is a way for both processes to use the resource infinitely
often (ψi = EGF access i for i ∈ {0, 1}) and the third formula specifies mutual
exclusion (ψ3 = AG ¬(access1 ∧ access2)).

Obviously, neither p1 nor p2 can guarantee ψ for all possible implementations
of the other process (for example, if the other process constantly sets its access
variable to true, mutual exclusion must be violated in some branch). We therefore
strengthen ψ into two separate properties ϕp1 and ϕp2 that can be guaranteed
by p1 and p2, respectively. A natural assumption to be made by process p3−i

about process pi is that there is path, such that process pi infinitely often releases
the grant (αpi

1 = EGF release i) and that, on every path, pi only accesses the
resource when permitted by Arbiter (αpi

2 = AG access i → grant i). By adding
these assumptions, we obtain a strengthened specification ϕ = ϕp1 ∧ ϕp2 where

ϕpi
= α

pi

1 ∧ αpi

2 ∧ (α
p3−i

1 ∧ α
p3−i

2 → ψ).

Once the auxiliary formulas ϕp1 and ϕp2 have been defined, an implemen-
tation can be found automatically. For example, process pi can guarantee ϕpi

against any implementation of process p3−i, by setting access i after each request i

as soon as grant i becomes true and by setting release i in the immediately fol-
lowing state.

Contribution. We propose a sound and complete compositional proof rule for
distributed synthesis. Applying our proof rule only requires the manual strength-
ening of the specification into a conjunction of formulas that can be guaran-
teed by individual black-box processes against the other black-box processes.
All premises of the proof rule can be checked automatically.

For this purpose, we give an automata-theoretic synthesis algorithm for sin-
gle processes in distributed architectures. Our environment model builds on
open synthesis [5], but combines the maximal external environment with reac-
tive black-box processes. Synthesis in reactive environments was studied before,
but only under the assumption of complete information [7].

Our construction turns a specification into an alternating parity automaton
accepting exactly the reactive models of a specification. For a specification ϕ

with length n = |ϕ| in CTL, CTL* and µ-calculus this automaton has nO(n),

22O(n)

and nO(n3) states, respectively. We establish 2EXPTIME and 3EXPTIME
upper bounds for synthesis with incomplete information in case of CTL and
CTL* specifications, respectively. We defer a doubly exponential lower bound
for µ-calculus specifications from the doubly exponential lower bound for CTL
and establish a matching upper bound.

Overview. In the following section, we formally introduce the synthesis problem
studied in this paper. We explain the compositional synthesis rule in Section 3.
The synthesis algorithm is presented in Section 4.

2 Setting

In the distributed synthesis problem, we decide for a pair (A,ϕ), consisting of
an architecture A and a specification ϕ, whether there exists a finite-state pro-
gram (or strategy) for each black-box process in A, such that the joint behavior
satisfies ϕ.

Architectures. An architecture

A = (B,W, {Ip}p∈B]W]{env}, {Op}p∈B]W]{env}, {sw}w∈W)

is given as a set of processes P = B]W]{env} that is decomposed into a set B
of black-box processes that have to be developed, a set W of white-box processes
that already have an implementation {sw}w∈W , and the external environment
env . The processes communicate through a set V of shared variables, which
also serve as atomic propositions in the specification. Each process p ∈ P has
a fixed set of input and output variables Ip, Op ⊆ V , such that the family of
output variables {Op}p∈P decomposes V. The environment is always omniscient
(Ienv = V).

Implementations. A process p is implemented by a (nondeterministic) strat-

egy, i.e., a function sp : (2Ip)∗ → 22Op

∅ (where 2X
∅ = 2X

r {∅} denotes the
nonempty subsets of a set X). A strategy is finite-state if it can be represented
by a finite-state automaton. The implementations {sw}w∈W of the white-box
processes W are fixed for the architecture. An implementation of an architec-
ture is a set of strategies S = {sb}b∈B for the black-box processes.

We use trees as a representation for strategies and computations. As usual,
an Υ -tree is given as a prefix-closed subset Y ⊆ Υ ∗ of all finite words over
a given set of directions Υ . If the set of directions is not important or clear
from the context, we call Y a tree. We define that every non-empty node x · υ,
x ∈ Υ ∗, υ ∈ Υ , has the direction dir (x · υ) = υ and the empty word ε has
some designated root-direction dir (ε) = υ0 ∈ Υ . An Υ -tree Y is called total, if it
contains the empty word ε ∈ Y and every element y ∈ Y of the tree has at least
one successor y · υ ∈ Y, υ ∈ Υ . If Y = Υ ∗, the tree is called full.

For given finite sets Σ and Υ , a Σ-labeled Υ -tree is a pair 〈Y, l〉, consisting
of a tree Y ⊆ Υ ∗ and a labeling function l : Y → Σ that maps every node of Y
to a letter of Σ. The successor-tree 〈Y, sucset〉 of a tree Y is the 2Υ -labeled Υ -
tree, where every node is labeled with the set of its successors sucset : Y → 2Υ ,
sucset : y 7→ {υ ∈ Υ |y · υ ∈ Y }.

For a set Ξ × Υ of directions and a node x ∈ (Ξ × Υ)∗, hideΥ (x) de-
notes the node in Ξ∗ obtained from x by replacing (ξ, υ) by ξ in each let-
ter of x. For a Σ-labeled Ξ-tree 〈Ξ∗, l〉 we define the Υ -widening of 〈Ξ∗, l〉,
denoted by wideΥ (〈Ξ∗, l〉), as the Σ-labeled Ξ × Υ -tree 〈(Ξ × Υ)∗, l′〉 with
l′(x) = l(hideΥ (x)).

We consider specifications ϕ that are given as CTL, CTL*, or µ-calculus
formulas. Such specifications define a set Mϕ of total 2AP -labeled Υ -trees, where
AP = V denotes the set of atomic propositions in ϕ.

Let SQ =
⊗

p∈Q

22Op

∅ denote the set of possible common outputs of a set of

strategies for the processes in Q ⊆ B ∪W . The composition
⊕

p∈Q sp = sQ :

(2V)∗ → SQ of a set of strategies {sp}p∈Q maps the global input history to the
common output of the processes in Q: For 〈(2V)∗, s′p〉 = wide2V rIp (〈(2V)∗, s′p〉),

sQ : y 7→
⊎

p∈Q

s′p(y) naturally defines a SQ-labeled 2V -tree.

A non-distributed implementation of the processes B ′ is a function

sB′ : (2IB′)∗ → SB′ , for IB′ =
⋃

b∈B′

Ib.

A (distributed) implementation is a set of strategies {sb}b∈B′ whose compo-
sition is the widening of a non-distributed implementation: 〈(2V)∗,

⊕
b∈B′ sb〉 =

wide2V rI
B′ (〈(2IB′)∗, sB′〉) for some non-distributed implementation sB′ .

Realizability. An implementation sB′ of a set B′ ⊆ B of black-box processes
guarantees ϕ against the remaining black-box processes, if for all SBrB′-labeled
2V -trees 〈(2V)∗, sBrB′〉, the total 2V -labeled 2V -tree 〈Y, dir 〉, whose branching
restriction sucset(y) = (sB′ ⊕

⊕
w∈W sw ⊕ sBrB′)(y) × 2Oenv is defined by the

strategies, is a model of ϕ.

We say that a specification is realizable by the processes B ′ ⊆ B for a given ar-
chitecture (B,W, {Ip}p∈B]W , {Op}p∈B]W , Oenv , {sw}w∈W), (A,B′) � ϕ, if there
is a distributed implementation of the processes B′ that guarantees ϕ against
BrB′. A specification is realizable if it is realizable by the entire set of black-box
processes B.

3 A Compositional Synthesis Rule

The compositional synthesis rule reduces the realizability of a distributed system,
(A,B) � ψ, to the realizability of single processes, (A, {b}) � ϕb, for each black-
box process b ∈ B. The proof rule requires an auxiliary specification ϕb for each
process b ∈ B. If each process b guarantees ϕb against the remaining black-box
processes, the distributed system can be implemented to satisfy ψ.

For a distributed architecture A with a set of black-
box processes B = {b1, · · · , bn}, and CTL* or µ-
calculus formulas ψ, ϕb1 , . . . ϕbn

,

(R0) (A, ∅) �
∧

b∈B

ϕb → ψ

(R1) (A, {b1}) � ϕb1

...
...

(Rn) (A, {bn}) � ϕbn

(A,B) � ψ

Premise (R0) shows that the auxiliary formulas ϕb1 , . . . , ϕbn
strengthen the orig-

inal formula ϕ and hence any implementation that satisfies ϕb1 , . . . , ϕbn
must

also satisfy ϕ. Premises (R1) through (Rn) prove that there are, for all bi in B,
strategies sbi

that guarantee ϕbi
against the remaining black-box processes.

Theorem 1. The proof rule is sound.

Proof. Premises (R1) through (Rn) guarantee that, for each b ∈ B, there is an
implementation sb that guarantees ϕb against the remaining black-box processes
Br{b}. Consequently, the strategies can be fixed independently; the distributed
implementation thus obtained satisfies ϕb for all b ∈ B and hence

∧
b∈B

ϕb. Premise

(R0) guarantees that every non-distributed implementation of
∧

b∈B

ϕb is also an

implementation of ψ. As the distributed implementations form a subset of the
non-distributed implementations, the claim holds true. ut

To show the completeness of the distribution rule, we derive the auxiliary
formulas from a given implementation that realizes the specification: for a given
architecture, we call a specification strict, if it completely determines its imple-
mentation. An implementation can be described by a strict LTL specification ϕ.
A distributed implementation can be described by a strict specification ϕb for
every black-box component b ∈ B, such that ϕ =

∧
b∈B

ϕb is a strict specification

for the implementation.

Theorem 2. The proof rule is complete.

Proof. Assume there is a distributed implementation for a specification ψ and
ϕ =

∧
b∈B

ϕb is a strict specification for this implementation. Then (A, {b}) � ϕb

holds true for each b ∈ B. The implementation of ϕ is completely determined
and (A, ∅) � ϕ → ψ requires that every specification of ϕ is an implementation
of ψ. As the unique implementation is by definition an implementation of ψ,
(A, ∅) � ϕ → ψ also holds true. ut

4 Single-Process Synthesis

We now develop a procedure that checks if a specification can be guaranteed by
a single black-process b against the remaining black-box processes, (A, {b}) � ϕ,
as required for premises (R1) through (Rn), and a procedure that checks if a
specification can be guaranteed by the empty set of black-processes against all
black-box processes, (A, ∅) � ϕ, as required for premise (R0).

Every formula of a temporal logic can be translated into an alternating tree
automaton that accepts exactly its set of models. This automaton is the starting
point for our construction, which consists of a series of tree automata transfor-
mations.

4.1 Tree automata

An alternating parity tree automaton is a tuple A = (Σ,Q, q0, δ, α), where Q
denotes a finite set of states, q0 ∈ Q denotes a designated initial state, δ denotes
a transition function, and α : Q→ C ⊂ N is a coloring function. The transition
function δ : Q×Σ → B

+(Q× Υ) maps a state and an input letter to a positive
boolean combination of states and directions (for a predefined finite set Υ of
directions).

An alternating automaton runs on full Σ-labeled Υ -trees. A run tree 〈R, r〉
on a given full Σ-labeled Υ -tree 〈Υ ∗, l〉 is a Q× Υ ∗-labeled tree where the root
is labeled with (q0, ε) and where, for each node n with a label (q, y) with the set
of labels of its successors L = {r(n · ρ)|ρ ∈ sucset(n)}, there is a set A ⊆ 2Q×Υ

which satisfies δ(q, l(y)) such that (q′, υ) ∈ A⇔ (q′, y · υ) ∈ L.
An infinite path fulfills the parity condition, if the highest color of the states

appearing infinitely often on the path is even. A run tree is accepting if all infinite
paths fulfill the parity condition. A total Σ-labeled Υ -tree is accepted if it has
an accepting run tree.

The set of trees accepted by an alternating automaton A is called its language
L(A). L(A) denotes the set of full Σ-labeled Υ -trees not accepted by A. An
automaton is empty, if its language is empty.

The acceptance of a tree can also be viewed as the outcome of a game,
where player accept chooses, for a pair (q, σ) ∈ Q×Σ, a set of atoms of δ(q, σ),
satisfying δ(q, σ), and player reject chooses one of these atoms, which is executed.
The input tree is accepted iff player accept has a strategy enforcing a path that
fulfills the parity condition. One of the player has a memoryless winning strategy,
i.e., a strategy where the moves only depend on the state of the automaton, the
position in the tree and, for player react, on the choice of player accept in the
same move.

A nondeterministic automaton is a special alternating automaton, where the
image of δ consists only of such formulae that, when rewritten in disjunctive
normal form, contain exactly one element of Q × {υ} for all υ ∈ Υ in every
disjunct.

For nondeterministic automata, every node of a run tree corresponds to a
node in the input tree. Emptiness can therefore be checked with an emptiness
game, where player accept also chooses the letter of the input alphabet. A non-
deterministic automaton is empty iff the emptiness game is won by reject.

Symmetric alternating automata are a variant of alternating automata that
run on total Σ-labeled Υ -trees. For a symmetric alternating automaton S =
(Σ,Q, q0, δ, α), Q, q0, and α are defined as before. The transition function δ :
Q × Σ → B

+(Q × {�,♦}) now maps a state and an input letter to a positive
boolean combination over atoms that refer to some (♦) or all (�) successor
states.

A run tree on a given Σ-labeled Υ -tree 〈R, r〉 is a Q×Υ ∗-labeled tree where
the root is labeled with (q0, ε) and where, for a node n with a label (q, y) and
a set of labels of its successors L = {r(n · ρ)|ρ ∈ sucset(n)}, the following
property holds: there is a set of atoms A ⊆ 2Q×{�,♦} satisfying δ(q, l(y)) such

that ∀q′ ∈ Q.((q′,�) ∈ A⇒ ∀υ ∈ sucset(x).(q′, y ·υ) ∈ L)∧ ((q′,♦) ∈ A⇒ ∃υ ∈
sucset(x).(q′, y · υ) ∈ L).

We introduce a function suc : (Q×Σ → B
+(Q×{�,♦})) → (Q×Σ×2Υ

∅ →
B

+(Q × Υ)) that translates the transition function of a symmetric alternating
automaton running on total Σ-labeled Υ -trees into the corresponding transition
function of an alternating automaton running on full Σ × 2Υ

∅ -labeled Υ -trees.

For the set 2Υ
∅ = 2Υ

r {∅} of possible sets of successors, suc(δ) : Q×Σ × 2Υ
∅ →

B
+(Q × Υ) maps a state, an input letter and a set of successors to a positive

boolean combination of states and directions.

4.2 Overview

We represent the joint behavior of a system as a total 2V -labeled 2V -tree 〈Y, dir 〉,
where the label is completely determined by the direction. The process strategies

determine the tree: By the proper widening of a strategy s′p : (2V)∗ → 22Op

∅ , each
input history (or initial sequence of a path) is mapped to a nonempty subset
of 2Op , restricting the set of successors. The nodes of Y consist of the root and
all nodes y · υ whose predecessor y is in Y , and whose direction agrees with the
decisions of the processes: y · υ ∈ Y ⇔ y ∈ Y ∧ ∀p ∈ B]W.υ ∩Op ∈ s′p(y).

We start our construction with a symmetric automaton Sϕ that accepts the
models of the specification ϕ. Automata transformations are simpler for au-
tomata running on full trees; we therefore represent total trees as full trees by

decorating each node with its own set of successors. Considering a full 2V ×22V

∅ -

labeled 2V -tree 〈(2V)∗, l′〉, where the nodes are additionally decorated with the
sets of relevant successors, one can easily determine the original total 2V -labeled
2V -tree 〈Y, l〉, which we call its characteristic tree.

We continue with an automaton that accepts those full 2V × 22V

∅ -labeled

2V -trees whose characteristic tree is a model of ϕ. The labeling of the nodes
(2V)∗ r Y of 〈(2V)∗, l′〉 that are not on the characteristic tree has no influence
on the acceptance of the tree. We restrict the language under consideration to
2V × Sb × SW × SB′ × S-labeled 2V -trees, where Sb, SW , SB′ and S describe
the possible restrictions on the successor sets induced by the black-box process
b, the set of white-box processes W , the remaining black-box processes B ′ =
B r {b}, and the environment, respectively. By that, we obtain an automaton

Aϕ that accepts 2V × Sb × SW × SB′ × S-labeled 2V -trees. Since Sp = 22Op

∅
for all processes1 p ∈ B]W , the sets of possible restrictions can be identified
with SW =

⊗
w∈W Sw, SB′ =

⊗
b6=b′∈B Sb′ and S = {2Oenv} (as we assume the

environment to be maximal).
It remains to find a strategy sb such that for its proper widening s′b,

〈(2V)∗, dir × s′b × (
⊕

w∈W sw) × sB′ × {Oenv}〉 is accepted for all strategies

sB′ : (2V)∗ →
⊗

b6=b′∈B 22O
b′

∅ .

1 For generality, we allow all processes to be nondeterministic. If a subset D ⊆ B]W

of the processes is to be deterministic, one can simply choose, for all p ∈ D, the set
of singleton subsets of 2Op instead of the set of non-empty subsets.

We first build an automaton Rϕ that accepts a 2V ×Sb×SW -labeled 2V -tree,
if its complete cylinder is accepted by Aϕ, establishing independence from the
decision of the black-box processes. Subsequently, we use the determination of
the 2V and SW fraction of the label to defer an automaton Dϕ that accepts all
strategy trees 〈(2V)∗, sb〉 that would guarantee ϕ against the remaining black-
box processes if process b were omniscient. This automaton is then transformed

into an automaton Bϕ accepting the strategies of b (22Ob

∅ -labeled 2Ib-trees).
Checking this automaton for emptiness answers the question of realizability.

In case of realizability, the emptiness test can be extended to synthesize a finite-
state strategy for b.

In summary, our construction consists of seven steps:

1. From formulas to automata: We construct a symmetric alternating au-
tomaton Sϕ that accepts the models of ϕ.

2. Characteristic trees: The alternating automaton Aϕ accepts a 2V ×Sb ×
SW × SB′ × S-labeled 2V -tree if its characteristic tree is accepted by Sϕ.

3. Quantification: The alternating automaton Rϕ accepts a 2V × Sb × SW -
labeled 2V -tree if all SB′ × S extensions are accepted by Aϕ.

4. Adjusting for white-box processes: The alternating automaton Wϕ ac-
cepts a 2V ×Sb-labeled 2V -tree if the 2V ×Sb×SW -labeled 2V -tree obtained
by adding the decisions of the white-box processes is accepted by Rϕ.

5. Pruning directions from the labeling: The alternating automaton Dϕ

accepts a Sb-labeled 2V -tree if the 2V ×Sb-labeled 2V -tree obtained by adding
the direction of a node to the label is accepted by Wϕ.

6. Narrowing: The alternating automaton Bϕ accepts a Sb-labeled 2Ib-tree if
its proper widening is accepted by Dϕ.

7. Emptiness check: The realizability claim (A, {b}) � ϕ holds true iff Bϕ is
not empty. To perform an emptiness test, Bϕ can be transformed into an
equivalent nondeterministic automaton Cϕ, which can be checked for empti-
ness by solving the emptiness game. A winning strategy in the emptiness
game implies an implementation for the process b.

In the following, we discuss the automata transformations in detail.

4.3 Automata Transformations

From formulas to automata. We use standard constructions to translate a
temporal specification ϕ into a symmetric alternating automaton Sϕ that accepts
the models of the formula: L(Sϕ) = Mϕ.

Theorem 3. Given a CTL specification ϕ, we can construct a symmetric alter-
nating automaton Sϕ with O(|ϕ|) states and two colors such that L(Sϕ) = Mϕ

[8]. Given a CTL* specification ϕ, we can construct a symmetric alternating au-
tomaton Sϕ with 2O(|ϕ|) states and five colors such that L(Sϕ) = Mϕ [8]. Given
a µ-calculus specification ϕ, we can construct a symmetric alternating automa-
ton Sϕ with O(|ϕ|2) states and O(|ϕ|) colors such that L(Sϕ) = Mϕ [6]. ut

Characteristic trees. For a Σ × Ξ-labeled Υ -tree 〈Y, l〉, we denote the Σ-
projection proj Σ : 〈Y, l〉 7→ 〈(Y, lΣ〉 with l(y) = (σ, ξ) ⇒ lΣ : y 7→ σ that maps
Σ ×Ξ-labeled Υ -trees to Σ-labeled Υ -trees.

For a full Σ×2Υ
∅ -labeled Υ -tree 〈Υ ∗, l〉, we define the characteristic tree as the

total Σ-labeled Υ -tree 〈Y, lc〉 = char (〈Υ ∗, l〉) to be the sub-tree of proj Σ(〈Υ ∗, l〉)
with y ∈ Y ⇒ ∀υ ∈ Υ.y · υ ∈ Υ ⇔ υ ∈ proj 2Υ

∅
(〈Υ ∗, l〉). Intuitively, the second

argument in the label defines the set of successors of a node.

Lemma 1. Given a symmetric alternating automaton S = (Σ,Q, q0, δ, α), run-
ning on total Σ-labeled Υ -trees, we can construct an alternating automaton
A = (Σ × 2Υ

∅ , Q, q0, suc(δ), α) that accepts a full Σ × 2Υ
∅ labeled Υ -tree 〈Υ ∗, l〉,

iff proj Σ(char (〈Υ ∗, l〉)) is accepted by S.

Proof. Let 〈T, lT 〉 = char (〈Υ ∗, l〉). Then the successor set of a node x ∈ T is
defined by the label: sucset(x) = proj 2Υ

∅
(lT (x)) = proj 2Υ

∅
(l(x)). ut

Quantification. To construct an alternating automaton Rϕ that accepts a
2V × Sb × SW -labeled 2V -tree if all SB′ × S extensions are accepted by Aϕ, we

1. complement Aϕ, i.e., we compute an alternating automaton Iϕ with L(Iϕ) =

L(Aϕ),
2. build a nondeterministic automaton Nϕ with the same language L(Nϕ) =

L(Aϕ),
3. compute a nondeterministic automaton Pϕ that accepts a 2V × Sb × SW -

labeled 2V -tree if it is the the SB′ × S-projection of a tree accepted by Nϕ,
4. complement Pϕ, i.e., we compute an alternating automaton Rϕ with

L(Rϕ) = L(Pϕ).

Lemma 2. [9] Given an alternating automaton A = (Σ,Q, q0, δ, α) that runs
on Σ-labeled Υ -trees, the dual automaton I = (Σ,Q, q0, δ, α+ 1), where δ is the
function dual to δ, accepts a tree 〈Υ ∗, l〉 iff 〈Υ ∗, l〉 is not accepted by S. ut

Lemma 3. [2, 10] Given an alternating automaton A with n states and c colors,
we can construct an equivalent nondeterministic automaton N with nO(c·n) states
and O(c · n) colors. ut

Lemma 4. Given a nondeterministic automaton N = (Σ × Ξ,Q, q0, δ, α) that
runs on Σ ×Ξ-labeled Υ -trees, we can construct a nondeterministic automaton
P = (Σ,Q, q0, δ

′, α) that accepts a Σ-labeled Υ -tree 〈Υ ∗, l〉 iff there is a Σ ×Ξ-
labeled Υ -tree 〈Υ ∗, lΞ〉 accepted by N with 〈Υ ∗, l〉 = proj Σ(〈Υ ∗, lΞ〉).

Proof. P can be constructed by using δ′ to guess the correct tree: we set δ′ :
(q, σ) 7→

∨
ξ∈Ξ δ(q, (σ, ξ)). ut

In the following two transformations, the decisions of the white-box processes
and the labeling imposed by the directions are deleted from the label.

Adjusting for white-box processes. The SW fraction of the label represents
the decisions made by the white box processes. Consequently, we are only inter-
ested in those trees, where the label of every node is in accordance with these
decisions. This information is then redundant and can be pruned. We assume
that the composed strategy

⊕
w∈W sw of the white-box processes is represented

as a finite-state automaton O = (2V , O, o0, dW , oW), where O is a set of states,
o0 the initial state, the transition function dW : 2V ×O → O is a mapping from
the input alphabet and the set of states to the set of states, and the output

function oW : O → 22OW

∅ maps each state to a nonempty set of output letters.
The following operation performs the pruning; the state-space of the resulting
automaton is linear in the state-space of the original automaton and the number
of states of O, while the set of colors remains unchanged.

Lemma 5. Given an alternating automaton R = (Σ × Ξ,Q, q0, δ, α) over
Σ × Ξ-labeled Υ -trees and a finite automaton O = (Σ,O, o0, dW , oW) that
produces a Ξ-labeled Υ -tree 〈Υ ∗, l〉, we can construct an alternating automa-
ton W = (Σ,Q× O, (q0, o0), δ

′, α′) over Σ-labeled Υ -trees, such that W accepts
〈Υ ∗, l′〉 iff R accepts 〈Υ ∗, l′′〉 with l′′ : y 7→ (l′(y), l(y)).

Proof. If δ : (q, σ, ξ) 7→ b(q,σ,ξ)({qi, υi}i∈I), we can set δ′ : (q, o, σ) 7→
b(q,σ,oW (o))({qi, dW (σ, o), υi}i∈I). The coloring function can simply be set to
α′ : (q, o) 7→ α(q). ut

Pruning directions from the labeling. We are only interested in those trees
where the label of every node is in accordance with its direction. This information
then becomes redundant and can be pruned. The following operation performs
this pruning; the state-space of the resulting automaton is linear in the state-
space of the original automaton, while the set of colors remains unchanged.

For a Σ-labeled Υ -tree 〈Υ ∗, l〉, we define the function xray : 〈Υ ∗, l〉 7→ 〈Υ ∗, l′〉
with l′(x) = (dir (x), l(x)) that maps Σ-labeled Υ -trees to Υ ×Σ-labeled Υ -trees.

Lemma 6. [8] Given an alternating automaton W = (Υ × Σ,Q, q0, δ, α) over
Υ ×Σ-labeled Υ -trees, we can construct an alternating automaton D = (Σ,Q×
Υ, (q0, υ0), δ

′, α′) over Σ-labeled Υ -trees, such that D accepts 〈Υ ∗, l〉 iff R accepts
xray(〈Υ ∗, l〉). ut

The transition function δ′ : Q×Υ ×Σ → B+(Q×Υ ×Υ) can be constructed
from δ : Q× Υ ×Σ → B+(Q× Υ) by replacing all occurrences of (q, υ) in each
δ(q′, υ′, σ′) by (q, υ, υ), storing the direction as quasi-input. α′ : (q, c) 7→ α(q)
simply evaluates the first component of the new state-space.

Narrowing. The process b is in general not omniscient, and its output may
only depend on the history of the input visible to b. The following transformation
therefore accepts a 2Op-labeled 2Ip-tree if its proper widening is accepted by Dϕ.
The state-space and the set of colors remain unchanged.

Lemma 7. [8] Given an alternating automaton D = (Σ,Q, q0, δ, α) over
Σ-labeled Ξ × Υ -trees, we can construct an alternating automaton B =
(Σ,Q, q0, δ

′, α) over Σ-labeled Ξ-trees, such that B accepts 〈Ξ∗, l〉 iff W ac-
cepts wideΥ (〈Ξ∗, l〉). ut

δ′ can be constructed from δ by replacing all occurrences of (q, (ξ, υ)) by
(q, ξ) in δ(q′, σ) for all q, q′ ∈ Q, σ ∈ Σ, ξ ∈ Ξ and υ ∈ Υ .

Emptiness check. To perform an emptiness test, Bϕ can be transformed into
an equivalent nondeterministic automaton Cϕ.

Theorem 4. Given a symmetric alternating automa-
ton Sϕ that accepts the models of ϕ, an architecture
(B,W, {Ip}p∈B]W]{env}, {Op}p∈B]W]{env}, {sw}w∈W) and a designated
black-box process b ∈ B, we can construct a nondeterministic automaton Cϕ

that accepts a full 2Op-labeled 2Ip-tree 〈(2Ip)∗, sb〉 iff sb guarantees ϕ against

B r {b}. If S has n states and c colors, C has 2nO(n·c)

states and nO(n·c) colors.

Proof. By applying the transformation steps in the order described in the
overview of the algorithm, we obtain an alternating automaton Bϕ with nO(n·c)

states and O(n · c) colors that accepts an implementation 〈(2Ib)∗, sb〉 of a pro-
cess b if it guarantees ϕ against B r {b}. A nondeterminisation of Bϕ by the
construction of Lemma 3 provides the required automaton. ut

Theorem 5. For a given architecture A and a black-box process b, we can check
(A, {b}) � ϕ and, if the claim is true, provide an implementation for b guarantee-
ing ϕ, in 2EXPTIME in the length |ϕ| if ϕ is a CTL or µ-calculus specification,
and in 3EXPTIME in |ϕ| if ϕ is a CTL* specification, respectively.

Proof. By Theorem 3, we can turn a specifications ϕ in CTL, µ-calculus or CTL*
with length n = |ϕ| into a symmetric alternating automaton S with O(n) states
and two colors, O(n2) states and O(n) colors or 2O(n) states and five colors,
respectively.

By Theorem 4, we can transform the symmetrical alternating automaton S
into a nondeterministic automaton C, accepting the strategies of b that guarantee

ϕ against the remaining black-box processes. C has 2nO(n)

states and nO(n) colors,

2nO(n3)

states and nO(n3) colors or 222O(n)

states and 22O(n)

colors, respectively.
The actual emptiness test or the synthesis of a strategy for process n can

be done in time polynomial in the state-space and exponential in the number of
colors. More precisely, if C has m states and c colors, a strategy (or the proof
of emptiness) can be found in mO(c) time [11]. The overall time complexity is

hence 2nO(n)

, 2nO(n3)

and 222O(n)

, respectively. ut

Lower Bounds. To demonstrate that the upper bounds are sharp, we give
a reduction from the synthesis problem in reactive environments with complete
information, which is known to be 2EXPTIME and 3EXPTIME hard for CTL

and CTL*, respectively [7]. In synthesis with reactive environments and complete
information, we have only one process b, for which a (deterministic) strategy
sb : (2Oenv)∗ → Sb is sought (where Sb is the set of singleton subsets of 2Oenv .
The environment can react on the input by restricting its actions to a non-empty
subset of its output variables Oe, which can be viewed as a non-deterministic

strategy se : (2Oenv∪Ob)∗ → 22Oe

∅). In our terms, a strategy sb : (2Oenv)∗ → Sb

implements a specification ϕ if, for all strategies se : (2Oenv∪Ob)∗ → 22Oenv

∅ of the
environment, sb × se is a model of ϕ.

We encode this synthesis problem as the realizability of ϕ by b against a black-
box process e with output Oe and an environment without output. The second
black-box process e plays the rôle of the reactive environment. Formally, we de-
fine the architecture A = ({b, e}, ∅, {Ib = Oe, Ie = Ienv = V }, {Ob, Oe, Oenv =
∅}, ∅). The determinacy of sb can be guaranteed by the construction (by setting
Sb to the set of singleton subsets of 2Ob). Alternatively, we can ensure the deter-
minacy of sb by strengthening the specification ϕ such that only deterministic
strategies are allowed: For ψ =

∧
o∈Ob

AG (EXo → AXo), we can solve the

realizability problem for ϕ′ = ϕ ∧ ψ (which is linear in ϕ).

Theorem 6. The realizability problem (A, {b}) � ϕ is 3EXPTIME complete for
CTL* and 2EXPTIME complete for CTL and µ-calculus specifications in the
size |ϕ| of the specification.

Proof. The lower bounds for CTL and CTL* follow from the equal lower bounds
for the synthesis problem with reactive environments. The lower bound for the
µ-calculus is established by the lower bound for CTL. The upper bound is demon-
strated by Theorem 5. ut

Premise R0. The correctness of premise R0 can be checked along the same
lines: we check whether the empty strategy guarantees

∧
b∈B

ϕb → ψ against all

black-box processes. Since Sb = {∅} and Ib = ∅, the automaton Bϕ (with n states
and c colors) is an alternating word automaton over the single-letter alphabet,
whose emptiness can be checked in nO(c) time. Checking (R0) is therefore in
EXPTIME for CTL and µ-calculus specifications and in 2EXPTIME for CTL*
specifications, respectively, in |

∧
b∈B

ϕb → ψ|.

5 Conclusions

In open synthesis, where we synthesize a system that consists of a single process,
it is safe to assume that the environment behavior is maximal. For the synthesis
of a black-box process in the architecture of a general distributed system, the
environment model needs two extensions: (1) The other black-box processes add
a reactive component to the environment and (2) the process only has incomplete
information about the environment behavior.

Extension (1) turns out to be expensive. Adding the reactive component
increases the complexity for CTL specifications from EXPTIME [8] to 2EXP-
TIME [7], and for CTL* specifications from 2EXPTIME [8] to 3EXPTIME [7].
As shown in Section 4, extension (2) has no extra cost. This settles an open
question of [7]: The complexity of synthesizing a single process in a distributed
architecture is still 2EXPTIME and 3EXPTIME, respectively.

The complexity of single-process synthesis is especially convincing in com-
parison to the cost of distributed synthesis: in the rare cases where distributed
synthesis is decidable, the cost of synthesizing a distributed system with n pro-
cesses (with distinguishable degree of information about the system state) is
n-exponential in the size of the specification [1, 2].

Dividing the synthesis problem into several synthesis problems for single
processes therefore appears as a promising approach to cope with the complexity
and general undecidability of distributed synthesis. The situation is similar to
the verification of distributed systems, where the compositional approach is well-
established [12]. Our proof rule in Section 3 is a first example of a compositional
synthesis technique. The rule is complete and therefore sufficient to decompose
any realizable specification. The rule may, however, be less convenient to use than
some compositional verification rules that, for example, apply circular assume-
guarantee reasoning [13]. Defining such rules for the synthesis problem is an
interesting topic of future research.

References

1. Kupferman, O., Vardi, M.Y.: Synthesizing distributed systems. In: IEEE Sympo-
sium on Logic in Computer Science. (2001)

2. Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: IEEE Symposium
on Logic in Computer Science. (2005)

3. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Proc. IBM Workshop on Logics of Pro-
grams. Volume 131 of LNCS., Springer-Verlag (1981) 52–71

4. Wolper, P.: Synthesis of Communicating Processes from Temporal-Logic Specifi-
cations. PhD thesis, Stanford University (1982)

5. Kupferman, O., Vardi, M.Y.: Synthesis with incomplete informatio. In: Proc. 2nd
International Conference on Temporal Logic (ICTL’97). (1997)

6. Kupferman, O., Vardi, M.Y.: µ-calculus synthesis. In: Proc. 25th International
Symposium on Mathematical Foundations of Computer Science. Volume 1893 of
LNCS., Springer-Verlag (2000) 497–507

7. Kupferman, O., Madhusudan, P., Thiagarajan, P., Vardi, M.Y.: Open systems
in reactive environments: Control and synthesis. In: Proc. 11th Int. Conf. on
Concurrency Theory. Volume 1877 of LNCS., Springer-Verlag (2000) 92–107

8. Kupferman, O., Vardi, M.Y.: Church’s problem revisited. The bulletin of Symbolic
Logic 5 (1999) 245–263

9. Muller, D.E., Schupp, P.E.: Alternating automata on infinite trees. Theor. Comput.
Sci. 54 (1987) 267–276

10. Muller, D.E., Schupp, P.E.: Simulating alternating tree automata by nondetermin-
istic automata: new results and new proofs of the theorems of rabin, mcnaughton
and safra. Theor. Comput. Sci. 141 (1995) 69–107

11. Jurdziński, M.: Small progress measures for solving parity games. In: 17th Annual
Symposium on Theoretical Aspects of Computer Science. Volume 1770 of LNCS.,
Springer-Verlag (2000) 290–301

12. de Roever, W.P., Langmaack, H., Pnueli, A., eds.: Compositionality: The Signifi-
cant Difference. COMPOS’97. Volume 1536 of LNCS., Springer Verlag (1998)

13. Maier, P.: A Lattice-Theoretic Framework For Circular Assume-Guarantee Rea-
soning. PhD thesis, Universität des Saarlandes, Saarbrücken (2003)

